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ABSTRACT

Currently, there are many formulas used to calculate the ultimate bearing capacity such as
Terzaghi (1943) and others (e.g. Meyerhof, 1951, 1963). However, the formula has
disadvantages in application to practice since it is only applied in calculating simple footing
shape and uniform grounds. Most formulas don’t take into account the size effect of footing
on ultimate bearing capacity except for the formula by Architectural Institute of Japan. The
advantage of finite element method is the application to non-uniform grounds, which are for
example multi-layered ground and improved ground, and complicated footing shape in three
dimensional condition. It greatly improves the accuracy in estimating ultimate bearing
capacity. Moreover, limit state analysis is possible to be conducted without the assumption on
potential failure modes. The objective of this study is proposing a rigid plastic constitutive
equation using non-linear shear strength property against the confining pressure. The
constitutive equation was built based on the experiment regarding non-linear shear strength
property against confining pressure reported by Tatsuoka and other researchers. The obtained
results from experiment on Toyoura sand and various kinds of sands indicated that although
internal friction angle differs among sandy soils, the normalized internal friction angle
decreased with the increase in the normalized first stress invariant for various sands despite of
dispersion in data. This property always holds irrespective of the reference value of the
confining pressure in normalization of internal friction angle. This equation is expressed by
the higher order parabolic function and easily applied to RPFEM. Applicability of proposed
rigid plastic equation was proved by comparing with the ultimate bearing capacity formula by
Architectural Institute of Japan (AlJ, 1998, 2001) which is an experimental formula to take

into account the size effect of footing.

Size effect of footing is observed in ultimate bearing capacity, but basically not accounted in the
ultimate bearing capacity formulas. In this study two discussions on the size effect were
conducted. One is the size effect in case of a uniform sandy ground and the other is in case of a
multi-layered ground. The results of RPFEM with the proposed constitutive equation were

obtained similar to the results by Architectural Institute of Japan. It is clear that RPFEM with




the use of non-linear shear strength against the confining pressure provides good estimations
to the ultimate bearing capacity of footing by taking account of size effect of footing. RPFEM
was clearly shown to be effective for the complicated problems in material properties and

footing shape than the conventional ultimate bearing capacity analysis.

Moreover, ultimate bearing of footing related to inclined loads or combined loads (vertical,
horizontal and moment loads combination) is an important aspect in geotechnical engineering.
Meyerhof and others (e.g. Hansen, 1970, Vesic, 1975) conducted empirical generalizations of
the simpler cases without examining in detail and the size effect of footing does not consider
in the previous research. This is a major topic of this study. The obtained results show that the
normalized vertical load decreases with the increase in the normalized horizontal load and/or
moment load. The normalized moment load is obtained greater than that of linear shear
strength property and therefore effect of non-linear shear strength property on the normalized

limit load space in vertical, horizontal and moment loads is clearly indicated.
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CHAPTER 1
INTRODUCTION

1.1 Background

In design of buildings, three main design criteria, namely the ultimate bearing capacity of the
footings; the total and differential settlements and the economic feasibility of the footing are
required to satisfy. This study mainly focuses on the first of these criteria; the assessment for
ultimate bearing capacity of footing is an important task in order to examine the stability of
building - ground system. Bearing capacity failure occurs as the soil supporting the foundation
fails in shear, which may involve either a general, local or punching shear failure mechanism
(Bowles, 1988). Estimation and prediction of the ultimate bearing capacity of the footing is one
of the significant and complicated problems in geotechnical engineering (Poulos et al., 2001).
Currently, there are many formulas used to calculate the ultimate bearing capacity. A list of
principal contributions to the study of this subject may be found, for example, in Terzaghi
(1943), Hansen (1970), Meyerhof (1963) and Tani and Craig (1995). These studies focuses on
the estimation of the ultimate bearing capacity of the footing under combination of vertical,
horizontal and moment loading, as well as the effect of soil rigidity, load inclination and the
depth of the foundation on the ultimate bearing capacity of footings. However, the formula has
disadvantages in application to practice since it is only applied in calculating simple footing
shape and uniform grounds. Most formulas don’t take into account the size effect of footing on
ultimate bearing capacity except for the formula by Architectural Institute of Japan. The
advantage of finite element method is the application to non-uniform grounds, which are, for
example, multi-layered ground and improved ground, and complicated footing shape in three
dimensional conditions. It greatly improves the accuracy of estimating ultimate bearing capacity.
The objective of this study is proposing a rigid plastic constitutive equation using non-linear
shear strength property against the confining pressure. The constitutive equation was built based

on the experiment regarding non-linear shear strength property against confining pressure
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reported by Tatsuoka and other researchers. The obtained results from experiment on Toyoura
sand and various kinds of sands indicated that although internal friction angle differs among
sandy soils, the normalized internal friction angle decreased with the increase in the normalized
first stress invariant for various sands despite of dispersion in data. It was shown no matter how
to select the standard value of confining stress in normalization of internal friction angle.
Applicability of proposed rigid plastic equation was proved by comparing with the ultimate
bearing capacity formula by Architectural Institute of Japan which is an experimental formula to
take into account the size effect of footing. The results of RPFEM with the proposed
constitutive equation were obtained similar to the results by Architectural Institute of Japan. It is
clear that RPFEM with the use of non-linear shear strength against the confining pressure
provides good estimations to the ultimate bearing capacity of footing by taking account of size
effect of footing. This study discussed the size effect of footing in ultimate bearing capacity in
case of multi-layered ground

Moreover, in previous geotechnical research, the combined vertical and horizontal load is referred
as the inclined loads. Their results showed that the vertical bearing capacity significantly decreased
when the inclined angle 6 =atan(H/V) increased. Many researchers provide procedures for a
general case; however they only conduct empirical generalizations of the simpler cases without
examining in detail.

Recently, the numerical methods are efficient techniques for solving problems related to
geotechnical engineering. The rigid-plastic finite element method (RPFEM) was applied in
geotechnical engineering by Tamura (1991). In this process, the limit load is calculated without the
assumption about the potential failure mode. The method is effective in calculating the ultimate
bearing capacity of footing against the three-dimensional boundary value problems. Although
RPFEM was originally developed based on the upper bound theorem in plasticity, Tamura proved
that it could be derived directly by using the rigid plastic constitutive equation.

This research investigated the ultimate bearing capacity of footing on sandy soils against the
combined load of vertical, horizontal and moment loads. This research applied rigid plastic finite

element method which employs the rigid plastic constitutive equation in which non-linear shear
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strength properties against confining pressure in case the internal friction angle of 30 and 40 deg.
The vertical load V, horizontal load H and moment M, which were applied at the center of the
footing, were subjects in this study. The analytical method provides the reliable computational
results. The relation in normalization form of H/V, vs V/V,and V/V, vs M/BV, were acquired and
then were compared with the relationship by Meyerhof (1956), Architectural Institute of Japan (1988,
2001) and Loukidis et al. (2008).

RPFEM was clearly shown to be effective for the complicated problems in material property

and footing shape than the conventional ultimate bearing capacity analysis.

1.2 Scope and Objective of the study

The objective of this study is proposing a rigid plastic constitutive equation using
non-linear shear strength property against the confining pressure; the obtained results provide
good estimations to the ultimate bearing capacity of footing by taking account of size effect of
footing in case of multi-layered ground and also the ultimate bearing capacity of the footing

under combination of vertical, horizontal and moment loading

1.3 Thesis outline

Chapter 1 gives the general background of ultimate bearing capacity and scope and
objective of research work.

Chapter 2 review ultimate bearing capacity of footing under vertical load condition;
combined loading and also review on rigid plastic finite element method (RPFEM).

Chapter 3 describes numerical formulation on rigid plastic finite element method. In this
chapter, strength tests of Toyoura sand by Tatsuoka et al. was shown and rigid plastic
constitutive equation for non-linear shear strength property are proposed

Chapter 4 simulate finite element model to estimate ultimate bearing capacity of footing

under plane strain condition using rigid Plastic constitutive equation for Drucker —Prager yield
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function and non-linear shear strength property

Chapter 5 is a chapter for a discussion on size effect of footing on ultimate bearing
capacity. The discussions on result comparison are also written.

Chapter 6 is a chapter for ultimate bearing capacity of footing against combined loading
(Vertical, horizontal and moment loads combination).

Finally, chapter 7 summarizes the general conclusion of this study and gives some

suggests some area requiring further work.

As an overview, the research presented in this thesis can be divided into three principal areas;

(1) Proposing a rigid plastic constitutive equation using non-linear shear strength property

against the confining pressure

(2) The development of the ultimate bearing capacity for strip footing on a multi-layered,

homogeneous soil profile.

(3) The development of the ultimate bearing capacity for strip footing under combination of

vertical, horizontal and moment loading.

The structure of this thesis reflects the three main topics listed above. The obtained numerical
results are presented on chapter 5 to chapter 6. Many cases and problems are separated and
discussed.

Chapter 7 presented a summary and conclusion of this study, including recommendations for

future research.
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CHAPTER 2
LITERATURE REVIEW ON ULTIMATE BEARING CAPACITY
AND RIGID PLASTIC FINITE ELEMENT METHOD

In order to facilitate the discussion in later chapters, a number of definitions which will be used
in this thesis are presented below.

Bearing capacity is the ability of a soil to safely carry the pressure placed on it from any
engineered structure without suffering a shear failure with accompanying large settlements.
Applying a bearing pressure which is safe with admiration to failure does not ensure that
settlement of the foundation will be within acceptable limits. Therefore, settlement analysis
should mostly be performed since most structures are sensitive to excessive settlement
(Merifield (2005)).

Ultimate bearing capacity is the intensity of bearing pressure at which the associate ground is

estimated to fail in shear, i.e. a collapse will take place (Whitlow (1995)).

2.1 Literature on ultimate bearing capacity

2.1.1 Review of the ultimate bearing capacity of footing theories - centric vertical loading

In design of buildings, the assessment for ultimate bearing capacity of footing is a key task in
order to observe the stability of building - ground system. The value of the bearing capacity of
footing depends not only on the mechanical property of the soil but also on the size of the
loaded range, its shape, and its location with reference to the surface of the soil. The term "strip
footing" is practical to a footing whose length is very long in comparison with its width. In most
parts of this chapter, the soil is supposed to be an isotropic, homogeneous and elastic-perfectly
plastic material which follows the Coulomb yield condition and the associated flow rule. A
plane strain condition is assumed in this chapter. The effect of non-homogeneity on the bearing
capacity of footings will be conversed later.

Limit analysis is concerned with the development and applications of such methods. Although
the limit analysis methods were established firmly less than twenty years ago, there have been

an enormous number of applications in a wide variety of fields from metal deformation
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processing to the design of reinforced concrete structures. Applications to beams and frames are
the most highly developed aspect of limit analysis and design so that the basic techniques are
given in several texts. Reference to the work of many investigators is given also in the ASCE
Manual 41 (ASCE-WRC, 1971) on plastic design in steel. Applications of limit analysis to
plates and shells for both metal and reinforced concrete materials are given in the recent book
by Save and Massonnet (1972). A great deal of attention has been paid recently to soil
mechanics in addition to concrete and rock. An appreciable amount of practical information is
now available as the result of this and allied work. Perhaps the most striking feature of the limit
analysis method is that no matter how complex the geometry of a problem or loading condition,
it is always possible to obtain a realistic value of the collapse load. When this is coupled with its
other merits, namely, that it is relatively simple to apply, that it provides engineers with a clear
physical picture of the mode of failure, and that many of the solutions obtained by the method
have been substantiated numerically by comparing with the existing results for which
satisfactory solutions already exist, it can be appreciated that it is a working tool with which
every engineer should be conversant. Limit analysis is not the only method of assessing the
collapse load of a stability problem in soil mechanics. The other standard and widely known
techniques used in the solutions of soil mechanics problems may be divided into two principal
groups - the slip-line method and the limit equilibrium method

The limit analysis method employed herein does not consider the deformation of the soil and the
solutions obtained are essentially the same as that assuming the soil to be rigid-perfectly plastic
material. This chapter is also primarily concerned with complete failure of the footing, or its
ultimate bearing capacity. This type of failure is referred to here as a general shear failure.
Kotter (1903) was the first to derive these slip-line equations for the case of plane deformations.
Prandtl (1920) was the first to obtain an analytical closed form solution to these equations for a
footing on a weightless soil. In the analysis, he developed the solution with a singular point with
a pencil of straight slip-lines passing through it. These results were subsequently applied by
Reissner (1924) and Novotortsev (1938) to certain particular problems on the bearing capacity
of footings on a weightless soil, when the slip-lines of at least one family are straight and the
solutions have closed form.

The so-called limit equilibrium method has traditionally been used to obtain approximate
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solutions for the stability problems in soil mechanics. Examples of this approach are the
solutions presented in the book by Terzaghi (1943). The method can probably best be described
as an approximate approach to the construction of a slip-line field and generally entails an
assumed failure surface of various simple shapes-planes, circular or log-spiral. With this
assumption, each of the stability problems is now reduced to one of finding the most dangerous
position for the failure or slip surface of the shape chosen which may not be particularly well
founded, but quite often gives acceptable results. In this method, it is also necessary to make
sufficient assumptions regarding the stress distribution along the failure surface such that an
overall equation of equilibrium, in terms of stress resultants, may be written for a given problem.
Therefore, this simplified approach makes it possible to solve various problems by simple
statics. Various solutions obtained by this method are summarized in graphical or tabular form
in the texts by Terzaghi (1943) and by Taylor (1948) and are now quite widely used in practice.
It is worth mentioning here that none of the equations of solid mechanics is explicitly satisfied
everywhere inside or outside of the failure surface. Since the stress distribution is not precisely
defined anywhere inside and outside of the assumed failure surface, one cannot say definitely
that an acceptable stress distribution which satisfies equilibrium, stress boundary conditions and
the yield criterion, exists such that the solution meets the requirements of the lower-bound rules
of limit analysis. Although the limit equilibrium technique utilizes the basic philosophy of the
upper-bound rules of limit analysis, that is, a failure surface is assumed and a least answer is
sought, it does not meet the precise requirements of the upper-bound rules so that it is not an
upper bound. The method basically gives no consideration to soil kinematics, and equilibrium
conditions are satisfied only in a limited sense. It is clear than that a solution obtained using the
limit equilibrium method is not necessarily an upper or a lower bound. However, any
upper-bound limit analysis solution will obviously be a limit equilibrium solution.

Studies of the bearing capacity of foundations under conditions of plane strain have been made
by Terzaghi (1943), by Meyerhof (1951) using limit equilibrium method, by Sokolovskii (1965),
by Brinch Hansen (1961) using slip-line method, by Shield (1954b), by Chen and Davidson
(1973) using limit analysis method, and many others.

The ultimate bearing capacity formula of footing by Terzaghi (1943) has been widely employed

in practice. It takes account of the effects of cohesion, surcharge and soil weight. This theory



Chapter 2: Literature review on_ultimate bearing capacity and Rigid finite element method 19

determine the ultimate bearing capacity of a shallow, rough, rigid, continuous (strip) foundation
supported by a homogeneous soil layer extending to a great depth. The failure surface in soil at
ultimate load (that is, q, per unit area of the foundation) assumed by Terzaghi is shown in
Figure 2.1. Referring to Figure 2.1, the failure area in the soil under the foundation can be
divided into three major zones:

1. Zone abc. This is a triangular elastic zone located immediately below the bottom of the
foundation. The inclination of sides’ ac and bc of the wedge with the horizontal is & = ¢ (soil
friction angle).

2. Zone bcf. This zone is the Prandtl’s radial shear zone.

3. Zone bfg. This zone is the Rankine passive zone. The slip lines in this zone make angles

of +(45-9/ | with the horizontal.
2

Soil
Unit weight = y
Cohesion = ¢
Friction angle = ¢

Figure 2.1 Failure surface in soil at ultimate load for a continuous rough rigid foundation as

assumed by Terzaghi.

Since Terzaghi’s founding work, numerous experimental studies to estimate the ultimate bearing
capacity of shallow foundations have been conducted. Based on these studies, it appears that
Terzaghi’s assumption of the failure surface in soil at ultimate load is essentially correct.

However, the angle « that sides ac and bc of the wedge (Figure 2.1) make with the horizontal

is closer to (45+%) and not¢, as assumed by Terzaghi. In that case, the nature of the soil

failure surface would be as shown in Figure 2.2.
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Figure 2.2 Modified failure surface in soil supporting a shallow foundation at ultimate load.

The ultimate bearing capacity formulas typically expressed as below:

g=cN .+ VS YBN,+¥D,N, @1
where N,, N,, N, are the bearing capacity factors, which are functions of internal friction angle

of the soil, ¢. The other indexes are as follows.

¥: unit weight of soil (kN/m?)

D,: depth of footing (m)

B: footing width (m)

Since this approach has been proposed, various studies regarding bearing capacity factors have

been conducted. Precisely mathematical expressions for bearing capacity factors N and

N_were provided by Prandtl (1921) and Reissner (1924) as follows:

N, =™ tan’ g + gj (2.2)
N, =[N, -1)coty 2.3)

With regards to N factor, several formulations have been proposed but no formula is totally accurate,

and also many proposed estimation methods. This has become one of the main reasons for disagreement

between methods used to estimate g, as the value of N_ for equation values of ¢ can produce large

differences, depend on the estimation method used. The task of categorically validating a

method for calculating N is complex due to the difficulty in obtaining g, experimentally. A

clearly defined value of g, is not always obtained in a load test; this is mainly due to the

limitations of test procedures or because the progressive failure effect leads to repositioning of
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soil particles beneath the foundation, and the highest load levels are not reached (Elhakim 2005).

For this reason, to determine ¢,;, and in turn N . experimentally it is necessary to use methods

such as those proposed by de Beer (1970); Vesic (1973); Briaud and Jeanjean (1994); Amar et al.

(1998); Decourt (1999). However, these methods vary widely as they define g, based on

selection criteria from a point on the load—settlement curve that can be very subjective

(Lutenegger and Adams 1998; Elhakim 2005). Table 2.1 shows the methods for estimating

N, in term of ¢, along with the author of each method and the theory on which it is based.

Table 2.1 Expression for the estimation of the N factor

[11]

Terzaghi (1943); fitted expression; limit

equilibrium

N, = {tan2 (z + g)exp(n tand)+ 3.0} tan(1.34¢)

Caquot and Kérisel(1953); fitted from
Ukritchon et al. (2003): method of

characteristics

N, = [1 413tan’ [z + 2] exp(ntano)+1 .794} tan(1.276)

Meyerhof (1963); semi-empirical based on

limit equilibrium

N, = [tan2 [Z + (12)] exp(mtang)—1 .O} tan(1.49)

Muhs and Weiss (1969); (Euro-code 7);

semi-empirical expression

N, = Z{tan2 (Z + (12)] exp(mtand)—1 .O} tan(¢)

Brich-Hansen ~ (1970);  semi-empirical
based on Lundgren-Mortensen(1953);

failure mechanics

N, =1 .S[tan2 (Z + 2] exp(rtang)—1 .O} tan(0)

Vesis (1973); approximation based on
Caquot and Kérisel(1953); analysis using

the method of characteristics

N, = Z[tan2 [Z + 2] exp(mtano)+ 1.0} tan(¢)

Hettler and Gudehus (1988); empirical

N, =[5.71(tan)"*|-1.0

Zadroga (1994); empirical expression

N, = 0.657exp(0.1419) ¢ in degree

Michalowski (1997); upper bound limit

analysis

N, =exp(0.66+5.11tan¢)tand

Poulos et al. (2001), solution based on

N, =0.1054exp(9.6¢)
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Davis and Brooker (1971)

Lyamin et al. (2007); lower and upper N = tanz[z+g]exp(ﬂ:tand))—0.6}tan(1.33¢)

bound analysis

Kumar and  Khatri  (2011); fitted

]exp(ntan(l))—S.llS} tan(1.577¢)

expression; lower bound with finite

element and linear programming

The numerical solution of characteristic equations is described in detail by Sokolovskii (1965).
If an associated flow rule is used, and there sulting stress-strain rate equations can be integrated
to yield a kinematically admissible velocity field, the slip-line solution is an upper bound
solution. If, in addition, the slip-line stress field can be extended over the entire soil domain
such that the equilibrium equations, the stress boundary conditions and the yield condition are
satisfied, the slip-line solution is also a lower bound, and is hence the exact solution. Although
the slip-line method may be used to compute a partial plastic stress field, there is no guarantee
that this stress field can be associated with a kinematically admissible velocity field or extended
satisfactorily throughout the body (Bishop, 1953). Although the slip-line method can generally
be expected to give a good estimate of the correct solution, its accuracy is difficult to ascertain
once either of the bounding property is lost. Due to the complexities that are associated with the

introduction of self-weight, a great variety of approximate solutions for the bearing capacity

factor N , have appeared in the literature (Chen, 1975).The differences among these solutions

are often very substantial, particularly for friction angles greater than about 30°. Unfortunately,

experimental research on the ultimate bearing capacity of footings on sand has not shed much

light on the question of which values of N , are theoretically correct. This is partly because of

the difficulty in selecting an appropriate friction angle for the bearing capacity calculations
when comparing the theoretical predictions with test results. Scale effects are also another
complication. Existing theoretical solutions suggest that the factor increases very rapidly with

the angle of friction. In view of this strong dependence, it seems unlikely that footing

experiments alone can resolve the question of which values of Ny are correct. More recently,
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Michatowski (1997) and Soubra (1998), among others, have used rigid-block mechanisms to

estimate the bearing capacity factor Ny. Their results show some improvement on Chen’s

solutions but are still fairly conservative. The last three decades has witnessed a growing use of
the finite element method in almost all areas of geotechnical engineering, including shallow
foundation stability. However, only a few authors have attempted to apply this method to
predict the bearing capacity of strip footings on cohesionless soils (Sloan and Randolph, 1982;
Griffiths, 1982; Frydman and Burd, 1997). This is largely due to the difficulty in developing
finite element formulations that are capable of providing precise estimates of the limit load.

A long-term research program has been undertaken at the University of Tokyo (Tatsuoka et al.,
1991, 1994b, 1997; Siddiquee et al., 1999). The research consists of: i) Physical model tests
with different footing shapes, load inclinations and footing depths under the gravitational force
(i.e., in 1g) and in a centrifuge, using three types of granular materials having different particle
sizes; ii) A series of stress-strain tests to evaluate thoroughly the strength and deformation
property of the test materials; iii) Their constitutive modelling; iv) Numerical simulation by
FEM analysis of the model tests. The two dimensional constitutive model of one of the test
materials (i.e., Toyoura sand) that has been developed for plane strain analyses (Tatsuoka et al.,
1994a) was implemented into the FEM analysis as a generalized elasto-plastic, isotropic
strain-hardening and softening one with a non-associated flow rule using Mohr-Coulomb type

yield surface.

Meyerhof (1951, 1963) introduced the other factors such as semi - empirical inclination factors

i, iy i, The ultimate bearing capacity formula is described as follows:
g=ieN, + Vi v,BN, +i,v,D N, (24)

The effects of inclination factor have been investigated both theoretically and experimentally by

a number as researchers as table 2.2.
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Table 2.2 Inclination factors found in the literature

Author i iy i,
Meyerhof o 2
[1——()} for >0
(1953) 00 )’ i, for any 0 )
1-— | forany o
Meyerhof and 90" )
iy=0for¢=0
Koumoto
(1986)
Brich Hansen | . =i, for 0>0 5 5
"V tan o 1— H 1— ___H
(1970) p V+Ac,cotd V+Ac,cotd’
05l H | foro=0
. Asc,
Vesic (1975) . 1- iq for q) >0 m m+1
“"Van ) 1- H 1— H
V+Ac,cotd V+Ac, cot ¢°
|—_™MH_ for¢p=0
Asc,N,

where 0: the inclination angle of load with respect to the vertical plane.

mem :(2+%)

)with the horizontal load H is in parallel to the footing width B

(1+%

m=

m, = (2+ I/B% L/ )with the horizontal load H is in parallel to the footing length L
1+
B

m=,/m; +m; with the direction of H is in between the directions of footing width and length.

Ay: effective contact area of the footing.

H: horizontal component of the inclined load.

V: Vertical component of the inclined load.

¢, unit adhesion on the base of the footing.

Architectural Institute of Japan (AlJ, 1988, 2001) developed the ultimate bearing capacity
formula and now is widely used in Japan. By using factors N, N, given by Prandtl and
N, described by Meyerhof, the ultimate bearing capacity formula is expressed as follows:

q=i0cN, +iy,BBnN, +iY,D,N, (2.5)
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In the above equation, o and P express the shape coefficient and oo = 1 and B =0.5 are

8]

recommended by De Beer ', respectively. There, 77is the size effect factor defined in the

following.

B m
= = 2.6
n [B] (2.6)

where,
By: reference value in footing width
m: coefficient determined from the experiment, m = -1/3 is recommended in practice.

The ultimate bearing capacity formula by AIJ successfully takes into account of the size effect of
footing which has not been considered in the past formulae employing the Mohr-Coulomb criteria
for soils strength. Since the past formulae overestimate the ultimate bearing capacity with the
increase in footing width, this effect needs to be examined for intensive practical request. Ueno et al.
42 expressed that the size effect on ultimate bearing capacity was mainly attributed to the stress
level effect on shear strength of soils. Their research indicated that the mean stress ranged from 2yB
to 10yB beneath the footing and it caused the change in internal friction angle of ground widely due
to the mean stress. This study attempts to discuss the size effect on ultimate bearing capacity by

using the finite element analysis with the rigid plastic constitutive equation which simulates the

non-linear shear strength property of sandy soil against the confining pressure.

2.1.2 Review of ultimate bearing capacity against combined load of vertical, horizontal and
moment loads

Due to bending moments and horizontal thrusts transferred from the superstructure, shallow
foundations are often subjected to eccentric and inclined loads. Under such circumstances the
ultimate bearing capacity theories presented about need some modification, and this is the
subject of discussion in this chapter.

This chapter starts with a review of commonly-used solutions applicable to the problem of
bearing capacity of footings under combined loading. This includes several well-known
semi-empirical bearing capacity formulae (such as Meyerhof (1953), Hansen (1971), Vesic
(1975)) and some experimental research. Several techniques which can be used to determine the

bearing capacity envelope are also reviewed. These procedures are then used in a number of
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finite element analyses to compare the efficiency and accuracy of each technique in determining
the envelope. After that a series of analyses is conducted to construct the envelope, and the

results are then compared with the methods previewed.

2.1.2.1 Vertical bearing capacity
From the theory of plasticity, the exact solution for a strip footing on sandy soil (based on
Prandtl 1920) **! can be derived

V,=(n+2)c.B (2.7)

where B is the footing width; c is the cohesion of soil.

2.1.2.2 Bearing capacity between vertical load and moment load
Under combined vertical loads and moment loads, bearing capacity is usually showed as the

equivalent problem of an eccentric vertical load (Fig. 2.3).

Fig.2.3. Equivalent eccentric load

The eccentric vertical load is assumed to act on a reduced area on which the load acts
centrally. For a strip footing, the effective width is B’ = B — 2e (Fig. 2.4).

€
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%
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i

B'=B-2e

Fig.2.4. Effective area concept
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This leads to a (V, M) bearing capacity interaction diagram defined as a simple parabola as
follow:

Mo V(v o)
MO VO VO

where V) is the vertical ultimate load and M, = BV,/8 is the maximum moment capacity.
In Fig. 2.5, (VIV,y, M/BV,) interaction of Meyerhof method for strip footings is plotted given

that V, is determined by equation (2.8).

0.15 T T T T
- 0.10 — —
> peak momentvalue
f M,=0-125BV, at V=05V, 8
= .05 .
0.00 T ] T r T [ il l T
0.00 0.20 0.40 0.60 0.80 1.00

v/v,

Fig.2.5 (M, V) interaction chart of a strip footing

2.1.2.3 Bearing capacity between vertical load and horizontal load

In early geotechnical papers combined vertical and horizontal loading is referred to as inclined
loading. Having found that the vertical bearing capacity significantly reduced as the inclined
angle 0 = tan”'(H/V) increased. Meyerhof (1956) introduced ‘inclination factors’, the (V, H)

failure envelope is defined as follows:

% 0" )
0
where V, is the ultimate vertical load. Interaction diagrams of H/V, vs. V/V, are obtained and

compared with the failure surface of Meyerhof.

2.1.2.4 Bearing capacity between vertical, horizontal and moment loads

Meyerhof (1956) also proposed ultimate bearing capacity interaction between vertical loads,



Chapter 2: Literature review on_ultimate bearing capacity and Rigid finite element method 118

horizontal loads and moment loads: an inclined load of magnitude vV>+H” is assumed to

act centrally on a reduced footing area determined by the eccentricity e = M/V as depicted in Fig.
2.3. The methods by Meyerhof (1956) can be used to define the following (V, H, M) failure
envelopes:

0 ’
% = (1—%}% (2.10)
0

This paper investigate the ultimate bearing capacity of footing on sandy soils against the
combined load of vertical, horizontal and moment loads, using rigid plastic finite element
method employing the rigid plastic constitutive equation, which considers non-linear shear
strength property against confining pressure.
On the other hand, the general bearing capacity equation has been proposed by Meyerhof
(1963):

q',=cN_.s.i.d +yD,N_ s, ,.d, i, +05Y.BN s .d.i (2.11)

where

5.»S,,s, : shape factors

crq’

¢

Iyl :inclination factors
d,.d,,d, :depth factors

¢ : cohesion of soil

N,,N,, N, :bearing capacity factors which are only functions of soil friction angle ¢

Ou=q,.A (2.12)
}r Nt‘l

€ |
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Figure 2.6: Vertical, Horizontal and eccentric loads applied to footing
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A. Footings with Vertical, horizontal and eccentric loads combined - One way Eccentricity

problem

bl =

N

I B ]
| > ]

.*‘

For e < B/6

Denin H, L
. -l

For ¢ > B/6 | 54

\’\U\J\L 'q"_. 4
L e ——

Figure 2.7: Footings with one way eccentricity

The effective width now: B'= B — 2e¢ . Whereas the effective length is still L'=L

The distribution of the nominal pressure is:

q.. = 2 + oM (2.13)
™ BL B’L ‘
0 oM
i = — (2.14)
Din = pL " BL
where Q is the load vertical load and M is the moment on the footing in one axis
The distance e is the eccentricity of the load, or
=M (2.15)
0
Substituting:
(0] 6e
mx = | 1+ (2.16)
7 BL B
and
(0] 6e
win = — | 1—— (2.17)
1 BL B

- Note that in these equations, when the eccentricity e becomes B/6, g,,;,is zero.

- For e > B/6, g,,;, will be negative, which means that tension will develop.

- Because soils can sustain very little tension, there will be a separation between the footing
and the soil under it.

- Also note that the eccentricity tends to decrease the load bearing capacity of a foundation.
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- In such cases, placing foundation column off-center, as shown in Figure is probably
advantageous.
- Doing so in effect, produces a centrally loaded foundation with a uniformly distributed

pressure.

Figure 2.8: A footing with the column off - center to preserve a uniform pressure on the soil

The general bearing capacity equation is therefore modified to,
q,=c'N.s.i.d +y.D;N,s,.d i +05yBN,s,.d,.i (2.18)

vry

andQ, = q',.B'.L' (2.19)

B. Footings with Vertical, horizontal and eccentric loads combined - Twoway Eccentricitys

problem
Qu
/N
H, . N A’ ‘
| R
| BxL | _| | R
fe—— B ——|
H,
¥ |

ISR —
(a) (b) (©) (d)

Figure 2.9: Footings with two way eccentricities
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If Qi is needed, it can be obtained as Q , = q; A’ (2.20)
where q,=cN,s.i.d +yD, N, s,.d, i +05yBN,.s,.d,.i, (2.21)
and A' is the effective area B'.L': A'=B'L (2.22)
Finally Q9 , =¢',.A' (2.23)

As before, to evaluates_,s 4»5,» use the effective length (L') and the effective width (B')

}/ b
dimensions instead of L and B, respectively. To calculated ,d ,d , , do not replace B with B'.In

determining the effective area (A'), effective width (B'), and the effective (L'), four possible

cases may arise (Highter and Anders, 1985).

Case 1:6%21/6 and e%z 1/6

L,

Figure 2.10: Effective area in Case e/ >1/6 and e% >1/6

Effective area shown in Figure 2.5:

1
A=2B.L (2.24)
where
B = B.(l.S - 3%) (2.25)
L= L.(I.S - 3%] (2.26)

Chose effective length L' =max (L, B,)

and B’:

=2 (2.27)
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Case2:6%<0.5 and e%<1/6

Effective area

L:]: '

€
)
(¥
—
]
A
S

SRR\ .
5 2 Hee A
0.1 & Z%

e, /B = 0,.9‘7

L,/L 9% z
0 2 2 L/L

a) b) 0 02 04 06 08 1.0

L,/L; L,/L

Figure 2.11: Effective area in Case 6% <0.5 and e% <1/6

Effective area shown in Figure 2.6a:

1
A= (L,+L,)B (2.28)
L, and L, value are defined from the figure 2.6b. The effective width:
B'= L (2.29)
max (L1 ,L, )

and effective length L' =max (L,,L,)

Case 3: e% <1.6 and O< e% <0.5

B, Effective area

i

e,/ B

TN,

0.1

J L Xb\o,
0 B,/B %] B,/B
8

a) b) 0 02 04 06 O
B, /B; B,/B

ge°
|

Figure 2.12: Effective area in Case e% <1.6 and 0< e% <0.5

Effective area shown in Figure 2.7a:
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1

AzawﬁﬂﬂL (2.30)
The effective width:
Al
B'=— 2.31
3 (2.31)

and effective length L'=L

B, and B, value are defined from the figure 2.12b.

Case 4: e% <1.6 and e% <1.6

B, Effectivearea 0
f— e /L=
0.4 S
D 03 \\\
L ’ \\\
45
02
2N
[=2 @ N 7]
- 0.1 & G
e,_fL= \%
0 B./B 2 B/B
a) b) 0 0.2 0.4 0.6 0.8 1.0

B1 / B, B2 /B

Figure 2.13: Effective area in Case e% <1.6 and e% <1.6

Effective area shown in Figure 2.13a

B, value defined when known B% and B% defined from the figure 2.8 based on
diagrams has a line e% going up.
The same L, value defined when known L% and L% defined from the figure 2.8 based on

diagrams has a line e% going down. Now Effective area:

A=Q3+%Q+BJ@—Q) (2.32)

The effective width:

B'=— (2.33)
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and effective length L'=L

2.1.3 Review of ultimate bearing capacity on multi-layered ground system

Button (1953) analyzed the bearing capacity of a strip footing resting on two layers of clay. He
assumed that the cohesive soils in both layers are consolidated approximately to the same
degree. In order to determine the ultimate bearing capacity of the footing, he assumed that the
failure surface at the ultimate load is cylindrical, where the curve lies at the edge of the footing.
The bearing capacity factor used depends on the upper soil layer and on the ratio of the

cohesions of the lower/upper clay layers.

Brown and Meyerhof (1969) investigated foundations resting on a stiff clay layer overlying a
soft clay layer deposit, and the case of a soft layer overlying a stiff layer. They assumed that the
footing fails by punching through the top layer for the first case, and with full development of
the bearing capacity of the lower layer in the second case. Equations and charts giving the
appropriate modified bearing capacity factors were given, derived from the empirical
relationships obtained based on the experimental results. The results of the investigation are
summarized in charts, which may be used in evaluating the bearing capacity of layered clay
foundations, but these results are essentially experimental, and therefore are strongly affected by
the characteristics of the clay tested. The purpose of this paper is to present the results of a
series of model footing tests carried out on twolayered clay soils, and the models have many
limitations. First, they are limited to one type of clay, although the strength of the clay was
varied, the deformation property remained constant. Second, studies were limited to surface
loading only, using rigid strip and circular footings with rough bases. Third, all studies were
made in terms of the undrained shear strength of the clay, using the @ = 0 analyses. They also
conducted a series of tests on footings in homogeneous clay. They observed that the pattern of
failure beneath a footing is a function of the physical mode of rupture of the clay, which is
strongly dependent on the structure of the clay. The failure mechanism of the structure of the
clay is not adequately defined by conventional Mohr-Coulomb concepts of cohesion and

friction.

Meyerhof (1974) investigated the case of sand layer overlying clay: dense sand on soft clay and
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loose sand on stiff clay. The analyses of different modes of failure were compared with the
results of model test results on circular and strip footings and field data. In the case of dense
sand overlying a soft clay deposit, the failure mechanism was assumed as an approximately
truncated pyramidal shape, pushed into the clay so that, in the case of general shear failure, the
friction angle @ of the sand and the undrained cohesion C of the clay are mobilized in the
combined failure zones. Based on this theory, semi-empirical formulae were developed to
calculate the bearing capacity of strip and circular footings resting on dense sand overlying soft
clay. He conducted model tests on strip and circular footings on the surface and at shallow
depths in the dense sand layer overlying clay. The results of these tests, and the filed
observations were found to agree with the theory developed. In the case of loose sand on stiff
clay, the sand mass beneath the footing failed laterally by squeezing at an ultimate load.

Formulae for the ultimate bearing capacity of strip and circular footings were developed.

Model tests were carried out on strip and circular footings, and the results also agreed with the
theory developed. Theory and test results showed that the influence of the sand layer thickness
beneath the footing depends mainly on the bearing capacity ratio of the clay to the sand, the
friction angle @ of the sand, the shape and depth of the foundation. The paper is limited to
vertically loaded footings, and does not include eccentric or inclined loads, it is also limited to
sand over clay, and has no solution for clay over sand. In the case of dense sand on soft clay, the
theory considers simultaneous failure of the sand layer by punching, and general shear failure in

the clay layer, which is not always the case.

Meyerhof and Hanna (1978) considered the case of footings resting in a strong layer overlying
weak deposit and a weak layer overlying strong deposit. The analyses of different soil failure
were compared with the results of model tests on circular and strip footings on layered sand and
clay. They developed theories to predict the bearing capacity of layered soils under vertical load
and inclined loading conditions. In the case of a strong layer overlying a weak deposit,
considering the failure as an inverted uplift problem, an approximate theory of the ultimate
bearing capacity was developed. At failure, a soil mass, roughly shaped like a truncated pyramid,
of the upper layer is pushed into the underlying deposit in the approximate direction of the

applied load. The forces developed on the actual punching failure surface in the upper layer are
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the total adhesion force and total passive earth pressure inclined at an average angle d acting
upwards on an assumed plane inclined at an angle a to the vertical. The analysis for strip
footings was extended to circular and rectangular footings, and approximate formulae for the
bearing capacity of strip, rectangular, and circular footings were developed, taking into
consideration the case of eccentric and inclined loading as well. Model tests on rough strip and
circular footings under central inclined loads at varying angles a were made on the surface and
at shallow depth in different cases of two layered soils of sand and clay, where good agreement

was found between the theoretical and experimental results.

In the case of a weak layer overlying a strong deposit, considering the weak soil mass beneath
the footing may fail laterally by squeezing, which is the same theory as from the previous paper
developed the theory of the ultimate bearing capacity. The bearing capacity can be estimated by
the approximate semi-empirical formulae. Model tests were also carried out on strip and circular
footings under vertical and inclined loads, and the results of the tests were compared to the
theoretical ones. The authors concluded that the ultimate bearing capacity of footings on a dense
layer overlying a weak layer can be expressed by inclination factors in conjunction with
punching shear coefficients, which depend on the shear strength parameters and bearing
capacity ratio of the layers under vertical loads. Formulae and design charts were developed and
introduced in this paper. This paper is a development of the previous theory (Meyerhof 1974),
taking into consideration all possible cases of two different layers of subsoil, and also including
the effect of inclined and eccentric loading on the ultimate bearing capacity of strip, rectangular
and circular footings. This theory and the failure mechanism considered are approximations of
the real failure mechanism, which depends on many factors. Hanna and Meyerhof (1979)
extended their previous theory of the ultimate bearing capacity of two-layer soils to the case of
three-layer soils. The analysis compared well with the results of model tests of strip and circular
footings on a three-layer soil. Only one case was considered in this paper, that for footings
subjected to vertical loads and resting on subsoil consisting of two strong layers overlying a

weak deposit.

The same theoretical failure mechanism was assumed by considering a soil mass of the upper

two layers is pushed into the lower layer, and the same forces acting on the failure surface was
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assumed as well. Formulae and charts were developed and can be used in designing foundations
having the same conditions. Model tests on rough strip and circular footings under central
vertical loads were made on the surface of three-layer sand consisting of two dense upper layers
and a loose lower one. By comparing the results of the model tests with the results of the
punching theory, good agreement was found. Briefly, this paper is an extension of the previous
theory in order to include the case of the three-layer soil. But, it is restricted to only one case of
three-layer soil, and it needs more development to include all possible cases of three-layer soils.
Pfeifle and Das (1979) presented laboratory model tests results for the case of rough
rectangular footings in sand with a rigid rough base located at a limited depth. The results were
compared to the predicted results of Mandel and Salencon (1972) and Meyerhof (1974). The
authors concluded that the critical depth of location of the rough rigid base beyond which it has
no effect on the value of the ultimate bearing capacity is about 50% - 75% higher than that
predicted by the theory. And the previous theories do not predict correctly the bearing capacity
for the case when the rigid base is located at shallow depth. This experimental investigation is
very limited to one case of layered soils, and the friction angle @ of the sand used varies in a
small range (42° - 45°), and the conclusion may be valid only for this range of ®. Hanna and
Meyerhof (1981) investigated experimentally the ultimate bearing capacity of footings
subjected to axially inclined loads by conducting tests on model strip and circular footings on
homogeneous sand and clay. The results were analyzed to determine the inclination factors,
depth factors and the shape factors incorporated in the general bearing capacity equation for
shallow foundations. These values were compared with the recommended values given in the
Canada Foundation Engineering Manual. The values of these factors given in the manual agree
reasonably well with the experimental ones, except for the depth and shape factors, for which
the theoretical values are on the conservative side when applied to inclined loads. Hanna (1981)
extended his previous theory to cover the case of footings resting on subsoil consisting of a
strong sand layer overlying a weak sand deposit. Applying the same theory that at ultimate load,
a soil mass of the upper layer is pushed to the lower sand layer, and by calculating the forces on
the assumed vertical punching failure surface, the ultimate bearing capacity can be calculated
theoretically. Charts are presented in this paper and can be used in the design of footings. In

order to verify the theory presented, model tests on strip and circular footings resting on a dense
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sand layer overlying loose sand layer were done, and the results of the tests agreed well with the
theory presented. 19 Hanna (1981) conducted an experimental investigation on the ultimate
bearing capacity of strip and circular model footings on a two-layered soil in order to verify the
validity of the empirical method proposed by Satyanarayana and Garg (1980) to predict
numerically the ultimate bearing capacity of footings on layered soils. Summary of the results
was presented in the form of comparative charts in order to compare the experimental and
theoretical results. The author concluded that by extensive comparisons between the observed
ultimate bearing capacity values and those calculated by the method reveal discrepancies
ranging between70% to 85%. Thus, the method needs more refinement and further investigation
before it can be recommended for practical applications. Hanna (1982) investigated the case of
footings resting on subsoil consisting of a weak sand layer overlying a dense sand deposit.
Based on model tests of strip and circular footings, the author extended the classical equation of
bearing capacity to cover cases of these footings in layered sand; consisting of weak sand layer
overlying a dense sand deposit. In order to calculate the ultimate bearing capacity of these
footings, the author proposed to use the classical equation of homogeneous sand in conjunction
with the modified bearing capacity factors. These factors depend on the relative strength of the
upper and lower layers and the thickness of the upper weak sand layer, and are calculated from
the model tests results conducted on similar soil profiles. Design charts were presented as an aid
in design. According to the theory presented in this paper, the failure mechanism of the upper
layer is the same as if the footing was in a homogeneous deep sand layer, and the influence of
the layered soil is restricted to the difference in the bearing capacity factors, which were
calculated experimentally from model tests. It is a simple method to overcome the complexity
of finding the real failure mechanism, and it gives fairly accurate results. But the values of the
bearing capacity factors depend on the kind of sand used in the tests, and they may change by

using different kind of sands taken from different places.

Das (1988) presented a technique to improve the ultimate bearing capacity and settlement
conditions of shallow foundations on soft clay soil, which consists of placing the footings over a
compact granular fill, lay over the clay layer. Placing geotextile at the interface of the clay layer
and the sand layer can further increase the bearing capacity. The purpose of placing the granular

layer is to distribute the load on a larger area of the clay layer, and the purpose of placing the
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geotextile mesh is to reduce the depth of the sand layer required to distribute the load. The
objective of this research was primarily to present the results of model tests conducted on a strip
foundation resting on a sand layer overlying a weak clay layer, and compares the results with
the theory of Meyerhof and Hanna (1978). Secondly, to compare results of the bearing capacity
of footings on layered soil with and without the use of the geotextile mesh at the interface of the
two layers in order to evaluate any advantage derived from the inclusion of the geotextile. A
number of laboratory model tests results for the ultimate bearing capacity of strip footings
resting on a sand layer underlain by a weak clay layer with and without the inclusion of
geotextile at the interface of the two layers have been presented in this paper. Based on the
experimental results; first, without the inclusion of geotextile, the results were consistent with
the theory of Meyerhof and Hanna (1978). Second, the inclusion of geotextile at the interface of
the layers increases the bearing capacity, and at the same time, reduces the depth of the sand
layer to be placed over the clay layer. Third, the most economical width of the geotextile layer
to be used as determined from the study is about four times the width of the strip footing. This
paper is experimental and the conclusions deduced are strictly related to the model tests done, so
the results may vary with the type of geotextile mesh used, its strength, dimensions, and the
depth at which the geotextile is placed. More investigation and experiments are needed
regarding the use of geotextile for increasing the bearing capacity of shallow foundations on

weak soils.

Michalowski and Shi (1995) considered the bearing capacity of strip footing over a two-layer
foundation soil. The kinematics approach of limit analysis is used to calculate the average limit
pressure under footing. The method is applicable to any combination of parameters of the two
layers, but the results are presented only for a specific case when a footing placed on a layer of a
granular soil resting on clay. The depth of a collapse mechanism is found to be very much
dependent on the strength of the clay. Very weak clay can attract the mechanism even at great
depths. The results are presented as limit pressures rather than traditional bearing capacity
coefficients. The latter are strongly dependent not only on the internal friction angle of the sand,
but also on the thickness of the sand layer, cohesion of the clay, and surcharge pressure. Results
are presented in the form of dimensionless charts for different internal friction angle of sand. It

was found that linear interpolation within 5 increments is acceptable in the range of ¢ from 30°
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to 45°.

Merifield and Sloan (1999) studied the ultimate bearing capacity of surface strip footings
resting on a horizontally layered clay profile. Many empirical and semi-empirical formulae can
be used, which give approximate solutions to the problem. More recently, Florkiewicz (1989)
presented an upper bound method proposing a kinematically admissible failure mechanism.
Although this method is useful, but limited results were produced. The upper bound method has
been widely used to estimate the bearing capacity of layered clays, but it may lead to a lower
factor of safety for design that the real one. A more desirable solution is a lower bound estimate,
as it results in a safe design and, if used in conjunction with an upper bound solution, serves to
bracket the actual collapse load from above and below. The purpose of this paper is to take
advantage of the ability of the limit theorems to bracket the actual collapse load by computing
both types of solution for the bearing capacity of footings on a two-layered clay profile. These
solutions are obtained using the numerical techniques developed by Sloan (1988) and Sloan
Ming Zhu and Radoslaw L. Michalowski (2005) examined earlier proposals for shape factors
used in calculations of bearing capacity of square and rectangular footings. These proposals are
based on empirical data for small footings, whereas a new suggestion for these factors presented
in this study is based on the elasto-plastic model of the soil and finite element analysis. The
earlier factors modifying the contribution of cohesion and overburden were found to be
conservative, but acceptable in design. However, bearing Capacity Factor N.*27 proposals for
the shape factor that affects the contribution of the soil weight to the bearing capacity indicate
contradictory trends, and the factor calculated in this paper is suggested as an alternative.
ZenonSzypcio and KatarzynaDolzyk (2006) analyzed various methods for calculation of the
bearing capacity of layered subsoil. The values obtained are compared with the values
calculated by means of PLAXIS Version 8, the latter being considered the correct ones. It is
shown that Polish Standards and proposition modified by the authors are admissible to use only
in the case of subsoil with a weak cohesionless lower layer, with small angle of friction. From
the engineering point of view only the layer thickness H = 2B influences the subsoil bearing
capacity. Accordingly to the Polish Standards the substitute foundation can be laid only on the
top of a very weak cohesionless lower layer. The simpler authors’ modification of the Polish

Standards proposition for that case is also correct. The most general, simple and correct
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calculation of the bearing capacity of layered subsoil is done based on the Terzaghi formula
with average parameters of homogeneous subsoil. There is no big difference in the bearing
capacity if we use a direct formula for calculating the average angle of friction or indirect
formula. In this paper, the investigation was carried out only for strip and square foundations of
the width B =1.0 m loaded symmetrically and vertically. In authors’ opinion, similar
conclusions are correct for other loaded foundations of different size and shape. Ming Zhu and
Radoslaw L. Michalowski (2010) presented a finite element analysis of square and rectangular
footings over two-layer clay foundation soil. Bearing capacity results are shown for a limited
range of parameters. While the bearing capacity is distinctly affected by both the ratio of the
strengths of the two layers and the depth of the weak layer, the shape factors are only dependent
on the depth ratio. The bearing capacity of clay is reduced if a weaker layer of clay is present
below a stronger crust. The limit load is affected by both the depth of the weaker layer and the
ratio of the strengths of the two layers. However, the shape factor appears to be only weakly
dependent on the depth, whereas it varies distinctly with a change in the strength ratio of the
two layers.

Ming Zhu and Radoslaw L. Michalowski (2010) presented a finite element analysis of square
and rectangular footings over two-layer clay foundation soil. Bearing capacity results are shown
for a limited range of parameters. While the bearing capacity is distinctly affected by both the
ratio of the strengths of the two layers and the depth of the weak layer, the shape factors are
only dependent on the depth ratio. The bearing capacity of clay is reduced if a weaker layer of
clay is present below a stronger crust. The limit load is affected by both the depth of the weaker
layer and the ratio of the strengths of the two layers. However, the shape factor appears to be
only weakly dependent on the depth, whereas it varies distinctly with a change in the strength

ratio of the two layers.

2.2 Literature on Rigid plastic finite element method
2.2.1 Limit analysis and application to finite element method

In contrast to slip-line and limit equilibrium methods, the limit analysis method considers the

stress-strain relationship of a soil in an idealized manner. This idealization, termed normality (or
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the flow rule), establishes the limit theorems on which limit analysis is based. Within the
framework of this assumption, the approach is rigorous and the techniques are competitive with
those of limit equilibrium, in some instances being much simpler. The plastic limit theorems of
Drucker et al. (1952) may conveniently be employed to obtain upper and lower bounds of the
collapse load for stability problems, such as the critical heights of unsupported vertical cuts, or
the bearing capacity of nonhomogeneous soils.

One of the most important problems in Geomechanics is to analysis the limit state of soil
structures such as foundations and slopes. There are many methods applied to this problem. A
large number of material constants, however, must be specified before-hand and an elaborate
step by step calculation is necessary to pursue along the loading history from the initial state.
Although such an approach is accepted to some extend from a practical point of view, no exact
information is offered concerning the limit state itself since the usual calculation procedure
breaks down and becomes meaningless at this stage.

Slip line theory is a well-known method to analyze the limit state, in which the characteristics of
hyperbolic type of equations are composed in several ways. Many closed form solutions are
obtained for typical problems by this method. However, skillful techniques are required to get
solutions with a good accuracy and it difficult to use the slip line theory as an approach for
general boundary conditions.

Hill (1951) and Drucker (1951, 1952) published their ground breaking lower and upper bound
theorems of plasticity theory, on which limit analysis is based. It is apparent that limit analysis
would be an effective tool to provide important insights into the bearing capacity problem. The
complete formulation of these theorems is easy for numerical analysis since it can be converted
into the primal and dual linear programming problems (Charnes, Lemke and Zienkiewicz, 1959;
Martin, 1975; Sloan et al., 2005; Sloan et al., 2009).

For instance, the elasto-plastic finite element method is considered to be a typical one. But it is
often said that it suffers from some numerical difficulty in the stress range close to the limit state.
Therefore different techniques for this problem are required to be established. Tamura et al.
(1984) developed the rigid plastic finite element method with Drucker-Prager yield criterion
which is only to analyze limit state of structures. First, they derive stress-strain rate relations

with the concept of indeterminate stress. Second, substituting these into the equation of
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equilibrium, the formulated the rigid plastic finite element method in a simple way. Equations to
be solved consist of the condition of equilibrium, the constraint condition of volumetric change

and a relation to normalize the magnitude of displacement velocity.

2.2.2 The fundamental of the rigid plastic finite element method

The most widely used theory is to assume that the plastic strain rate (or increment) can be

determined by the following formula (Von Mises, 1928; Melan, 1938; Hill, 1950):

aen=an2 (2.34)
els)

ij

wheredA is a positive scalar, and
f=f(o,)=£(1,1,,1,)=0 (2.35)

If the plastic potential is the same as the yield surface, then the plastic flow rule equation (2.34)
is called the associated flow (or normality) rule. Otherwise it is called non-associated flow rule.

If the unit normal to the plastic potential approaches a finite number of linearly independent
limiting values as the stress point approaches the singular point in question. Koiter (1953)

proposes the following generalized flow rule:

n of.
d(e? :2 dr, —— (2.36)
(Slj) i=1 ' aGl

j

f.
wheredA, are nonnegative and a—l are the linearly independent gradients.
lof

Fig.2.14Maximum plastic work principle
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Suppose the plastic strain rate dsg is given and the corresponding stress state, G;;, determined

from the normality rule and the yield criterion, is represented by a point P in the stress path in

Fig 2.14. If c; is an arbitrary allowable stress represented by a point P~ on or inside the yield

surface, then the difference between the incremental plastic works done by the two stress states

on the actual plastic strain rate is
W = — o HeP
dW = (Gij Gj; )dgij (2.37)

Eq. 2.37 represents the scalar product of the vector PP and PQ. If the yield surface is strictly

convex, the angle between these vectors is acute and the scalar product is positive. Therefore
(6, -0} Jer >0 (238)

This condition, due to Von Mises (1928) and Hill (1948, 1950), is known as the maximum
plastic work principle or theorem. Equation (2.38) is the basic for a number of important
theorems concerning elastic-plastic solids. The maximum plastic work principle is always
unique. It is a mathematical statement of the important idea that the plastic strain rate (or

increment) is normal to the yield surface.

To obtain definitions applicable to general stress states, we will adopt the proposal of Drucker

(1951, 1964). Hypothesis of Drucker is maximum plastic work principle (Gij -0, )dsg >0.

o
}
_____ C
= ;f:.r ______ %dﬂrdsf’
(o = o, )de?
g
A
! I
I I
1 | - c

Fig.2.15 Stress cycle when the starting point A is below the current yield stress
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Drucker’s postulate makes use of a stress cycle and to illustrate this concept as in Fig 2.15. First

the material had been load to point B and then unloaded elastically to point A. the state
indicated by point A with the stress G, is now considered as the existing state of the material.

We now image that an additional load is the first applied to the material; this brings us to point
B with the stress 6. The additional load is now increased by the infinitesimal amount dG and

this brings us to point C with the stress G +do . Then the entire additional load is removed and

the material therefore unloads elastically to point D with the stress G, equal to the stress at

point A. It appears that the additional load has carried the material through a complete stress

cycle is occasionally called an external agency.

Letting W denote the work per unit volume performed by the external agency during a complete

stress cycle:
W= IABCD (6-0,)de (2.39)

The strain increment d€ consists of its elastic and plastic component de =de" +de” and

plastic strains only develop during load path BC.
W= Jf (6-0,)de + J:(o — o, )(de +de” )+ LD(G ~ o, )de*
B C C D
= J'A (6-0,)de + J.B (6-0,)de + jB (6-0,)de” + J.C (6-0,)de (2.16)
= fj(cs — 0, )de° + j;(c ~0,)de” >0

The first integral express the change of elastic strain energy over the stress cycle considered and
therefore this integral evidently becomes equal to zero. This implies that the second term also

become equal to zero.

C
W= (c-0,)de" >0 (2.40)
In this expression are illustrated in Fig. 2.15, where G > G, the second order becomes:

(6-o,)de? >0 (2.41)
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6=0°

&P

Point on the yield surface

v

Fig.2.16 Convexity of yield surface in the stress space

It is assumed that the plastic work principle in the stress cycle is non-negative and monotonous
loading is also non-negative. It will turn out that this postulate leads to the associated flow rule
as well as to the convexity of the yield surface. Drucker’s postulate for hardening plasticity

implies the two important points: convexity of the yield surface as well as the normality

principle d(ef) :dxaaf and also ensures the uniqueness of the elasto-plastic boundary value

ij

problem.

For a given plastic strain rate 85, we can define the rate of specific plastic energy

dissipation D(€) :
D(&,) = 0,8, (2.42)

where 6; is a stress on the yield surface associated with ¢, through the normality rule.

&P £

Fig.2.17 Two states of stress corresponding to a plastic strain rate
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(2)

On the other hand, more than one stress state, say Gi(j”and 6, , may correspond to give 85

when the yield surface contains a flat face or a line as some portion of it. But D(SS) can be

O _
ij

(2)

regarded as a single valued function of 85 since the difference ((5 G ) is always

perpendicular to 85 as Fig 2.17.

The property of D(€f) was shown as bellows:

1) D(Sij-’ )= O'ijé‘ij-’ is homogeneous of degree one in 85 since O is independent of the magnitude
of 85.

ii) The variation of D, denoted by dD , is calculated as

D= 0,0 (2.43)

iii) D(gf)is convex in €fif it is continuously differentiable.

We consider a rigid plastic material subjected to a body force X; in a region V and a surface

traction T; on the stress boundary S . This steady state of flow invariably obeys the equation of
equilibrium.

o;;+X;=0 (in V) (2.44)
and the stress boundary condition on S,

on; =T, (inS,) (2.45)

where n; is the outward normal on the boundary of the region. In equation (2.44), “j” means the

differentiation with respect to the j-th coordinate. It should be noted that the stress Gy is

homogeneous of degree zero in ;.

In the other words, the magnitude of the velocity field i, or the strain rate £;in immaterial but

the only proportional distribution of these values is crucial to determine the stress state in the
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plastic flow. Here the relation between the velocity and the strain rate is assumed to be

o L[ ou; duy; _
gij :E W‘l‘? (1n V) (246)

J
The displacement prescribed on the displacement boundary S

1, = iy (ins,) (2.47)

The plastic collapse (at the limit load) occurs under constant the external forces 6; =0. Since

€; =0when6; =0we find that &; =&/ applies at the limit load.

For a complete solid body, the principle of virtual work is mathematically given by the

following basic energy equation

jvc.dg'dv = LT.&JdS + jvx.a‘udv (2.48)

We summarize the basic equation of the rigid plastic flow as follow:
1) Equation of equilibrium equation (2.44)

2) Compatibility equation (2.46)

3) Boundary condition equation (2.45) and equation (2.47)

4) Stress-strain rate relation as constitutive equation as equation (2.49)
e . Jf (o
£=¢°+¢’ =Ac+/1w (2.49)
06
When the plastic collapse occurs, the virtual work can obtain constant the external forces pT ,

the stress o6 and ¢ + 6dt can be expressed as follows:

jvc.as'dv =p LT.é'udS + jvx.o‘udv (2.50)

jv (6 +6dt).0edV = p L’ul‘.é‘udS + jvx.dudv (2.51)

Therefore, the difference between equation (2.50) and equation (2.51) can be shown as equation

(2.52)

jvc.éédv -p LT.cildS + jVX.cfudV - ( jv (6 +6dt).5edV — p LT.&ldS + jvx.a‘udvj =0

= jvcdz.aedv = jvo.aedv (2.52)
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To the above equation is satisfied

6.0¢ =0 (2.53)
Based on the hypothesis of Drucker oe” >0, this condition becomes:

6.0¢ =6.0¢° +6.0¢" =0 (2.54)
It is useful to know if the consistent distribution of stresses produced by applied surface

displacement is unique, or if it depends upon the state of stress beforehand. Two answer this

question, Hill (1948, 1950) proved that for a rigid-plastic solid there is not more than one

consistent stress solution for which the hole mass deforms plastically. Suppose that (c(l),é"’ (1))

and (6(2),8"’ (2))could be two consistent solutions corresponding to the same boundary

conditions. It can be show that
J o) —e@)(dm) - s@)}=0 2.55)

This condition is satisfied when either the surface displacements or the external forces are
prescribed. The whole masses are possible in the plastic state. It is obvious that as long as the
yield surface is convex they are all positive unless the two solutions for the stresses are the

same 6(1) = 6(2). We have therefore proved that in a rigid plastic material, there cannot be two

distinct plastic stress solutions that satisfy the same boundary conditions.

2.2.3 Rigid plastic finite element method based on the upper bound theorem

Load factor p of external forces

Let T; be the surface force and X; be the body force in V and the traction on the traction
boundary S, respectively. A proportional increase or decrease of external forces is expressed

as pT,. uis some velocity field defined over the whole region V.
When the plastic collapse occurs, the virtual work can obtain constant the external forces pT ,

the stress o can be expressed as follows:

jvc L édV = pLT.uds + jvx.udv (2.56)

The stress strain rate relationships obtained here replace the stress by strain rate £ and 4 . The
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strain rate is related to the velocity by

1{ou ou”
c—¢l — | = 2.57
e=e 2[8x+8xj 2.57)

To prove the upper bound theorem, we consider
jv (6—a,): &V (2.58)

In general this stress field will not be in equilibrium. From the principle of maximum plastic

work, it is obvious that the expression is non-negative, namely

jv (6-6,): &V =0 (2.59)
which leads to

jvc L &dV > jv o, : &V (2.60)

The correct stress field determined from the principle of virtual work from the right-hand side of

the above equation, and substituting external force work rate in equation (2.56)
AV > . .
jvc -edV 2 p js T.adS + jVX.udv (2.61)
Therefore, load factor p can be defined:

¢6:&dV—| XudV
Jg:edv-];
LGT.uds

p< (2.62)

According to the mathematical programming theory, equation (2.62) can be formulated as

follows in the absence of body force:

p= minjvo &V (2.63)

Subjected to ST.lldS =1 (2.64)

2.2.4 Rigid plastic finite element method with the Mises yield criterion

Mises criterion

fzé(s:s—cg)zo (2.65)
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When we apply a flow rule to yield function equation (2.63), strain rate is finally determined as

in equation (2.66). Here, P is the mean stress.

i) Ofe) _, of G(S:S‘Gz)j:lk(a(S:S)‘Mj

Jo o6 0 2 do Jo

2

:lk{®:5+s:
0o

Jo

Jo

) 2| _1y,90, )

d(s) j [a(c—PI) j (a(o) (1)
:;\, — :}\« _— :;\/ ——P—=
[ o > 06 > 06 Jo
:X(M:sj:ks
()
Here
0, O, Op _acu 8(512 8613 l
J 6, O, Oy Jdo Jc Jo
(o) _ %1 9s» Oxn|_ dG, 00, d0,
Jo Jc Jo Jc Jc
d6, 06, J0,,
| do Jo Jdo |
where
_8011 Jd6,, do,

J06,, do,, Jo, ]
do _ do,, _ do,, 9o, 9o, —-lo
Jo 6, G, Oy anl anz 8(523 0

J|6, G, Oy aGu 8(5“ 8(5“
0;, O0; Oy 8631 8032 8633
—8612 aGlz 8612 |

06,, do6,, 00, 0
oG, _ d0,, _ 06,, d6,, JG, _lo
dJo 6, O, Oy 8021 8622 8623 0

0 G, Oy Oy Jd6, J6, JG,
0; O3 Oy aG31 8632 aG33

Therefore,

(2.66)
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[d5,, 95, 95 ] [lo o o] [0 0 o |0 0 0
06 06 J6 0 0 0 0 0 0 o 0 0
d) |do, 9o, do, | | -
o6 | do py 3 || I
dG;,  d0;,  d0y, 000 0 0 0 0 0 O
96 9 9s | ||0 0 0/ 00 0f 00 0
10 0] |0 1 0] [0 0 1
T 0o o] [o 1 0] [0 0o 17]
0 0 0/ |0 0 O/ |0 O O
a6s) _ 0 0 0/ |0 0 O] [0 0 O zn 212 sSl3
S 18T [ e — o Sy, Sy
0 0 0] [0 0 0] [0 0 0] |sy sy S
0 0 0O/ |0 O Of |0 O O
10 0] |0 1 0] [0 01
1 0 0 01 0 0 0 0
and =310 0 O|*s;;¢+4/0 0 Of*s,p+...+9(0 0 O[*sy,
00 0 0 0 0 0 0 1
S Sz Si3
=S

Equivalent plastic strain rate
e=+vé:g =+JAs:As
=)y/(s:s) (2.67)
=02 =)o,

Plastic multiplier

L= (2.68)
GO
Therefore,
&= (i)s (2.69)
60

Meanwhile, Mises yield criterion assumed that no volumetric plastic strain rate occur under the
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limit state. Here, V,is a small area obtained by dividing a region V.

v €,dV=0 (l=123...n) (2.70)

The internal dissipation rate is eventually expressed by the equation (2.71). Here, I, is the first
invariant of the Cauchy stress tensor and I is the unit tensor.
6:6=(s+PI):¢=s:6+P(I:¢)

=s:é+(%llj(l:é)zs:é+(%(0)}(l:é) (2.71)

=s:¢
Based on the upper bound theorem, to satisfy the boundary condition on equation (2.64), load
factor p is equal to the minimum value from equation (2.62). Moreover, the internal dissipation
rate from the flow rule is a linear function of strain rate; objective function is also a linear
function on (l'l, 8) It is permitted, through the above explanation, to state that the limit analysis

by the finite element method is formulated as the problem of finding out the saddle point

(ll,kl, “’1) of the following function:
@ (i, k1) = [o:£dV - [ XadV + li.Vl ¢,dV +y, [ Tads (2.72)

in which k, and, are called the Lagrange multiplier.

In addition, from the stationary condition (the value of the function does not change), the

following simultaneous equations are obtained:

@ik, A) = [o:6dV — [ XuadV +k, [ £,dV +p, [ TadS forvaa (2.73)
Subjected to
> 8k, 8¢,dv =0 for V8K, (2.74)
VeV M
s, ([Tauds—1)=0  forvdp, (2.75)

The expression (2.73) and substituting internal dissipation rate equation (2.71), finally equation

(2.76) is satisfied

@ (i, k;,A)= [0 :88dV - [ X.dudV + vlze:vkl jvl 8¢,dV +p, [ T.8udS = 0

= [o: 884V + V;V k, jvl 8¢,dV =y, [ T.50dS + [ X dudV
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= [o:88dV + VZV k, jvl (I: 88}V = —, [ T.5udS + [ X dudV
N jv (6 +kI): 8edV = -, L?.ésnds + jvx.ésndv

N jv (s+KJI): 8edV = -, jST.suds + jvx.sudv
Therefore,
jv (s+kJ): 86dV = —p, L?.Suds + jvx.&'ldv (2.76)

In the above equation, undetermined coefficients of Lagrange (— W, = p), it is regarded as the
average stress P with k; on the area V; it has become the virtual work equation and the
equivalent in extreme conditions. Equation (2.76) is based on the maximum plastic work
principle; the stress is calculated in accordance with the setting of the strain rate. Therefore, any
& = 0 will satisfyf(6)=0.

Finite element method is a method for dividing up a very complicated area into small areas that
can be solved in relation to each other. From equation (2.73), (2.74) and (2.75) for all area, we

can divide in the small areas as the spatial discretization as bellows:

jv (s+kJI): 8dV = —p L T.3adS + jvx.sudv
= [ (s+km): (BSUNV = —u[ (NT)NSUS + [ (NX)(NSU v
= |, (BSU) (s + k,m)dV = —u [ (NSU) (NC)dS + [, (NSU)" (NX)dV
= [ (B3U)' (s + km)dV = -p[ (NSU) (NT)ds + [ (NU)' (NX)av
=N jv SU™B™ (s + k,m)dV = —pudU" L _NT(NT)ds + 80" jv N™(NX)dV
— 80" jv B (s + k;m)dV = —udU" L _N"(NT)ds +3U" jv NT(NX)dV
— 8U" jv B (s)dV +3U" jv B (k,m)dV = —udU" L _NT(NT)ds + 80" jv NT(NX)dV
— 80" jv B (s)dV +3U" jv B” (k,m)dV +pdU" L _N"(NT)ds - 80" jv NT(NX)dV =0

= 8U"([ BT(s)aV +[ BT (km)dV + [ NT(NT)S - [ NT(NX)dV)=0
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=N jVBT(s)dV + J.VBT(klm)dV +u L N"(NT)dS - jv N"(NX)dV =0
Therefore,
jv B (s)dV + jv B (k,m)dV = — L NT(NT)ds + jv NT(NX)dV 2.77)

From equation (2.74),

>3k, [ 8¢,dv=0

Viev

= 2.8k [ (1:elv=0

VieVv

= 38k, [ (m:(BU)kv =0

Viev

= >3k, (" (BU)v =0

VeV

- ZSkt[ (m"BURV [=0

Viev

Therefore,

[ m™BUkV =0 2.78)

From equation (2.75),

sul[T.8uds-1)=0
= dul[, (NT)(NUMs-1)=0
= du(] (NT)" (NOlas -1)=0
= dul[_ TN"(NUls-1)=0
= [ T'N"(NU)S-1=0
Therefore,
[ T'NT(NUs =1 (2.79)

where

B: kinematic matrix (3x8 sizes) defined such as ¢ = Bu
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N: the shape function matrix (2x8 sizes)
m: transfer vector.

U : vector of all nodal velocities

t: surface force applied at nodes
x: the unit node weight.

In addition, we can show equation (2.78) and (2.79) as following manner:

[ m™BUREV=0= [ (m"BhVU=0=LU=0

[ T'N"(NUls=1= [T'N'NasU=1=F"U =1
and

[ NT(Nx)dv =X
Equation (2.77), (2.78) and (2.79) can describe into a form:

[BTsdV +k,L" = —uF + X
\%

LU=0 (2.80)
F'U=1

where

F: vector of all nodal forces

S, : stress boundary

X: the total nodal force vector

On the other hand, the stress-strain rate relationship of Mises yield function from the equation

(2.69):

—s=—0% (2.81)

For a general strain tensor, the diagonal strain components ¢€,,,€,,, €,; are known as “direct”
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strains, while the off diagonal terms €,, =¢€,,,€,;, =€;,,€,; =€,, are known as “shear strain”.
The shear strains are sometimes reported as “Engineering shear strain” which are related to the

formal definition by a factor of 2.

Yio =281, V13 = 283,V = 28y

. . . . |81 €
Strain tensor (two-dimensional) €= . .
€1 &
811
Strain vector (two-dimensional) £€=1¢,,
2¢,
€
Engineering shear strain vector (two-dimensional) £=1¢,,
Y2

Therefore, to converts the engineering shear strain to the shear strain, the matrix Q is provided:

1 0 0
Q=0 1 0 (2.82)
A
and
§=Q¢ (2.83)
Therefore, equation (2.69) can be shown:
s=20:=0(Q¢) (2.84)
€ €

Next, substituting the above equation to the system of equations (4.80), we have equations

(2.85):

[, BT[ﬁj(QB )AVU +k L' =—p F+ X
€

LU=0 (2.85)
F'U=1
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Here jVBTst=jVBT( (QajdV IBT( j(QBU)dV IBT( jQB)dVU

In the above equation, undetermined coefficients of Lagrange (—u = p), it is regarded as the

average stress P with k; on the area V, equation (2.85) can be expressed as:

[, BT(ﬁj(QB)dvﬁ +kL" =pF +X
(4]

LU=0 (2.86)
F'U=1

Equation (2.85) is a system of non-linear equation for (l'l,kl,ul ) So we can solve this equation

iteratively by the Newton-Raphson method.

2.2.5 Rigid plastic constitutive equation on the rigid plastic finite element method

The rigid-plastic finite element method (RPFEM) has been developed for geotechnical engineering
by Tamura et al. (1984, 1987). In this process, the limit load is calculated without the assumption on
the potential failure mode. The method is effective in calculating the ultimate bearing capacity of
footing against the three dimensional boundary value problems where the soil condition is varied as
multi-layered ground. Although RPFEM is originally developed based on the upper bound theorem
in plasticity, Tamura et al. proved that it could be derived directly using the rigid plastic constitutive
equation. The advantage of rigid plastic constitutive equation is the scalability for considering the
material property of soils as the non-associated flow rule. This study improves RPFEM by using the
non-linear shear strength property of soils and introduces the rigid plastic constitutive equation of
parabolic yield function regarding the confining pressure.

Tamura (1991) developed the rigid plastic constitutive equation for frictional material. The

Drucker-Prager’s yield function is expressed as follows:
f(c)=al, +./J, ~b=0 (2.87)

where Il : first invariant of stress
J , : second invariant of deviator stress

The coefficients a, b express the soil constants corresponding to the internal friction
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angle and cohesion, respectively

Drucker-Prager

o,

Fig.2.18 Yield surface of Drucker-Prager criterion

Following the non-associated flow rule, the strain rate £ = £” could be written as follow:

@h-+J7§—b):z{a“”ﬂa-BQGZ)_aUﬂJ

Jo Jo Jo

=A (a(a)ll ta a(ll)j+ a(\/J_z) a(b)J

Jo Jo d6 o

Jdo o

e=2%0)_ ;0

(2.88)

Aa), . Aerfod)) 3,)> a)
:/1(80 lita tac j+ oo _BGJ

where
a(tr{c )a _ {611 +G,, + 633}
do G, O, Oy
J G, Op Op
G3 O3 O

8{611 +022 +G33} o) o)
12 13
oG,
06, +06,,+0
=tr (521 { 11 22 33} 623
J0
22
a{(511 + 622 + 033}
631 632 aG
L 33
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100
orlod), _lo 1 0lacar (2.89)
Jo
001

1 .
o0,)% 1y 2l i (126),1,1,.28)
ds = 27 86_2J2 06 _2\/3286. 2 Jo
1 .ﬂﬂ.j_ 1 (ah—PH'j_ .
== Jz(ac s |=2 0 s _2\/3(1'5) (2.90)
S

(0)+———(s:5) 291)

= ° (2.92)
1/3212+l
2

100]T100
I:1=1"I=|{01 0|01 0[|=3 (2.93)
001/[001

Sy S S5 |1100
s:I={s, S, Sy [:|0 1 Of=s,,+s,,+s;,;,=J,=0 (2.94)
Sy S3 S [0 01
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D I
0

Fig.2.19 Stress decomposition for non-associated flow rule

The volumetric strain rate is expressed as follows:

g, =tr(&) = tr(k afa(:)) ) tr(k{al ' 2‘73 N

S S S
=MNal, +—2— |+A al,, +—2— [+ A al,, +—>2
{ 11 2 (Jz} { 22 2 (Jz} { 33 2 (Jz}

1
=Mal(l, +1, +1,,)+——(s,, +s,, +s
{ 11 22 33) 2\/3( 11 22 33)}

¢, =A\(3a)
3a . (2.95)

=— ¢

3a2+y2

No volumetric plastic strain rate occurs under the limit state. Here, V,is a small area obtained by

dividing a region V.

& —————=¢dV =0 (1=1,2,3...n) (2.96)

v;/'[vl ' 3a* + %

where A: the plastic multiplier, and ¢, the norm of strain rate. I and s express the unit and the

deviatoric stress tensors. The strain rate € , which is purely plastic component, should satisfy the

volumetric constraint condition which is derived by equation (2.96) as follows:
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h(E)=6 ——— =i —fe=0 (2.97)

2,1
3a” + A
The internal dissipation rate is eventually expressed by the equation (2.98). Here, I; is the first

invariant of the Cauchy stress tensor and I is the unit tensor.

c:s:o:(x[anﬁﬂzx[a(cJF%J

_ ) +(s+PI):s 2 ale - +(s:s+P(I:s))
—K[a(c.l) —2\/3 J-?&[( 1) —2@ J

2] b
[aI1 + 2@} (aI1 +w/J2) > +% e

Therefore,

6 §=————¢ (2.98)

where

0, Op Oy
0, +0,y, +0y, =trlo}=1,

- O O
Il

1

117 —
o:I=1'l=|0, o0, 0y5||0
03 O3 03] |0

We write the formal functional in terms of the Lagrange multiplier (kl, ].Ll)for the constraint
conditions:

ik, )= jvc:adV— jvx-udv
(2.99)

+ Y kIJ.VI g, -0 ¢ dV+u1(IS;F-ﬁdS—1)

Viev 3a’ +%

in which k, and, are called the Lagrange multiplier.

Furthermore, from the stationary condition, the following simultaneous equations are

3a

1/3212+%

obtained. [ : 38V - [ X-5udV + VZV k, jvl 8¢, — 8¢ [dV + ul( L;r : Sﬁde =0



Chapter 2: Literature review on_ultimate bearing capacity and Rigid finite element method 153

forVéu (2.100)
>& [ | —é v =0 for V&, (2.101)
vev TV 3a* +%
S“UST adS - 1) =0 for V3yL, (2.102)

The expression (2.100) and substituting internal dissipation rate equation (2.98), finally

equation (2.103) is satisfied:

j(c Se MV — jx SudV + Zk 86, ———— 8¢ dV+u1(jST-6uds)=o

Viev A

:>jV 3a++%8é V—jVX-SudV+VlZ€“Vk [88 —\/7&3 dV+u1(IT Sudez

Z.5eldv - jX dudVv

= |, *A

+ 3 k[ | (1:5¢) SN W dV+u1UST~61'1dS)=O

Viev 3a’ +% e
jv b_2—33k11§+k11 - 8¢dV — IVX-BudV+u1(TdS)=O (2.103)
é
3a +é
-2
Here, we can see 8é=SL‘=88 108 = 8
¢ 0é é

Therefore, Drucker-Prager yield function can be expressed as follows:

b—3ak, i
o= i (2.104)

3a* +y2 €

The rigid plastic constitutive equation was expressed by Tamura (1991) as follow:
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6=6" +6? = ngﬁﬁgz (2.105)

The variable of }is determined by inserting J , into the plastic potential of equation (2.87). On

the other hand, the indeterminate stress parameter 3still remains unknown until the boundary

value problem with the kinematical constraint conditions of equation (2.97) is solved.

ézxaf(tr):> of (o)

& _ £ _ /3a2 +1§ (2.106)
Jc Jdo A 2¢é

10 = trfe"}= tr(yaf—(c) = ){al +

=3 2.107
Jo J l ( )

sV =6 —PI =1 al +

S
ij
=|ayl+ > Y —aYI—LY
A BN
1 1 S S 1(s:s 1
JOW = [Z(sW W)= |2 2y yl=y =] 222 | =2 (2.109)
D L N P v R ot

f(o)=al’ +JV —b=0

(2.108)

= a(3ay)+%y—b =0

:(3312 +%jy—b =0

o y= % (2.110)
(3a2 + j
2
Therefore
of (o b £
o=y ];( ) 5o @2.111)
° (3612 +2j €

Any strain rate which is compatible with Drucker-Prager’s yield criterion must satisfy equation
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(2.111).1) is a coefficient determined from equation (2.111) on the dilation characteristics.

dh() 9|, 3a | k) 3 a@© aul) 3a 9&:8)”
B o0k &

% og| " 3az+%e Jre )y %8 % _W 2.112)

where

9% 2Jie 08 s

Ae:e): 1 e 1 [a(s):. .aa(§)) 1 (a(s-:):éj

P RTE)
€

6@ —pM g3 ¢ (2.114)

0¢ 3a2+% e

The rigid plastic constitutive equation is expressed by Lagrange method after Tamura (1991) as

follows:

: B )
G:—l 7+B 1- 1— = 1—+BI (2.115)
€ € €
3a +— 3a + - 3+
2 2 2
The first term expresses the stress component uniquely determined for the yield function and the
second term, the indeterminate stress component along the yield function.
Tamura.et.al derived rigid plastic constitutive stresses on the yield surface, obtained by
decomposing on the basis of the flow rule; the result from rigid plastic constitutive equation

(2.115) is quite consistent with the equation (2.104) by the upper bound theorem.
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CHAPTER 3
NUMERICAL FORMULATION ON RIGID PLASTIC FINITE
ELEMENT METHOD

3.1 Introduction

In recent years, the finite element method (FEM) is widely accepted as one of the well-established and
convenient technique for solving complex problems in various fields of engineering and mathematical
physics. The latest four decades have observed a growing use of finite element method in geotechnical
engineering. FEM has been applied to estimate the bearing capacity of strip footing on cohesionless soils
such as Sloan and Randolph, 1982; Griffiths, 1982; Frydman and Burd, 1997. Rigid plastic finite
element method is basically developed based on the upper bound theorem in the limit analysis.
It is widely employed for the stability assessment of soil structures in geotechnical engineering.
Tamura et al. derived the rigid plastic constitutive equation and proved FEM with the rigid
plastic constitutive equation to match RPFEM developed by the upper bound theorem. The
advantage of rigid plastic constitutive equation exists in the extensibility to more complicate
material property such as the non-associated flow rule. In this chapter, the rigid plastic
constitutive equation for the Drucker-Prager yield function is exhibited. Ohtsuka et al. (2011)
derived the rigid plastic constitutive equation by introducing the dilatancy condition

explicitly-modelled with the use of penalty method.

3.2 Rigid Plastic constitutive equation for Drucker —Prager yield function

The rigid plastic constitutive equation is expressed by Lagragian method after Tamura (1991) as

equation (2.115):

The first term expresses the stress component uniquely determined for the yield function and the

second term, the indeterminate stress component along the yield function. The indeterminate

stress parameter[g still remains unknown until the boundary value problem with the kinematical
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constraint conditions of equation (3.1) is solved.

. . N 3 - .
Constraint condition : h(¢)=¢ ———¢=£¢,-Me=0

C 3o+ y
2

To achieve internal dissipation rate and external force work rate, the formulation of the
governing equations in the ultimate bearing capacity analysis based on constraints condition
with volume change to solve an undefined stress[3 .
In this study, the constrain condition on strain rate is introduced into the constitutive equation
directly with the use of penalty method (Ohtsuka et al., 2011). Penalty method is way to
incorporate constraint condition directly to constitutive equation by using penalty constant.
Moreover, the rigid plastic constitutive equation requires convergence calculation because it is a
non-linear constitutive equation of the displacement speed, to improve the efficiency of
calculation is very important. Therefore, the purpose of speeding up the calculations, to achieve
applied formulates Penalty method of incorporating constraints into the governing equation.
First, we do derivation of the governing equations in the ultimate bearing capacity analysis. The

functional based on the Penalty Law; Penalty multiplier (}.L, K) is created as follows:
(i) = jvc : 88V — jVX adv + jv K(&, —fe)dV + u( L T, Bﬁdsj 3.1)

From stationary condition of the function ®(11) = 0, the following equation is obtained:

SedV — jvx adV + jv K(&, —fe)(8¢, —nde)dV

d(u)= b
J‘v1/3a2+% 32)
+u(L;F-ﬁdS—1)(L;F-6ﬁdS]:O

> Sk(e, —e)'dv =0 for V& (3.3)
VieVv
Bu( js T udS - 1) =0 for V' S (3.4)

N jvﬁg S&dV — IVX.SudV+ k(& —ﬁe)jv((l : 65:)—(112 : 6=::de
a’+ 7,

+u(LT-1‘1dS—1)LT-61’1dS=O
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j \/7— - 8edV — j X - dudV + (&, —ne)j ([I—ngj:&jdv

+u(LT-1’1dS—1)LT-81‘1dS:O

f\/ﬁ— 8adV +x(e, —né)f, (( ﬁZj:&é}dv

:-H(LT-udS—l)LT-BﬁdSﬂ.VX-61'1dV

= 88dV+K ne)j -8 %5y

=l = /3 vl Jri+ e (3.5)
= —u( LT-l'ldS—l) [T SudS+ [ X-8udV

Here

= -u(LGT-ﬁdS—l) (3.6)

B=x(e, —fe) 3.7)
Therefore, the constrain condition on strain rate is introduced into the constitutive equation

directly with the use of penalty method
£ . A 3a ¢
6=—t Eiie —pe)1-—0__% (3.8)
é

where, Kis a penalty constant. This technique makes the computation more stable and faster.
FEM with this constitutive equation provides the same formulation of the upper bound theorem
in plasticity so that this method is called as RPFEM in this study.

From equation (3.2), (3.3) and (3.4) for all area, we can divide in the small areas as the spatial

discretization as bellows:

(et ey o sl s oy

where
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L(ﬁ%%ﬂév —ﬁé{l 3:—1% H &dV = J.(y +K(I i n;j(l—nzjj;&dv

€

_ L(YM+ K(m BU-7 M}(m -4 (QBU)D .(B3UKY

c (S

(B30 |, Y<QBU)+K[mTBU_ﬁMj(m_ﬁ<QBU>J v

s [4280), ]{m i (QBU)j[mTBU _4loBU)'BU }V

= &7 jv BT[7@+ K(m -1 (Ql,m)j{mT -1 MBBUdV

€

= 50" jVBTDBUdV

Q)

e

where D= y(

(QBU)j(m _4[UBQ7) )]

+K[m 5 Q8 :
= 80 [B"DBUAY = [T-uds -1 )[T-8uds + [X-8idV

:_“U (N)- (NU s - 1]] No)- (NSU S + [ (NX)-(NSUv
= 50" [B"DBUAV = -u( [ (N0 (ks -1) [, (NsO) (Nelas + [, (N80 (Nx)av
= 50" [ (B'DBIVU = -u( N (tTNT)(Nﬁ)ds-lj [, (BUTNT Nt + [ (SUTNT X
= 50"} J, (B"DBRVU + u( [, ("N'NURs -1)[ (NNehs— [ (NN =0
= [, BDBjv + (] (ONNUks-1)], (NNes— [, (NNxkv] <o

= [ (B"DBlVU = —u( [ 6 (("™NTNU WS —1] [ G (N"Ntkas+ [ (N"Nx v

Here, replace as below to the above part of governing equation.

[ (BDB)avU = KU



Chapter 3: Numerical formulation on rigid plastic finite element method 163

La (N™Nt)ds = F

[ (NTNX Jav = x

U is decided by convergence calculate.

Therefore,
[.B'DB)VU = —u( [ (('NNU S - 1) [ (N"Nekis+ [ (N"NxJav

— KU =—(FTU-1)F+ X
= KU +uF[F'U-1)=X
— KU + (uFF"U - pF)= X
= KU +pFF'U =pF+X
— (K +uFF" JU = pF + X
= KU=pF+X

where K is all stiffness matrix.

3.3 Rigid plastic constitutive equation of sandy soils

3.3.1 Strength tests of Toyoura sand by Tatsuoka et al.

As mentioned above, the effect of confining pressure on shear strength is clearly presented in Fig. 3.1
through experiments by Tatsuoka et al. on Toyoura sand. This figure shows that the internal friction angle
decreases with the increase in confining pressure for constant void ratio. In this study, in order to estimate
the influence of pressure level on ¢ in triaxial compression, the relationship between internal friction
angle and first stress invariant is arranged in the normalization form. The general property in internal
friction angle is surveyed against confining pressure. Fig. 3.1 indicates that the internal friction angle ¢
can be inferred by confining pressure for various void ratios. Fig. 3.2 demonstrates the relationship
between internal friction angle ¢ and first stress invariant I; at failure. In reality, the friction angle
decreases with an increase in the first stress variant in a logarithmic function. The range of the first stress
variant is chosen according to test results. The secant friction angle corresponding to the peak of each first
stress variant was larger than the approximated value obtained from the Mohr-Coulomb approach.
Although the relationship is different depending on the void ratio, the figure shows the internal friction

angle decreased with an increase in first stress invariant, irrespective of void ratio.
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Figure 3.1. Experimental result of Toyoura sand (Tatsuoka et al., 1986)
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The relationship between the internal friction angle and the first stress invariant is different from
void ratio. This figure also shows the internal friction angle decreased with the increase in the
first stress invariant. However, Fig. 3.3 indicates the relationship between normalized internal friction
angle and normalized first stress invariant. ¢, and I;, are the reference values of internal friction angle and
first stress invariant. The figure shows that the normalized internal friction angles display a similar trend
irrespective of void ratio, which means that the obtained relationship exhibits the common property of

Toyoura sand.
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Figure 3.3. Relationship between normalized internal friction angle ¢/¢o and normalized first

stress invariable 1,/1, for Toyoura sand
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Figure 3.4. Relationship between internal friction angle and first stress invariant of Toyoura

sand

Fig. 3.4a expresses the internal friction angle of Toyoura sand for different void ratios and Fig.
3.4b shows the normalized curves for Fig. 3.4a. Although the different values of ¢ and I;pare
employed for normalization, the curves show the identical relationship between the normalized
internal friction angle and the normalized first stress invariant in the figure. The obtained

relationship, therefore, express the general property in the internal friction angle which is

applicable to Toyoura sand.
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Figure 3.5. Relationship between ¢/¢o and 6/6,, for various kinds of sand
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Hettler and Gudehus (1988) used three different types of sands which are Degebo sand, Eastern
Scheldt sand and Darmstadt sand. The results from experiments show that the internal friction
angle depends on the lateral stress in triaxial test. The normalized internal friction angle ¢/¢q
and the normalized lateral stress /6, for all types of soils show the same trends as shown in Fig.
3.5. It persuaded that the obtained relationship in the figure can be applied not only to Toyoura
sand but also to various kinds of sands. Hettler and Gudehus (1988) have conducted triaxial test
for some other sands and proposedthe formula showing the relationship between internal

friction angle ¢ and ¢, as below:

sin ¢ (3.9)
s, ) s, )
LzJ +sin¢0[1—£2J ]
620 620

where, ¢, : lateral stress, { estimated from triaxial tests.

¢ = arcsin

0" : internal friction angle for the specific lateral stress Oy

Hettler and Gudehus (1988) also indicated that { 1is close to 0.1 and kept unchanged for
various sands and densities as Table 1. Tatsuoka et al. (1986) and Ueno et al. (1998) indicated
that the effect of confining pressure is considerable. Therefore, this study improves the rigid
plastic finite element method by introducing the non-linear shear strength property against the

confining pressure.

Table 1. Data for different sands

Sand o (%) G, (kPa) 4
Toyoura 41 10 0.1
Degebo 40 50 0.1
Eastern Scheldt 38 50 0.08
Darmstadt 43.8 50 0.1

Regarding Fig. 3.5, the references I,y and ¢, are chosen depended on the examiner in the laboratory.
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However, the property of the normalization between internal friction angle and first stress invariant
always holds irrespective of the reference value of the confining pressure in the standardization of
internal friction angle. Tatsuoka et al. (1986) and Ueno et al. (1998) %21 indicated that the effect of
confining pressure is considerable. Therefore, this study improves the rigid plastic finite element

method by introducing the non-linear shear strength property against the confining pressure.

3.3.2 Proposal of rigid plastic constitutive equation for non-linear strength property

In this study, the higher order hyperbolic function is introduced into the yield function of sandy
soils as follows:

flo)=al,+(J,)"-b=0 (3.10)

where a and b are the soil constants. The index n expresses the degree in non-linearity in shear
strength against the first stress invariant. Eq. (3.10) is identical with Drucker-Prager yield
function in case of n=1/2. The non-linear parameters a, b and n are identified by the testing data.
In the figure, the results by triaxial compression test are plotted for various confining stresses.

Based on the associated flow rule, the strain rate is obtained as follows for the yield function of

Eq. (3.10)
=225 3 9 (a1, +.(5,)" —b)=Alal+ny2's) (3.11)
06 06
where 9 =nJ})" 9, =nJ)"'s (3.12)
06 06

Equivalence strain velocity
é=+i:& =/(\al +nJ2"'s): Al +n177's))
(1) +and? Tos + (012 s o (3.13)
=322 + (2122 )21t ) = 430 + (2n%2)

1 .
)

= A (3.14)

In the above equation, A is the plastic multiplier. The volumetric strainrate is expressed as

follows:
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g, =trg= tr(k(al + nJg’ls)) =3ak = 3 é (3.15)

\/3a2 +2n%(b—al,)* 7

The first invariant I; is identified from Eq. (3.10) to Eq. (3.15) as the following equation:

N\ o=
=21 12[[333J _332] (3.16)
a a|2n €,
Deviatoric stress
&=al +nJ2's) (3.17)
2 2n-1

1 : 1 C
s =— 3a_i—al ; 3ai -3a’ (3.18)

n €, 2n €,

c=s+lIII
3

n 1-n
. \2 201 . \2 2n-1
LR % 3a— | —3a> _2 % 3a— | —3a’ I
3a 3a|2n g, n| 2n g,

In this study, the non-linear rigid plastic constitutive equation for confining pressure is finally

obtained as follows:

1-n

3 1 . \2 2n-1
=2 2[(3a.£j —3a2] £
n |2n g, g,
_n I
. \?2 2n-1 . \?2 2n-1
T LA G P Y I P LY
3a 3a|2n g, n|2n g,

In this equation, stress is uniquely determined for plastic strain rate and it is different from Eq.

(3.19)

(2.115) for Drucker-Prager yield function.
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CHAPTER 4
NUMERICAL SIMULATION ON RIGID PLASTIC FINITE
ELEMENT METHOD

4.1 Ultimate bearing capacity of footing under plane strain condition using rigid Plastic
constitutive equation for Drucker —Prager yield function

In this study, the input parameters for ultimate bearing capacity analysis under plane strain
condition are derived from triaxial compression tests in the same way with the conventional
methods. If the computed results show the good agreement between the RPFEM and the
conventional formulas, it indicates RPFEM can provide a good estimation for ultimate bearing
capacity since the conventional formulas are developed semi-empirically. In this study, ultimate
bearing capacity of strip footing subjected to uniform vertical load is investigated by RPFEM.
The load is applied at the center of footing with the width B. This footing is modeled by a solid
element, the strength of which is set large to be rigid. The typical finite element mesh and the

boundary condition employed for RPFEM are shown in Fig. 4.1.

20.0m

80.0m

Figure 4.1 Typical finite element mesh and boundary condition in case of B=10m

In the case of vertical load, the typical finite element mesh and the boundary condition
employed for RPFEM are shown in Fig. 4.1. This study computed the ultimate bearing capacity
for internal friction angle ¢=20deg, ¢=30deg and ¢p=40deg, the obtained results are presented in
Figs.4.2a, 4.2b and 4.2c. The bigger the footing width is, the higher the ultimate bearing
capacity is. The values obtained from RPFEM with Drucker-Prager (DP) yield function are

coincident with the results from the formulas of Meyerhof and Euro-code 7 when the footing
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width is less than 30m. Since the Euro-code formula employs the different concepts regarding
the bearing capacity factor, it leads to the ultimate bearing capacity values different from the
other formula. Thus, the discrepancies among them become larger at the footing width of 100m.
This width seems too large in practice, but it is considered clearly to discuss the size effect of

footing on ultimate bearing capacity.
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Figure 4.2. Ultimate bearing capacity for vertical load application in case (a) ¢ = 20deg, (b) ¢ =

30deg and (b) ¢ = 40deg.
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Figure 4.3. Deformation diagrams of the Drucker-Prager yield function with B=10m

Ultimate bearing capacity is computed for B=10m and ¢=30deg. The obtained velocity field is

shown in Fig. 4.3 which indicates the typical failure mode of ground. The norm of strain rate,
€ is presented by contour lines. It is illustrated by the range between €, and O(émin )since

it is basically indeterminate and the relative magnitude in € affects the magnitude of ultimate
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bearing capacity. The slip-line assumed in the conventional bearing capacity formula is also
plotted in the figure. The failure mode that is inferred by computation result is similar with the
slip-line assumed in the conventional formula. It is difficult to determine the slip-line by
RPFEM since FEM is based on the continuum theory. However, it can be seen to provide the
similar slip-line although it is slightly smaller than that of the conventional formula. In case of
rigid footing, stress concentration is widely known to generate at edge of footing. It causes a
problem of singularity in stress distribution of ground. Since finite element analysis is based on
continuous function for shape function, it can't analyze the singularity problem directly. Thus, it
analyzes the problem approximately. In sandy soil, the shear strength at edge of footing is
affected by free stress condition of ground surface outside the footing. The degree of singularity
in stress distribution is, therefore, comparatively moderate in case of sandy soil since the shear
strength depends on confining stress. In this study, no special numerical technique to analyze
the ultimate bearing capacity is employed as the past references (Ukritchon et al., (2003) and
Lyamin et al., (2002)). As shown in Fig. 4.3, the velocity field of ground at edge of footing is
obtained greatly from the viewpoint of total balance in velocity field. It seems to reflect the
above-mentioned problem, but it is due to the limitation of regular finite element method. This
problem is partly resolved by using finer finite elements. The applicability of rigid plastic finite
element method is examined through the comparison with the past bearing capacity formulas
and finite element analysis. In preliminary analysis, the effect of mesh size on ultimate bearing
capacity was investigated by comparing bearing capacities computed for 1640 and 3423 element
meshes which produces ultimate bearing capacity of 201.9 kPa, 504.9 kPa, 1530.7 kPa, 3822.1
kPa and 13691.2 kPa. The finite element meshes in this study produce ultimate bearing capacity
of 201.8 kPa, 503.8 kPa, 1528.8 kPa, 3821.7 kPa and 13685.4 kPa with footing widths: 1m, 3m,
10m, 30m and 100m, respectively. The obtained results are almost coincident for all cases
where the footing width is varied from 1m to 100m. Thus, the employed finite element meshes

provide good estimation for various cases in this study.
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Figure 4.4. Effect of footing width on ultimate bearing capacity for vertical load application

AlJ formula takes into account the size effect of footing on ultimate bearing capacity. Fig. 4.4
indicates the comparison in ultimate bearing capacity among AlJ formula and others. The
results from AlJ formula are smaller than those from others that don’t consider the size effect of
footing. A great discrepancy can be seen in ultimate bearing capacity at footing width of 100m.
Since AlJ formula is developed by semi-experimentally, it implies RPFEM needs to take into

account the size effect of footing in ultimate bearing capacity assessment.

4.2 Ultimate bearing capacity of footing under plane strain condition using rigid Plastic
constitutive equation for non-linear shear strength property

In bearing capacity problem, the larger the footing width is, the higher the confining stress is.
This leads the internal friction angle to be decreased as discussed above. It is, therefore,
necessary to apply the non-linear shear strength property against the confining stress to take into
account the size effect of footing on ultimate bearing capacity. On the other hand, the internal
friction angle is set constant in RPFEM in case of the Drucker-Prager yield function. Therefore,
the ultimate bearing capacity calculated by using the non-linear rigid-plastic constitutive

equation becomes smaller than that obtained from the Drucker-Prager yield function. It means
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that the size effect of footing is properly taken into account in computation. Non-linear yield
function (Eq.2.21) is defined by the parameters a, b, and n which are derived from the
experiment. In this study, a series of numerical simulation are conducted for Toyoura sand
based on the experiment of Tatsuoka (1986). Through the case studies, the non-linear shear
strength parameters of Toyoura sand are set as a=0.24, b=2.4 (kPa) and n=0.56 for case internal
friction angle 30deg and a=0.28, b=2.8 (kPa) and n=0.57 for case internal friction angle 40deg,

respectively.

€ max €.min

O |
I

Figure 4.5. Deformation diagram of the non-linear shear strength with B=10m
Fig.4.5 shows the deformation of ground at the limit state computed by multiplying arbitrary
time increment to the velocity field obtained by RPFEM for B=10m.The obtained failure mode
of ground is similar to that in Fig. 4.3 for the linear shear strength of Drucker-Prager yield
function. However, the deformation area in the case of linear shear strength is obtained larger

than that in the case of non-linear shear strength, especially around the edge of footing.
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Figure 4.6. Ultimate bearing capacity with non-linear shear strength in case (a) ¢, = 20deg,

(b) ¢o = 30deg. and (c) ¢o = 40deg.

Fig. 4.6 shows the results of RPFEM with non-linear shear strength in the case the internal
friction angle of 30 and 40 deg. In the figure, these results are clearly identical with those of AlJ.

It means that the results obtained by employing non-linear shear strength property is rational
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and it shows that the size effect of footing in ultimate bearing capacity can be well expressed by

considering the non-linear shear strength against the confining pressure.
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CHAPTER 5

DISCUSSION ON SIZE EFFECT OF FOOTING ON
ULTIMATE BEARING CAPACITY

The conventional RPFEM with Drucker-Prager function does not take into account the size
effect on ultimate bearing capacity, which is considered in the AlJ formula, because RPFEM is
based on the same framework with the other conventional ultimate bearing capacity formulae.
This study improves RPFEM by using the non-linear shear strength property of soils and
introduces the rigid plastic constitutive equation of parabolic yield function regarding the
confining pressure. This study has shown that internal friction angle is not constant and
decreases with the increase in confining pressure in sandy soils. It implies the confining
pressure dependency in soil shear strength may be one of the most important factors affecting

the size effect of footing.

5.1 Effect of non-linear shear strength property of sandy soils

The computed results are utilized to determine the bearing capacity factor N, for the various
internal friction angle from 0 deg to 40 deg. The obtained bearing capacity factor N, is
compared with these factors defined based on the empirical method by Meyerhof (1963 -
Semi-empirical), Muhs and Weiss (1969-Euro-code7, Semi-empirical). Although the cohesion
of soils (¢ = 1 kN/m?) is introduced into the analysis to make the computation process stable, it
does not affect the ultimate bearing capacity too much. Therefore, Eqs. 5.1 and 5.2 are applied
to approximately define »,. The bearing capacity factor N, of RPFEM for Drucker —Prager is

calculated by the following equation:

zq DP
VB

On the other hand, the bearing capacity factors N, for non-linear shear strength is determined by

NDP

y

(5.1)

the equation:
2 qNL
Y,.B

The bearing capacity factor N, was compared among the bearing capacity formulas of AlJ,

NNL —

v

(5.2)
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Euro-code 7 and Meyerhof with RPFEM. Fig. 5.1 shows the comparison in bearing capacity
factor by changing internal friction angle from O to 40 deg. As shown in the figure, the bearing
capacity factor by RPFEM employing non-linear shear strength against the confining pressure
match those by AlJ formula in the wide range of internal friction angle. It is obtained smaller
than that by the formulas of Euro-code 7 and Meyerhof. When the internal friction angle less
than 30deg, there is not so much difference in bearing capacity factor among them. But, the

difference becomes greater at the internal friction angle of 40 deg.
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Figure 5.1. Relationship between bearing capacity factor N, and internal friction angle ¢

5.2 Effect of multi-layered ground system

In ultimate bearing capacity assessment for multi-layered ground, the current ultimate bearing
capacity formula cannot provide an estimation for complicate ground conditions. On the other
hand, RPFEM can estimate various ultimate bearing capacity problems of footing which are
difficult to solve by the conventional method due to the complicate conditions of material
property and geometry of footing. Thus, this study discusses the size effect of footing on
ultimate bearing capacity for multi-layered ground where sand layer overlays clay layer. FEM is
a powerful tool to analyze the complicated boundary value problems. It is applicable to
non-uniform materials such as the multi-layered ground and provides a good estimation for
problems. Fig. 5.2a shows that thin sand layer overlays thick clay bed. In the conventional
method, a sand mass of approximately truncated pyramidal shape is assumed to be pushed into
the clay bed so that, the friction angle of sand layer and the cohesion of clay bed are mobilized

in the combined failure zone. The ultimate bearing capacity is computed by the equilibrium



Chapter 5: Discussion on size effect of footing on ultimate bearing capacity 183

equation of sand block. Although the selected value of the side angles of the block a can have a
main influence on the calculated bearing capacity, it is often not clear how its value should be
nominated. In practice, the side angles of the block a proposed by various researchers are
different from each other; for example, a value of a of tan"0.5 is often adopted (Houlsby et al.
1989), 30 (deg) for Yamaguchi and Terashi (1971), tan"'0.5 for Kraft and helfrich (1983) and ¢
for Baglioni et al. (1982). On the other hand, in the case of thick sand layer, the multi-layered
ground can be modeled into uniform ground in the assessment of ultimate bearing capacity of
footing. Thus, the size effect of footing on ultimate bearing capacity is exerted. However, these
failure modes depend on the relationship between the footing width and the thickness of sand
layer. The ultimate bearing capacity of footing is investigated for the footing width from 1 to
100m under the condition of sand layer as 10m in thickness. It is performed by three methods of
conventional method based on Meyerhof, RPFEM for uniform sandy soil and RPFEM for

multi-layered ground.
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Figure 5.2 Failure modes of soils in multi-layered ground

In conventional methods, Hanna and Meyerhof (1980) are perhaps the most widely used in
practice. Their methods are also known as punching shear models, as they assume the sand layer
to be in a state of passive failure along vertical planes beneath the footing edges. For a strip
footing of width B on the upper sand layer, Meyerhof and Hana (1980) proposed the ultimate

bearing capacity given by
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q=c,N, +%Y1H2Ks tan ¢, (5.3)

where ¢, : representative strength of underlying clay (kN/m?)
B: footing width (m)
7;: unit weight of sand (kN/m?)
H : thickness of the sand below the footing (m)
K;: punching shear coefficient

¢; : internal friction angle of sand (deg)
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Figure 5.3. Effect of footing width on bearing capacity factor 2g/yB

in case of multi-layered ground

Fig. 5.3 shows the size effect of footing width on bearing capacity factor 2¢g/yB in the case of
multi-layered ground. From the results by RPFEM, the ultimate bearing capacity of footing the
width of which is within 3m is obtained to match that of uniform sandy soils. In the
conventional method, by assuming diffusion of stress from the footing to the clay bed through
the sand layer, the ultimate bearing capacity of footing is assessed by the failure of clay layer. It
is widely employed to assess the ultimate bearing capacity, but the assumption of stress
diffusion has not been clarified and the contribution of sand layer to the ultimate bearing
capacity is not taken into account. Therefore, the results of ultimate bearing capacity of footing
from RPFEM are different with the results from Meyerhof’s formula at the footing size from
10m to 30m. At bigger footing width, the multi-layered ground can be modeled into uniform

clay ground in the assessment of ultimate bearing capacity of footing. This leads the ultimate
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bearing capacity results from RPFEM is similar to the results from Meyerhof’s formula at

footing size 100m as shown in Fig. 5.3.
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Fig. 5.4 illustrates the deformation of ground according to strain rate distribution for the footing
width from 1 to 100m. By comparing Fig. 5.4a to Fig. 5.4e, it can be seen that the area in
ground failure becomes wider as the footing width is larger. It is inside the sand layer when the
footing width is small. But it expands to the clay layer with the increase in footing width. Size
effect of footing in ultimate bearing capacity can be observed for not only uniform grounds, but
also multi-layered grounds. Since the ultimate bearing capacity formula is developed for
uniform grounds, the applicability of the method is severely limited in design practice. The
results in both ultimate bearing capacity and failure mode are shown appropriately obtained for
the prescribed footing width. Through the examination on the computed results, the developed
rigid plastic FEM is proved to afford a rational assessment for the problems in which the
ultimate bearing capacity is difficult to be assessed by using the current bearing capacity

formulas.

5.3 Discussion

(1) Bearing capacity factor N, was compared among the bearing capacity formulas of AlJ,
Euro-code 7 and Meyerhof with RPFEM by changing internal friction angle from 0 to 40 deg.
The bearing capacity factor by RPFEM employing non-linear shear strength against the
confining pressure matched those by AlJ formula in the wide range of internal friction angle. It
was obtained smaller than that by the formulas of Euro-code 7 and Meyerhof. The difference in
bearing capacity factor was shown greater at the internal friction angle of 40 deg.

(2) Size effect of footing in the case of multi-layered ground was investigated for the ground
where sand layer overlaid clay layer. By simulation results, the size effect of footing was clearly
shown to be generated by the change in failure mode of ground due to footing width.

(3) Wide applicability of developed RPFEM to the assessment of ultimate bearing capacity was

shown through the case studies.
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CHAPTER 6

ULTIMATE BEARING CAPACITY OF FOOTING ON SANDY
SOIL AGAINST COMBINED LOADING

The ultimate bearing capacity of footing related to inclined loads is an important aspect in
geotechnical engineering. Because the number of superstructure buildings has increased and
great earthquakes occur regularly, estimating the ultimate bearing capacity of footing with
considering the effect of footing width is necessary. The strip footings are often subjected to the
inclined loads and the combined loads. The ultimate bearing capacity for combined vertical
and horizontal loads (with no moments) is resolved by Green (1954). The general case of
vertical, horizontal and moment loads has received less attention. Several authors (notably
Meyerhof 1953, Hansen 1970 and Vesic 1975) provide procedures for a general case; however
they only conduct empirical generalizations of the simpler cases without examining in detail.
Under such circumstances the ultimate bearing capacity theories presented in Chapter 2 need
some modification, and this is the subject of discussion in this chapter. The chapter is divided
into two major parts. The first part discusses the ultimate bearing capacities of footing subjected
to centric inclined loads, and the second part is devoted to the ultimate bearing capacity of
footing under vertical, horizontal and moment combination.

In previous geotechnical research, the combined vertical and horizontal load is referred as the
inclined loads. Their results showed that the vertical bearing capacity significantly decreased
when the inclined angle 6 =atan(H/V) increased. Many researchers provide procedures for a
general case; however they only conduct empirical generalizations of the simpler cases without
examining in detail.

There are few analyses related to inclined load for sandy soils except Loukidis et al. (2008).
However, the effect of footing width on ultimate bearing capacity is not considered directly. As
shown in Egs. 2.5 and 2.6, the size effect of footing is large in case of sandy soil. It can be seen in
the combined load space of vertical, horizontal and moment loads. This is a major topic of this
study.

There are few analyses related to inclined load for sandy soils except Loukidis et al. (2008).

However, the effect of footing width on ultimate bearing capacity is not considered directly. The
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inclination coefficient proposed by Loukidis et al. (2008) is also shown. They proposed the

inclination factor i, based on the FE analysis as follows:

(1.5tang+0.4)*
i :Vz[l_(H/V)] (6.1)
Y VO

tan ¢

This research investigated the ultimate bearing capacity of footing on sandy soils against the
combined load of vertical, horizontal and moment loads. This research applied rigid plastic
finite element method which employs the rigid plastic constitutive equation in which non-linear
shear strength properties against confining pressure in case the internal friction angle of 30 and
40 deg. The vertical load V, horizontal load H and moment M, which were applied at the center
of the footing, were subjects in this study. The analytical method provides the reliable
computational results. The relation in normalization form of H/V, vs V/V,and V/V, vs M/BV,

were acquired and then were compared with the relationship by Meyerhof (1956), Architectural

Institute of Japan (1988, 2001) and Loukidis et al. (2008).

6.1 Ultimate bearing capacity for combined vertical and horizontal loads

The rigid plastic finite element method was used to assess the ultimate bearing capacity of strip
footings of which the width varied from 1m to 100m, subjected to the inclined load at an
inclination angle 8 with respect to the vertical. The boundary conditions and typical mesh for
analysis are shown in figure 6.1.

Because of the absence of loading symmetry, the entire soil domain of dimensions will be
considered in this section and in the next section. The numerical simulation procedure used for
the computation of the (H, V) failure envelope (where H and V are the horizontal and vertical
ultimate footing loads respectively).

For inclined load, the application of RPFEM is limited to the case where the contact pressure
between footing and ground is positive. In other words, the ratio H/V is set comparatively in

small range. Further detailed discussion will not conducted in this study.
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Figure 6.1 Formulation of finite element method

Figure 6.2 and figure 6.6 provide the RPFEM result on the relationship between normalized
horizontal and vertical loads on H-V space in case ¢, = 30deg and 40deg. Two cases considered
include (i) linear shear strength property and (ii) non-linear shear strength property. The results
by Al and Meyerhof formulae are also shown. Since AlJ formula employs the same coefficient
with Meyerhof method, the results in normalization form from AlJ and Meyerhof show unique

and coincident line.
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Figure 6.2 The relation between normalized horizontal and vertical loads in case ¢, = 30deg

Figs. 6.2a and 6.6a. In the figure, the normalized horizontal load is indicated greater than those
of Meyerhof and AlJ. The obtained results by RPFEM are plotted for various footing widths. It

is apparent that the results match with the model of Eq. 6.1 by Loukidis et al. though they are
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varied for footing width.
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Figure 6.3 Comparison inclination coefficients among the various methods at footing width B =

10m in case ¢ = 30 deg

Fig. 6.3 and 6.7 indicate the ultimate load in H/V, and V/V, space to compare the inclination
coefficient among the various methods at B=10m in case ¢, = 30deg and 40 deg. It is readily
seen that RPFEM affords the identical results by Loukidis et al. in case of linear shear strength,
but the greater results than that by Loukidis et al. in case of non-linear shear strength. Although
¢ is constant in case of linear shear strength, ¢ decreases by confining pressure in case of
non-linear shear strength. Since the decrease ingmostly depends on the magnitude of vertical
load, the decrease in ultimate bearing capacity is largest for vertical loading. For the inclined
load, the decrease in @becomes moderate with the increase in inclination angle of inclined load.
It derives the normalized horizontal load in case of non-linear shear strength greater than that of
linear shear strength.

Figure 6.4 and figure 6.5 shows failure mechanism from analyses with resistance angle ¢ =

30deg.
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Figure 6.4.Deformatin mechanism from analysis in case internal friction angle ¢ = 30deg with

non-linear shear strength properties
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Figure 6.5.Deformatin mechanism from analysis in case internal friction angle ¢ = 30deg with

linear shear strength properties

Figs. 6.2b and 6.6b indicate the inclination coefficient in case of non-linear shear strength. AlJ
formula is developed by taking account of the size effect of footing. However, since the
inclination coefficient of Meyerhof is introduced into the formula, the applicability of ALJ
formula for inclined load has not been examined. The results by RPFEM taking account of

non-linear shear strength are plotted in the figure.

In case phi = 40deg, the relationship between normalized H/Vo and V/Vo of non-linear shear
strength and linear shear strength decrease and oscillate around AlJ at footing width 1m and

30m, corresponding.
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Figure 6.6 Relationship between normalized horizontal load and vertical load

in case resistance angle ¢ = 40deg
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Figure 6.7 Comparison inclination coefficients among the various methods at footing width B =

10m in case ¢ = 40deg

Figure 6.8 and figure 6.9 shows failure mechanism from analyses with resistance angle ¢ =

40deg.
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Figure 6.8 Deformatin mechanism from analysis in case resistance angle ¢ = 40deg with

non-linear shear strength properties
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Figure 6.9 Deformatin mechanism from analysis in case resistance angle ¢ = 40deg with linear

shear strength properties

The results from analysis computation show that the failure mechanism is asymmetrical and

confined to one side of the footing for all values of the inclination angle when ¢ = 30deg (Fig.
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6.4, Fig. 6.5) and ¢ = 40deg (Fig. 6.8, Fig. 6.9). Furthermore,the failure modes of ground for
non-linear and linear shear strength. They are similar, but the deformation area in the case of
linear shear strength is larger than that in case of the non-linear shear strength. The mechanism

is found composed of three different zones and similar to the mechanism assumed by Meyerhof

and Hansen.
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V/Vo

b) Linear shear strength properties

Figure 6.10 Relationship between Normalized Horizontal load and vertical load for LINEAR
and NON-LINEAR shear strength properties for difference value of internal friction angle
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From Fig. 6.10a and 6.10b, the results showed that the relationship between H/Vo and V/Vo of
small internal friction angle (30deg) is higher than those of larger internal friction angle (40deg)
at the same footing width.

Moreover, the results from RPFEM have the same trend for various magnitude of footing width.

6.2 Ultimate bearing capacity for vertical, horizontal and moment loads
The type of loads, which is often known as combined loads, is important to the stability of
superstructure where footings are subjected to vertical, horizontal and moment loads

combination. Typically, the vertical force is stemmed from the weight of

superstructure g =y, Xh., while the horizontal load comes from the seismic coefficient k;, = O;
0

0.1;0.2; 0.3; 0.4.

The overturning moment load is caused by the horizontal load:
1
MO:q,mxBxah (6.2)

A series of finite element analysis were conducted for sandy soil with Using sandy soil with unit
weight ygn = 18 kN/m’, Density of building yy= 18 kN/m’, cohesion ¢ = 5 kN/m?, internal

friction angle ¢ =30° and ¢ =40°, the footing width 1m, 10m and 30m were computed. Initial

loads are considered as Fig. 6.11.

6M,

qn,=

Bl

qho

Figure 6.11 Initial loads applied to computation

The moment load is given to the footing by the external force where the summations in vertical
and horizontal loads are zero and the resultant moment at the center of footing is same with the
prescribed moment load. The results demonstrated the interaction between the vertical,

horizontal and moment loads. Fig. 6.12 shows the representative finite element meshes of
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analysis.

At each height of superstructure value, the ultimate bearing capacity of footings subjected to
combined loading was computed under the condition of seismic load applied to superstructure.
By changing superstructure height and the seismic coefficient k;,, the forces q,, q, and the

moment load was computed.

20m

80m

Figure 6.12 Representative finite element meshes under superstructure on the strip footings

condition

Ultimate bearing of footing related to inclined loads or combined loads (vertical, horizontal and
moment loads combination) is an important aspect in geotechnical engineering. Meyerhof and
others (e.g. Hansen, 1970, Vesic, 1975) conducted empirical generalizations of the simpler cases
without examining in detail. Moreover, the size effect of footing does not consider in the
previous research. In this chapter, the ultimate bearing capacity of footing that is subjected to
the combined loads of strip footing has been investigated.

Fig. 6.13 shows ultimate bearing capacity of footing in the normalized V-M form by changing
footing width (Im, 10m and 30m) at the internal friction angle of 30 deg and 40deg. The results
from Fig. 6.13a showed that the normalized load V/V, decreases with an increase in M/BV,. In
the case of linear strength, the values that represent the relationship between the normalized
V/V, and M/BV,, obtained greater than that by RPFEM employing non-linear shear strength.
When the internal friction angle is 40 deg (Fig. 6.13b) , there is no much difference in the
normalized V/V, and M/BV, among footing width Im, 10m and 30m in case linear strength.

But the difference becomes greater in case non-linear strength. It is explained that this case
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influences the internal friction angle responding to the confining stress. It means that the effect

of moment load in non-linear case is clearer than that in linear shear strength property.

0.12 _
B =1m(DP) —=*
B=1m(NL) —>%
0.09 B
e B =10m (DP)
2 006 B=10m (NL)
=
B =30m (DP)
0.03 B=30m (NL)
O_OO 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0
V/iVo
a) ¢, = 30deg
0.015
H
B =1m(DP) —>i
B =10m (NL) _%E
B = 10m (DP) 4'3
0.010 o
B = 30m (DP)
= ]
8 B=30m(NL)— =
=
0.005 B =1m(NL)
0.000 ' ' '
0.0 0.2 0.4 0.6 08 1.0
V/Vo
b) ¢, = 40deg

Figure 6.13 The relation between normalized vertical and moment loads

Figs. 6.14 and 6.15 show the distribution of equivalent strain rate and Figs. 6.16 and 6.17 show
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the contour plot of pressure in the ground in case ¢ = 30deg. The results indicated clearer the

effect of moment load in non-linear case than that in linear shear strength property.

k,=0.1 ky=04

a) Linear shear strength property

b) Non-linear shear strength property

Figure 6.14 Deformation mechanism analysis subjected to combined loads in case ¢, = 30deg

with B/h =1

kh = 01 kh = 04

a) Linear shear strength property

b) Non-linear shear strength property
Figure 6.15 Deformation mechanism analysis subjected to combined loads in case ¢, = 30deg

with B/h =0.25
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a) Linear shear strength property

b) Non-linear shear strength property

Figure 6.16 Contour plot of mean stress subjected to combined loads in case ¢, = 30deg with
B/h=1

k,=0.1 ky=04

a) Linear shear strength property

b) Non-linear shear strength property

Figure 6.17 Contour plot of mean stress subjected to combined loads in case ¢, = 30deg

with B/h =0.25
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CHAPTER 7
CONCLUDING REMARKS

7.1 Main fidings

Terzaghi (1943) and others (e.g. Meyerhof, 1951, 1963) have proposed many formulas to
evaluate ultimate bearing capacity. However, the application of formulas is limited due to their
disadvantages. Rigid plastic finite element method is effective to solve the complex problems
such as multi-layered soil and footing shape in the three dimensional condition. Moreover, limit
state analysis is possible to be conducted without the assumption on potential failure modes. In
this study, RPFEM is employed for the assessment of ultimate bearing capacity. The
applicability of the method is presented through the comparison with those by the

semi-experimental ultimate bearing capacity formulas.

Size effect of footing is observed in ultimate bearing capacity, but basically not accounted in the
ultimate bearing capacity formulas. In this study two discussions on the size effect were
conducted. One is the size effect in case of a uniform sandy ground and the other is in case of a
multi-layered ground. On sandy soils, a rigid plastic constitutive equation is proposed by
considering the experiments, where the secant internal friction angle reduces with the increase
in confining pressure. This equation is expressed by the higher order parabolic function and
easily applied to RPFEM. The obtained ultimate bearing capacity shows a good agreement with
that of the ultimate bearing capacity formula by Architectural Institute of Japan (AlJ, 1998,
2001) which takes into account the size effect of footing. It is clear that RPFEM with the use of
proposed constitutive equation provides a good estimation in ultimate bearing capacity

assessment by considering the size effect of footing.

The size effect of footing in ultimate bearing capacity is also observed in case of multi-layered
ground. In conventional methods, it is difficult to assess the ultimate bearing capacity for
multi-layered ground due to the complexity in failure mode of ground. RPFEM is, however,
applicable boundary value problems. Through the case studies for various footing widths, the
change in both ultimate bearing capacity and failure mode due to footing width is shown

properly simulated.
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Moreover, ultimate bearing of footing related to inclined loads or combined loads (vertical,
horizontal and moment loads combination) is an important aspect in geotechnical engineering.
Meyerhof and others (e.g. Hansen, 1970, Vesic, 1975) conducted empirical generalizations of
the simpler cases without examining in detail. Moreover, the size effect of footing does not
consider in the previous research. In this study, the ultimate bearing capacity of footing that is
subjected to the inclined loads and the combined loads of strip footing has been investigated.

The obtained conclusions are summarized as follows:

(1) On sandy soils, the size effect of footing in ultimate bearing capacity was well simulated by
RPFEM with the use of proposed constitutive equation. It was proved by the comparison in
ultimate bearing capacity between the semi-experimental bearing capacity formula of AIJ and

RPFEM.

(2) Rigid plastic constitutive equation was proposed for sandy soils based on the experiments by
Tatsuoka and other researchers for various soils. The relationship between the secant internal
friction angle and first stress invariant was uniquely expressed in normalized form although
some scatters existed. The yield function was modeled into the higher order parabolic function

regarding the first stress invariant.

(3) Bearing capacity factor N, was compared among the bearing capacity formulas of AlJ,
Euro-code 7 and Meyerhof with RPFEM by changing internal friction angle from 0 to 40 deg.
The bearing capacity factor by RPFEM employing non-linear shear strength against the
confining pressure matched those by AlJ formula in the wide range of internal friction angle. It
was obtained smaller than that by the formulas of Euro-code 7 and Meyerhof. The difference in
bearing capacity factor was shown greater at the internal friction angle of 40 deg.

(4) Size effect of footing in the case of multi-layered ground was investigated for the ground
where sand layer overlaid clay layer. By simulation results, the size effect of footing was clearly
shown to be generated by the change in failure mode of ground due to footing width.

(5) Wide applicability of developed RPFEM to the assessment of ultimate bearing capacity was
shown through the case studies.

(6) The results from analysis computation show that the failure mechanism is asymmetrical and

confined to one side of the footing for all values of the inclination angle. Furthermore, the
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mechanism seems to be composed of three different zones and similar to the one assumed by
Meyerhof and Hansen

(7) Ultimate load space in normalized vertical and horizontal loads was shown to match with
that by Loukidis et al. (2008), Meyerhof (1956) and AIJ (1988, 2001) in case internal friction
angle 40deg and be greater than those by Meyerhof (1956) and AIJ (1988, 2001) in case internal
friction angle 30deg of linear shear strength. Moreover, the internal friction angle decreases by
confining pressure and the decrease is the most for the case of vertical loading. It makes the
obtained result greater than that by Loukidis et al. in case of non-linear shear strength

(8) In the case of linear strength, the values that represent the relationship between the
normalized V/V, and M/BV, obtained greater than that by RPFEM employing non-linear shear
strength and normalized load V/V, decreases with an increase in M/BV,,. At the internal friction
angle of 40 deg, there is no much difference in the normalized V/V, and M/BV, among footing
width Im, 10m and 30m in case linear strength.

(9) Effect of non-linear strength was investigated for combined loading case (horizontal and
vertical loads vs horizontal, vertical and moment loads). From computation results, the
non-linear strength was clearly shown by the change in failure mode of ground.

(10) The non-linear shear strength model for sandy soil is employed in RPFEM to evaluate
the size effect of footing on ultimate bearing capacity. Through the case studies the applicability

of the method was clearly exhibited.

7.2 Future research
7.2.1 Propose new model based on the modified stress tensor t;
A. Druker — Prager yield function
Propose new model based on the modified stress tensor t;; to describe uniquely the deformation
and strength of soils under three different principle stresses.

- Influence of intermediate principal stress on the deformation and strength of
geomaterials.

- Dependence of the direction of plastic flow on the stress paths.

- Influence of density and/or confining pressure on the deformation and strength of

geomaterials.
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Table 7.1 Comparison between tensors and scalars related to stress and strain increments in the

ordinary concept and the t; concept

Ordinary Concept t; Concept

Tensor normal to reference plane  §, (unit tensor) a; (tensor normal to SMP)
Stress tensor o; t
Mean stress p =0;9,/3 ty = 4a;
Deviatoric stress tensor 5 = 05— pﬁq I'jj =4 —
Deviatoric stress q=J32)s;s, R

g e PR
Stress ratio tensor n; = sfp x; = tlty
Stress ratio n=qlp X =ty
Strain increment normal to de, = dg;6; de’y, = dga;

reference plane
Deviatoric strain increment tensor  de; = de; —de,§/3  de’; = de; — de"\q,

. )
Strain increment parallel to deg = [(23)deyde;  de; = ﬁldsﬁdgu_
reference plane

Drucker — Prager yield function

t
f(t)=at, +—=-b=0 (7.1)
(t)=aty 5
where
a:& (7.2)
\9+12tan’ ¢
3c

b= (7.3)
V9+12tan’ ¢

Figure 7.1 Drucker-Prager yield function in t;; space

CAON A[af(t) |, of(t)at ]
o oty o, ot o,
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ot) _
o,
- dt, _ a(tklakl):a”
ot ot ’
L o) _ 1

i, 3

o Mo
dat, ot ot,

ot _ 1 o = t _by—tvay
’ 7 .7 ikl 7 47
atkl 2\/tk1tkl '\,tijtij tg
o, 9 o, Aay) o
M- —(t, ~tya, )= NHM 55 ——Nqg =00,—a.a
ati]- atl] ( kl N kl) atl] atlj ik~ jl atl] kl ik~ jl ij "kl
. of(t) 1t,—ta 1
E=A 5t =A aa; _73 i " N (é‘iké‘jl_aijakl) =A aa,; _m(tklé‘iké‘jl_tklaijakl_tNaklé‘ik jl+tNaklaijakl)
s s
=A oy —71 t,—tya; —tya; +tya,a,a,
t.v3
s

1
= A[Oﬁ,j i (t,j - tNazjaklakl )J

t.43
We have:
a,+a, a-—a
a,=—-‘+—>=2+-"1—2cos2a
2 2
a,+a, a-—a
,, =——=——1—2cos2a
2 2
a3 = dy
—-a, .
a, =a, =——=sin2

2 2 2 _
a, +a, +a; =1

Therefore

auay =a,a,, =a;a,;,+a,a, +aa; +a,a, +a,a, +a,a; +a,;a,; +a,a,; +asa;,

=a,,a;, taya,, +aa,; +2a,a,
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2

2 2
a,—a a,+a, a —a a,—a, .
+ 12 2cos20cj +( L2 12 2cosZOc) +a§+2(%sm20c)

2

(7.4)
> £:£ Al oa t:’ A| oa t” A || aa t:’ t’f
e = = — . — = — —
SMP T t3 T t3 T t3 T t3
a (, t:t; o 1 (7.5
:A aza”aij 2ts 3(tlj U)+§ /tf Y :A\/a2—2ts\/§(tyaij—t1\,aijaij)+3
Ao+t
3
Il)_e_| . 1 &
a, A 3 éqp
A= o (7.6)
=
o+
3
t.
el 2o - )
tS
=7 ea,, - at TV 0ay, — Lo T oa; — f (7.7)
V3t V3t V3t

t, + 15, + 1
V3t
(S, =0 = 1, =0)

= }/0{(a11 t+a, +a33)_

t)
7(1) () 1) ij
ty =ty —ty ay —y{aaij - }—\(ocaiaij

t3

’ ’ t: t;
=7 = J(Y{aa“ WG }_maiaﬁj : [Y{aa” WG }_maiaﬁj
S S

=v. [ {oa, — t doa, — t -20a, — t Hoaa, J+o’faa, raa,
ij ts\/g ij ts\/g ij ts\/g 1) i) 1)
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t, = y\/oc2 —0+%— 2{0(2 - t:\ij/g :{ocaiaij }] +a’{a, : ai}{aij : aij}

(7.8)
3
£(t)=alyea, )+ —=—=y—k =0
V343
)
=>yaa——|-k=0
3
= y= s 1 (7.9)
[aza,. —j
3
ty =7af(t)= k o +1 E (7.10)
at (aza' _ 1) 3 eSMP
: . o ( )} !
Sovp SINE[=MA——==1< Al oa. —
s =rfe}=ir{n %, i
=Aoa,, — tl’l +AMaoa _t,i +Maa.. — £
11 \/gts 22 \/gts 33 \/gts
t, +t, +t, (7.11)
zAa'(all"*"122""‘133)_%2%33
=Aoa,; =Aoa, (S;=0=t,=0)
aa; .
= 1 eSMP
at+—
3
h(égyp) = 4up ———= égpp =0 (7.12)
at+-
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aévSMP o +1 aéSMP
3
— I _ an(x‘ g

0 WE:E O
o (aE) . e 1 (aE). .
’ 2 g';g(ae"“g 0 ) TeE\oE
1 -
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ah(é) a,a g

€ G
_ )y ) _ oy .
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=TNTH =
=ty +t) =y Q e+ K[mTE—n—e_Q ‘C‘J[m—n—,Qe J
eSMP Csmp €smp
TAT
& .
+Km n- Q jmT—nf’L 3 (7.15)
eSMP Csmp Csmp
=D"’g
On the other hand:
TT
& .
Csup Csup Csup (7.16)
= a;Dp g

Relationship between Eij (int; space)and &; (in 0 space)

W= 0,&; =1,& = aikO'kj =a,0; akj log a,qskJ

= &y = dudy (7.17)
= &= aTEkj
=é¢=a'¢
We can check :
W tijgu = (aikO'kj )(a 8) t (O' aa 8)
= tr(O'Té:)
=0:¢
=é=a¢ (7.18)
Equilibrium equation:
[o:&av = p[T-Suds + [ X - sidv (7.19)
4 S, \4
Constraint condition : .[ T-udS =1
SO’
The load factor p instead incorporate to constraint condition by using penalty method:
= —ﬂ[ LT -uds - 1) (7.20)
So we have:
jo:&dv:—y(jT-udS—1][T-&1ds+jx-&1dv (7.21)
1% Se Ss 14

& [o:&dv=(a;'Dedv):(BU)dv =B [a;Dedv=30" [B'a;'Dedv =" [B'a;'Dedv
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- u( L:,r -adS - 1) J'S;l‘ -BudS+ [ X - dudV = —u( LU (NT)- (NU)ds - 1) LG (NT)- (NSU)dS

+ [ (NX)- (NsUJav
_ —u( [ (NT) (NO s - 1) [, (N30)" (NT)ds + [, (N8O (NX)av
= —u( ) G (T™NT\NU)ds - 1)]36 (BUTNTNt)ds + [ (SUTNTINX)dV
= —SUTu( ) (, (T"N'NU)dS - 1) ) (, (N'NT)is +8U" [ (N"NX v
So we have:

= [B7a,'D’a;BUy = —,u( J, (T"™N"NU s — 1) [, (N"N"Jas + 0" | (N"NX Jav

= [B'a;'D’a;BUy = —u( [ (T"N"NUs - 1) [ (N'NT)as+ 0" [ (N'NX Jav  (7.22)
Here, replace as below to above part of governing equation.

[ B'a;'D’a;Bavl = KU

\%

[ (N'NT)is = F

[ (N™NX Jav = x
Therefore,
[B7a;'D7a;BUAY = —,u( Lg (T™N"NU )ds —1) L(, (N'N"as + 80" [ (N"NX Jav
= KU =—u(F"U-1)F+X
— KU+pF(F'U-1)=X
= KU + (WFF'U - uF)= X

= KU +uFF'U=pF+X
— (K +uFF" U = pF+X (7.23)
= KU=pF+X

Here, K is all stiffness matrix.

B. Hibino - Hayashi yield function

flt)=ar, —(t,) +k=0 (7.24)
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Ay, = a3 =0

2 2 2
a;, +a; +a; =1
Therefore

aya, =aja,; =a,,a;, +a,a, tazas +aa;, +a,a, +aas +a,3a;; 12,38, a8,

=a,,a;, +2a,3a, +a;a;+2a,a,
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é=ve:e=_|Al —afaty+k)n a,—— |: Al —afat, +k)n a, ——
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n tg n t

2 2-20 tl ot 2 2-2n
- A\/“—2 (ot k) o+t = A\/a—z (aty +K) v +1
n n

S

A= ¢ (7.30)

. 1-n t a I-n t.
39:1\(1 ooty +k) o aJ—tUJ= - c (1oc(octN+k)naU—t”J
n 2-2n n
s \/a(m e s (7.31)

Where & is called the equivalent strain rate and defined by: & =¢¢

of (t 1 t;
I =ty = tr{ya_(t)}z tr{Y{; ( +k) noa; —i}}
ZY{l ofaut +k) nay T tl}+7{l afat +k) “nazz tﬁ}""Y{l afat +k) “na33 tﬁ}
n tg n t n t,
1t +1th, +t5,

1 In
= Y_a‘(atN +k) n (au ta,, +as3)+ﬁ t,

n
I-n
= (aty+K)» a (S,=0 = t, =0)
n
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1-n
—E(OctN +k)n a
n

(7.32)

(7.33)

t, =t = \/(y{l afoty +k)liTnaii —t”}—w(atN +k)liTn aj : (y{l afoty +k)l;n a, ”} E(octN +k)l;n aj
n Tty n n tg n
_y \/ {1 ooty +K)'a, —t”}—a(atN T aj : [{1 ooty +K)' a, — }—a(atN ) aj
n tg] n n T otg] n
{1 afat, +k)liTnaij —t”} : {1 afot, +k)liTnaii —%}—2{1 afat, +k 17Tnaij —t”} : [E (ot +k)l;n aj
—y n S n Tty n tg n
2 —2n
% (at, 1K)+ (aza)
o 2-2n ti'. : t:, o’ 2-2n o’ 2-2n
ts :y\/[{nz(atN+k) n + Jts J}_2n2(atN +k) n aij+n72(0°tN+k) n ] (734)
=7
1
o o n
f(t):(ay—(at,v k) a+k) =0
n
1
ya’ 1-n "
== (at, +k)n a+k
n
1
of (t o’ I v o 2m g
L3 AP \/—2(0ctN+k) ol (7.35)
ot n n é
E - -
t;=Y== ygg =DPg (7.36)
e é
On the other hand:
0, = agltiJ = aal Yg €
e (7.37)
=a;'D’e
Relationship between Eij (int; space)and &; (in 0 space)
W =0, =18 = a,0,& = q,0,%; = 0,4,
=g = akigk‘
! ! (7.38)

. T
=>&=a §;

=¢=a'¢
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We can check :
W= tijgij = (dikO'kj )(a_Té)Z tr(O'TaTa_Tg)
= tr(ojé)
=0:¢

=é=a¢
Equilibrium equation:

jvc L %dV = pLT . SudS + jvx A% (7.39)

Constraint condition : J.S;I‘ -adS =1

The load factor p instead incorporate to constraint condition by using penalty method:
p= —ﬂ(js;r -uds —1)

So we have:

jvc L &dV = —,u( jST -uds - 1) LT - S0dS + jvx - dV (7.40)

4 [o:ddv = (o} Deav): BX v = BV [a;'Dedv = K7 [B' a Didv =" [B' ;' Didyv

- u( L:r -adS - 1) jST . 30dS + [ X - ddV = —u( LU (NT)- (NU)ds - 1) LG (NT)- (NSU S

+ [, (NX)- (N8UJav
_ —u( [, (NT)"(NU s - 1)]56 (NSU)' (NT)ds + [ (N3U)" (NX)av
= —u( LG (T™NTYNU s - 1)]56 (BUTNT Nt)as + [ (BUTNT (NX)dv
= —SUTH( LG (T"™N"NUMS - 1) LG (N'NThs + 50" [ (N"NX v
So we have:

= [B"a;'D’a;BUdy = —u( Lg (T"N"NU)ds — 1) Lg (N'N"Jas + 30" [ (N"NX Jav

= [B7a;'D’a;BUdy = —,u( [ (T"N"NUs - 1] [ (N"NT)as +a07 [ (N"NX Jav
Here, replace as below to above part of governing equation.

[ B'a,' D, BavU = KU (7.41)
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[ (N'NTs = F (7.42)
[ (N™NX Jav = x (7.43)
Therefore,

[B74;'D7a;BUAY = —,u( [ (T"N"NUs - 1) [ (N'NT)as + 80" [ (N*NX Jav

= KU =—u(FTU-1)F+ X
— KU +pF(F'U-1)=X
— KU + (WFFTU - uF)= X
= KU +UFF'U=pF+X
= (K +uFF" U =puF+ X
= KU =pF+X (7.44)

Here, K is all stiffness matrix.

7.2.2 Numerical simulation of bearing capacity on sand consider to intermediate stress
- Bearing capacity analysis

- Effect of intermediate stress to bearing capacity of soils.
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Figure 7.2 Block Diagram

START.

'

Input data.,

.

Sort boundary condition of medel (RENUM)

'

Input loading condition (EXTF).,

Conzider water (UNSAS) = ¢, @~

:

(ELFEM) =tleft sight B° DB
Right sight: Force (finc+flconsfi+bdf)
v
(SOLVER) = shvr=1

Calculate £.6,.1.7.

I

(RPFELD) - INTTIAL =+initial velocity el =%

Inifial 1.7,

I

(RPEMATY: B DB .
(RPFORCE): uF F

(SOLVER): vel=1u.,

{POTENTIAL): Calenlate [, and J, > I,
- - a,=alc = |—
| . N I: LT.'
‘: E.' ='I:Til-i7.'
P }lﬂ_s.l —_ =5
di, =D¥%de_ .
|1, =1 +dI,

Calculate £.0,.1 .7,

¥

(POTENTIAL): 0= —([F Hit,s }—1)
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