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Abstract

The persistence characteristics of soil moisture is known as soil moisture memory (SMM).

Knowledge of SMM is important for both land surface and hydrological modelling exercises.

SMM information can improve hydro-climatic prediction e�ciency as well as provides useful

insight about the speed of model spin-up process. Despite these advantages, SMM studies are

restricted in certain regions due to the scarcity of observed soil moisture data. To overcome

this limitation, this study explains the variability of SMM with respect to the dryness of a

river basin and shows a way to predict basin scale SMM timescale using annual observed

precipitation and potential evapotranspiration information only. Later, the linkage between

the SMM and the model spin-up time has been investigated using the Xinanjiang (XAJ)

model as a case study.

The study presents the basin average SMM timescale that indicates the duration of

signi�cant autocorrelations at 95% con�dence intervals. The soil moisture autocorrelations

were calculated using observed precipitation, potential evapotranspiration, stream�ow and

soil moisture data sets (soil moisture data was simulated using the XAJ model), for 26 river

basins across the USA. The SMM timescale is highly in�uenced by precipitation variability

and exhibits strong seasonality. Dry basins tend to show the highest memory during the

winter months (December to February) and lowest in late spring (May). In contrast, wet

basins have the lowest memory during winter and early spring (December to April) and

highest in the late summer and early autumn (July to September). The analysis suggests

that SMM timescale holds an exponential relationship with the basin aridity index.

The model spin-up behavior was evaluated by two separate approaches. Firstly, it records

the model spin-up time by following a recursive simulation with single year climatology

with three climatological input data sets and four initial conditions. The spin-up time was

de�ned based on the percent cuto�-based time technique. Secondly, it performs a series

of simulations using multi-year input data sets with varying simulation start time and two

initial conditions (�saturated� and �dry�). The spin-up time was de�ned as the time required

for the Mahalanobis Distance between the model soil moisture states of �saturated� and �dry�

simulations becomes zero (0).

Both the analysis reveals that the model spin-up has a clear association with SMM

timescale. Moreover, it reveals that model equilibrium is not only a function of initial

conditions, but also is a�ected by input data sets. Model requires less time to be equilibrated

under wetter initial conditions (lowest under saturated initial condition). Moreover, model

spin-up time shows distinct variations with the dryness of the climate forcing. Analysis
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suggests that wet basins require less time for model equilibrium in comparison to that of dry

basins. In wet basins, model spin-up process is slower during the spring months and faster

during winter months. In contrast, in dry basins, spin-up process is faster during the late

spring and early autumn and slower during the winter. The spin-up time also displayed an

exponential relationship with the basin aridity index. Both SMM timescale and the model

spin-up time can be predicted from widely available observed data sets.

The highlighting points of this thesis:

• Computed and validated soil moisture autocorrelations using model simulated soil mois-

ture data (validated against the observed seasonal cycles). This overcomes the soil

moisture data limitation for SMM studies.

• This study presents SMM in the form of a timescale dealing with a single number that

is more easier to understand. This improves the understanding and feeling of SMM

variability.

• Analyses more than 25 river basins representing diverse climatic conditions across USA.

This enables to show basin scale variations of SMM which is absent in the available

literature.

• Explains seasonality and variability of SMM with respect to the dryness of the river

basin. This establishes the linkage between the SMM and basin hydro-climatic prop-

erties.

• Analyses model spin-up time following recursive simulations using three di�erent cli-

matological forcing. This shows a way to improve the representativity of actual obser-

vations even with a recursive simulation-based spin-up studies.

• Discusses the variability of the model spin-up time with respect to the model initial

conditions and basin dryness. This identi�es the primary factors that a�ect the model

spin-up process and provides important insights for model initialisation under data

scarce situation.

• Explains the seasonality of model spin-up time based on simulations using multi-

year climatologies. This provides a path to overcome the limitations with single year

climatology-based recursive simulations for spin-up studies.

• Veri�es the association between the SMM and the model spin-up time. This o�ers new

knowledge to the modelling communities that are missing in the available literature.

• Finally, it shows the predictability of both SMM and model spin-up time from widely

available precipitation and potential evapotranspiration data sets. This a�ords some

knowledge of SMM and the model spin-up time, particularly for those areas where no

knowledge is available.
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Chapter 1

Introduction

1.1 Problem statement

The persistence characteristics of soil moisture is known as the soil moisture memory (SMM).

The extent of this SMM has potential application in di�erent research �elds, primarily in

weather and climate or hydrological predictions. Knowledge of SMM has proven to be an

additional tool for improving traditional climate/hydrological forecast e�ciency. Advantages

of the SMM inclusive approach over traditional forecasts have been reported in several stud-

ies. Knowledge of SMM could improve soil moisture initialization for weather and climate

prediction processes, and thus enhance prediction e�ciency. Such knowledge might also

improve the predictability of soil moisture and associated climate. Moreover, soil moisture,

through its in�uence on land energy balance (partitioning sensible and latent heat �ux),

provides additional feedback on temperature and precipitation. Furthermore, a persistent

soil moisture anomaly may prolong the e�ects of drought and in�uence the magnitude, oc-

currence, and receding of �oods and stream�ow dynamics. Finally, SMM is believed to be

capable of propagating stream�ow. Currently, stream�ow forecasting e�ciency mostly de-

pends on the prediction accuracy of atmospheric forcing or snow accumulation. However,

soil moisture conditions evidently a�ect stream�ow forecast accuracy. A dry soil below the

snow pack receives and stores in�ltrated water from snow melt and later it evaporates rather

than becoming runo� into streams. Conversely, wet soil beneath the melting snow pack can

stimulate stream�ow. Therefore, SMM potentially a�ects stream�ow forecast skills.

In spite of its huge importance, SMM studies are restricted to certain areas of the world

due to the scarcity of long-term soil moisture data. Presently, such kinds of data are available

only for limited areas (i.e. Russia, China, Mongolia and Illinois, USA). Additionally, these

observations were taken mostly on a weekly to half-monthly basis, depending on location

and season. Therefore, to date SMM studies using observed soil moisture data are mostly

limited to half-monthly or monthly timescales. Latest SMM studies are mainly done on a

global scale with regional averages. However, SMM may vary from basin to basin, even those

located within very close latitudes, due to their variations in hydro-climatological properties;

hence the basin scale variations are unknown. Therefore, a clear relationship between the

basin scale SMM and its hydro-climatic (i.e. aridity index) or soil property information could

be another important alternative way to gain a rough estimation of SMM.
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2 CHAPTER 1. INTRODUCTION

Latest techniques estimate SMM in the form of the strength of autocorrelation of soil

moisture with di�erent time lags. The variations of the strength of SMM through the changes

of autocorrelation values over time lags. The higher the coe�cients the higher the memory

is. However, it is not always easy and straightforward to understand the change. A change

of autocorrelation value from 0.9 to 0.2 only indicates a decrease in memory and does not

specify the decrease of the timescale clearly, and vice versa. It also does not clarify whether

this relationship is statistically signi�cant. Even if the signi�cance of the relationship is

known, how long it will stay signi�cant remains unknown. Therefore, it would be useful

once the corresponding timescales of these autocorrelation values are known. Changes in

SMM timescale from 60 days to 45 days would be easy and straightforward.

The strength of SMM also a�ect the spin-up process of hydrological or land surface

models. When a model is calibrated with a di�erent initial state compared to the long-term

climatology, the model undertakes a period of spin-up during which its internal stores (i.e.

soil moisture) adjust from the initial conditions to an equilibrium state. The duration of this

adjustment process is mainly a function of soil moisture persistence (SMM). A low SMM

indicates that the soil moisture anomalies are short-lived, dissipate quickly, enabling the

model to recover relatively quickly from an undesirable initial state. On the other hand a

high SMM that indicates the slowness of anomaly dissipation and would delay the process

of model equilibrium. The model outputs during this spin-up process is often unrealistic

or misleading, and thus a�ect the modelling accuracies. To avoid this, modellers usually

exclude initial model outputs during the analysis. Due to the lack of information, the

amount of output exclusion is mainly guided by a guess, experience or purpose. This practice

bears certain risk of excluding essential information or including erroneous model outputs.

Therefore, there is a need to understand the model spin-up process, its controls and the way

to reduce the uncertainty associated with guessing spin-up time simply based on feeling or

experience.

1.2 Research questions

Based on the problem statement, several research questions have been developed.

1. How the autocorrelation based SMM can be expressed as SMM timescale?

2. How the SMM timescale changes temporally and spatially?

3. What is the relationship between the basin scale SMM timescale and hydro-climatic

properties?

4. How the model spin-up time varies with respect to initial conditions and input data

climatology?

5. How the model spin-up time varies temporally and spatially?

6. What is the relationship between the SMM timescale and the model spin-up time?

7. How can we predict the model spin-up time using widely available observed dataset?
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1.3 Objectives

The overall objective of this study was to characterize soil moisture memory timescale and

the Xinanjiang model spin-up time by basin scale hydro-climatic data. This overall objective

was segmented into several speci�c objectives to answer all the research questions mentioned

in section 1.2.

Speci�c objectives:

1. To identify a way to convert the soil moisture autocorrelations into an easily understand-

able SMM timescale expressed as time duration. This speci�c objective answer the �rst

research question.

2. To analyse the behaviour, seasonality and variability of SMM with respect to the dryness

of the basin. This objective satis�es research question # 2.

3. To detect any relationship between the basin scale SMM timescale and its hydro-climatic

properties that holds the potentials to be used as an alternative source of SMM prediction.

This objective solves third research question.

4. To analyse the behaviour and seasonality of model spin-up time with respect to initial

conditions and input data climatology. This objective resolves fourth and �fth research

questions.

5. To understand the relationship between SMM and model spin-up time. This objective

ful�lls research question # 6.

6. To �nd a way to predict model spin-up time based on observed hydro-climatic dataset.

This objective answers the last research question.

1.4 Structure of the thesis

Chapter 1: Summarizes the background, research questions and the objectives of this study.

Chapter 2: Provides literature review about the soil moisture memory.

Chapter 3: Discusses the conversion of soil moisture autocorrelations into SMM timescale

linked with speci�c objective #1.

Chapter 4: Analyzes the seasonality and variability of SMM in wet and dry river basins.

This chapter is connected with the second and third speci�c objectives.

Chapter 5: Examines the model spin-up time behaviour under di�erent initial conditions

and input data climatology using the Xinanjiang model. This chapter is associated with

�fth, sixth and part of fourth speci�c objectives.

Chapter 6: Investigates how the model spin-up varies with simulations start time of year.

This chapter is related with the fourth speci�c objective.
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Chapter 2

Soil moisture memory : literature review

2.1 Soil moisture memory and its importance

Soil moisture shows special persistence characteristics (Delworth and Manabe, 1988; Entin

et al., 2000; Koster and Suarez, 2001; Seneviratne and Koster, 2012). Soils can act as a

temporary reservoir and has the ability to store de�cits or surpluses of moisture. This

anomalous conditions (deviation from the mean state) are usually created by the variability

of atmospheric forcing (i.e. precipitation or radiation). For example, a period of heavy

rainfall would create a positive anomaly in the soil moisture state. This soil moisture anomaly

then dissipates through evapotranspiration or runo�. Similarly, a negative anomaly could

also be created by a prolong dry spell and thereafter dissipated through rainfall, snow melt,

or irrigation. Literature suggests that the complete dissipation process can take hours or

months (Entin et al., 2000; Mahanama and Koster, 2003). Therefore, the soil can remember

an anomalous condition long after it has occurred. This phenomenon of memorizing past

anomalies is termed soil moisture persistence or soil moisture memory (hereinafter referred

as SMM). However, this dissipation process and timescales di�er from place to place due

to variations in soil properties, scale of interest, and climate forcing. The extent of this

SMM has potential application in di�erent research �elds, primarily in weather and climate

or hydrological predictions. Knowledge of SMM has proven to be an additional tool for

improving traditional climate/hydrological forecast e�ciency (Koster et al., 2010a, 2004).

Advantages of the SMM inclusive approach over traditional forecasts have been reported

in several studies. Koster et al. (2010a) and van den Hurk et al. (2012) documented the

usefulness of SMM understanding to improve soil moisture initialization for weather and

climate prediction processes. SMM knowledge can enhance prediction e�ciency, mainly

in reference to longer timescales and under high initial soil moisture anomaly conditions.

Such knowledge might also improve the predictability of soil moisture and associated cli-

mate (Schlosser and Milly, 2002). Moreover, soil moisture, through its in�uence on land

energy balance (partitioning sensible and latent heat �ux), provides additional feedback on

temperature (Seneviratne et al., 2006b; Mueller and Seneviratne, 2012) and precipitation

(Koster et al., 2004; Dirmeyer et al., 2009). Furthermore, a persistent soil moisture anomaly

may prolong the e�ects of drought (Hong and Kalnay, 2000; Nicholson, 2000) and in�uence

the magnitude, occurrence, and receding of �oods (Bonan and Stillwell-Soller, 1998) and

5
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stream�ow dynamics.

Low-frequency stream�ow dynamics are believed to be controlled by the catchment wet-

ness, SMM (Gudmundsson et al., 2011). Likewise, SMM is believed to be capable of propa-

gating stream�ow (Orth and Seneviratne, 2013). Currently, stream�ow forecasting e�ciency

mostly depends on the prediction accuracy of atmospheric forcing or snow accumulation.

However, soil moisture conditions evidently a�ect stream�ow forecast accuracy. A dry soil

below the snow pack receives and stores in�ltrated water from snow melt and later it evap-

orates rather than becoming runo� into streams. Conversely, wet soil beneath the melting

snow pack can stimulate stream�ow (Koster et al., 2010b). Therefore, SMM potentially

a�ects stream�ow forecast skills (Koster et al., 2010b; Mahanama et al., 2012).

2.2 Review of SMM study approaches

2.2.1 Non-autocorrelation-based approach

Delworth and Manabe (1988) described this unique persistence characteristic of soil moisture

through a �rst-order Markov process run by a random precipitation forcing, as shown in Eq.

(2.1):

dw (t)

dt
= −PE

Cs

w (t) + P −Q (2.1)

where random processes precipitation (including snow melt) P and runo� Q (runo� in

this context and in the following is the sum of base �ow and stream�ow) force soil moisture,

w(t). PE is the potential evapotranspiration and Cs is the bucket model's (Manabe (1969))

water holding capacity. In Eq. (2.1), PE
Cs

w (t) term controls the soil moisture variability and

generates soil moisture persistence. It computes the length of this persistence timescale by

assuming an exponential decay function of autocorrelation with the lag time, usually known

as the e-folding time (time required to reduce the calculated autocorrelation coe�cient, ρ

values to its 1/e value), as shown in Eq. (2.2):

ρ (tlag) = e−
PE
Cs

tlag (2.2)

where ρ is the autocorrelation at lag time tlag.

This timescale ranges from no memory (zero) to in�nite memory (in�nity). This theory

was validated and several observational SMM studies con�rmed its e�ectiveness (Wu and

Dickinson, 2004; Schlosser and Milly, 2002; Entin et al., 2000; Vinnikov et al., 1996; Vinnikov

and Yeserkepova, 1991).
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2.2.2 Autocorrelation-based approach

A. Koster and Suarez

Koster and Suarez (2001) proposed another framework that calculates the power of SMM

in the form of autocorrelation of soil moisture. This approach estimates SMM for a speci�c

time lag by calculating correlations between the soil moisture anomalies of a particular day

(n) and soil moisture anomalies of day with a speci�c lag (n+ lag)using multi-year data. As

an example, Fig. 2.1 explains the calculation of SMM for 1 January with a speci�c lag.

According to this approach, calculation of autocorrelation using soil moisture or for its

anomalies provides the same outcome, as using the anomalies would only include a constant

o�set that would not a�ect the resultant correlation coe�cient (Orth, 2013). Thus, the

autocorrelation equation for the soil moisture at day n and n + lag can be written as Eq.

(2.3).

ρ (wn, wn+lag) =
COV (wn, wn+lag)

σwnσwn+lag

(2.3)

where ρ (wn, wn+lag) is the autocorrelation between the degree of soil moisture saturation

at the beginning of the time step wn and the degree of soil moisture saturation at speci�c lag

wn+lag. COV (wn, wn+lag) is the covariance between the soil moisture at day n and n+ lag.

wn and wn+lag are the standard deviation of soil moisture at day n and n+ lag respectively.

Starting with a simple soil water balance equation (Eq. (2.4)), Koster and Suarez (2001)

rewritten Eq. (2.3) and proposed the �rst autocorrelation based SMM calculation, Eq. (2.7).

Cswn+lag,y = Cswn,y + Pn,y − En,y −Qn,y (2.4)

where Cs, wn,y and wn+lag,y are the water holding capacity of the soil column, degree of

soil moisture saturation at day n and day n+ lag of year y respectively. Pn,y, En,y and Qn,y

are the accumulated precipitation, evapotranspiration and stream�ow during the time steps

(n, n+ lag) of year y respectively.

Supported by previous conclusions from Koster and Milly (1997), Koster and Suarez

(2001) assumed that both stream�ow (normalized by precipitation) and evapotranspiration

(normalized by radiation) are linearly dependent on mean soil moisture over the considered

time lag.

Qn,y

Pn,y

= an
wn,y + wn+lag,y

2
+ bn (2.5)

En,y

Rn,y

= cn
wn,y + wn+lag,y

2
+ dn (2.6)

where wn,y, wn+lag,y, En,y and Pn,y express the same meaning as mentioned above. R̄n is

the radiation. an, bn, cn and dnare parameters after Koster and Milly (1997). By replacing

evapotranspiration and stream�ow in Eq. (2.4) by the Eqs. (2.5) and (2.6), Eq. (2.7) was
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Figure 2.1: Illustration of SMM calculation for 1 January with a speci�c lag using hypothetical
soil moisture time series data. The correlations between all soil moisture anomalies at day
n (1 January here) of all years (plotted in panel-a) with the respective anomalies at day
n+ lag (plotted in panel-b) is the measure of SMM.

developed. The detail step-by-step development of Eq. (2.7) is given in Appendix-A.

ρ (wn, wn+lag) =
σwn

σwn+lag

[
An +

COV (wn, Fn)

σ2
wn

]
(2.7)

with Fn , a forcing term de�ned by Eq. (2.8):

Fn,y =
2− 2

(
an

wn,y+wn+lag,y

2
+ bn

)
2Cs + anP̄n + cnR̄n

Pn,y −
2
(
cn

wn,y+wn+lag,y

2
+ dn

)
2Cs + anP̄n + cnR̄n

Rn,y (2.8)

and An is de�ned by Eq. (2.9):

An =
2− anP̄n

Cs
− cnR̄n

Cs

2 + anP̄n

Cs
+ cnR̄n

Cs

(2.9)

Koster and Suarez (2001) identi�ed four main drivers of SMM:

1. nonstationarity in the statistics of the forcing, as induced by seasonality: σwn

σwn+lag
;

2. reduction in anomaly di�erences through the functional dependence of evaporation on

soil moisture (through the slope c): cnR̄n

Cs
;

3. reduction in anomaly di�erences through the functional dependence of runo� on soil

moisture (through the slope a): anP̄n

Cs
; and

4. the covariance between initial soil moisture and subsequent atmospheric forcing: COV (wn,Fn)
σ2
wn

.

However, Eq. (2.7) with its �rst controls of SMM holds an important conceptual weak-

ness, as SMM over a given time lag is expressed as a function of soil moisture statistics at

the following time step. Subsequent soil moisture may be viewed as a result rather than a

control of soil moisture memory. Moreover, it is not monotonically linked with SMM and
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can be both high (strong soil moisture control on evaporation or stream�ow) or low (strong

stochastic forcing) in situations of low soil moisture memory that is di�cult to interpret.

B. Seneviratne and Koster

To overcome the limitation in Eq. (2.7), more than a decade later, Seneviratne and

Koster (2012) revised the framework to form Eq. (2.10). Eq. (2.10) is an extension of the

Eq. (2.7), based on the derivation of an expression for the variability of soil moisture at the

following time step. See Appendix-A for more details about the development of Eq. (2.10).

ρ (wn, wn+lag) =
σwnAn + σFnρ (wn, Fn)√

σ2
wn
A2

n + 2σwnAnσFnρ (wn, Fn) + σ2
Fn

(2.10)

Through Eqs. (2.5) and (2.6), Eq. (2.10) is still dependent on the information of following

time step (n + lag). Seneviratne and Koster (2012) also proposed an explicit form of Eq.

(2.10) that is fully independent of information from time step n+ lag based on the explicit

form of Eqs. (2.5) and (2.6).

Qn,y

Pn,y

= anwn,y + bn (2.11)

En,y

Rn,y

= cnwn,y + dn (2.12)

Based on Eqs. (2.11) and (2.12), the �nal soil moisture equation was developed, Eq.

(2.13).

ρ (wn, wn+lag) =
σwn (1− αn) + σΦnρ (wn,Φn)√

(σwn (1− αn))
2 + 2σwn(1− αn)σΦnρ (wn,Φn) + σ2

Φn

(2.13)

with

Φn,y =
1

Cs

[(
P̄n − Q̄n

P̄n

)
Pn,y −

(
Ēn

R̄n

)
Rn,y

]
(2.14)

and

αn =
cnR̄n

Cs

+
anP̄n

Cs

(2.15)

The �nal equation of SMM contains �ve controls of SMM:

1. the initial soil moisture variability σww ;

2. the forcing variability σΦn ;

3. the correlation between the initial soil moisture and the forcing ρ (wn,Φn);

4. the sensitivity of evaporation to soil moisture cnR̄n

Cs
; and

5. the sensitivity of runo� to soil moisture anP̄n

Cs
.
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However, Eq. (2.13) is still model parameter dependent (i.e. an, bn, cn and dn) and holds

certain assumptions (Eqs. (2.11) and (2.12)).

C. Orth and Seneviratne

Based on Seneviratne and Koster (2012) and following the similar steps, an adjusted

version of Eq. (2.13) was proposed by Orth and Seneviratne (2012a) to avoid the model

parameters and underlying assumptions (stream�ow and evapotranspiration dependencies

on soil moisture; Eqs. (2.11) and (2.12)). This new framework computes memory using soil

moisture, precipitation, stream�ow, and evapotranspiration as the direct input, as shown in

Eq. (2.16). Orth and Seneviratne (2012a) validated this new approach at �ve sites across

Europe and computed acceptable memory outcomes.

ρ (wn, wn+lag) =
Csσwn + σGnρ (wn, Gn)√

(Csσwn)
2 + 2CswwnσGnρ (wn, Gn) + σ2

Gn

(2.16)

with

Gn,y = Pn,y − En,y −Qn,y (2.17)

where ρ (wn, wn+lag), Cs, Pn,y, En,y, Qn,y and σwn express the same meaning as mentioned

previously. Here, σGnand ρ (wn, Gn) represent the variability of the combined forcing term

(based on Eq. (2.17)) and the correlation between the degree of soil moisture saturation at

the beginning of the time step wnand the accumulated �ux of the combined forcing term

between the time steps. The variability terms (σwn , σGn), and the correlation ρ (wn, Gn) are

computed for all values at the time step n in all considered years.

In contrast to Delworth and Manabe (1988), autocorrelation-based approaches (Koster

and Suarez, 2001; Seneviratne and Koster, 2012; Orth and Seneviratne, 2012a)measure SMM

as a non-continuous discrete function. They do not assume an exponential decay of autocor-

relations with the lag time. These approaches calculate the correlation between soil moisture

values at time step n in all years with the corresponding values at time step n+ lag. These

inter-annual correlations range from zero (no memory) to one (in�nite memory). In some

regions, the soil moisture state remains static and hardly shows any seasonality, and thus

prevail little or with no anomalous conditions. In such cases, the soil would have very little

deviation from its mean condition on one day but may regain its normal state (no anomaly)

the next day. Therefore, there would be little or no correlation (ρ = 0) between the anomalies

of these two days. In other words, the anomaly would show no persistence. This condition

is termed as no memory.

On the other hand, in some regions, the soil moisture state is very dynamic and displays

high seasonality. A strong precipitation event or a prolonged dry spell could lead the soil

moisture state to an unusual state (high anomalous condition). In such cases, the soil requires

a relatively longer time to regain its normal condition. The anomalous conditions in one day

would not change very much on the following day. Therefore, there would be high correlation

(ρ ≈ 1) between the anomalies of these two days. This implies soil moisture anomalies show
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Figure 2.2: Dependency of SMM on potential evapotranspiration, precipitation (daily rates
pointing at the graphs) and stream�ow (solid vs. dashed lines) as explained by Delworth and
Manabe (1988). Strength of SMM are expressed as decay timescale of the autocorrelation
function. Adapted from Delworth and Manabe (1988).

strong persistence. These autocorrelation-based approaches allow computing seasonal cycles

of SMM because it makes it possible to calculate for any interval (n, n + lag) of the year.

This approach is well suited for studying how SMM changes over di�erent lag times.

2.3 Limitations of SMM study

2.3.1 Non-autocorrelation-based approach

Based on Eq. (1.2), the SMM timescale is mostly controlled by potential evapotranspiration

and column water holding capacity as shown in Fig. 2.2. The water-holding capacity could

be di�erent for layered soils. High potential evapotranspiration results in faster soil moisture

anomaly dissipation and thus diminishes soil memory. On the other hand, lower potential

evapotranspiration generates strong memories. However, precipitation and runo� also a�ect

the persistence of soil moisture (Orth, 2013). Moreover, this approach excludes the persis-

tence of precipitation and radiation. A moist soil resulting from heavy rainfall could propel

evapotranspiration, which, in turn, might provoke further precipitation. This process would

therefore assist to maintain an analogous soil moisture anomaly (Koster and Suarez, 2001).

Furthermore, this framework identi�es meteorological forcing, soil and vegetation character-

istics as the major controls of SMM. However, it does not separate the in�uences of these

controls over SMM. It is also important to know which factor a�ects the SMM timescale
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most, and how.

2.3.2 Autocorrelation-based approach

Although autocorrelation-based approaches have succeeded in overcoming the limitations

involved with the non-autocorrelation-based approach, the resultant autocorrelation values

are not easy to explain. These methods explain the variations of the strength of SMM through

the changes of autocorrelation values over di�erent time lags. A change of autocorrelation

value from 0.9 to 0.2 only indicates a decrease in memory and does not specify the decrease

of the timescale clearly, and vice versa. It also does not clarify whether this relationship

is statistically signi�cant. Even if the signi�cance of the relationship is known, how long it

will stay signi�cant remains unknown. Therefore, it would be useful once the corresponding

timescales of these autocorrelation values are known. Changes in the persistence timescale

from 60 days to 45 days (dealing with a single number) would explain the SMM behaviour

and seasonality.

2.3.3 Limitations regarding the scarcity of soil moisture data

SMM studies require long-term soil moisture data. Presently, such kinds of data are available

only for limited areas (i.e. Russia, China, Mongolia and Illinois, USA). Additionally, the ob-

servations were taken mostly on a weekly to half-monthly basis, depending on location and

season (Robock et al., 2000). Therefore, to date SMM studies using observed soil moisture

data are mostly limited to half-monthly or monthly timescales (Vinnikov and Yeserkepova,

1991; Entin et al., 2000). These studies have assumed the average representation of monthly

soil moisture data based on those few records. Moreover, SMM study outcomes based on

these observed data sets cannot be compared among the regions due to their inconsistent

sampling dates and frequency. Furthermore, soil moisture and other required hydro-climatic

data (i.e. precipitation, evapotranspiration, stream�ow) do not usually come from a single

source, and thus, may have inconsistencies among the data sets. Therefore, any alternative

measure of SMM estimation that does not require observed soil moisture data could poten-

tially provides knowledge of SMM for most part of the world where soil moisture data is

unavailable. Since it is impossible to create historical records, synthetic soil moisture data

could be an alternative option to overcome these limitations (Georgakakos et al., 1995).

However, the accuracy and credibility of such data are always a concern.

2.3.4 Limitations regarding the scale of SMM

Up to date SMM studies are mostly done on a global scale with regional averages. However,

SMM may vary from basin to basin, even those located within very close latitudes, due

to their variations in hydro-climatological properties; hence the basin scale variations are

unknown. Several researchers (Liu and Avissar, 1999; Entin et al., 2000; Koster and Suarez,
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2001; Wu and Dickinson, 2004; Seneviratne et al., 2006a) have discussed the variations

of SMM with latitude, precipitation, evapotranspiration and soil wetness, with no clear

relationship overall as basin scale SMM information is still unavailable. Therefore, the basin

scale SMM information would assist to establish the relationship between the basin scale

SMM and its hydro-climatic (i.e. aridity index) or soil property information, and thus

provide important alternative way to gain a rough estimation of SMM.
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Chapter 3

Autocorrelations to SMM timescale

3.1 Introduction

Considering the limitations of autocorrelation-based SMM study (refer to section 2.3.2), this

chapter proposes a conversion of lagged autocorrelation into a single number SMM timescale

considering the statistical signi�cance at 95% con�dence level. This approach was applied

to compute the SMM timescale for the Spoon river basin in Illinois, USA and was validated

against those calculated by Entin et al. (2000) for the Illinois area.

3.2 Materials and Methods

3.2.1 Study area

The Spoon river basin is located in Northeast Illinois with a drainage area of about 2776 km2

(Fig. 3.1). The stream gauge location of the basin is located at latitude 40.71 and longitude

-90.28 (U.S. Model Parameter Estimation Project (MOPEX) ID # 05569500). The annual

precipitation and pan evaporation is approximately 896 mm and 1005 mm, respectively.

3.2.2 Data

The basin scale daily precipitation P (daily mean areal precipitation calculated from ground

based gauge precipitation), potential evapotranspiration PE (developed from NOAA Evap-

oration Atlas), and stream�ow Q data (developed from USGS hydro-climatic data) were

obtained from the MOPEX dataset(Schaake et al., 2006). This study used stream�ow and

potential evapotranspiration data as an alternative to runo� and actual evapotranspiration

data, respectively. A total of 54 years continuous data (1948-2001) was used for this analysis.

To facilitate calculating lagged autocorrelations for any interval, this study used Xinanjiang

model (Ren-Jun, 1992) (referred to as XAJ and discussed in Section 3.2.4) simulated soil

moisture data (validated against the seasonal cycles of observed soil moisture data). The

necessity to use the simulated soil moisture data is discussed in Section 3.2.3.

15
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Figure 3.1: Location and digital elevation model map of the Spoon River basin, Illinois, USA
(MOPEX ID # 05569500); scale applies for the basin map only.

3.2.3 Why simulated soil moisture data?

To test this new approach, long-term continuous soil moisture data was required. The

currently available long-term soil moisture data is not only scarce (available only for lim-

ited areas, i.e. Russia, China, Mongolia, and Illinois), but is also non-continuous in na-

ture (recorded mostly on a weekly to half-monthly basis depending on location and season

(Robock et al., 2000). Georgakakos et al. (1995) proposed synthetic soil moisture data as an

alternative option for overcoming these limitations. Therefore, considering the importance

and veri�ability of this new approach, this study used the XAJ model simulated soil moisture

data. However, the accuracy and credibility of such data is always a concern. To testify the

representativeness of the XAJ model simulated soil data against the observed one, the soil

moisture data was validated against the observed data set.

3.2.4 Xinanjiang model and its calibration

The Xinanjiang model (Ren-Jun, 1992) is a conceptual hydrological model developed by the

Flood Forecast Research Laboratory of the East China Technical University of Water Re-

sources (currently, Hohai University). This model is widely used in China to simulate stream-

�ow within a catchment, particularly for humid and semi-arid regions (Lu and Li, 2014).

Runo� in the XAJ model is based on the repletion of storage concept. The runo� does not

start to generate until the soil moisture content of the aeration zone reaches its �eld capacity.

Once it reaches �eld capacity the rainfall excess equals the subsequent runo� without further

loss (Ren-Jun, 1992). The XAJ model accepts areal mean precipitation and pan evapotran-

spiration as the input and provides stream�ow records at the outlet of the basin as output. It

also generates soil moisture data as an internal model state. The XAJ model was calibrated

with the aid of a web-based application available at http://lmj.nagaokaut.ac.jp/~khin/(last

accessed on 29 October, 2014) (Khin et al., 2015). This web platform not only allows the
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Table 3.1: Parameters in the Xinanjiang model and calibrated value.
Parameter Physical meaning Parameter value

Cp Ratio of measured precipitation to actual precipitation 1.05

Cep Ratio of potential evapotranspiration to pan evaporation 0.9015

b Exponent of the tension water capacity curve 0.3

imp Ratio of the impervious to the total area of the basin 0

WUM Water capacity in the upper soil layer (mm) 20

WLM Water capacity in the lower soil layer (mm) 70

WDM Water capacity in the deeper soil layer (mm) 50

C Coe�cient of deep evapotranspiration 0.3

SM Areal mean free water capacity of the surface soil layer (mm) 50

EX Exponent of the free water capacity curve 0.5

KI Out�ow coe�cient of the free water storage to inter-�ow 0.65

KG Out�ow coe�cient of the free water storage to groundwater 0.05

cs Recession constant for channel routing 0.5

ci Recession constant for the lower inter-�ow storage 0.7

cg Daily recession constant of groundwater storage 0.985

XAJ model calibration in a user-friendly environment but also provides handy calibration

support by suggesting parameter settings after Li and Lu (2014), hydrograph visualization,

and calculating Nash-Sutcli�e (NASH) e�ciency (Nash and Sutcli�e, 1970). The model was

calibrated and validated with a 54-year data set (1948-2001). There were 15 parameters

in the XAJ model and a list of them and their calibrated values for the studied basin is

presented in Table 3.1. The simulated stream�ow was validated against the daily-observed

stream�ow, and NASH e�ciency was recorded. NASH e�ciency was calculated based on

Eq. (3.1).

NASH = 1−
∑n

t=1 [Qo (t)−Qs (t)]
2∑n

t=1

[
Qo (t)− Q̄o

]2 (3.1)

where Qo, Qs and Q̄o are the observed annual stream�ow, simulated annual stream�ow, and

average observed annual stream�ow, respectively.

3.2.5 Validation of simulated soil moisture data

After calibration and validation of the XAJ model's simulated stream�ow, the internal model

state of the soil moisture data was selected for validation. The XAJ model produces three

layers of soil moisture data. Total soil moisture data for all three layers (XAJ model sim-

ulated) were compared to those of the observed total soil moisture data for the top 30cm

and top 90cm of the soil layers, recorded at Oak Run station situated near the centre of the

studied catchment (station ID #17; longitude -90.15, latitude 40.97; see Fig. 3.1). Illinois

soil moisture climatology was obtained from Hollinger and Isard (1994). The observations

were taken at roughly half-monthly intervals. XAJ soil moisture values were chosen for the

corresponding soil moisture observation date and validated thereafter. A total of 321 soil

moisture observations between 1st June, 1981 and 15th June, 1998 were used for this vali-
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dation purpose. Simulated soil moisture data was further veri�ed by calculating one month

(30 days) of lagged autocorrelations for the 28th day of every month between March and

October using both observed (top 30cm and top 90cm) and simulated soil moisture data,

and compared thereafter.

3.2.6 Calculation of soil moisture autocorrelation and SMM timescale

This study calculated soil moisture autocorrelation for several lags using Eq. (2.16) as

proposed by Orth and Seneviratne (2012a). Thereafter, the calculated lagged autocorrelation

values were converted into SMM timescale (τSMM) considering statistical signi�cance at 95%

con�dence level. The autocorrelations for the 28th day (the 28th day is the most frequent

soil moisture observation day) of every month between March and October were calculated

for all lag days (starting from a minimum 5-day lag) until the autocorrelation value crossed

a minimum threshold. This minimum threshold value was set to be equal to the critical ρ

value at 95% con�dence level for one-sided test (alternate hypothesis, Ha : ρ > 0 . The

critical ρ value was calculated after Mitchell et al. (1966), Eq. (3.2). The SMM timescale

τSMM was assumed to be equal to the highest number of lag days that produced a signi�cant

correlation at 95% con�dence level.

ρ0.95 =
−1 + 1.645

√
N − 2

N − 1
(3.2)

where ρ0.95 is the critical ρ value at 95% con�dence level, and N is the number of pairs

of data (length of data record). For example, the studied basin with 45-year data has a

threshold ρ value of 0.22243. The study accepted the alternate hypothesis until the lag day

that satis�ed the criteria of ρ ≥ ρ0.95. Once it produced ρ ≥ ρ0.95, it stopped the memory

calculation whether it became signi�cant on the next day or not. The last lag-day at which

it satis�ed the criterion was counted as the length of the SMM timescale for that particular

day (i.e., the 28th day of any month in this study). Figure 3.2 shows that the memory

for one particular day March 28th was counted as 31 days because the 32nd day-lagged

autocorrelations crossed the threshold value. The study ignored the lagged autocorrelation

for less than �ve days. In this case, the 5th day ρ value was < ρ0.95 , and zero memory was

recorded for that particular day. Similarly, τSMM for the 28th day of every month from March

to October (winter months were excluded to avoid impacts of snow) was calculated. Later,

basin average τSMM was calculated by averaging these eight months' (March to October)

SMM timescales.

3.3 Results and Discussions

3.3.1 Hydrograph

The model calibration attained good agreement between the observed stream�ow and sim-

ulated stream�ow (Fig. 3.3). The annual (between the annual observed stream�ow and
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Figure 3.2: The methodology of SMM timescale estimation explained.

annual simulated stream�ow) and daily (between the daily observed stream�ow and daily

simulated stream�ow) NASH e�ciencies were 0.91 and 0.59, respectively.

3.3.2 Validation of simulated soil moisture data

The objective of this study was to compute the autocorrelation values using degree of soil

moisture saturation (refer to Eq. (2.16)). Autocorrelation accounts for the dissipation of

soil moisture anomalies. Therefore, the question is how well the XAJ model represented the

temporal anomalies of soil moisture. Validation of the XAJ simulated soil moisture data

suggested that the model could fairly well reproduce the absolute soil moisture value for

the top 30cm soil layer (daily NASH e�ciency 0.57). However, it underestimated the top

90cm by a nearly constant o�set (Fig. 3.4a). On the other hand, the model represented

the temporal anomalies (calculated from the mean value of 321 soil moisture observations

between June 1st, 1981 and June 15th, 1998) of soil moisture for all the soil layers up to 90cm

in depth (see Fig. 3.4b). The correlation coe�cients between the simulated soil moisture and

observed soil moisture are 0.83 and 0.85 for top 30cm and top 90cm, respectively. Hollinger

and Isard (1994) suggested that the study area is mainly dominated by agriculture (i.e.

mainly corn �elds). Due to the shallow rooting e�ect, deeper soil layers beyond 30cm may

not be hydrologically active throughout the year. Hence, the actual soil moisture could be

higher in the deeper layers. Similarly, Ren et al. (2006) argued that the XAJ model could not

only simulate the stream�ow but also represent soil moisture data. Entin (1999) noted that

most land surface models are incapable of simulating absolute soil moisture values but they

are quite able to capture the seasonal cycles of soil moisture. A few studies (Georgakakos

et al., 1995; Wu et al., 2007) have been conducted using simulated soil moisture data for
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Figure 3.3: Validated daily hydrograph of the Spoon river basin, Illinois, USA (MOPEX ID
# 05569500).

similar studies.

3.3.3 Autocorrelations and timescale

Calculated one-month (30-day) lagged autocorrelation (based on Eq. (2.16)) using observed

soil moisture (top 30cm and top 90cm) and simulated soil moisture (total soil moisture)

con�rmed that simulated soil moisture corresponded fairly well with those of observed top

30 cm (R2 = 0.88), Fig. 3.5a. In contrast, it underestimated the autocorrelations for the top

90cm soil layers (R2 = 0.77). However, the overall autocorrelation values were higher for top

90cm soil layers compared to those of the top 30cm. The higher the values of autocorrelations,

the deeper the soil layers seemed to be natural, and several studies reported the same. Entin

et al. (2000); Wu and Dickinson (2004) and Vinnikov et al. (1996) documented that soil

moisture persistence increased with the soil depth.

The basin average τSMM , calculated based on the new approach, was counted as 56.13

days. The calculated SMM timescale was highly consistent with the previous estimation

for this region. Entin et al. (2000) reported the average memory for 18 stations in Illinois

as 1.8-2.1 months (calculated based on Delworth and Manabe (1988) approach, Eq. (2.2)).

The basin indicated the highest memory in April and August and lowest memory in March.

Based on the aridity (ratio of annual potential evapotranspiration over actual precipitation,

PE/P =1.16), the Spoon river basin can be considered a dry basin. Entin et al. (2000);

Orth and Seneviratne (2012a) and Rahman et al. (2015) argued that dry basins demonstrate

higher memory in the winter months. This study excluded the winter months' memory to

avoid the impacts of snow. Therefore, the actual memory would be slightly higher than this

estimation.
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The calculated monthly τSMM was plotted against the one-month (30-day) lagged auto-

correlation coe�cients (for the 28th day of every month between March and October) in Fig.

3.5b. The high R2 (0.58) value indicates the consistency in representation of the strength

of autocorrelations through the newly converted SMM timescales. Figure 3.5b also reveals

the persistence of soil moisture at di�erent angles. The 30-day-lagged autocorrelation values

for May (ρ = 0.45) and October (ρ = 0.45) were almost the same. However, this study

suggested that the strength of autocorrelation in October would remain signi�cant for 60

days. On the other hand, the autocorrelation strength of May seemed to decline quickly and

remained signi�cant for only 46 days. Similarly, in September the 30-day-lagged autocorre-

lation (ρ = 0.59) was higher compared to that for August (ρ = 0.53). However, the relatively

lower-strength autocorrelation in August seemed to remain signi�cant for longer (80 days)

when compared to the autocorrelation for September (60 days). Consequently, compar-

ing only two autocorrelation values may not necessarily explain the actual strength of soil

moisture memory. This new SMM timescale adds more information compared to simple

autocorrelations. This new SMM timescale enables better understanding of the behaviour

of soil moisture persistence and its seasonality.

3.4 Conclusions

Soil moisture is an important component in climate and weather predictions due to its

special persistence characteristics. Any anomalous condition in the soil moisture state tends

to persist long after the event that caused the anomaly. This behaviour is commonly termed

as soil moisture memory. There are two main approaches to computing the strength of

this memory. The latest approach measures this memory in the form of autocorrelations

and ranges between 0 and 1. The strength of this estimated memory was judged by the

autocorrelation score. The higher the score, the stronger the memory was. To compare the

memory of two regions or basins or months, autocorrelation scores were used. However,

this autocorrelation score can be confusing when attempting to represent the general nature

of the basin or area. Moreover, it does not necessarily explain whether it is statistically

signi�cant or not. Furthermore, a signi�cant autocorrelation score for a particular lag-day

reveals the strength of that particular lag and does not clarify how long (until how many

lag-days) this relation would remain signi�cant.

To improve the understanding of the e�ects of changes in autocorrelation values, this

study proposed converting autocorrelation values into SMM timescales considering the sta-

tistical signi�cance. This study estimated the SMM timescale of the Spoon river basin in

Illinois using observed precipitation, potential evaporation, and stream�ow and simulated

soil moisture data. The estimated SMM timescale (56.13 days) was highly consistent with

those of regional estimation. The consistency of converting the autocorrelation values into

SMM timescale was con�rmed with high R2(0.58) values between 30-day-lagged autocorre-

lations and SMM timescales. This SMM timescale is easy to comprehend and conveys more

information than simple autocorrelation values. This study suggested that similar scores in
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autocorrelation values calculated for two di�erent months or two di�erent basins could lose

their strength of autocorrelation with a di�erent pace. Despite having similar scores, one

relationship may remain signi�cant for longer than the other. This new SMM timescale not

only corresponds to the autocorrelation scores, but also suggests the duration of its robust-

ness of statistical signi�cance. Finally, it o�ers easy comparison between two regions or river

basins with just a single number.
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Chapter 4

Variability of SMM for wet and dry

basins

4.1 Introduction

The absence of basin scale SMM information and its necessities are discussed in section

2.3.4. The basin scale SMM information would open the window to �nd its relationship

with basin's hydro-climatic or physical properties. Any relationship between SMM and

basin properties could potentially overcome the soil moisture data limitation discussed in

section 2.3.3. Aiming to �nd and alternative way to solve this data limitation, this chapter

analyses basin scale SMM of 26 river basins over United States. It computes basin scale SMM

timescale using a well-known hydrological model's simulated soil moisture data (Xinanjiang

model; discussed in section 3.2.4). The model was run with observed precipitation and

potential evapotranspiration data to simulate stream�ow. The simulated stream�ow was

then validated against daily observed stream�ow. Finally, the internal model state of soil

moisture data was picked for SMM studies. The applicability of the model simulated soil

moisture data was veri�ed and discussed in section 3.3.2. Based on the result of 26 river

basins, this chapter describes the seasonality of the SMM timescale and how it is a�ected

by the basin's dryness. Moreover, it investigates and analyses the relationship between the

SMM timescale and the aridity index (ratio of annual potential evaporation over annual

precipitation).

4.2 Materials and method 8

A summary and �ow chart of the overall methodology of SMM analysis is shown in Fig. 4.1.

The details are described in the followings.

4.2.1 Calculation of soil moisture autocorrelation and SMM timescale

This study calculated soil moisture autocorrelations based on the equation (Eq. (2.16))

proposed by Orth and Seneviratne (2012). The SMM timescale for the 1st day of every

month was calculated based on statistical signi�cance of autocorrelations at 95% con�dence

25
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Figure 4.1: Flow chart showing overall methodology.
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level similarly those of discussed in Chapter 3. The resultant twelve SMM timescale values

(January to December) representing every month were then averaged to represent the SMM

timescale of a particular basin.

4.2.2 Data

The basin scale daily precipitation, P (daily mean areal precipitation calculated from ground

based gauge precipitation), potential evapotranspiration, PE (developed from NOAA Evap-

oration Atlas), and stream�ow, Q data (developed from USGS hydro-climatic data) were

used in this study. These data were obtained from the U.S. Model Parameter Estimation

Project (MOPEX) data set freely accessible at ftp://hydrology.nws.noaa.gov/ (accessed on

19 October 2013) (Schaake et al., 2006). It is to be noted that this study used stream�ow

and potential evapotranspiration data instead of runo� and actual evapotranspiration data

respectively. MOPEX provides 54 years continuous data (1948-2001) for most of the anal-

ysed basins; the few exceptions contain missing records and hold fewer continuous records.

This study simulated the stream�ow for every basin with the XAJ model (Ren-Jun, 1992)

(discussed in section 3.2.4) and validated the results against the daily observed stream�ow.

For the purpose of the XAJ model run and subsequent SMM computation, only continuous

data was used.

4.2.3 Selection of studied basins

The selection of river basins consists of four steps.

Step-1

Since the autocorrelation equation (Eq. 2.16) does not consider snow, the studied river

basins were selected carefully to avoid snow impacts. To avoid snow impacts, a total of 15

USA states were selected on the basis of annual average total snow-days (a snow-day is a

day that receives at least 2.5mm snow/day) and annual average total new snow-depths. The

selection was based on 30 year climate normal (1981-2010) released by NOA's National Cli-

matic Data Centre (NCDC), accessible at http://www.ncdc.noaa.gov/oa/climate/normals/

usnormals.html (accessed on 13 November 2013). Fourteen states out of these 15 have <7

snow-days and receive <200mm of total new snow per year and one state has 10 snow-days

and receives 373mm total new snow per year.

Step-2

A total of 43 MOPEX river basins located within those 15 states were then selected for

XAJ model simulation (details are in section 4.2.4), considering data availability and prior

calibration experience by Khin et al. (2015). The XAJ model was calibrated separately for

every basin and simulated stream�ow for all 43 river basins. The simulated stream�ow was

validated against daily observed stream�ow. Nash-Sutcli�e (NASH) e�ciency (Nash and
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Figure 4.2: Stream gauge location map of analyzed basins over USA mainland.

Sutcli�e, 1970) for annual stream�ow was recorded. NASH e�ciency was calculated based

on Eq. (3.1).

Step-3

To verify the applicability of Eq. (2.16) and XAJ model simulated soil moisture data,

calculated autocorrelation coe�cient values (based on Eq. (2.16) using soil moisture, P , PE

and Q data as input) were validated against directly calculated correlation coe�cient values

(based on Eq. (2.3) using only soil moisture data as input). It is to be noted that Eq. (2.3)

was only used to verify the applicability of Eq. (2.16) for SMM calculation. All the SMM

timescales discussed in this chapter are based on Eq. (2.16) only.

The Root Mean Square Error (RMSE) for 5, 10, 15, 20, 25 and 30 day-lagged soil moisture

autocorrelations (Eq. (2.3) and Eq. (2.16)) was calculated based on Eq. (4.1).

RMSE =

√∑n
i=1 (ρobs,i − ρcal,i)

2

n
(4.1)

where RMSE is root mean square error, ρobs is observed autocorrelation coe�cient (Eq.

(2.3)), ρcal is calculated autocorrelation coe�cient (Eq. (2.16)) values at time and n is the

number of observations.

Step-4

Finally, those basins that attained annual NASH e�ciency over 0.8 (step-2) and RMSE

less than 0.2 (step-3) were picked for SMM analysis. Figure 4.2 shows the stream gauge

locations of 27 river basins (26 analysed and 1 validated) over the USA mainland map. A

list of studied MOPEX basins, locations and basic characteristics are presented in Table 1.
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Table 4.1: Studied MOPEX basins, locations and basic characteristics. Dry basins (aridity
index >0.9) are marked with bold face, Italic font style.

MOPEX ID
Area

(sq.km)

Ave. P

(mm/year)

Ave. PE

(mm/year)

Ave.

snow-days

(day/year)

Ave. total

new snow

(mm/year)

Location

Long. Lat. State

11532500 -124.05 41.79 CA 1577 2687 740 0.00 0

12027500 -123.03 46.78 WA 2318 1599 579 3.00 127

03550000 -83.98 35.14 NC 269 1846 771 3.90 193

03504000 -83.62 35.13 NC 135 1893 762 3.90 193

03443000 -82.62 35.30 NC 740 2156 817 3.90 193

03410500 -84.53 36.63 TN 2471 1389 817 6.20 160

02387500 -84.94 34.58 GA 4144 1480 901 0.70 18

03574500 -86.31 34.62 AL 829 1467 941 0.80 41

14308000 -122.95 42.93 OR 1163 1347 805 2.20 76

07378500 -90.99 30.46 LA-MS 3315 1594 1077 0.60 23

07375500 -90.36 30.51 LA-MS 1673 1633 1074 0.60 23

02492000 -89.90 30.63 LA-MS 3142 1583 1071 0.60 23

02456500 -86.98 33.71 AL 2292 1425 982 0.80 41

02472000 -89.41 31.71 MS 1924 1492 1060 0.60 23

02475500 -88.91 32.33 MS 956 1447 1056 0.60 23

02482000 -89.34 32.80 MS 2341 1447 1056 0.60 23

02448000 -88.56 33.10 MS 1989 1421 1057 0.60 23

07290000 -90.70 32.35 MS 7283 1435 1073 0.60 23

07056000 -92.75 35.98 AR 2147 1180 916 3.80 132

07288500 -90.54 33.55 MS 1987 1381 1112 0.60 23

07340000 -94.39 33.92 OK 6895 1329 1156 5.60 198

07197000 -94.84 35.92 OK 795 1162 1113 5.60 198

07348000 -93.88 32.65 LA 8125 1173 1223 0.10 0

05569500* -90.28 40.71 IL 2776 896 1005 - -

08033500 -94.40 31.02 TX 9417 1100 1308 1.30 4

06914000 -95.25 38.33 KS 865 957 1206 10.0 373

07172000 -96.32 37.00 OK-KS 1153 898 1301 6.90 198

*Indicates the validated river basin at Illinois State, USA.

The NASH e�ciencies and RMSE are reported in Table 3.

4.2.4 Xinanjiang model and its calibration

The Xinanjiang model(Ren-Jun, 1992) (discussed in section 3.2.4) was calibrated with the aid

of a web-based application, accessible at http://lmj.nagaokaut.ac.jp/~khin/ (last accessed

on 20 October 2014) (Khin et al., 2015). This web platform not only allows the user to

run the XAJ model in a user friendly environment, but also provides handy calibration

support by suggesting parameter settings after Li and Lu (2014), hydrograph visualization

and calculating NASH e�ciency. The model was calibrated with a 54 year data set (1948-

2001 for most basins) and validated against the last 20 years. A list of XAJ model parameters

and their ranges are presented in Table 2.
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Table 4.2: Range of calibrated parameters in the Xinanjiang model.
Parameter Physical meaning Parameter value

Cp Ratio of measured precipitation to actual precipitation 0.8-1.2

Cep Ratio of potential evapotranspiration to pan evaporation 0-2.0

b Exponent of the tension water capacity curve 0.1-0.3

imp Ratio of the impervious to the total area of the basin 0-0.005

WUM Water capacity in the upper soil layer (mm) 5-20

WLM Water capacity in the lower soil layer (mm) 60-90

WDM Water capacity in the deeper soil layer (mm) 10-100

C Coe�cient of deep evapotranspiration 0.1-0.3

SM Areal mean free water capacity of the surface soil layer (mm) 1-50

EX Exponent of the free water capacity curve 0.5-2.5

KI Out�ow coe�cient of the free water storage to inter-�ow 0-0.7; KI+KG=0.7

KG Out�ow coe�cient of the free water storage to groundwater 0-0.7; KI+KG=0.7

cs Recession constant for channel routing 0.5-0.9

ci Recession constant for the lower inter-�ow storage 0.5-0.9

cg Daily recession constant of groundwater storage 0.9835-0.998

4.2.5 Calculation of basin aridity index

The aridity index value, ζ was calculated from the independent set of precipitation and

potential evapotranspiration data. The aridity index was estimated by interpolating aridity

index values of 400 MOPEX river basins (excluding the basins analysed in this article). The

aridity index was calculated after Li and Lu (2014), Eq. (4.2).

ζ =
PE

P
(4.2)

where, ζ, PE and P are the aridity index, mean annual potential evaporation and ground

based mean annual areal precipitation respectively.

The interpolation was done through the Kriging method with the aid of the Spatial An-

alyst tool of the ArcGIS 10.0 version. The interpolated aridity index values showed a high

agreement with those calculated (using the same precipitation and potential evapotranspi-

ration data used for SMM analysis), with R2 value of 0.99. Analysis suggests that the basins

can be categorized into two groups based on SMM validation, the pattern of SMM season-

ality, and SMM timescale. To simplify the analysis and discussion, this study de�nes dry

basins and wet basins based on their aridity scores. Basins having an aridity index of less

than 0.9 are called wet basins, while the rest are referred to as dry basins in the following

sections.

4.2.6 Optimization of regression equation

Theoretically, we assume the SMM timescale would approach zero and lose all the memories

when a basin aridity index approaches zero. To understand the behaviour of the SMM

timescale beyond the aridity ranges of the analysed basins, the regression equation between
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Table 4.3: Basin-wise summary of soil moisture memory analysis. Dry basins (aridity index
>0.9) are marked with bold face, Italic font style.

MOPEX ID

Data length of

SMM calculation

(year)

Area

(sq.km)
NASH RMSE

Aridity

index

(ζ)

τSMM (day)

Min. (month) Max. (month) Mean

11532500 45 1577 0.89 0.05 0.29 0 (December) 56 (May) 19.67

12027500 45 2318 0.88 0.04 0.39 0 (December) 53 (July) 21.83

03550000 45 269 0.85 0.05 0.40 0 (January) 64 (October) 21.25

03504000 45 135 0.91 0.05 0.40 0 (January) 28 (August) 11.08

03443000 45 740 0.89 0.04 0.46 0 (January) 38 (August) 15.25

03410500 45 2471 0.84 0.04 0.58 0 (January) 93 (September) 32.08

02387500 45 4144 0.87 0.05 0.61 5 (January) 78 (October) 24.00

03574500 45 829 0.80 0.16 0.64 0 (January) 58 (October) 23.83

14308000 45 1163 0.83 0.03 0.68 0 (January) 53 (August) 20.58

07378500 44 3315 0.92 0.02 0.70 0 (February) 79 (October) 36.67

07375500 44 1673 0.91 0.03 0.71 0 (March) 64 (October) 29.17

02492000 44 3142 0.87 0.04 0.71 0 (March) 65 (October) 31.08

02456500 45 2292 0.90 0.02 0.72 0 (February) 82 (October) 30.83

02472000 45 1924 0.89 0.02 0.76 0 (February) 153 (Septemb.) 46.17

02475500 45 956 0.87 0.01 0.77 0 (February) 200 (August) 64.33

02482000 45 2341 0.84 0.03 0.79 0 (February) 197 (August) 55.50

02448000 34 1989 0.89 0.02 0.80 0 (February) 85 (August) 36.67

07290000 32 7283 0.87 0.04 0.80 0 (February) 118 (August) 40.42

07056000 45 2147 0.93 0.04 0.81 5 (February) 70 (October) 36.50

07288500 35 1987 0.90 0.12 0.86 0 (March) 49 (August) 26.00

07340000 38 6895 0.92 0.07 0.88 5 (February) 53 (September) 27.25

07197000 45 795 0.80 0.01 0.94 28 (August) 118 (Novem.) 68.67

07348000 36 8125 0.81 0.04 1.09 13 (May) 140 (July) 74.83

05569500* 45 2776 0.91 0.01 1.16 - - -

08033500 45 9417 0.80 0.02 1.19 31 (May) 172 (June) 101.50

06914000 45 865 0.88 0.01 1.34 28 (May) 217 (August) 124.08

07172000 45 1153 0.88 0.00 1.54 56 (May) 209 (Decem.) 132.92

*Indicates the validated river basin at Illinois State, USA.

the aridity index and SMM timescale was optimized using the solver function of Microsoft

Excel (version 10.0).

4.3 Results and discussions

4.3.1 Hydrograph

Based on the basins selection criteria mentioned in section 4.2.3, all the analysed basins

attained a NASH e�ciency of no less than 0.8 in the annual scale. Moreover, the validated

daily hydrograph between the observed and simulated stream�ow shows a good agreement

(for example, see Fig. 4.2 and Table 3). The annual NASH e�ciencies of analysed basins

range from 0.80 to 0.93.
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Figure 4.3: Validated daily hydrograph of 20 analyzed river basins. MOPEX ID is presented
in parenthesis.
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Figure 4.4: Validation of monthly memory (autocorrelation calculated by Eq. (2.16) against
observed autocorrelations (by Eq. (2.3)). The Caney River basin, Kansas, USA, MOPEX
ID: 07172000.

4.3.2 Validation of autocorrelation equation

The computed SMM of the Caney River basin, Kansas, USA for all the months for time

lags between 5 and 30 days is presented in Fig. 4.4. The SMM exhibits a declining trend

with the increase of time lag, except for a few minor �uctuations. The extents of these

declines are generally not the same for all the months and in dry or wet basins. The SMM

normally diminishes at a faster rate with the increase of lag time in the wet basins, while it

weakens slowly in dry basins. Similarly, a longer persistence of dry soil moisture anomaly

was reported by Orth and Seneviratne (2012b).

The faster rate of SMM decay in the wet basins could be a function of degrees of anomaly

conditions, precipitation frequency and the amount of precipitation per event. Usually,

the wet basins have smaller soil moisture anomalies, since soil remains saturated or near

saturation during most of the time of year (cannot get any wetter). On the contrary, the

dry basin anomalies could be very high due to any unusual high precipitation event or

prolonged dry spell. The rains are more frequent and heavier in the wet basins, and thus

dissipate the anomaly conditions in a shorter time. Inversely, it might take a long time to

dissipate similar anomalies in drier basins, as they receive few rainfall events with lesser

quantities per event. Consequently, the anomaly dissipates slowly in dry basins. Similar to

NASH e�ciencies, analysed basins exhibit better agreement between the autocorrelations

calculated by Eq. (2.16) and Eq. (2.3). The average RMSE is 0.041 (minimum 0.004 and
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Figure 4.5: Memory timescales and seasonal cycles; (a) dry basins (ζ > 0.9) (b) wet basins
(ζ < 0.9).

maximum 0.156). The validation of autocorrelation coe�cients con�rms the applicability of

the equation to calculation of SMM, using precipitation, potential evapotranspiration and

stream�ow as input. The equation skilfully captures the SMM and its decay over increase

of time lag (see Fig. 4.4).

4.3.3 SMM timescale and seasonality

Basin average SMM timescales ranges were calculated from 11 days to 133 days. The SMM

timescale varies in wet (ζ < 0.9) and dry (ζ > 0.9) basins. The mean memory of wet and dry

basins is about 31 and 100 days respectively. A summary of the basin-wise SMM timescale is

given in Table 3. The SMM timescale also showed strong seasonality. However, the seasonal

cycles are not the same in dry or wet basins (Fig. 4.5). Generally, in wet basins (ζ < 0.9),

SMM tends to rise with the onset of summer and attains its peak during late summer (July-

August) or early autumn (September-October). The data showed minimum memory during

winter and early spring (December-April), while dry basins (ζ > 0.9) displayed the smallest

memory in late spring (May) and �uctuated during the summer months before starting to

rise in autumn and peaking in winter. In contrasting to wet basins, dry basins exhibit the

highest memory in winter months. The observed seasonal cycles of memory are consistent

with Orth and Seneviratne (2012a). Orth and Seneviratne (2012a) analysed soil moisture

memory of four basins from Germany and Switzerland (humid) and one basin from Italy

(Mediterranean climatic region). Those humid basins also showed maximum memory in late

summer and minimum in spring. Opposite cycles were reported for the Italian basin.

Koster and Suarez (2001), Seneviratne and Koster (2012) and Orth and Seneviratne

(2013) mentioned at least six di�erent controls of SMM. However, this study only analysed

the in�uence of precipitation variance on the SMM timescale. Monthly mean standard

deviation of precipitation (calculated from 45 years climatology, 1956-2000) and mean SMM

timescale (calculated from 21 wet basins and 5 dry basins) are presented in Fig. 4.6. Figure

4.6(a) displays a speci�c pattern of SMM timescales in wet or dry basins compared with two

adjacent months' precipitation variability.
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Figure 4.6(b) shows a conceptual sketch of the e�ects of two adjacent months (N − 1

and N month) precipitation variability on the later month's (N month) SMM timescale.

The SMM timescale of month N tends to increase when high precipitation variability in

month N − 1 is followed by a low precipitation variability in month N (case-I, Fig. 4.6(b)).

The e�ects are similar for both wet and dry basins. Figure 4.6(a) shows the increase of

memory due to the case-I scenario in the month of May, August and October for wet basins

and November, December for dry basins. A decrease of July month's memory in dry basins

is the only exception where other controls of SMM could be superior. In contrast, low

precipitation variability in month N−1 followed by a high precipitation variability in month

N results in the decrease of memory in the month N (case-IV, Fig. 4.6(b)). The e�ects are

visible in the memory of September, November and December for wet basins and February,

March, April, May and October for dry basins (Fig. 4.6(a)). Memory responds di�erently

in wet or dry basins when high precipitation variability in month N − 1 is followed by high

precipitation variability in month N (case-II, Fig. 4.6(b)) or low precipitation variability in

month N − 1 is followed by low precipitation variability in month N (case-III, Fig. 4.6(b)).

Under the former condition (case-II), memory increases sharply in dry basins during June,

and decreases in wet basins during February. The latter condition (case-III) causes a slight

increase in memory in dry basins (August) but the memory remains steady in wet basins

(July).

4.3.4 SMM timescale and aridity index

The analysed basins' aridity index ranges from 0.29 to 1.54. Figure 4.7 shows the annual

aridity index (interpolated from 400 MOPEX basins information) map over USA. Analysis
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Figure 4.7: Annual aridity index map over USA.

reveals that the dryer basins appear to have larger memories compared with the wetter

basins.

The overall relationship between the SMM timescale and aridity index is exponential

(Fig. 4.8) with an R2 value of 0.9. The relationship between the basin aridity index and

SMM timescale can be expressed by Eq. (4.3).

τSMM = 24.76
(
e1.25ζ − 1

)
(4.3)

where τSMM is the SMM timescale in days and ζ is the basin aridity index.

Despite the dissimilarity in approaches to memory calculation, this result is consistent

with the available literature (Liu and Avissar, 1999; Entin et al., 2000; Wu and Dickinson,

2004; Seneviratne et al., 2006a). These literatures suggest that stronger memories exist in

the dryer regions. Orth (2013) in another study revealed that there was a tendency to mem-

ory increment to a lesser extent compared to the increase of catchment dryness index from

the data from 13 catchments of Switzerland. The �ndings of the present study partly agree

with the conclusions reported by Koster and Suarez (2001), Seneviratne and Koster (2012)

and Orth and Seneviratne (2012a). These studies argued that both extremes of dry and wet

conditions create larger memories, and o�ered two separate reasons for this phenomenon.

Koster and Suarez (2001) reported high values of 31-day-lagged autocorrelation for the �rst

day of July in desert areas and parts of the wet tropics. In contrast, this study only sup-

ports the existence of extended memories in the drier regions. However, prolongation of

memory under both the two extreme conditions might be true when two adjacent months

forcing variability remain close. Orth and Seneviratne (2012a) pointed out that the in�u-

ence of evapotranspiration and runo� is limited in humid regions. Therefore, the in�uence

of precipitation on combined forcing variability is prominent. The wet basins might have

relatively longer memories in a few months but that may be o�set by the other months, due
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to the in�uence of higher precipitation variability over a combined forcing term, and thus,

the overall memory remains short.

4.4 Conclusions

This study investigates the soil moisture memory behaviour of 26 river basins across USA

using XAJ model simulated soil moisture data. Since the simulated soil moisture data could

not be validated against the observed ones due to the scarcity of such data in the studied

river basins, the XAJ model's capability to simulate soil moisture data was validated against

observed soil moisture data in one basin in Illinois, USA. Moreover, one month-lagged mem-

ory calculated from the XAJ model simulated soil moisture was validated against those

calculated from the observed data set. Soil moisture validation suggests that the XAJ model

can represent soil moisture anomalies (seasonal cycles) well. Therefore, the XAJ model

simulated soil moisture could be used for SMM studies as it analyses the anomaly dissipa-

tion timescale. The applicability of the approach using SMM timescale estimation and the

XAJ model simulated soil moisture data is further justi�ed with a high agreement between

the calculated memories from the observed and simulated data sets. Results from 26 river

basins suggest that the SMM timescale increases exponentially with the aridity index of the

basin. A basin aridity index range of 0.29 to 1.54 corresponds to the memory timescale

ranges from 11 to 133 days. The wet basins' (ζ < 0.9) showed an average memory of 31

days, whereas the dry basins' (ζ > 0.9) average memory is about 100 days. The memories

showed distinct seasonality in dry and wet basins. In dry basins, memory is maximum in

winter and minimum in late spring. In contrary, in wet basins, memory is maximum in

late summer or early autumn and minimum in winter or early spring. The SMM timescale

estimation based on the signi�cance of autocorrelations is proved to be consistent and useful

to understand the pattern and seasonality over seasons or dryness of the basin. It is to be

noted that the relationship between SMM timescale and aridity would be robust, even if a
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di�erent threshold value of autocorrelation coe�cient is set to �nd the signi�cance of auto-

correlations. This study did not consider the altitude or land cover of the analysed basins.

Therefore, it is important to know how it is a�ected by altitude or land cover. Accepting

the limitations (i.e. using model simulated soil moisture data, uncertainty associated with

observed datasets) and assumptions (i.e. ignoring snow impacts while selecting basins and

considering statistical signi�cance to measure SMM timescale), this result is useful to the

basin-scale hydrological perspectives and even for global scale atmospheric weather predic-

tion, particularly in the case of drought and �ood prediction. Moreover, the calculated

SMM timescale is easily understandable, comparable and provides important possibilities to

roughly predict the SMM of a particular region from widely available observed precipita-

tion and potential evapotranspiration dataset. This could produce some knowledge of SMM

under no knowledge conditions.



Chapter 5

Variability of XAJ model spin-up time

against initial conditions

5.1 Introduction

Hydrological models constitute an important tool for managing water resources. They can

be used as a support instrument for understanding physical processes or prediction purposes.

A hydrological model can serve to predict a risk of �ooding, indicate the susceptible areas

and timing of inundation, and be useful in preparing for evacuation in advance. Likewise,

a prediction of future �oods and their magnitudes could assist with planning of protective

measures. A hydrological model could also be used to assess climate change impacts on

water resources. However, sound hydrological prediction requires both access to quality

hydrological data and the application of suitable modelling techniques.

Hydrological models are unique and their accuracy could di�er greatly from model to

model due to di�erences in model structure (i.e. di�erent �eld capacities), input data sets

and parameterizations. Even a single model could produce diverse outputs and achieve

dissimilar accuracies due to variations in calibrations. A number of literatures discuss the

e�ect of model initial condition to its outputs (Berthet et al., 2009; Castillo et al., 2003;

Goodrich et al., 1994; Minet et al., 2011; Nikolopoulos et al., 2011; Senarath et al., 2000;

Zhang et al., 2011). These studies highlighted the complex interaction among soil moisture

initial conditions, climatic factors and soil properties.

When a model is calibrated with a di�erent initial state compared to the target basin's

long-term climatology, the model undertakes a period of spin-up during which its internal

stores (i.e. soil moisture) adjust from the initial conditions to an equilibrium state (Yang

et al., 1995; de Goncalves et al., 2006). The model output during this adjustment period

is highly impacted on by the initial condition, and consequently may show huge drift and

not be usable. Literature suggests that the typical spin-up time of the land surface model

(LSM) could range from one to several years (de Goncalves et al., 2006; Yang et al., 1995;

Chen and Mitchell, 1999; Cosgrove et al., 2003; Rodell et al., 2005). Once the model achieves

its equilibrium state, the simulated output usually agrees better with the observations and

responds realistically to the inputs (Yang et al., 1995; Cosgrove et al., 2003; Seck et al., 2015).

Hence, special attention is required for specifying the model initial conditions. However,

39
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due to the scarcity of long-term records or spatially distributed information specifying the

catchment states, the model's initial conditions are usually inferred from limited observations

or an initial guess (Ajami et al., 2014b). Rodell et al. (2005) suggests using climatological

average states from the same model for the purpose of initialisation in the absence of long-

term forcing data.

Several researchers claimed that spin-up time is not only associated with the water

holding capacity and its initial values, but also atmospheric forcing and surface conditions

(de Goncalves et al., 2006; Yang et al., 1995; Chen and Mitchell, 1999; Cosgrove et al., 2003;

Rodell et al., 2005). In a LSM model study Cosgrove et al. (2003) demonstrated that spin-up

time varies spatially and is highly correlated with precipitation and temperature. Moreover,

they noted that spin-up time is highly in�uenced by the soil moisture persistence or soil mois-

ture memory (SMM). A low SMM indicates that the soil moisture anomalies are short-lived,

dissipate quickly, enabling the model to recover relatively quickly from an undesirable initial

state. On the other hand a high SMM that indicates the slowness of anomaly dissipation

and would delay the process of model equilibrium. Seck et al. (2015) also documented the

link between initial conditions and meteorological conditions. They mentioned the slowness

of model equilibrium under dry initial condition due to the longer system memory. Rahman

et al. (2015) proposed an easy way to estimate basin scale SMM using aridity index (ratio

of annual evaporation over annual precipitation) information only. Since SMM and model

spin-up time are interlinked, it is intuitive to have a relationship between aridity index and

model spin-up time too.

To minimize the uncertainty associated with the model spin-up process, modellers often

implement two main techniques. Firstly, the model is often run repeatedly using a single or

multiple years of forcing data until it reaches an equilibrium state and thereafter initialises the

model according to this equilibrium state (Ajami et al., 2014a; Wood et al., 1998). However,

this repeated model run with single year forcing data might not be su�cient to train the

model given the extremes of climatological phenomenon. Moreover, it demands computation

time and energy (Ajami et al., 2014a). Secondly, modellers often perform the analysis task

by excluding the �rst few months' (years') model outputs (Lim et al., 2012). The length of

this data exclusion (spin-up time) is mostly de�ned by a guess. However, guessing a spin-up

time does have its limitations. Excluding initial model outputs could be a very costly task in

developing countries where hydro-climatic data is very scarce. Over-estimating the spin-up

period will lead to a loss of important information. Likewise, an underestimation would

a�ect the conclusion by incorporating erroneous initial model outputs. Moreover, guessing

spin-up time (if any) for a shorter period, particularly for seasonal or monthly simulation

would be very problematic. Therefore, understanding the spin-up behaviour of a model is

essential for better calibration and simulation experience.

Despite its importance only a very few studies have examined the spin-up behaviour of

land surface (Yang et al., 1995; de Goncalves et al., 2006; Cosgrove et al., 2003; Rodell et al.,

2005; Lim et al., 2012) or hydrological models (Seck et al., 2015; Ajami et al., 2014b,a). These

studies have been done to examine the model spin-up behaviour under diverse conditions of
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climate, vegetation and soil types. Although the conclusions have often been model-speci�c,

they delivered essential guidelines on model initial condition setting, and thus reduced mod-

elling errors. However, all most all these studies have been conducted on the basis of multiple

years (mostly 10-year) recursive simulations using only a particular year's input data sets.

Recursive runs with a single year input data sets would not be su�cient to train the model

with climatological extremes. Moreover, conclusions of these studies have been mainly based

on the results of one basin or study site. The present study attempted to overcome these

limitations by employing a 10-year recursive runs using three di�erent climatological input

data sets under four di�erent initial conditions. This study has been done using the XAJ

model (Ren-Jun, 1992) over 22 river basins throughout United States.

The XAJ model is a conceptual hydrological model discussed in section 3.2.4. The XAJ

model has been widely employed to simulate runo� generation within a catchment in China's

humid and semi-arid regions and other parts of the world (Lu and Li, 2014). Researcher

considers spin-up time based on their personal feeling, experience and purpose. Lin et al.

(2006) considered a spin-up period of 19 days during a four-month stream�ow simulation

for the Shiguanhe River basin, China. In another study, Lu et al. (2008) considered only 12

hours of spin-up time while forecasting �oods at the Huaihe River basin's Wangjiaba sub-

basin. It is very di�cult to comment on the acceptable duration of the XAJ model spin-up

time, as it is mainly controlled by the purpose, scope and scale of interest. However, it

could be useful to know the spin-up behaviour of the XAJ model under di�erent conditions

to judge and decide the spin-up time for improved simulation exercise. Considering this

objective, this study investigates the spin-up behaviour of the XAJ model for 22 river basins

across the USA.

Firstly, this study examines the model spin-up times for three di�erent climatological

input data sets (precipitation and evaporation). Secondly, it analyses the model spin-up

times under four initial conditions for each of the input data sets. Thirdly, it assesses the

link between the model spin-up time and soil moisture memory. Fourthly, it explores the

relationship between the model spin-up time and the basin's aridity index (ratio of annual

evaporation over annual precipitation). Finally, it shows an easy way to predict the maximum

model spin-up time using the aridity index information only.

5.2 Materials and Methods

5.2.1 Study area

This chapter analyses 22 river basins across the USA. Stream gauge locations of the analysed

basins are shown in Fig. 5.1.

The river basins were selected based on prior calibration experience of the XAJ model by

Rahman et al. (2015). Rahman et al. (2015) selected these river basins to avoid snow impacts

on SMM calculation and mentioned the XAJ models capability to simulate river discharge

with good accuracies. This study selected the same river basins or basins located within the
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Figure 5.1: Stream gauge location map of studied river basins over USA mainland.

area analysed by Rahman et al. (2015) intending to reduce calibration e�orts and to enable

linking between SMM and spin-up time. Moreover, snow process would introduce additional

system memory and a�ect its spin-up behaviour. Analysed basins are located in nearly snow-

free areas. Based on 30 year climate normal (1981-2010) released by NOAA's National Cli-

matic Data Centre (NCDC) (available at http://www.ncdc.noaa.gov/oa/climate/normals/

usnormals.html; accessed on November 13, 2013), the basins have less than 7 snow-days (a

snow-day is a day that records at least 2.5mm snow/day) and receive less than 200mm of

total new snow per year. A summary of the analysed basins' physical and hydro-climatic

characteristics is presented in Table 5.1.

5.2.2 Data

The basin scale daily precipitation, P (daily mean areal precipitation calculated from ground

based gauge precipitation), potential evaporation, PE (developed from NOAA Evaporation

Atlas), and stream�ow, Q data (developed from USGS hydro-climatic data) were obtained

from the U.S. Model Parameter Estimation Project (MOPEX) data sets (Schaake et al.,

2006). These are freely available at ftp://hydrology.nws.noaa.gov/ (accessed on October 19,

2013).

5.2.3 XAJ model parameters, calibration and validation

The XAJ model calibration for this study has been carried out with the aid of a web-based

application (available at http://lmj.nagaokaut.ac.jp/~khin/; last accessed on January 13,

2015) (Khin et al., 2015). This web platform not only allows the user to calibrate the XAJ
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Table 5.1: Studied MOPEX basins, locations and basic characteristics. Dry basins (aridity
index >0.9) are marked with bold face, Italic font style.

MOPEX ID
Ave. P

(mm/year)

Ave. PE

(mm/year)

Ave.

snow-days

(day/year)

Ave. total

new snow

(mm/year)

Ave. soil

moisture

saturation (%)

Location

Long. Lat. State

11532500 -124.05 41.79 CA 2687 740 0.00 0 82

12027500 -123.03 46.78 WA 1599 579 3.00 127 75

03550000 -83.98 35.14 NC 1846 771 3.90 193 75

03504000 -83.62 35.13 NC 1893 762 3.90 193 90

03410500 -84.53 36.63 TN 1389 817 6.20 160 74

02387500 -84.94 34.58 GA 1480 901 0.70 18 73

03574500 -86.31 34.62 AL 1467 941 0.80 41 74

14308000 -122.95 42.93 OR 1347 805 2.20 76 62

07378500 -90.99 30.46 LA-MS 1594 1077 0.60 23 63

07375500 -90.36 30.51 LA-MS 1633 1074 0.60 23 64

02492000 -89.90 30.63 LA-MS 1583 1071 0.60 23 47

02456500 -86.98 33.71 AL 1425 982 0.80 41 66

02414500* -85.56 33.12 AL 1370 975 0.80 41 65

02472000 -89.41 31.71 MS 1492 1060 0.60 23 64

02448000 -88.56 33.10 MS 1421 1057 0.60 23 72

07290000 -90.70 32.35 MS 1435 1073 0.60 23 57

07056000 -92.75 35.98 AR 1180 916 3.80 132 68

07288500 -90.54 33.55 MS 1381 1112 0.60 23 62

07340000 -94.39 33.92 OK 1329 1156 5.60 198 70

07072000 -91.11 36.35 AR 1114 964 3.80 132 62

07348000 -93.88 32.65 LA 1173 1223 0.10 0 47

07346050 -94.75 32.67 TX 1128 1246 1.3 4 53

06914000 -95.25 38.33 KS 957 1206 10.0 373 61

*Indicates the validated river basin at Illinois State, USA.

model in a user friendly environment, but also provides: �rstly, helpful calibration support

by suggesting parameter settings developed by Li and Lu (2014); and secondly, hydrograph

visualisation and calculating Nash-Sutcli�e (NASH) e�ciency (Nash and Sutcli�e, 1970).

NASH e�ciency was calculated based on Eq. 3.1. Inputs to the XAJ model are areal mean

precipitation and potential evaporation. Input data sets throughout this chapter indicate

time series of daily precipitation and potential evaporation. A list of XAJ model parameters

and their calibrated ranges are presented in Table 5.2.

5.2.4 Recursive simulation design

To detect the spin-up trends, one year input data from 1st January to 31st December was

repeated in a yearly cycle for 10-year. Similar recursive experiment was done in several

model spin-up studies (Yang et al., 1995; Cosgrove et al., 2003; Seck et al., 2015; Ajami

et al., 2014b). This yearly recursive simulation removes inter-annual climate variability and

links any model adjustment processes to the equilibrium state of its internal stores (i.e. soil

moisture) from an initial anomaly directly to the spin-up processes. However, this single-year

recursive simulation may not be able to represent an accurate climatology, and may or may
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Table 5.2: Range of calibrated parameters in the Xinanjiang model.
Parameter Physical meaning Parameter value

Cp Ratio of measured precipitation to actual precipitation 0.8-1.2

Cep Ratio of potential evapotranspiration to pan evaporation 0-2.0

b Exponent of the tension water capacity curve 0.1-0.3

imp Ratio of the impervious to the total area of the basin 0-0.005

WUM Water capacity in the upper soil layer (mm) 5-20

WLM Water capacity in the lower soil layer (mm) 60-90

WDM Water capacity in the deeper soil layer (mm) 10-100

C Coe�cient of deep evapotranspiration 0.1-0.3

SM Areal mean free water capacity of the surface soil layer (mm) 1-50

EX Exponent of the free water capacity curve 0.5-2.5

KI Out�ow coe�cient of the free water storage to inter-�ow 0-0.7; KI+KG=0.7

KG Out�ow coe�cient of the free water storage to groundwater 0-0.7; KI+KG=0.7

cs Recession constant for channel routing 0.5-0.9

ci Recession constant for the lower inter-�ow storage 0.5-0.9

cg Daily recession constant of groundwater storage 0.9835-0.998

not achieve an unnatural equilibrium (Schlosser et al., 2000). To overcome this limitation,

recursive simulations were done with three separate input data sets representing mean, 5th

and 95th percentile climatology.

Preparation of input �les

Stream�ow for each basin was simulated with three separate input �les, created with a

single year data that is close to: i) 5th percentile, ii) mean, and iii) 95th percentile climatology.

To maintain consistency among the simulations, a single parameter set was used to simulate

all three input �les. However, practically it is very unlikely to achieve good calibration

accuracy for di�erent climatology using same parameter set due to the di�erence in water

balance and high parameter sensitivity to precipitation (even some basins would produce

negative NASH e�ciency). As a solution, we tried to manipulate the input data sets in

such a way that can represent di�erent climatology by keeping the same distribution pattern

throughout the year. The input to the XAJ model is precipitation and potential evaporation.

The potential evaporation climatology does not vary between a 'dry year' and 'wet year'.

Therefore, we opted to generate hypothetical precipitation (also stream�ow for validation

purpose) climatology by manipulating that of mean year. This modi�cation steered to gain

relatively good calibration accuracy while still capturing the climatology. The objective of

this study is to present the spin-up behaviour under di�erent climatology. The modi�ed

intra-year precipitation distribution de�nitely di�ers from the actual one. However, we

believe that this is still su�cient to ful�ll our objective. This experimental design may not

be the perfect one, but it is an improvement from the earlier approaches.

Firstly, the mean, 5th percentile and 95th percentile precipitation and stream�ow clima-

tology were computed from 52-year observed data sets (1948-1999). Secondly, the year that

closely represents the mean year climatology was selected to prepare mean year input �le by

repeating 1st January to 31st December for 10 years. Thirdly, 5th percentile and 95th per-
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Table 5.3: Xinanjiang model soil moisture initial conditions.
Initial condition Physical meaning

Saturated 100% of the �eld capacity

Intermediate 50% of the �eld capacity

Dry Zero soil moisture

Climatology Mean climatology initial condition

centile input �les were created by manipulating the mean year precipitation and stream�ow

data based on Eqs. (5.1) and (5.2).

Px,i = Pmean,i ∗
Px

Pmean

(5.1)

Qx,i = Qmean,i ∗
Qx

Qmean

(5.2)

where Pmean,i and Px,i are the i
th day precipitation for the mean and 5th or 95th percentile

year, respectively; Qmean,,i and Qx,i are the ith day stream�ow for the mean and 5th or 95th

percentile year, respectively; Px, Qx, Pmean and Qmean are annual precipitation for the 5th or

95th percentile year, annual stream�ow for the 5th or 95th percentile year, annual precipitation

for the mean year and annual stream�ow for the mean year, respectively.

Initial conditions

The XAJ model was run with four soil moisture initial conditions for each of the input

climatology. The details of initial conditions are given in Table 5.3.

Model calibration

The XAJ model was �rstly calibrated with the mean year input �le declaring an initial

condition as intermediate. Once it achieves a good agreement between the daily observed

and simulated discharge, the same parameter sets were used for the remaining simulations.

A total of twelve simulations (4 initial conditions X 3 climatologies for each basin) were

conducted for each basin. Average layered soil moisture values, obtained from the output of

�rst simulation (mean year input �le with an intermediate initial condition) were considered

to be the average climatology of the basin.

5.2.5 De�nition of model spin-up time

There are several accepted de�nitions of model equilibrium or spin-up. Yang et al. (1995)

de�ne a complete model equilibrium state as the state at which the �model's state at year

n+1 is identical to that at year n�. However, in practice, it is very di�cult to achieve identical

sates between two recursive simulations, thus quite a few approaches have been proposed
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(Cosgrove et al., 2003). Spin-up can be de�ned based on the e-folding time (time required to

reduce the yearly di�erences in daily/monthly model output to its 1/e value) (Delworth and

Manabe, 1988), halving time (time required to reduce the yearly di�erences in daily/monthly

model output to its half) (Simmonds and Lynch, 1992) or percent cut o�-based (PC) time

(time required for yearly changes in daily/monthly model output to decrease to a certain

threshold; see Cosgrove et al. (2003); de Goncalves et al. (2006)). Of these, PC time has

been widely used for detecting the model equilibrium (Yang et al., 1995; de Goncalves et al.,

2006; Cosgrove et al., 2003; Ajami et al., 2014b; Lim et al., 2012; Henderson-Sellers et al.,

1996; Chen et al., 1997).

In this study, the model equilibrium state has been de�ned on the basis of PC time. PC

time de�nes the extent of time required for yearly changes in daily model output to decrease

to a certain threshold. Generally, the threshold value for the model equilibrium varies from

1 to 0.01% depending on the purpose and scope (Yang et al., 1995; de Goncalves et al.,

2006; Cosgrove et al., 2003; Ajami et al., 2014b; Henderson-Sellers et al., 1996). This study

detects the equilibrium at 0.01% threshold. The percentage change of daily values of total

soil moisture was calculated by Eq. (5.3).

PC =

∣∣∣∣Di,n −Di,n+1

Di,n+1

∣∣∣∣ ∗ 100 (5.3)

where PC, Di,n and Di,n+1 are the percentage change, the total soil moisture at day i of

year n and n+ 1, respectively.

5.2.6 Reporting of model spin-up time

Every basin produces twelve di�erent spin-up times (4 initial conditions X 3 climatologies

for each basin). The analysis relating to the basin aridity index considers the highest spin-

up time produced by the initial condition that is closest to the average climatology. The

average saturation of the river basins is shown in Table 5.1. The average saturation of 18

out of 22 river basins is close to 50% of their respective �eld capacity. Therefore, the spin-up

time produced with an intermediate initial condition was reported for those basins. The

remaining four river basins seem to have average saturation close to their full capacity, and

thus spin-up times produced with a saturated initial condition was reported for those basins

(1st four basins of Table 5.1).

As discussed earlier, model achieves equilibrium state quickly under less SMM condition.

Rahman et al. (2015) argued that soil moisture state loses all the memory once it becomes

saturated. In harmony, this study also assumed that the XAJ model will take little or no

time to achieve an equilibrium state under highly wet conditions (aridity index approaches

zero). Thus, the regression equation presented in this paper which shows the relationship

between the spin-up time and aridity index was optimised so that the model's behaviour in

arid conditions beyond the examined basins could be better understood.
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5.2.7 Calculation of basin aridity index and SMM timescale

The independent aridity index values interpolated from the aridity index values of 400

MOPEX river basins across the USA (discussed in section 4.3.4) were used to discuss the

relationship between the model spin-up time and the aridity index. Consistent with Chapter

4, the river basins are grouped as wet (ζ < 0.9) and dry (ζ > 0.9) basins for the simplicity of

analysis. The basin average soil moisture memory (SMM) timescale in days was estimated

based on Eq. (4.3).

5.3 Results and Discussion

5.3.1 Hydrograph, SMM timescale and aridity index

The daily NASH e�ciencies of the analysed basins range from 0.43 to 0.87. The validated

daily hydrograph for the mean year simulation is presented in Fig. 5.2.

The validation result suggests that the simulated daily stream�ow agrees very well

with those of daily observed stream�ow. The basin-wise range of NASH e�ciency, SMM

timescale and aridity index are included in Table 5.4.

5.3.2 XAJ model spin-up time and SMM timescale

Analysed basins' spin-up time ranged from 2 to 655 days. The wet basins (ζ < 0.9) require

less time (mean spin-up time 55 days) to be equilibrated compared to the dry basins (ζ > 0.9;

mean spin-up time 298 days). Basin-wise model spin-up times produced with an initial

condition that is close to the average climatology (intermediate for 18 basins and saturated

for 4 basins) are given in Table 5.4.

Average spin-up times of the XAJ model in wet and dry basins for all three input data

sets with four initial conditions are shown in Fig. 5.3.

Spin-up time tends to increase with the dryness of initial conditions in all basins for

both mean and 95th percentile input data sets. In contrast, wet and dry basins respond

di�erently when the XAJ model is run with the 5th percentile input data sets. XAJ model

spin-up time increases with dryness of the initial conditions for wet basins while calibrated

with 5th percentile input data sets. In contrast, the XAJ model takes less time to achieve

equilibrium for 5th percentile input data sets with dry initial condition. In wet basins,

saturated initial condition requires less time to reach equilibrium. Similarly, Seck et al.

(2015) also suggests that spin-up for dry initial condition is slower than that of wet initial

conditions. However, available literature does not clarify which initial condition should

facilitate equilibrium condition in least time.

Theoretically we believe that any initial condition that is close to the average climatology

should lead equilibrium quickly. In wet basins (average climatology around 70% of the �eld

capacity), dry initial condition creates maximum anomalies, and thus would take longest

time to reach equilibrium. Similarly, in dry basins (average climatology slightly over 50% of
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Figure 5.2: Validated daily hydrograph of 20 analyzed river basins (calibrated with mean
year input data sets). MOPEX ID is presented in parenthesis.
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Figure 5.3: Average XAJ model spin-up time (in days) produced with di�erent initial condi-
tions and input data sets; (A) wet basins (ζ < 0.9) (B) dry basins (ζ > 0.9).
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Table 5.4: Summary of the XAJ model spin-up time analysis.

MOPEX ID
Area

(sq.km)

Daily

NASH

Aridity

index (ζ)

τSMM

(day)
τXsp(day)

11532500 1577 0.70-0.75 0.29 11 7

12027500 2318 0.71-0.73 0.39 16 3

03550000 269 0.58-0.72 0.40 16 2

03504000 135 0.70-0.77 0.40 16 9

03410500 2471 0.59-0.70 0.58 26 14

02387500 4144 0.67-0.72 0.61 28 18

03574500 829 0.72-0.82 0.64 30 23

14308000 1163 0.77-0.84 0.68 33 27

07378500 3315 0.43-0.61 0.70 35 43

07375500 1673 0.75-0.85 0.71 35 40

02492000 3142 0.77-0.82 0.71 36 24

02456500 2292 0.65-0.70 0.72 36 43

02414500* 2696 0.79 0.73 37 55

02472000 1924 0.48-0.79 0.76 39 40

02448000 1989 0.43-0.83 0.80 42 73

07290000 7283 0.54-0.61 0.80 43 131

07056000 2147 0.64-0.81 0.81 43 65

07288500 1987 0.75-0.84 0.86 48 68

07340000 6895 0.58-0.61 0.88 50 342

07072000 1134 0.61-0.87 0.90 52 192

07348000 8125 0.46-0.71 1.09 72 134

07346050 383 0.55-0.74 1.15 79 211

06914000 865 0.43-0.69 1.34 108 655

*Indicates the validated river basin at Illinois State, USA.

the �eld capacity), dry initial condition creates the maximum anomalies too, and thus might

equilibrate lately. In both wet and dry basins, we expected that intermediate initial condi-

tion (50% of the �eld capacity) would achieve equilibrium quickly. However, present study

reveals that the XAJ model consistently tends to achieve equilibrium shortly under saturated

initial condition for all the basins (except for dry basins simulated with 5th percentile input

data sets) irrespective to their average climatology. This might be a XAJ model dependent

phenomena and the XAJ model would always approach equilibrium quickly under a satu-

rated initial condition. Moreover, the XAJ model seems to behave di�erently under dry-dry

(dry basins simulation with dry climatologies) conditions. The exceptional behaviour of the

XAJ model spin-up time while simulating with 5th percentile climatology could be better

understood by analysing more dry basins. Unfortunately, the XAJ model is reported to

work better under humid and semi-humid areas (Ren-Jun, 1992; Lu and Li, 2014; Li and Lu,

2014), thus such investigation under dry-dry conditions would be challenging. Nevertheless,

the outcomes of this present study would be very essential for the XAJ model applications

for most of the areas.

Among the input data sets, 95th percentile exhibits the least spin-up time requirement for

any initial condition. Moreover, saturated initial condition with 95th percentile input data
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Figure 5.4: Relationship between basin-wise soil moisture memory and the XAJ model spin-
up time.

sets displayed the minimum time requirement to be equilibrated. Fig. 5.3 reveals that the

XAJ model spin-up time tends to increase with both the dryness of initial condition and the

climatology of input data sets. Therefore, the �ndings of the present study indicate that for

wet basins, a saturated initial condition could save the XAJ model spin-up time regardless

the climatology of input data sets. While, for dry basins, drier initial condition could be wise

in case the input data sets represent the drier climatology. Model simulation with climatology

initial condition also disclosed substantial time requirement for the XAJ model equilibrium.

This implies that model initialisation based on observed or model derived climatological mean

may not always be su�cient to avoid the spin-up error. A precise model initialisation might

also require spin-up time to be considered for the subsequent analysis. Estimated model

spin-up time (with climatology initial condition) exhibits a strong agreement with the basin

average SMM timescales (calculated from independent data sets) with an R2 of 0.81 (Fig.

5.4). This is consistent with Cosgrove et al.'s (2003) argument about the association between

model equilibrium and soil moisture persistence. This high R2 value not only indicates the

in�uence of soil moisture anomaly dissipation speed on the model spin-up time, but also

justi�es the use of recursive simulation to detect the XAJ model's spin-up behaviour. Even

though a single year forcing data was used to run the model in a recursive way, it can still

su�ciently capture the basin's characteristics.

5.3.3 Predictability of XAJ model spin-up time from basin aridity index

Literatures (Seck et al., 2015; Ajami et al., 2014b) suggest that spin-up time for integrated

hydrological model is much longer than that typically reported for LSMs. Comparing spin-

up time of models from di�erent types would be a very tricky task. Soil moisture persistence

is stronger as compared with those of meteorological �uxes (Koster and Suarez, 2001). Simi-

larly, soil moisture persistence in the deeper layer is much stronger than that of surface layer
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Figure 5.5: Relationship between basin aridity index and the XAJ model spin-up time.

(Vinnikov et al., 1996; Entin et al., 2000; Wu and Dickinson, 2004). Therefore, the model

spin-up study considering equilibrium for di�erent state variable (sensible/latent heat �ux,

total soil moisture, root zone soil moisture, depth of water table, discharge, ground water

storage etc.) would provide di�erent results. However, model spin-up behaviour (how it ap-

proaches towards equilibrium under di�erent circumstances) could be compared quite easily.

The XAJ model's spin-up behaviour seems to be consistent with those of LSMs. Noah LSM

spin-up study (Lim et al., 2012) on Korean Data Assimilation System argued that dry land

areas takes more than 40 months for spin-up compared to the wet areas. Similarly, Rodell

et al. (2005) claimed that Mosaic (Koster and Suarez, 1992) LSM shows less spin-up time in

humid regions compared to arid regions. Moreover, Cosgrove et al. (2003) demonstrated a

strong spatial variation and correlation of spin-up time with precipitation and temperature.

Computed basin-wise XAJ model spin-up time (mostly with an intermediate initial con-

dition) reveals an exponential relationship with basin aridity index (calculated from inde-

pendent data sets) with an R2 value of 0.85 (Fig. 5.5).

The relationship between the basin aridity index and model spin-up time can be expressed

by Eq. (5.4).

τXsp = 3.65
(
e3.83ζ − 1

)
(5.4)

where τXsp is the XAJ model spin-up time in days and ζ is the basin aridity index.

This relationship could be useful for roughly estimating the XAJ model spin-up time

when no information about the soil moisture climatology is available. Declaring an interme-

diate initial condition is easy and straightforward compared to setting a climatology initial

condition. However, it should be noted that this relationship is based on the daily scale

model simulation only, thus the XAJ model spin-up time for shorter or longer scale might

be di�erent.

The equation was validated against the actual spin-up behaviour of the XAJ model for
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Figure 5.6: Time series plot of total column soil moisture (mm) over the 11 year simulation
for validated river basin at Alabama, USA (the Tallapoosa River basin, MOPEX ID #
02414500).

the Tallapoosa River basin, Alabama, USA (MOPEX ID # 02414500; ζ = 0.73, gauge

location shown in Fig. 5.1). The equation suggests a maximum spin-up time of 56 days for

a basin with an aridity index of 0.73. A recursive simulation with several initial conditions

(mean year input data) indicates that the model takes a maximum of 55 days to reach an

equilibrium soil moisture state (dry initial condition, see Fig. 5.6).

5.4 Conclusions

Spin-up is the process during which a model adjusts its internal stores to an equilibrium

state from an unusual initial state. Model outputs during this adjustment process are highly

a�ected by the initial conditions, and consequently could be unrealistic and misleading. To

avoid this problem, modellers often prefer to set the model initial condition as close to the

reality and/or exclude the model outputs for the �rst few months. However, studies suggest

that perfect initialisation may not be su�cient for eliminating the risk of erroneous model

output. The model adjustment process is not only a�ected by the initial condition but

also by the characteristics of input data sets. Similarly, exclusion of the �rst few months'

model outputs is not an ideal solution. Exclusion of model output guided by a feeling

could lead to underestimating or overestimating spin-up time. Therefore, prior information

about the model's behaviour under di�erent conditions or preferable initial conditions will

improve the detection of spin-up time or reducing spin-up time, respectively. This study

investigates the XAJ model's spin-up behaviour using di�erent initial conditions and input

data sets (representing separate climatology) for 22 river basins across the USA. The XAJ

model shows an increasing trend of spin-up times against both the dryness of input data

sets and initial conditions. The responses are identical in wet and dry basins for the mean

and 95th percentile input data sets. In contrast, it behaves di�erently in wet and dry basins
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for the 5th percentile input data sets. In wet basins, spin-up times tend to increase with the

dryness of initial condition, while dryer initial condition produces less spin-up time in dry

basins. Among the input data sets, 95th percentile exhibited least spin-up time requirement

regardless of the basin dryness. For all the basins, a 95th percentile input data sets with

saturated initial condition showed the minimum time to be equilibrated. Analysis suggests

that a saturated initial condition is preferable for mean year or 95th percentile data sets

for all the basins. However, it would be wise to utilize saturated and dry initial condition

for the dryer input data sets (5th percentile) for wet and dry basins, respectively. Finally,

the wet basins require less time for model equilibrium compared to those of dry basins.

The spin-up time displays a high correlation with the basin soil moisture memory timescale.

Moreover, the XAJ model spin-up timescale exhibits an exponential relationship with basin

aridity index. This relationship allows estimating the XAJ model spin-up time using only

precipitation and evaporation information only. Estimation of the XAJ model spin-up time

could be valuable to reduce uncertainty associated with guessing spin-up time, simply based

on feeling or experience. Prior information about model spin-up time would allow us to fully

use the information included in short data records under data scarce situation.
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Chapter 6

Seasonality of model spin-up time

6.1 Introduction

When a model is calibrated with an unusual initial condition, the model undergoes some

adjustment process to reach the normal equilibrium state (Yang et al., 1995; Cosgrove et al.,

2003; de Goncalves et al., 2006). Time requires completing this model adjustments or reach

its equilibrium condition in its internal stores (i.e. soil moisture) is called as the model

spin-up time. The length and behaviour of this spin-up process is a function of chosen

initial conditions, parameters that describes the model domain and the model forcing (Seck

et al., 2015). The model output during this spin-up time is hugely impacted on by the initial

condition, and often unrealistic or misleading. The model outputs after its initial adjustments

normally correspond better with the observations and reacts realistically to the inputs (Yang

et al., 1995; Cosgrove et al., 2003; Seck et al., 2015). Consequently, it is important to pay

particular attention to the model spin-up process, its length and behaviour for the modellers.

However, clear information about the length of spin-up time is often missing or model speci�c

and cannot be applicable to all. In practice, modellers tend to reduce this spin-up period

or exclude the initial model outputs for improved modelling accuracies mostly guided by

a guess. These techniques of reducing spin-up errors hold certain limitations. Therefore,

understanding the factors a�ecting the spin-up process and its behaviour is highly important

for modelling communities.

The in�uence of initial conditions in hydrological models have been studied by several

researchers (Goodrich et al., 1994; Senarath et al., 2000; Castillo et al., 2003; Zehe et al.,

2005; Berthet et al., 2009; Nikolopoulos et al., 2011; Zhang et al., 2011; Minet et al., 2011).

However, these studies were done focusing mainly on event-scale or short-term response.

Moreover, these literatures not necessarily quantify the spin-up time or discussed the crite-

ria to specify the equilibrium condition of model state once it �nishes the spin-up time (Seck

et al., 2015). Recently, few studies have discussed about the spin-up time and behaviour of

integrated hydrological model (Ajami et al., 2014b; Seck et al., 2015; Rahman and Lu, 2015).

Rahman and Lu (2015) (also chapter 5) suggested an easy way to estimate the maximum

spin-up period of the XAJ model under extreme climatology using only basin aridity in-

dex information. Estimating maximum model spin-up time could reduce uncertainty under

extreme conditions. In contrary, spin-up time of land surface models (LSMs) is well docu-

55
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mented (Yang et al., 1995; Robock et al., 1998; Schlosser et al., 2000; Cosgrove et al., 2003;

Rodell et al., 2005; Lim et al., 2012). These studies have been done to examine the model

spin-up behaviour under diverse conditions of climate, vegetation and soil types. Reported

spin-up time of LSMs varies from models to models and range from one to several years

(de Goncalves et al., 2006; Yang et al., 1995; Chen and Mitchell, 1999; Cosgrove et al., 2003;

Rodell et al., 2005). Despite the conclusions of these literatures are often model-speci�c, they

provide important insights and guidelines for all modelling communities about the spin-up

analysis.

Up-to-date spin-up studies are mostly done on the basis of a recursive model runs through

a speci�c period (typically a single year) where the outputs at the end of one simulation be-

come the initial conditions for the next simulation (Yang et al., 1995). This single year

recursive simulations are claimed to be eliminating the inter-annual climatic variability and

links any model adjustments from year to year exclusively to the spin-up process (Cosgrove

et al., 2003). By repeating the same annual forcing, it applies the same temporal dynamics

to the system and enables to distinguish between the e�ects of persistence in initial con-

ditions and high and low-frequency dynamics that would be added while using multi-year

climatology (Seck et al., 2015). This recursive simulation assumes that single year forcing is

representative of the observed climatology (Cosgrove et al., 2003). Rahman and Lu (2015)

tried to improve the representativity of this single year simulation by analysing the model

spin-up behaviour based on simulation results using three di�erent climatological input data

sets (mean, 5th and 95th percentile). However, this repeated model runs using a single year

climatology may not be su�cient to train the model with all climatological phenomenon,

and thus devoid of additional insights. Moreover, this single year recursive model run al-

ways starts the simulation from a particular point of year. Since, the spin-up process is

strongly associated with the atmospheric forcing and surface conditions (Yang et al., 1995;

Chen and Mitchell, 1999; Cosgrove et al., 2003; Rodell et al., 2005; de Goncalves et al.,

2006), the spin-up behaviour would be di�erent when the model simulations starts from a

di�erent time of year. Keeping the same initial conditions and employing di�erent starting

climatology certainly a�ects the speed of spin-up process. Recently, Rahman et al. (2015)

discussed about the seasonality of soil moisture memory (SMM). Therefore, it is intuitive

for any model spin-up time to show certain seasonality.

This study attempted to analyse the seasonality of model spin-up time using the Xinan-

jiang model (XAJ) (Ren-Jun, 1992). The XAJ model is a conceptual hydrological model

discussed in section 3.2.4. Unlike existing literature, this study uses multi-year climatology

instead of a single year recursive simulation. We believe that use of multi-year climatologies,

train the model in a better way and the outcomes are more realistic. Moreover, to detect the

seasonality of model spin-up time, we perform series of simulations that starts from di�erent

time of year (details are given in section 6.2.4). Using multi-year forcing climatology also

requires the model equilibrium condition to be de�ned di�erently from the above mentioned

spin-up studies (Yang et al., 1995; Cosgrove et al., 2003; Rodell et al., 2005; Lim et al.,

2012; Ajami et al., 2014b; Seck et al., 2015; Rahman and Lu, 2015). Generally, in recursive
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simulation based spin-up studies, the model equilibrium condition was de�ned mainly based

on the percent cuto�-based time (PC time). PC time is the time requires for the yearly

changes in daily/monthly model output to decrease to a pre-de�ned threshold values (Cos-

grove et al., 2003; de Goncalves et al., 2006). In a recursive simulation, the system receives

same temporal dynamics for a particular point. This actually allows to detect the progress

of adjustment process based on user de�ned resolution. In contrary, using multi-year forcing

employs varying temporal dynamics and the equilibrium state could be di�erent from year

to year. Therefore, we performs two simulations; one initialised with completely �dry�, and

another initialised with completely �saturated�.

In XAJ model, the soil moisture is represented in three layers. When the XAJ model

is calibrated with two extreme initial conditions (�saturated� and �dry�), the soil moisture

stores of each simulation will gradually converge towards a common state of equilibrium,

and thus will show correlations. This equilibrium model state can be detected by estimating

Mahalanobis Distance (MD) (Mahalanobis, 1930) between the soil moisture states (prognos-

tic variable for this study) of two simulations. MD has been applied in many �elds to solve

the classi�cation problems, where there are several groups and concerns of a�nities between

the groups are present (McLachlan, 1999; De Maesschalck et al., 2000). MD has been used

to detect the outliers (Martens and Naes, 1992; Leroy and Rousseeuw, 1987), to select the

calibration samples from a large set of measurements (Shenk and Westerhaus, 1991), to

investigate the representativity between two data sets (Jouan-Rimbaud et al., 1997, 1998;

Wilson and Atkinson, 2007) and similarity between two river �ow series (Corduas, 2011).

MD is useful to measure the divergence or distance between groups in terms of multiple

characteristics. MD weights the variables with their covariance, which attributes less weight

to strongly correlated variables.

Calibrating XAJ model using multi-year forcing climatologies and �saturated� and �dry�

initial conditions, this study investigated the seasonality of spin-up time for 18 river basins

across the USA. This study holds at least three major comparative advantages over the

existing spin-up literatures. Firstly, it uses multi-year forcing that overcome the limitations

contains in single year recursive simulation in the sense of representativeness to the actual

phenomenon. Secondly, it detects the model equilibrium state based on MD that is widely

acceptable in the presence of co-linearity of datasets. Thirdly, it provides useful insights

about the seasonality of model spin-up time that is missing in the available spin-up studies.

6.2 Materials and Methods

6.2.1 Study area

This study analyses 18 river basins across the USA. Stream gauge locations of the analysed

river basins are shown in Fig. 6.1.

For the sake of consistency with the previous spin-up analysis discussed in Chapter 5, this

chapter opted to select the same river basins. Analysing same river basins allows comparing
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Figure 6.1: Stream gauge location map of studied river basins over USA mainland.

between the model spin-up outcomes derived from two di�erent methodologies. Moreover,

it enables to relate the model spin-up time and soil moisture memory. As it was mentioned

in Chapter 4 and 5, these river basins have good data records, and their discharge could be

simulated by the XAJ model with good accuracies. Analysed basins are located in nearly

snow-free areas. Based on 30-year climate normal (1981-2010) released by NOAA's Na-

tional Climatic Data Centre (available at http://www.ncdc.noaa.gov/oa/climate/normals/

usnormals.html; accessed on November 13, 2013), the basins have less than 7 snow-days (a

snow-day is a day that records at least 2.5mm snow/day) and receive less than 200mm of

total new snow per year. A summary of the analysed basins' physical and hydro-climatic

characteristics is presented in Table 6.1.

6.2.2 Data

The basin scale daily precipitation, P (daily mean areal precipitation calculated from ground

based gauge precipitation), potential evaporation, PE (developed from NOAA Evaporation

Atlas), and stream�ow, Q data (developed from USGS hydro-climatic data) were obtained

from the U.S. Model Parameter Estimation Project (MOPEX) data sets (Schaake et al.,

2006). These are freely available at ftp://hydrology.nws.noaa.gov/ (accessed on October 19,

2013).

6.2.3 XAJ model parameters, calibration and validation

The XAJ model (discussed in section 3.2.4) was calibrated with the aid of a web-based

application (available at http://lmj.nagaokaut.ac.jp/~khin/; last accessed on June 09, 2015)

(Khin et al., 2015). This web platform not only allows the user to calibrate the XAJ model
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Table 6.1: Studied MOPEX basins, locations and basic characteristics. Dry basins (aridity
index >0.9) are marked with bold face, Italic font style.

MOPEX ID
Ave. P

(mm/year)

Ave. PE

(mm/year)

Ave.

snow-days

(day/year)

Ave. total

new snow

(mm/year)

Ave. soil

moisture

saturation (%)

Location

Long. Lat. State

11532500 -124.05 41.79 CA 2687 740 0.00 0 82

12027500 -123.03 46.78 WA 1599 579 3.00 127 75

03504000 -83.62 35.13 NC 1893 762 3.90 193 90

03410500 -84.53 36.63 TN 1389 817 6.20 160 74

02387500 -84.94 34.58 GA 1480 901 0.70 18 73

03574500 -86.31 34.62 AL 1467 941 0.80 41 74

07378500 -90.99 30.46 LA-MS 1594 1077 0.60 23 63

07375500 -90.36 30.51 LA-MS 1633 1074 0.60 23 64

02492000 -89.90 30.63 LA-MS 1583 1071 0.60 23 47

02456500 -86.98 33.71 AL 1425 982 0.80 41 66

02472000 -89.41 31.71 MS 1492 1060 0.60 23 64

07290000 -90.70 32.35 MS 1435 1073 0.60 23 57

07056000 -92.75 35.98 AR 1180 916 3.80 132 68

07288500 -90.54 33.55 MS 1381 1112 0.60 23 62

07072000 -91.11 36.35 AR 1114 964 3.80 132 62

07197000 -94.84 35.92 OK 1162 1113 5.6 198 58

08033500 -94.40 31.02 TX 1100 1308 1.30 4 60

06914000 -95.25 38.33 KS 957 1206 10.0 373 61

in a user friendly environment, but also provides: �rstly, helpful calibration support by

suggesting parameter settings developed by Li and Lu (2014); and secondly, hydrograph

visualisation and calculating Nash-Sutcli�e (NASH) e�ciency (Nash and Sutcli�e, 1970).

NASH e�ciency was calculated based on Eq. 3.1. Inputs to the XAJ model are areal mean

precipitation and potential evaporation. Input data sets throughout this chapter indicate

time series of daily precipitation and potential evaporation. A list of XAJ model parameters

and their calibrated ranges are presented in Table 6.2.

6.2.4 Simulation design

Unlike recursive simulation with a single year climatologies (as was done in earlier analysis

discussed in Chapter 5), this time XAJ model was simulated with full length available

observed data sets with two initial conditions (saturated and dry). To detect the seasonality

of model spin-up time, this study performs a series of XAJ model simulations with varying

simulation start time. The �rst simulation started from the 1st of January, 1st year and the

successive simulations were done with a simulation loop that shifts the simulation starting

time by 10-days forward until it completes the loop at 21st December of last year. To

maintain the consistency in length of the input data sets among the simulations, the shifted

climatologies are placed at the end of the input climatologies, thus total number of data

records remains the same for every simulations. Figure 6.2 explains the input data loop

that shifts 10-days climatology for a data records from 1st January 1948 to 31st December

1999. In every step, the model was simulated twice using the same input �le with two
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Table 6.2: Range of calibrated parameters in the Xinanjiang model.
Parameter Physical meaning Parameter value

Cp Ratio of measured precipitation to actual precipitation 0.92-1.1

Cep Ratio of potential evapotranspiration to pan evaporation 0.9-1.29

b Exponent of the tension water capacity curve 0.1-0.3

imp Ratio of the impervious to the total area of the basin 0-0.0001

WUM Water capacity in the upper soil layer (mm) 20

WLM Water capacity in the lower soil layer (mm) 50-90

WDM Water capacity in the deeper soil layer (mm) 20-80

C Coe�cient of deep evapotranspiration 0.1-0.3

SM Areal mean free water capacity of the surface soil layer (mm) 51-55

EX Exponent of the free water capacity curve 0.5-1.5

KI Out�ow coe�cient of the free water storage to inter-�ow 0.1-0.65; KI+KG=0.7

KG Out�ow coe�cient of the free water storage to groundwater 0.08-0.6; KI+KG=0.7

cs Recession constant for channel routing 0.5-0.88

ci Recession constant for the lower inter-�ow storage 0.3-0.82

cg Daily recession constant of groundwater storage 0.982-0.998

di�erent initial conditions (saturated and dry). Initially, the XAJ model was calibrated with

saturated initial condition and thereafter the daily stream�ow was validated against those of

observed. Later, the calibrated parameter sets were used for rest of the simulations. NASH

e�ciency reported in Table 6.3 represents only the �rst simulation.

6.2.5 De�nition of model spin-up time

We assume that the model is in equilibrium state when two sets of soil moisture state (from

�saturated� and �dry�simulation) become similar. The similarity is measured based on MD.

The model was said to be in equilibrium state when the MD score is zero (0). The spin-up

time is de�ned as the number of days require for this MD becomes zero (0). The MD was

calculated based on Eq. (6.1).

MD (−→xS,−→yD) =
√

(−→xS −−→yD)T S−1 (−→xS −−→yD) (6.1)

where MD (−→xS,−→yD) is the MD between the random vectors −→xS (states of three soil moisture

layers from �saturated� simulation) and −→yD (states of three soil moisture layers from �dry�

simulation). T and S−1 is the matrix transpose and covariance matrix (non-singular) between
−→xS and −→yD respectively.

6.2.6 Calculation of monthly and basin scale model spin-up time and corre-

sponding aridity index

A basin that has 52-year (1948-1999) long observed data requires approximately 1899 sim-

ulations. The spin-up time was estimated for every simulations and grouped into months

based on the simulation starting time. The monthly spin-up time was then computed by
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Figure 6.2: Figure explains the input data loop for the XAJ model.

averaging all the spin-up times for the respective months. The basin average spin-up time

is the arithmetic mean of all months (January to December).

The monthly spin-up time calculation was followed by the computation of aridity index

for the corresponding spin-up period. Aridity index of the corresponding spin-up period for

all months of all years were calculated. Finally, monthly means were calculated from the

corresponding aridity index of all years.

6.2.7 Calculation of annual aridity index and SMM timescale

The basin annual aridity index was estimated from an independent data sets by interpolating

aridity index values of 400 MOPEX river basins across the USA (discussed in section 4.3.4).

This annual aridity index has been used to discuss the relationship between the model spin-

up time and the aridity index. Consistent with Chapter 4 and 5, the river basins are grouped

as wet (ζ < 0.9) and dry (ζ > 0.9) basins for the simplicity of analysis. Basin-wise SMM

timescale was computed based on Eq. 4.3.

6.2.8 Optimization of regression equation

On the basis of conclusions regarding the SMM under saturated soil moisture condition

(model achieves equilibrium state quickly under less SMM condition; discussed in Chapter

4 and 5), the regression equation that shows the relationship between the spin-up time and
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Table 6.3: Summary of the XAJ model spin-up time analysis.

MOPEX ID
Area

(sq.km)

Data

length

(year)

Daily

NASH

Annual

aridity

index (ζ)

τSMM

(day)

τXsp(day)

Min.

(month)

Max.

(month)
Mean

11532500 1577 52 0.79 0.29 10.82 18 (Nov) 156 (May) 72.31

12027500 2318 52 0.81 0.39 15.56 25 (Nov) 205 (Apr) 98.11

03504000 135 52 0.81 0.40 16.06 36 (Dec) 147 (Apr) 82.78

03410500 2471 52 0.65 0.58 26.36 51 (Nov) 227 (Mar) 137.02

02387500 4144 52 0.78 0.61 28.32 58 (Dec) 224 (Dec) 135.09

03574500 829 52 0.65 0.64 30.34 48 (Nov) 216 (Apr) 121.34

07378500 3315 51 0.66 0.70 34.64 100 (Nov) 154 (Apr) 184.57

07375500 1673 51 0.67 0.71 35.38 134 (Oct) 295 (Mar) 215.82

02492000 3142 52 0.61 0.71 36.38 69 (Nov) 222 (May) 155.48

02456500 2292 52 0.80 0.72 36.14 74 (Dec) 246 (Apr) 152.73

02472000 1924 52 0.71 0.76 39.26 69 (Nov) 215 (Apr) 144.38

07290000 7283 50 0.67 0.80 42.54 116 (Nov) 258 (Mar) 197.34

07056000 2147 52 0.66 0.81 43.39 82 (Oct) 230 (Mar) 169.19

07288500 1987 42 0.70 0.86 47.79 135 (Oct) 272 (Mar) 205.70

07072000 1134 46 0.71 0.90 51.51 184 (Oct) 257 (Jun) 216.09

07197000 795 52 0.65 0.94 55.42 145 (Sep) 232 (Jun) 192.83

08033500 9417 52 0.61 1.19 84.83 205 (Nov) 305 (May) 249.99

06914000 865 52 0.62 1.34 107.43 237 (Aug) 290 (Jan) 272.63

aridity index was optimised so that the model's behaviour in arid conditions beyond the

examined basins could be better understood. It assumes that the XAJ model will take

little or no time to achieve an equilibrium state under highly wet conditions (aridity index

approaches zero).

6.3 Results and Discussion

6.3.1 NASH e�ciency and SMM timescale

The daily NASH e�ciencies of the analysed basins suggest that the simulated stream�ow

has a good agreement with that of observed data sets. Basin-wise NASH e�ciency and SMM

timescales are reported in Table 6.3.

6.3.2 XAJ model spin-up time and corresponding aridity index

The spin-up time ranged from 1 to 1265 days. The corresponding aridity index ranged from

0.002 to 2.16. All spin-up times are plotted against the corresponding aridity index of that

spin-up period in Fig. 6.3. Figure 6.3 reveals that spin-up time is exponentially related with

the corresponding aridity index. Although the relationship looks weaker in summer months,

all the relationships are statistically signi�cant at 0.0001% (N>2600).

Mean monthly spin-up times disclose a distinct variations in wet (ζ < 0.9) and dry

(ζ > 0.9) basins (Fig. 6.4). In wet basins, the XAJ model requires longer time to be
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Figure 6.3: XAJ model spin-up times and their corresponding aridity index plotted based on
the simulation starting time.

equilibrated when the model simulation starts from the spring months (March-May). While,

it achieves equilibrium quickly for late autumn or early winter (October-December). In

contrast, in dry basins, the XAJ model equilibrated quickly in early spring (March-April)

and autumn (August-October) and it takes longer time for the equilibrium in late spring to

summer (May-June). Overall, in all basins spin-up time is highest in spring (March-May)

and lowest in late autumn (October-November). This implies that starting simulations from

the hydrological year (1 October) could save the spin-up time.

Theoretically, it is believed that the model spin-up time is mainly controlled by the

persistence characteristics of soil moisture (as the model equilibrium was detected for soil

moisture state). A low SMM implies the soil moisture anomalies are short lived and di-

minishes quickly to reach in equilibrium condition. The shorter the memory the shorter

the spin-up period. Basin-wise SMM timescale and the model spin-up time shows strong

correspondence with a R2 = 0.79 (Fig. 6.5). Analysis indicates that model spin-up times are

3-7 times longer than SMM timescale. Yang et al. (1995) showed that the spin-up time of

PILPS (Project for Intercomparison of Land Surface Parameterization Scheme) experiment

is three times larger than the e-folding time (SMM) at 0.1% PC threshold. In another LSM
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Figure 6.4: Basin-wise mean monthly spin-up times for (a) wet basins (ζ < 0.9) (b) dry basins
(ζ > 0.9).
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Figure 6.6: Seasonal variations of mean spin-up times and their corresponding aridity index.

study, Cosgrove et al. (2003) provided that the spin-up times are two to 17 times larger

depending on the nature of initialisation and PC threshold. Although the methodologies

and studied models are completely di�erent, these literature agrees the overall comparative

weight of SMM timescale and the spin-up time. The SMM timescale accounts the number

of lag days that requires for the soil moisture autocorrelations to drop below the threshold

signi�cance at 95% con�dence level. Therefore, in SMM timescale calculation, a complete

shedding of soil moisture anomalies is not counted. On the other hand, in spin-up analysis

a complete equilibrium was hunted thus requires longer times.

However, the seasonal cycles of model spin-up time particularly for the wet basins seems

to be inconsistent with that of SMM timescale presented in Chapter 4 and Rahman et al.

(2015). The seasonal cycles of wet basins' model spin-up time shows almost opposite cycles

that of SMM timescale (Fig. 6.5 and 6.6). This variation might be resulted due to the
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Figure 6.7: Year-wise model spin-up time and the aridity index. r is the correlation coe�cient
between yearly model spin-up time and aridity index.

di�erence in approaches of computations. Two cycles are estimated based on two separate

methodologies and contain certain assumptions. Moreover, SMM timescale seasonality were

drawn based on the SMM timescale of the �rst day of every month. SMM timescale study

assumes that SMM timescale of the �rst day of any month is representative to the whole

month. The spin-up time seasonality are drawn from large number of data sets, and thus is

believed to be better representative to the reality. SMM timescale seasonality calculated from

all the days of the year would achieve better agreement between the cycles. Additionally,

the model spin-up study considering equilibrium for di�erent state variable (sensible/latent

heat �ux, total soil moisture, root zone soil moisture, depth of water table, discharge, ground

water storage etc.) would provide di�erent results. On the other hand, the seasonal cycles

of model spin-up time are quite consistent with that of SMM timescales for dry basins. Both

the cycles show two peaks in summer and winter.

The model spin-up time highly varies (mean range is 154 days) throughout the year for

wet basins. On the other hand, in dry basins, the spin-up time varies moderately (mean

range 78 days) from month to month. Basin-wise monthly mean spin-up times are presented

in Table 6.3.

The overall spin-up time is shorter in wet basins (wet basins mean 148 days) than those

of dry basins (dry basins mean 233 days). This is consistent with Rahman et al. (2015);

Rodell et al. (2005); Lim et al. (2012); Cosgrove et al. (2003). Figure 6.6 suggests that the

model spin-up is mainly in�uenced by the aridity index during the corresponding spin-up

period.

6.3.3 XAJ model spin-up time and basin aridity index

Yearly mean model spin-up time shows high association with the corresponding year's aridity

index for all the basins. Figure 6.7 displays the yearly time series of model spin-up time and
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Figure 6.8: Relationship between XAJ model spin-up time and corresponding basin's annual
aridity index.

the aridity index for three river basins representing three aridity conditions. This �gure also

suggests that aridity index is a dominant factor that a�ect the speed of model equilibrium.

Computed basin-wise XAJ model spin-up time reveals an exponential relationship with

basin annual aridity index (calculated from independent data sets) with a R2 value of 0.93

(Fig. 6.8). The relationship between the basin aridity index and model spin-up time can be

expressed by Eq. (6.2).

τXsp = 64.88
(
e1.44ζ − 1

)
(6.2)

where τXsp is the XAJ model spin-up time in days and ζ is the basin aridity index.

This relationship could be useful for roughly estimating the XAJ model spin-up time and

could be handy for simulations with better con�dence. However, it should be noted that this

relationship is based on the daily scale model simulation only, thus the XAJ model spin-up

time for shorter or longer scale might be di�erent.

6.4 Conclusions

When a model is calibrated with an unusual initial condition, the model undergoes some

adjustment process to reach the normal equilibrium state. Model outputs during this spin-

up process are highly a�ected by the initial conditions, and often unrealistic or misleading.

Therefore, understanding this spin-up period has been the interest of modelling communities,

particularly for the LSMs. Most spin-up studies are done based on a recursive simulations

using a single year climatologies. Arguably, conclusions based on this recursive model runs

might be erroneous due the lack of representativeness in the climatological extremes within

the single year climatology. Moreover, researchers used di�erent thresholds to de�ne the

model equilibrium conditions, and thus lost the comparability or uniformity. Furthermore,
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recursive simulations based spin-up outcomes does not provide any insight about the sea-

sonality of spin-up time.

Aiming to solve these limitations, this study detects and analyses the seasonality of

spin-up time using multi-year climatologies adopting new techniques of model equilibrium

de�nition. The spin-up time shows high seasonality and mainly controlled by the aridity

index of model forcing. This analysis suggests that model spin-up time could vary based on

the simulation start time of year. The simulation that starts from month of January might

achieves the equilibrium quickly as compared that starts from the month of May. However,

this conclusions are based on the American climatic conditions and it might show di�erent

seasonal cycles elsewhere.

The spin-up time displays exponential relationship with the aridity index. This relation-

ship allows estimating the XAJ model spin-up time using only precipitation and evaporation

information only. Estimation of the XAJ model spin-up time could be valuable to reduce

uncertainty associated with guessing spin-up time, simply based on feeling or experience.

Prior information about model spin-up time would allow us to fully use the information

included in short data records under data scarce situation.



Appendix A

Development of soil moisture

autocorrelation equation

The water balance of the soil column for a typical land surface model (LSM) under no snow

condition, for the month n of year y can be written as Eq. (A.1)

Cswn+lag,y = Cswn,y + Pn,y − En,y −Qn,y (A.1)

where Cs, wn,y and wn+lag,y are the water holding capacity of the soil column, degree of

soil moisture saturation at day n and day n+ lag of year y respectively. Pn,y, En,y and Qn,y

are the accumulated precipitation, evapotranspiration and stream�ow during the time steps

(n, n+ lag) of year y respectively.

Based on the results of Koster and Milly (1997), a constant linear relationship was as-

sumed between the evaporation and runo� �uxes with the mean soil moisture of the month.

The mean soil moisture was calculate as the average of the iniatial and �nal values, thus,

the the assumptions looks like the following Eqs. (A.2-A.3):

Qn,y

Pn,y
= an

wn,y + wn+lag,y

2
+ bn (A.2)

En,y

Rn,y
= cn

wn,y + wn+lag,y

2
+ dn (A.3)

where wn,y, wn+lag,y, En,y and Pn,y express the same meaning as mentioned above. R̄n is

the radiation. an, bn, cn and dnare parameters after Koster and Milly (1997).

Substituting Eq. (A.2) and (A.3) into Eq. (A.1) will yield Eq. (A.4):

Cswn+lag,y = Cswn,y + Pn,y −Rn,ycn

(
wn,y + wn+lag,y

2

)
− dnRn,y − Pn,yan

(
wn,y + wn+lag,y

2

)
− bnPn,y

(A.4)

By re-arranging we get Eq. (A.5):

69
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(
Cs +

cnRn,y

2
+

anPn,y

2

)
wn+lag,y =

(
Cs −

cnRn,y

2
− anPn,y

2

)
wn,y + (Pn,y − dnRn,y − bnPn,y) (A.5)

Separating the soil moisture, precipitation and net radiation into their mean components

(shown by overline) for the month n of year y and the corresponding interannual anomalies

(shown by primes) we get Eqs. (A.6-A.9):

wn,y = w̄n + ẃn,y (A.6)

wn+lag,y = w̄n+lag + ẃn+lag,y (A.7)

Pn,y = P̄n + Ṕn,y (A.8)

Rn,y = R̄n + Ŕn,y (A.9)

By inserting Eqs. (A.6-A.9) into Eq. (A.5), we get Eq. (A.10):

(
Cs +

cnR̄n

2 +
cnŔn,y

2 + anP̄n

2 +
anṔn,y

2

)
(w̄n+lag + ẃn+lag,y)=(

Cs −
cnR̄n

2
− cnŔn,y

2
− anP̄n

2
− anṔn,y

2

)
(w̄n + ẃn,y) (A.10)

By solving, we get Eq. (A.11)

2Csw̄n+lag + cnR̄nw̄n+lag + cnŔn,yw̄n+lag + anP̄nw̄n+lag + anṔn,yw̄n+lag + 2Csẃn+lag+

cnR̄nẃn+lag,y + cnŔn,yẃn+lag,y + anP̄nẃn+lag,y + anṔn,yẃn+lag,y = 2Csw̄n − cnR̄nw̄n−

cnŔn,yw̄n − anP̄nw̄n − anṔn,yw̄n + 2Csẃn,y − cnR̄nẃn,y − cnŔn,yẃn,y − anP̄nẃn,y−

anṔn,yẃn,y + 2P̄n + 2Ṕn,y − 2dnR̄n − 2dnŔn,y − 2bnP̄n − 2bnṔn,y (A.11)

Now by ignoring the higher order terms and rearranging we get Eqs. (A.12) and (A.13):

{all mean components (i.e. 2Csw̄n+lag, cnR̄nw̄n+lag, anP̄nw̄n+lag, 2Csw̄n, cnR̄nw̄n, anP̄nw̄n, 2P̄n,

2dnR̄n, 2bnP̄n) and the terms in the form of ẃn,y − ẃn+lag,y; i.e. cnŔn,y (ẃn,y − ẃn+lag,y)

and cnṔn,y (ẃn,y − ẃn+lag,y)}
2Csẃn+lag,y + cnR̄nẃn+lag,y + anP̄nẃn+lag,y = 2Csẃn,y − cnR̄nẃn,y − anP̄nẃn,y + 2Ṕn,y-

aṔn,yw̄n − anṔn,yw̄n+lag − 2bnṔn,y − cnŔn,yw̄n − cnŔn,yw̄n+lag − 2dnŔn,y (A.12)
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(
2Cs + cnR̄n + anP̄n

)
ẃn+lag,y =

(
2Cs − cnR̄n − anP̄n

)
ẃn,y + (2− anw̄n − anw̄n+lag − 2bn) Ṕn,y

− (cnw̄n − cnw̄n+lag − 2dn) Ŕn,y (A.13)

Substituting w̄mid =
w̄+w̄n+lag

2
, into Eq. (A.13) we get:

(
2Cs + cnR̄n + anP̄n

)
ẃn+lag,y =

(
2Cs − cnR̄n − anP̄n

)
ẃn,y + {2− 2 (anw̄mid + bn)} Ṕn,y-

(cnw̄mid + dn) 2Ŕn,y (A.14)

Rearranging Eq. (A.14), we get Eq. (A.15):

ẃn+lag,y =

(
2Cs − cnR̄n − anP̄n

)
ẃn,y(

2Cs + cnR̄n + anP̄n

) +
{2− 2 (anw̄mid + bn)} Ṕn,y(

2Cs + cnR̄n + anP̄n

) − (cnw̄mid + dn) 2Ŕn,y(
2Cs + cnR̄n + anP̄n

) (A.15)

Now substituting An =
(2Cs−cnR̄n−anP̄n)
(2Cs+cnR̄n+anP̄n)

, Bn = {2−2(anw̄mid+bn)}
(2Cs+cnR̄n+anP̄n)

and Hn = (cnw̄mid+dn)2

(2Cs+cnR̄n+anP̄n)
into Eq. (A.15), we get Eq. (A.16)

ẃn+lag,y = Anẃn,y +BnṔn,y −HnŔn,y (A.16)

Again substituting F́n,y = BnṔn,y −HnŔn,y , into Eq. (A.16), we get Eq. (A.17):

ẃn+lag,y = Anẃn,y + F́n,y (A.17)

Equation (A.17) is now the basis for autocorrelation equation.

Multiplying both sides of Eq. (A.17) by ẃn,y, we get Eq. (A.18):

ẃn,yẃn+lag,y = Anẃn,yẃn,y + F́n,yẃn,y (A.18)

By replacing anomalies with their corresponding values and means (i.e. wn,y = w̄n + ẃn,y

) into Eq. (A.18), we get Eq. (A.19):

(wn,y − w̄n) (wn+lag,y − w̄n+lag) = An (wn,y − w̄n)
2
+
(
Fn,y − F̄n

)
(wn,y − w̄n) (A.19)

Taking time mean for N years, the Eq. (A.19) can be written as Eq. (A.20):

1

N

∑
(wn,y − w̄n) (wn+lag,y − w̄n+lag) =

1

N

∑
An (wn,y − w̄n)

2
+

1

N

∑(
Fn,y − F̄n

)
(wn,y − w̄n) (A.20)

Based on the de�nition i.e. variance of X {σ2
x = 1

N

∑
(xi − x̄)2}and covariance of X, Y

{COV (x, y) = 1
N

∑
(xi − x̄) (yi − ȳ)}, we can rewrite the Eq. (A.20) as Eq. (A.21):

COV (wn, wn+lag) = Anσ
2
wn

+ COV (wn, Fn) (A.21)

Where, σ2
wn
refers the variance of wn,y and COV (X, Y ) represents to the covariance be-

tween variables X and Y.
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Now based on the de�nition we can write the autocorrelation equation between initial

soil moisture (wn)and the soil moisture at the end of the time step (wn+lag,y) as Eq. (A.22):

ρ (wn, wn+lag) =
COV (wn, wn+lag)

σwn
σwn+lag

(A.22)

By substituting Eq. (A.21) into Eq. (A.22) we get Eq. (A.23):

ρ (wn, wn+lag) =
Anσ

2
wn

+ COV (wn, Fn)

σwnσwn+lag

(A.23)

Rearranging we get Eq. (A.24),

ρ (wn, wn+lag) =
σwn

σwn+lag

(
An +

COV (wn, Fn)

σ2
wn

)
(A.24)

Equation (A.24) is now the �nal form of Koster and Suarez (2001).

Considering the limitations in Eq. (A.24) by using the soil moisture variability at the

n+ lag time step Seneviratne et al. (2006a), Seneviratne and Koster (2012) revised the Eq.

(A.24) to replace σwn+lag
term.

By replacing anomalies with their corresponding values and means (i.e. wn,y = w̄n+ẃn,y)

into Eq. (A.17), we get Eq. (A.25):

wn+lag,y − w̄n+lag = An (wn,y − w̄n) +
(
Fn,y − F̄n

)
(A.25)

Taking square,

(wn+lag,y − w̄n+lag)
2
=
{
An (wn,y − w̄n) +

(
Fn,y − F̄n

)}2
(A.26)

(wn+lag,y − w̄n+lag)
2
= A2

n (wn,y − w̄n)
2
+ 2An (wn,y − w̄n)

(
Fn,y − F̄n

)
+
(
Fn,y − F̄n

)2
(A.27)

Taking time mean for N years,

1

N

∑
(wn+lag,y − w̄n+lag)

2
=

1

N

∑
A2

n (wn,y − w̄n)
2
+

1

N

∑
2An (wn,y − w̄n)

(
Fn,y − F̄n

)
+

1

N

∑(
Fn,y − F̄n

)2
(A.28)

Again, based on the de�nition, we can rewrite the Eq. (A.28) as:

σ2
wn+lag

= A2
nσ

2
wn

+ 2AnCOV (wn, Fn) + σ2
Fn

(A.29)

By rearranging and substituting COV (wn, Fn) term into Eq. (A.29), we can write as:

σ2
wn+lag

= A2
nσ

2
wn

+ 2AnσwnσFnρ (wn, Fn) + σ2
Fn

(A.30)

Where,

ρ (wn, Fn) is the correlation between the variables wn and Fn by de�nition {correlation

between X, Y ρ (x, y) = COV (x,y)
σxσy

}

Equation (A.30) again can be rewritten as:
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σwn+lag
=
√
A2

nσ
2
wn

+ 2AnσwnσFnρ (wn, Fn) + σ2
Fn

(A.31)

Therefore, with assumptions in Eq. (A.6) to (A.9), using semi-implicit form of those

equations, and replacing σwn+lag
term, the revised form of Eq. (A.24) Seneviratne and

Koster (2012) becomes:

ρ (wn, wn+lag) =
σwnAn + σFnρ (wn, Fn)√

A2
nσ

2
wn

+ 2AnσwnσFnρ (wn, Fn) + σ2
Fn

(A.32)



74APPENDIX A. DEVELOPMENT OF SOIL MOISTURE AUTOCORRELATION EQUATION



Appendix B

Supplementary �gures

Figure B.1: Snow-day map of USA mainland and stream gauge locations of SMM studied
river basins.

Figure B.2: Total new snow map of USA mainland and stream gauge locations of SMM
studied river basins.
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