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ABSTRACT 

 

Currently, there are many formulas used to calculate the ultimate bearing capacity such as 

Terzaghi (1943) and others (e.g. Meyerhof, 1951, 1963). However, the formula has 

disadvantages in application to practice since it is only applied in calculating simple footing 

shape and uniform grounds. Most formulas don’t take into account the size effect of footing 

on ultimate bearing capacity except for the formula by Architectural Institute of Japan. The 

advantage of finite element method is the application to non-uniform grounds, which are for 

example multi-layered ground and improved ground, and complicated footing shape in three 

dimensional condition. It greatly improves the accuracy in estimating ultimate bearing 

capacity. Moreover, limit state analysis is possible to be conducted without the assumption on 

potential failure modes. The objective of this study is proposing a rigid plastic constitutive 

equation using non-linear shear strength property against the confining pressure. The 

constitutive equation was built based on the experiment regarding non-linear shear strength 

property against confining pressure reported by Tatsuoka and other researchers. The obtained 

results from experiment on Toyoura sand and various kinds of sands indicated that although 

internal friction angle differs among sandy soils, the normalized internal friction angle 

decreased with the increase in the normalized first stress invariant for various sands despite of 

dispersion in data. This property always holds irrespective of the reference value of the 

confining pressure in normalization of internal friction angle. This equation is expressed by 

the higher order parabolic function and easily applied to RPFEM. Applicability of proposed 

rigid plastic equation was proved by comparing with the ultimate bearing capacity formula by 

Architectural Institute of Japan (AIJ, 1998, 2001) which is an experimental formula to take 

into account the size effect of footing.  

Size effect of footing is observed in ultimate bearing capacity, but basically not accounted in the 

ultimate bearing capacity formulas. In this study two discussions on the size effect were 

conducted. One is the size effect in case of a uniform sandy ground and the other is in case of a 

multi-layered ground. The results of RPFEM with the proposed constitutive equation were 

obtained similar to the results by Architectural Institute of Japan. It is clear that RPFEM with 



 

 

the use of non-linear shear strength against the confining pressure provides good estimations 

to the ultimate bearing capacity of footing by taking account of size effect of footing. RPFEM 

was clearly shown to be effective for the complicated problems in material properties and 

footing shape than the conventional ultimate bearing capacity analysis.  

Moreover, ultimate bearing of footing related to inclined loads or combined loads (vertical, 

horizontal and moment loads combination) is an important aspect in geotechnical engineering. 

Meyerhof and others (e.g. Hansen, 1970, Vesic, 1975) conducted empirical generalizations of 

the simpler cases without examining in detail and the size effect of footing does not consider 

in the previous research. This is a major topic of this study. The obtained results show that the 

normalized vertical load decreases with the increase in the normalized horizontal load and/or 

moment load. The normalized moment load is obtained greater than that of linear shear 

strength property and therefore effect of non-linear shear strength property on the normalized 

limit load space in vertical, horizontal and moment loads is clearly indicated.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background 

 

In design of buildings, three main design criteria, namely the ultimate bearing capacity of the 

footings; the total and differential settlements and the economic feasibility of the footing are 

required to satisfy. This study mainly focuses on the first of these criteria; the assessment for 

ultimate bearing capacity of footing is an important task in order to examine the stability of 

building - ground system. Bearing capacity failure occurs as the soil supporting the foundation 

fails in shear, which may involve either a general, local or punching shear failure mechanism 

(Bowles, 1988). Estimation and prediction of the ultimate bearing capacity of the footing is one 

of the significant and complicated problems in geotechnical engineering (Poulos et al., 2001). 

Currently, there are many formulas used to calculate the ultimate bearing capacity. A list of 

principal contributions to the study of this subject may be found, for example, in Terzaghi 

(1943), Hansen (1970), Meyerhof (1963) and Tani and Craig (1995). These studies focuses on 

the estimation of the ultimate bearing capacity of the footing under combination of vertical, 

horizontal and moment loading, as well as the effect of soil rigidity, load inclination and the 

depth of the foundation on the ultimate bearing capacity of footings. However, the formula has 

disadvantages in application to practice since it is only applied in calculating simple footing 

shape and uniform grounds. Most formulas don’t take into account the size effect of footing on 

ultimate bearing capacity except for the formula by Architectural Institute of Japan. The 

advantage of finite element method is the application to non-uniform grounds, which are, for 

example, multi-layered ground and improved ground, and complicated footing shape in three 

dimensional conditions. It greatly improves the accuracy of estimating ultimate bearing capacity. 

The objective of this study is proposing a rigid plastic constitutive equation using non-linear 

shear strength property against the confining pressure. The constitutive equation was built based 

on the experiment regarding non-linear shear strength property against confining pressure 
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reported by Tatsuoka and other researchers. The obtained results from experiment on Toyoura 

sand and various kinds of sands indicated that although internal friction angle differs among 

sandy soils, the normalized internal friction angle decreased with the increase in the normalized 

first stress invariant for various sands despite of dispersion in data. It was shown no matter how 

to select the standard value of confining stress in normalization of internal friction angle. 

Applicability of proposed rigid plastic equation was proved by comparing with the ultimate 

bearing capacity formula by Architectural Institute of Japan which is an experimental formula to 

take into account the size effect of footing. The results of RPFEM with the proposed 

constitutive equation were obtained similar to the results by Architectural Institute of Japan. It is 

clear that RPFEM with the use of non-linear shear strength against the confining pressure 

provides good estimations to the ultimate bearing capacity of footing by taking account of size 

effect of footing. This study discussed the size effect of footing in ultimate bearing capacity in 

case of multi-layered ground 

Moreover, in previous geotechnical research, the combined vertical and horizontal load is referred 

as the inclined loads. Their results showed that the vertical bearing capacity significantly decreased 

when the inclined angle ( )VHatan=θ  increased. Many researchers provide procedures for a 

general case; however they only conduct empirical generalizations of the simpler cases without 

examining in detail. 

Recently, the numerical methods are efficient techniques for solving problems related to 

geotechnical engineering. The rigid-plastic finite element method (RPFEM) was applied in 

geotechnical engineering by Tamura (1991). In this process, the limit load is calculated without the 

assumption about the potential failure mode. The method is effective in calculating the ultimate 

bearing capacity of footing against the three-dimensional boundary value problems. Although 

RPFEM was originally developed based on the upper bound theorem in plasticity, Tamura proved 

that it could be derived directly by using the rigid plastic constitutive equation. 

This research investigated the ultimate bearing capacity of footing on sandy soils against the 

combined load of vertical, horizontal and moment loads. This research applied rigid plastic finite 

element method which employs the rigid plastic constitutive equation in which non-linear shear 
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strength properties against confining pressure in case the internal friction angle of 30 and 40 deg. 

The vertical load V, horizontal load H and moment M, which were applied at the center of the 

footing, were subjects in this study. The analytical method provides the reliable computational 

results. The relation in normalization form of H/V0 vs V/V0 and V/V0 vs M/BV0 were acquired and 

then were compared with the relationship by Meyerhof (1956), Architectural Institute of Japan (1988, 

2001) and Loukidis et al. (2008). 

RPFEM was clearly shown to be effective for the complicated problems in material property 

and footing shape than the conventional ultimate bearing capacity analysis. 

 

1.2 Scope and Objective of the study 

 

 The objective of this study is proposing a rigid plastic constitutive equation using 

non-linear shear strength property against the confining pressure; the obtained results provide 

good estimations to the ultimate bearing capacity of footing by taking account of size effect of 

footing in case of multi-layered ground and also the ultimate bearing capacity of the footing 

under combination of vertical, horizontal and moment loading 

 

1.3 Thesis outline 

 

 Chapter 1 gives the general background of ultimate bearing capacity and scope and 

objective of research work. 

 Chapter 2 review ultimate bearing capacity of footing under vertical load condition; 

combined loading and also review on rigid plastic finite element method (RPFEM). 

 Chapter 3 describes numerical formulation on rigid plastic finite element method. In this 

chapter, strength tests of Toyoura sand by Tatsuoka et al. was shown and rigid plastic 

constitutive equation for non-linear shear strength property are proposed 

 Chapter 4 simulate finite element model to estimate ultimate bearing capacity of footing 

under plane strain condition using rigid Plastic constitutive equation for Drucker –Prager yield 
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function and non-linear shear strength property 

 Chapter 5 is a chapter for a discussion on size effect of footing on ultimate bearing 

capacity. The discussions on result comparison are also written. 

 Chapter 6 is a chapter for ultimate bearing capacity of footing against combined loading 

(Vertical, horizontal and moment loads combination). 

 Finally, chapter 7 summarizes the general conclusion of this study and gives some 

suggests some area requiring further work. 

 

As an overview, the research presented in this thesis can be divided into three principal areas; 

 

(1) Proposing a rigid plastic constitutive equation using non-linear shear strength property 

against the confining pressure 

 

(2) The development of the ultimate bearing capacity for strip footing on a multi-layered, 

homogeneous soil profile. 

 

(3) The development of the ultimate bearing capacity for strip footing under combination of 

vertical, horizontal and moment loading. 

 

The structure of this thesis reflects the three main topics listed above. The obtained numerical 

results are presented on chapter 5 to chapter 6. Many cases and problems are separated and 

discussed.  

Chapter 7 presented a summary and conclusion of this study, including recommendations for 

future research. 
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CHAPTER 2 

LITERATURE REVIEW ON ULTIMATE BEARING CAPACITY 

AND RIGID PLASTIC FINITE ELEMENT METHOD 

 

In order to facilitate the discussion in later chapters, a number of definitions which will be used 

in this thesis are presented below. 

Bearing capacity is the ability of a soil to safely carry the pressure placed on it from any 

engineered structure without suffering a shear failure with accompanying large settlements. 

Applying a bearing pressure which is safe with admiration to failure does not ensure that 

settlement of the foundation will be within acceptable limits. Therefore, settlement analysis 

should mostly be performed since most structures are sensitive to excessive settlement 

(Merifield (2005)). 

Ultimate bearing capacity is the intensity of bearing pressure at which the associate ground is 

estimated to fail in shear, i.e. a collapse will take place (Whitlow (1995)). 

 

2.1 Literature on ultimate bearing capacity 

2.1.1 Review of the ultimate bearing capacity of footing theories - centric vertical loading 

 

In design of buildings, the assessment for ultimate bearing capacity of footing is a key task in 

order to observe the stability of building - ground system. The value of the bearing capacity of 

footing depends not only on the mechanical property of the soil but also on the size of the 

loaded range, its shape, and its location with reference to the surface of the soil. The term "strip 

footing" is practical to a footing whose length is very long in comparison with its width. In most 

parts of this chapter, the soil is supposed to be an isotropic, homogeneous and elastic-perfectly 

plastic material which follows the Coulomb yield condition and the associated flow rule. A 

plane strain condition is assumed in this chapter. The effect of non-homogeneity on the bearing 

capacity of footings will be conversed later. 

Limit analysis is concerned with the development and applications of such methods. Although 

the limit analysis methods were established firmly less than twenty years ago, there have been 

an enormous number of applications in a wide variety of fields from metal deformation 
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processing to the design of reinforced concrete structures. Applications to beams and frames are 

the most highly developed aspect of limit analysis and design so that the basic techniques are 

given in several texts. Reference to the work of many investigators is given also in the ASCE 

Manual 41 (ASCE-WRC, 1971) on plastic design in steel. Applications of limit analysis to 

plates and shells for both metal and reinforced concrete materials are given in the recent book 

by Save and Massonnet (1972). A great deal of attention has been paid recently to soil 

mechanics in addition to concrete and rock. An appreciable amount of practical information is 

now available as the result of this and allied work. Perhaps the most striking feature of the limit 

analysis method is that no matter how complex the geometry of a problem or loading condition, 

it is always possible to obtain a realistic value of the collapse load. When this is coupled with its 

other merits, namely, that it is relatively simple to apply, that it provides engineers with a clear 

physical picture of the mode of failure, and that many of the solutions obtained by the method 

have been substantiated numerically by comparing with the existing results for which 

satisfactory solutions already exist, it can be appreciated that it is a working tool with which 

every engineer should be conversant. Limit analysis is not the only method of assessing the 

collapse load of a stability problem in soil mechanics. The other standard and widely known 

techniques used in the solutions of soil mechanics problems may be divided into two principal 

groups - the slip-line method and the limit equilibrium method 

The limit analysis method employed herein does not consider the deformation of the soil and the 

solutions obtained are essentially the same as that assuming the soil to be rigid-perfectly plastic 

material. This chapter is also primarily concerned with complete failure of the footing, or its 

ultimate bearing capacity. This type of failure is referred to here as a general shear failure. 

Kötter (1903) was the first to derive these slip-line equations for the case of plane deformations. 

Prandtl (1920) was the first to obtain an analytical closed form solution to these equations for a 

footing on a weightless soil. In the analysis, he developed the solution with a singular point with 

a pencil of straight slip-lines passing through it. These results were subsequently applied by 

Reissner (1924) and Novotortsev (1938) to certain particular problems on the bearing capacity 

of footings on a weightless soil, when the slip-lines of at least one family are straight and the 

solutions have closed form. 

The so-called limit equilibrium method has traditionally been used to obtain approximate 
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solutions for the stability problems in soil mechanics. Examples of this approach are the 

solutions presented in the book by Terzaghi (1943). The method can probably best be described 

as an approximate approach to the construction of a slip-line field and generally entails an 

assumed failure surface of various simple shapes-planes, circular or log-spiral. With this 

assumption, each of the stability problems is now reduced to one of finding the most dangerous 

position for the failure or slip surface of the shape chosen which may not be particularly well 

founded, but quite often gives acceptable results. In this method, it is also necessary to make 

sufficient assumptions regarding the stress distribution along the failure surface such that an 

overall equation of equilibrium, in terms of stress resultants, may be written for a given problem. 

Therefore, this simplified approach makes it possible to solve various problems by simple 

statics. Various solutions obtained by this method are summarized in graphical or tabular form 

in the texts by Terzaghi (1943) and by Taylor (1948) and are now quite widely used in practice. 

It is worth mentioning here that none of the equations of solid mechanics is explicitly satisfied 

everywhere inside or outside of the failure surface. Since the stress distribution is not precisely 

defined anywhere inside and outside of the assumed failure surface, one cannot say definitely 

that an acceptable stress distribution which satisfies equilibrium, stress boundary conditions and 

the yield criterion, exists such that the solution meets the requirements of the lower-bound rules 

of limit analysis. Although the limit equilibrium technique utilizes the basic philosophy of the 

upper-bound rules of limit analysis, that is, a failure surface is assumed and a least answer is 

sought, it does not meet the precise requirements of the upper-bound rules so that it is not an 

upper bound. The method basically gives no consideration to soil kinematics, and equilibrium 

conditions are satisfied only in a limited sense. It is clear than that a solution obtained using the 

limit equilibrium method is not necessarily an upper or a lower bound. However, any 

upper-bound limit analysis solution will obviously be a limit equilibrium solution. 

Studies of the bearing capacity of foundations under conditions of plane strain have been made 

by Terzaghi (1943), by Meyerhof (1951) using limit equilibrium method, by Sokolovskii (1965), 

by Brinch Hansen (1961) using slip-line method, by Shield (1954b), by Chen and Davidson 

(1973) using limit analysis method, and many others. 

The ultimate bearing capacity formula of footing by Terzaghi (1943) has been widely employed 

in practice. It takes account of the effects of cohesion, surcharge and soil weight. This theory 
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determine the ultimate bearing capacity of a shallow, rough, rigid, continuous (strip) foundation 

supported by a homogeneous soil layer extending to a great depth. The failure surface in soil at 

ultimate load (that is, qu per unit area of the foundation) assumed by Terzaghi is shown in 

Figure 2.1. Referring to Figure 2.1, the failure area in the soil under the foundation can be 

divided into three major zones: 

   1. Zone abc. This is a triangular elastic zone located immediately below the bottom of the 

foundation. The inclination of sides’ ac and bc of the wedge with the horizontal is φα = (soil 

friction angle). 

   2. Zone bcf. This zone is the Prandtl’s radial shear zone. 

   3. Zone bfg. This zone is the Rankine passive zone. The slip lines in this zone make angles 

of 




 −± 245 φ with the horizontal. 

 

Figure 2.1 Failure surface in soil at ultimate load for a continuous rough rigid foundation as 

assumed by Terzaghi. 

 

Since Terzaghi’s founding work, numerous experimental studies to estimate the ultimate bearing 

capacity of shallow foundations have been conducted. Based on these studies, it appears that 

Terzaghi’s assumption of the failure surface in soil at ultimate load is essentially correct. 

However, the angle α  that sides ac and bc of the wedge (Figure 2.1) make with the horizontal 

is closer to 




 + 245 φ and notφ , as assumed by Terzaghi. In that case, the nature of the soil 

failure surface would be as shown in Figure 2.2. 
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Figure 2.2 Modified failure surface in soil supporting a shallow foundation at ultimate load. 

The ultimate bearing capacity formulas typically expressed as below: 

      

    
qfγc NDBNcNq γ+γ+= 2

1          (2.1) 

where Νc , Νγ , Νq  are the bearing capacity factors, which are functions of internal friction angle 

of the soil, ϕ. The other indexes are as follows. 

γ : unit weight of soil )m/kN( 3  

fD  : depth of footing (m) 

Β : footing width (m) 

Since this approach has been proposed, various studies regarding bearing capacity factors have 

been conducted. Precisely mathematical expressions for bearing capacity factors 
qN and 

cN were provided by Prandtl (1921) and Reissner (1924) as follows: 









+=

24
tan2tan φπφπ

eNq
       (2.2) 

( ) φcot1−= qc NN         (2.3) 

With regards to 
γ

N factor, several formulations have been proposed but no formula is totally accurate, 

and also many proposed estimation methods. This has become one of the main reasons for disagreement 

between methods used to estimate qult, as the value of 
γ

N for equation values of ϕ can produce large 

differences, depend on the estimation method used. The task of categorically validating a 

method for calculating 
γ

N is complex due to the difficulty in obtaining qult experimentally. A 

clearly defined value of qult is not always obtained in a load test; this is mainly due to the 

limitations of test procedures or because the progressive failure effect leads to repositioning of 
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soil particles beneath the foundation, and the highest load levels are not reached (Elhakim 2005). 

For this reason, to determine qult, and in turn
γ

N , experimentally it is necessary to use methods 

such as those proposed by de Beer (1970); Vesic (1973); Briaud and Jeanjean (1994); Amar et al. 

(1998); Decourt (1999). However, these methods vary widely as they define qult based on 

selection criteria from a point on the load–settlement curve that can be very subjective 

(Lutenegger and Adams 1998; Elhakim 2005). Table 2.1 shows the methods for estimating 

γ
N in term of ϕ, along with the author of each method and the theory on which it is based. 

 

Table 2.1 Expression for the estimation of the 
γN factor 

[11]
. 

Terzaghi (1943); fitted expression; limit 

equilibrium 

( ) ( )φ







+φπ







 φ
+

π
= 34.1tan0.3tanexp

24
tan2

γ
N  

Caquot and Kérisel(1953); fitted from 

Ukritchon et al. (2003): method of 

characteristics 

( ) ( )φ







+φπ







 φ
+

π
= 27.1tan794.1tanexp

24
tan413.1 2

γ
N  

Meyerhof (1963); semi-empirical based on 

limit equilibrium 

( ) ( )φ







−φπ







 φ
+

π
= 4.1tan0.1tanexp

24
tan2

γ
N  

Muhs and Weiss (1969); (Euro-code 7); 

semi-empirical expression 

( ) ( )φ







−φπ







 φ
+

π
= tan0.1tanexp

24
tan2 2

γ
N  

Brich-Hansen (1970); semi-empirical 

based on Lundgren-Mortensen(1953); 

failure mechanics 

( ) ( )φ







−φπ







 φ
+

π
= tan0.1tanexp

24
tan5.1 2

γ
N  

Vesis (1973); approximation based on 

Caquot and Kérisel(1953); analysis using 

the method of characteristics 

( ) ( )φ







+φπ







 φ
+

π
= tan0.1tanexp

24
tan2 2

γ
N  

Hettler and Gudehus (1988); empirical  ( )[ ] 0.1tan71.5 15.1
−φ=

γ
N  

Zadroga (1994); empirical expression ( )φ= 141.0exp657.0
γ

N φ  in degree 

Michalowski (1997); upper bound limit 

analysis 

( ) φφ+= tantan11.566.0exp
γ

N  

Poulos et al. (2001); solution based on ( )φ= 6.9exp1054.0
γ

N  
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Davis and Brooker (1971) 

Lyamin et al. (2007); lower and upper 

bound analysis 

( ) ( )φ







−φπ







 φ
+

π
= 33.1tan6.0tanexp

24
tan2

γ
N  

Kumar and Khatri (2011); fitted 

expression; lower bound with finite 

element and linear programming 

( ) ( )φ







−φπ







 φ
+

π
= 577.1tan115.5tanexp

24
tan2

γ
N  

 

The numerical solution of characteristic equations is described in detail by Sokolovskii (1965). 

If an associated flow rule is used, and there sulting stress-strain rate equations can be integrated 

to yield a kinematically admissible velocity field, the slip-line solution is an upper bound 

solution. If, in addition, the slip-line stress field can be extended over the entire soil domain 

such that the equilibrium equations, the stress boundary conditions and the yield condition are 

satisfied, the slip-line solution is also a lower bound, and is hence the exact solution. Although 

the slip-line method may be used to compute a partial plastic stress field, there is no guarantee 

that this stress field can be associated with a kinematically admissible velocity field or extended 

satisfactorily throughout the body (Bishop, 1953). Although the slip-line method can generally 

be expected to give a good estimate of the correct solution, its accuracy is difficult to ascertain 

once either of the bounding property is lost. Due to the complexities that are associated with the 

introduction of self-weight, a great variety of approximate solutions for the bearing capacity 

factor γ
N  have appeared in the literature (Chen, 1975).The differences among these solutions 

are often very substantial, particularly for friction angles greater than about 300. Unfortunately, 

experimental research on the ultimate bearing capacity of footings on sand has not shed much 

light on the question of which values of γ
N  are theoretically correct. This is partly because of 

the difficulty in selecting an appropriate friction angle for the bearing capacity calculations 

when comparing the theoretical predictions with test results. Scale effects are also another 

complication. Existing theoretical solutions suggest that the factor increases very rapidly with 

the angle of friction. In view of this strong dependence, it seems unlikely that footing 

experiments alone can resolve the question of which values of γ
N  are correct. More recently, 
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Michałowski (1997) and Soubra (1998), among others, have used rigid-block mechanisms to 

estimate the bearing capacity factor γ
N . Their results show some improvement on Chen’s 

solutions but are still fairly conservative. The last three decades has witnessed a growing use of 

the finite element method in almost all areas of geotechnical engineering, including shallow 

foundation stability. However, only a few authors have attempted to apply this method to 

predict the bearing capacity of strip footings on cohesionless soils (Sloan and Randolph, 1982; 

Griffiths, 1982; Frydman and Burd, 1997). This is largely due to the difficulty in developing 

finite element formulations that are capable of providing precise estimates of the limit load. 

A long-term research program has been undertaken at the University of Tokyo (Tatsuoka et al., 

1991, 1994b, 1997; Siddiquee et al., 1999). The research consists of: i) Physical model tests 

with different footing shapes, load inclinations and footing depths under the gravitational force 

(i.e., in 1g) and in a centrifuge, using three types of granular materials having different particle 

sizes; ii) A series of stress-strain tests to evaluate thoroughly the strength and deformation 

property of the test materials; iii) Their constitutive modelling; iv) Numerical simulation by 

FEM analysis of the model tests. The two dimensional constitutive model of one of the test 

materials (i.e., Toyoura sand) that has been developed for plane strain analyses (Tatsuoka et al., 

1994a) was implemented into the FEM analysis as a generalized elasto-plastic, isotropic 

strain-hardening and softening one with a non-associated flow rule using Mohr-Coulomb type 

yield surface. 

Meyerhof (1951, 1963) introduced the other factors such as semi - empirical inclination factors 

ic, iγ, iq. The ultimate bearing capacity formula is described as follows:  

qfqγγc NDiBNicNq 21c 2
1i γ+γ+=       (2.4) 

The effects of inclination factor have been investigated both theoretically and experimentally by 

a number as researchers as table 2.2. 
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Table 2.2 Inclination factors found in the literature 

Author ic iq iγ 

Meyerhof 

(1953) 

Meyerhof and 

Koumoto 

(1986) 

 

2

0

0

90
1 







 θ
− for any φ  

 

iγ   for any φ  

2

0

0

1 








φ

θ
−   for 0>φ  

iγ = 0 for 0=φ  

Brich Hansen 

(1970) 
φ

−
−

tan

1
iq

V

iq  for 0>φ  

2
1

15.0













−

af cA

H for 0=φ  

5

cot
1















φ+
−

af cAV

H  

5

0cot
1 














φ+
−

af cAV

H  

Vesic (1975) 
φ

−
−

tan

1

V

i
i

q

q
 for 0>φ  

caf NcA

mH
−1 for 0=φ  

m

af cAV

H















φ+
−

cot
1  

1

0cot
1

+















φ+
−

m

af cAV

H
 

 

where θ: the inclination angle of load with respect to the vertical plane. 

( )
( )

L
B

L
B

mm B
+

+
==

1

2 with the horizontal load H is in parallel to the footing width B 

( )
( )

B
L

B
L

mm L
+

+
==

1

2 with the horizontal load H is in parallel to the footing length L 

22
BL mmm += with the direction of H is in between the directions of footing width and length. 

Af: effective contact area of the footing. 

H: horizontal component of the inclined load. 

V: Vertical component of the inclined load. 

ca: unit adhesion on the base of the footing. 

Architectural Institute of Japan (AIJ, 1988, 2001) developed the ultimate bearing capacity 

formula and now is widely used in Japan. By using factors Νc , Νq  given by Prandtl and 

Νγ   described by Meyerhof, the ultimate bearing capacity formula is expressed as follows: 

qfqγγcc NDiNBicNiq 21 γ+ηβγ+α=     (2.5) 
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In the above equation, α and β express the shape coefficient and α = 1 and β = 0.5 are 

recommended by De Beer [8], respectively. There, η is the size effect factor defined in the 

following. 

m

oB

B








=η        (2.6) 

where,   

B0: reference value in footing width 

m: coefficient determined from the experiment, m = -1/3 is recommended in practice. 

The ultimate bearing capacity formula by AIJ successfully takes into account of the size effect of 

footing which has not been considered in the past formulae employing the Mohr-Coulomb criteria 

for soils strength. Since the past formulae overestimate the ultimate bearing capacity with the 

increase in footing width, this effect needs to be examined for intensive practical request. Ueno et al. 

[42] expressed that the size effect on ultimate bearing capacity was mainly attributed to the stress 

level effect on shear strength of soils. Their research indicated that the mean stress ranged from 2γB 

to 10γB beneath the footing and it caused the change in internal friction angle of ground widely due 

to the mean stress. This study attempts to discuss the size effect on ultimate bearing capacity by 

using the finite element analysis with the rigid plastic constitutive equation which simulates the 

non-linear shear strength property of sandy soil against the confining pressure. 

 

2.1.2 Review of ultimate bearing capacity against combined load of vertical, horizontal and 

moment loads 

Due to bending moments and horizontal thrusts transferred from the superstructure, shallow 

foundations are often subjected to eccentric and inclined loads. Under such circumstances the 

ultimate bearing capacity theories presented about need some modification, and this is the 

subject of discussion in this chapter. 

This chapter starts with a review of commonly-used solutions applicable to the problem of 

bearing capacity of footings under combined loading. This includes several well-known 

semi-empirical bearing capacity formulae (such as Meyerhof (1953), Hansen (1971), Vesic 

(1975)) and some experimental research. Several techniques which can be used to determine the 

bearing capacity envelope are also reviewed. These procedures are then used in a number of 
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finite element analyses to compare the efficiency and accuracy of each technique in determining 

the envelope. After that a series of analyses is conducted to construct the envelope, and the 

results are then compared with the methods previewed. 

 

2.1.2.1 Vertical bearing capacity 

From the theory of plasticity, the exact solution for a strip footing on sandy soil (based on 

Prandtl 1920) [26] can be derived 

( )c.BV0 2+π=         (2.7) 

where B is the footing width; c is the cohesion of soil. 

 

2.1.2.2 Bearing capacity between vertical load and moment load 

Under combined vertical loads and moment loads, bearing capacity is usually showed as the 

equivalent problem of an eccentric vertical load (Fig. 2.3). 

 

Fig.2.3. Equivalent eccentric load 

 

The eccentric vertical load is assumed to act on a reduced area on which the load acts 

centrally. For a strip footing, the effective width is B’ = B – 2e (Fig. 2.4).  

 

Fig.2.4. Effective area concept 
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This leads to a (V, M) bearing capacity interaction diagram defined as a simple parabola as 

follow: 

    







−=

000 V

V

V

V

M

M
14         (2.8) 

where V0 is the vertical ultimate load and M₀ = BV₀/8 is the maximum moment capacity. 

In Fig. 2.5, (V/V₀, M/BV₀) interaction of Meyerhof method for strip footings is plotted given 

that V₀ is determined by equation (2.8).  

 

 

Fig.2.5 (M, V) interaction chart of a strip footing 

 

2.1.2.3 Bearing capacity between vertical load and horizontal load 

In early geotechnical papers combined vertical and horizontal loading is referred to as inclined 

loading. Having found that the vertical bearing capacity significantly reduced as the inclined 

angle θ = tan-1(H/V) increased. Meyerhof (1956) introduced ‘inclination factors’, the (V, H) 

failure envelope is defined as follows: 

    

2

0

0

90
1 







 θ
−=

0V

V
        (2.9) 

where V₀ is the ultimate vertical load. Interaction diagrams of H/V0 vs. V/V0 are obtained and 

compared with the failure surface of Meyerhof. 

 

2.1.2.4 Bearing capacity between vertical, horizontal and moment loads 

Meyerhof (1956) also proposed ultimate bearing capacity interaction between vertical loads, 
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horizontal loads and moment loads: an inclined load of magnitude 22
HV +  is assumed to 

act centrally on a reduced footing area determined by the eccentricity e = M/V as depicted in Fig. 

2.3.  The methods by Meyerhof (1956) can be used to define the following (V, H, M) failure 

envelopes: 

   
A

A

V

V

0

′







 θ
−=

0

0

90
1       (2.10) 

This paper investigate the ultimate bearing capacity of footing on sandy soils against the 

combined load of vertical, horizontal and moment loads, using rigid plastic finite element 

method employing the rigid plastic constitutive equation, which considers non-linear shear 

strength property against confining pressure.  

On the other hand, the general bearing capacity equation has been proposed by Meyerhof 

(1963): 

  
γγγγqqqqfccccu .i.d.sB.N.i.d.s.ND.d.i.scNq' ..5.0. γ+γ+=     (2.11)

 where 

:
γqc s,s,s shape factors 

:
γqc i,i,i inclination factors 

:
γqc d,d,d depth factors 

:c cohesion of soil 

:
γqc N,N,N bearing capacity factors which are only functions of soil friction angleφ  

    '' .AqQ uult =        (2.12) 

 

Figure 2.6: Vertical, Horizontal and eccentric loads applied to footing 
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A. Footings with Vertical, horizontal and eccentric loads combined - One way Eccentricity 

problem   

 

Figure 2.7: Footings with one way eccentricity 

 

The effective width now: eBB 2' −= . Whereas the effective length is still LL ='  

The distribution of the nominal pressure is:    

  
LB

M

BL

Q
q

2max

6
+=         (2.13) 

  
LB

M

BL

Q
q

2min

6
−=         (2.14) 

where Q is the load vertical load and M is the moment on the footing in one axis  

The distance e is the eccentricity of the load, or 

  
Q

M
e =           (2.15) 

Substituting: 

  







+=

B

e

BL

Q
q

6
1max         (2.16) 

and 

  







−=

B

e

BL

Q
q

6
1min         (2.17) 

- Note that in these equations, when the eccentricity e becomes B/6, qmin is zero. 

- For e > B/6, qmin will be negative, which means that tension will develop.  

- Because soils can sustain very little tension, there will be a separation between the footing 

and the soil under it.  

- Also note that the eccentricity tends to decrease the load bearing capacity of a foundation.  
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- In such cases, placing foundation column off-center, as shown in Figure is probably 

advantageous.  

- Doing so in effect, produces a centrally loaded foundation with a uniformly distributed 

pressure.     

 

Figure 2.8: A footing with the column off - center to preserve a uniform pressure on the soil 

 

The general bearing capacity equation is therefore modified to, 

  γγγγγγ idsNBidsNDdisNcq qqqqfccccu ......5.0........'' ++=     (2.18) 

and ''..' LBqQ uu =           (2.19) 

 

B. Footings with Vertical, horizontal and eccentric loads combined - Twoway Eccentricitys 

problem 

 

 

Figure 2.9: Footings with two way eccentricities 
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If Qult is needed, it can be obtained as '.'
AqQ uult =        (2.20) 

where  γγγγγγ idsNBidsNDdisNcq qqqqfccccu ......5.0........'' ++=     (2.21) 

and 'A  is the effective area ''.LB : ''.' LBA =        (2.22) 

Finally '.' AqQ uult =           (2.23) 

As before, to evaluate γsss qc ,, , use the effective length ( 'L ) and the effective width ( 'B ) 

dimensions instead of L and B, respectively. To calculate γddd qc ,, , do not replace B with 'B . In 

determining the effective area ( 'A ), effective width ( 'B ), and the effective ( 'L ), four possible 

cases may arise (Highter and Anders, 1985). 

 

Case 1: 6/1≥
L

eL  and 6/1≥
B

eB  

 

Figure 2.10: Effective area in Case 6/1≥
L

eL  and 6/1≥
B

eB  

Effective area shown in Figure 2.5: 

   11.2

1
' LBA =         (2.24) 

where 

 







−=

B

e
BB B3

5.1.1          (2.25) 

 







−=

L

e
LL L3

5.1.1          (2.26) 

Chose effective length 'L  = max ( 11,BL )  

and B’: 

 
'

'
'

L

A
B =            (2.27) 
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Case 2: 5.0<
L

eL  and 6/1<
B

eB  

 

Figure 2.11: Effective area in Case 5.0<
L

eL  and 6/1<
B

eB  

 

Effective area shown in Figure 2.6a: 

   ( ) BLLA .
2

1
' 21 +=        (2.28) 

L1 and L2 value are defined from the figure 2.6b. The effective width: 

   
( )21 ,max

'
'

LL

A
B =         (2.29) 

and effective length 'L  = max ( 21, LL ) 

 

Case 3: 6.1<
L

eL  and 5.00 <<
B

eB  

 

Figure 2.12: Effective area in Case 6.1<
L

eL  and 5.00 <<
B

eB  

 

Effective area shown in Figure 2.7a: 
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   ( ) LBBA .
2

1
' 21 +=        (2.30) 

The effective width: 

   
L

A
B

'
' =          (2.31) 

and effective length LL ='  

B1 and B2 value are defined from the figure 2.12b. 

 

Case 4: 6.1<
L

eL  and 6.1<
B

eB  

 

Figure 2.13: Effective area in Case 6.1<
L

eL  and 6.1<
B

eB  

 

Effective area shown in Figure 2.13a 

B2 value defined when known 
B

B2  and 
B

B2  defined from the figure 2.8 based on 

diagrams has a line 
L

eL  going up.  

The same L2 value defined when known
L

L2 and 
L

L2  defined from the figure 2.8 based on 

diagrams has a line 
L

eL  going down. Now Effective area: 

   ( ) ( )222 .
2

1
.' LLBBBLA −++=       (2.32) 

The effective width: 

   
L

A
B

'
' =          (2.33) 
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 and effective length LL ='        

 

2.1.3 Review of ultimate bearing capacity on multi-layered ground system 

Button (1953) analyzed the bearing capacity of a strip footing resting on two layers of clay. He 

assumed that the cohesive soils in both layers are consolidated approximately to the same 

degree. In order to determine the ultimate bearing capacity of the footing, he assumed that the 

failure surface at the ultimate load is cylindrical, where the curve lies at the edge of the footing. 

The bearing capacity factor used depends on the upper soil layer and on the ratio of the 

cohesions of the lower/upper clay layers. 

Brown and Meyerhof (1969) investigated foundations resting on a stiff clay layer overlying a 

soft clay layer deposit, and the case of a soft layer overlying a stiff layer. They assumed that the 

footing fails by punching through the top layer for the first case, and with full development of 

the bearing capacity of the lower layer in the second case. Equations and charts giving the 

appropriate modified bearing capacity factors were given, derived from the empirical 

relationships obtained based on the experimental results. The results of the investigation are 

summarized in charts, which may be used in evaluating the bearing capacity of layered clay 

foundations, but these results are essentially experimental, and therefore are strongly affected by 

the characteristics of the clay tested. The purpose of this paper is to present the results of a 

series of model footing tests carried out on twolayered clay soils, and the models have many 

limitations. First, they are limited to one type of clay, although the strength of the clay was 

varied, the deformation property remained constant. Second, studies were limited to surface 

loading only, using rigid strip and circular footings with rough bases. Third, all studies were 

made in terms of the undrained shear strength of the clay, using the Ф = 0 analyses. They also 

conducted a series of tests on footings in homogeneous clay. They observed that the pattern of 

failure beneath a footing is a function of the physical mode of rupture of the clay, which is 

strongly dependent on the structure of the clay. The failure mechanism of the structure of the 

clay is not adequately defined by conventional Mohr-Coulomb concepts of cohesion and 

friction. 

Meyerhof (1974) investigated the case of sand layer overlying clay: dense sand on soft clay and 
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loose sand on stiff clay. The analyses of different modes of failure were compared with the 

results of model test results on circular and strip footings and field data. In the case of dense 

sand overlying a soft clay deposit, the failure mechanism was assumed as an approximately 

truncated pyramidal shape, pushed into the clay so that, in the case of general shear failure, the 

friction angle Ф of the sand and the undrained cohesion C of the clay are mobilized in the 

combined failure zones. Based on this theory, semi-empirical formulae were developed to 

calculate the bearing capacity of strip and circular footings resting on dense sand overlying soft 

clay. He conducted model tests on strip and circular footings on the surface and at shallow 

depths in the dense sand layer overlying clay. The results of these tests, and the filed 

observations were found to agree with the theory developed. In the case of loose sand on stiff 

clay, the sand mass beneath the footing failed laterally by squeezing at an ultimate load. 

Formulae for the ultimate bearing capacity of strip and circular footings were developed. 

Model tests were carried out on strip and circular footings, and the results also agreed with the 

theory developed. Theory and test results showed that the influence of the sand layer thickness 

beneath the footing depends mainly on the bearing capacity ratio of the clay to the sand, the 

friction angle Ф of the sand, the shape and depth of the foundation. The paper is limited to 

vertically loaded footings, and does not include eccentric or inclined loads, it is also limited to 

sand over clay, and has no solution for clay over sand. In the case of dense sand on soft clay, the 

theory considers simultaneous failure of the sand layer by punching, and general shear failure in 

the clay layer, which is not always the case. 

Meyerhof and Hanna (1978) considered the case of footings resting in a strong layer overlying 

weak deposit and a weak layer overlying strong deposit. The analyses of different soil failure 

were compared with the results of model tests on circular and strip footings on layered sand and 

clay. They developed theories to predict the bearing capacity of layered soils under vertical load 

and inclined loading conditions. In the case of a strong layer overlying a weak deposit, 

considering the failure as an inverted uplift problem, an approximate theory of the ultimate 

bearing capacity was developed. At failure, a soil mass, roughly shaped like a truncated pyramid, 

of the upper layer is pushed into the underlying deposit in the approximate direction of the 

applied load. The forces developed on the actual punching failure surface in the upper layer are 
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the total adhesion force and total passive earth pressure inclined at an average angle δ acting 

upwards on an assumed plane inclined at an angle α to the vertical. The analysis for strip 

footings was extended to circular and rectangular footings, and approximate formulae for the 

bearing capacity of strip, rectangular, and circular footings were developed, taking into 

consideration the case of eccentric and inclined loading as well. Model tests on rough strip and 

circular footings under central inclined loads at varying angles α were made on the surface and 

at shallow depth in different cases of two layered soils of sand and clay, where good agreement 

was found between the theoretical and experimental results. 

In the case of a weak layer overlying a strong deposit, considering the weak soil mass beneath 

the footing may fail laterally by squeezing, which is the same theory as from the previous paper 

developed the theory of the ultimate bearing capacity. The bearing capacity can be estimated by 

the approximate semi-empirical formulae. Model tests were also carried out on strip and circular 

footings under vertical and inclined loads, and the results of the tests were compared to the 

theoretical ones. The authors concluded that the ultimate bearing capacity of footings on a dense 

layer overlying a weak layer can be expressed by inclination factors in conjunction with 

punching shear coefficients, which depend on the shear strength parameters and bearing 

capacity ratio of the layers under vertical loads. Formulae and design charts were developed and 

introduced in this paper. This paper is a development of the previous theory (Meyerhof 1974), 

taking into consideration all possible cases of two different layers of subsoil, and also including 

the effect of inclined and eccentric loading on the ultimate bearing capacity of strip, rectangular 

and circular footings. This theory and the failure mechanism considered are approximations of 

the real failure mechanism, which depends on many factors. Hanna and Meyerhof (1979) 

extended their previous theory of the ultimate bearing capacity of two-layer soils to the case of 

three-layer soils. The analysis compared well with the results of model tests of strip and circular 

footings on a three-layer soil. Only one case was considered in this paper, that for footings 

subjected to vertical loads and resting on subsoil consisting of two strong layers overlying a 

weak deposit. 

The same theoretical failure mechanism was assumed by considering a soil mass of the upper 

two layers is pushed into the lower layer, and the same forces acting on the failure surface was 
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assumed as well. Formulae and charts were developed and can be used in designing foundations 

having the same conditions. Model tests on rough strip and circular footings under central 

vertical loads were made on the surface of three-layer sand consisting of two dense upper layers 

and a loose lower one. By comparing the results of the model tests with the results of the 

punching theory, good agreement was found. Briefly, this paper is an extension of the previous 

theory in order to include the case of the three-layer soil. But, it is restricted to only one case of 

three-layer soil, and it needs more development to include all possible cases of three-layer soils. 

Pfeifle and Das (1979) presented laboratory model tests results for the case of rough 

rectangular footings in sand with a rigid rough base located at a limited depth. The results were 

compared to the predicted results of Mandel and Salencon (1972) and Meyerhof (1974). The 

authors concluded that the critical depth of location of the rough rigid base beyond which it has 

no effect on the value of the ultimate bearing capacity is about 50% - 75% higher than that 

predicted by the theory. And the previous theories do not predict correctly the bearing capacity 

for the case when the rigid base is located at shallow depth. This experimental investigation is 

very limited to one case of layered soils, and the friction angle Ф of the sand used varies in a 

small range (42° - 45°), and the conclusion may be valid only for this range of Ф. Hanna and 

Meyerhof (1981) investigated experimentally the ultimate bearing capacity of footings 

subjected to axially inclined loads by conducting tests on model strip and circular footings on 

homogeneous sand and clay. The results were analyzed to determine the inclination factors, 

depth factors and the shape factors incorporated in the general bearing capacity equation for 

shallow foundations. These values were compared with the recommended values given in the 

Canada Foundation Engineering Manual. The values of these factors given in the manual agree 

reasonably well with the experimental ones, except for the depth and shape factors, for which 

the theoretical values are on the conservative side when applied to inclined loads. Hanna (1981) 

extended his previous theory to cover the case of footings resting on subsoil consisting of a 

strong sand layer overlying a weak sand deposit. Applying the same theory that at ultimate load, 

a soil mass of the upper layer is pushed to the lower sand layer, and by calculating the forces on 

the assumed vertical punching failure surface, the ultimate bearing capacity can be calculated 

theoretically. Charts are presented in this paper and can be used in the design of footings. In 

order to verify the theory presented, model tests on strip and circular footings resting on a dense 
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sand layer overlying loose sand layer were done, and the results of the tests agreed well with the 

theory presented. 19 Hanna (1981) conducted an experimental investigation on the ultimate 

bearing capacity of strip and circular model footings on a two-layered soil in order to verify the 

validity of the empirical method proposed by Satyanarayana and Garg (1980) to predict 

numerically the ultimate bearing capacity of footings on layered soils. Summary of the results 

was presented in the form of comparative charts in order to compare the experimental and 

theoretical results. The author concluded that by extensive comparisons between the observed 

ultimate bearing capacity values and those calculated by the method reveal discrepancies 

ranging between70% to 85%. Thus, the method needs more refinement and further investigation 

before it can be recommended for practical applications. Hanna (1982) investigated the case of 

footings resting on subsoil consisting of a weak sand layer overlying a dense sand deposit. 

Based on model tests of strip and circular footings, the author extended the classical equation of 

bearing capacity to cover cases of these footings in layered sand; consisting of weak sand layer 

overlying a dense sand deposit. In order to calculate the ultimate bearing capacity of these 

footings, the author proposed to use the classical equation of homogeneous sand in conjunction 

with the modified bearing capacity factors. These factors depend on the relative strength of the 

upper and lower layers and the thickness of the upper weak sand layer, and are calculated from 

the model tests results conducted on similar soil profiles. Design charts were presented as an aid 

in design. According to the theory presented in this paper, the failure mechanism of the upper 

layer is the same as if the footing was in a homogeneous deep sand layer, and the influence of 

the layered soil is restricted to the difference in the bearing capacity factors, which were 

calculated experimentally from model tests. It is a simple method to overcome the complexity 

of finding the real failure mechanism, and it gives fairly accurate results. But the values of the 

bearing capacity factors depend on the kind of sand used in the tests, and they may change by 

using different kind of sands taken from different places. 

Das (1988) presented a technique to improve the ultimate bearing capacity and settlement 

conditions of shallow foundations on soft clay soil, which consists of placing the footings over a 

compact granular fill, lay over the clay layer. Placing geotextile at the interface of the clay layer 

and the sand layer can further increase the bearing capacity. The purpose of placing the granular 

layer is to distribute the load on a larger area of the clay layer, and the purpose of placing the 
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geotextile mesh is to reduce the depth of the sand layer required to distribute the load. The 

objective of this research was primarily to present the results of model tests conducted on a strip 

foundation resting on a sand layer overlying a weak clay layer, and compares the results with 

the theory of Meyerhof and Hanna (1978). Secondly, to compare results of the bearing capacity 

of footings on layered soil with and without the use of the geotextile mesh at the interface of the 

two layers in order to evaluate any advantage derived from the inclusion of the geotextile. A 

number of laboratory model tests results for the ultimate bearing capacity of strip footings 

resting on a sand layer underlain by a weak clay layer with and without the inclusion of 

geotextile at the interface of the two layers have been presented in this paper. Based on the 

experimental results; first, without the inclusion of geotextile, the results were consistent with 

the theory of Meyerhof and Hanna (1978). Second, the inclusion of geotextile at the interface of 

the layers increases the bearing capacity, and at the same time, reduces the depth of the sand 

layer to be placed over the clay layer. Third, the most economical width of the geotextile layer 

to be used as determined from the study is about four times the width of the strip footing. This 

paper is experimental and the conclusions deduced are strictly related to the model tests done, so 

the results may vary with the type of geotextile mesh used, its strength, dimensions, and the 

depth at which the geotextile is placed. More investigation and experiments are needed 

regarding the use of geotextile for increasing the bearing capacity of shallow foundations on 

weak soils. 

Michalowski and Shi (1995) considered the bearing capacity of strip footing over a two-layer 

foundation soil. The kinematics approach of limit analysis is used to calculate the average limit 

pressure under footing. The method is applicable to any combination of parameters of the two 

layers, but the results are presented only for a specific case when a footing placed on a layer of a 

granular soil resting on clay. The depth of a collapse mechanism is found to be very much 

dependent on the strength of the clay. Very weak clay can attract the mechanism even at great 

depths. The results are presented as limit pressures rather than traditional bearing capacity 

coefficients. The latter are strongly dependent not only on the internal friction angle of the sand, 

but also on the thickness of the sand layer, cohesion of the clay, and surcharge pressure. Results 

are presented in the form of dimensionless charts for different internal friction angle of sand. It 

was found that linear interpolation within 5 increments is acceptable in the range of ϕ from 30° 
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to 45°. 

Merifield and Sloan (1999) studied the ultimate bearing capacity of surface strip footings 

resting on a horizontally layered clay profile. Many empirical and semi-empirical formulae can 

be used, which give approximate solutions to the problem. More recently, Florkiewicz (1989) 

presented an upper bound method proposing a kinematically admissible failure mechanism. 

Although this method is useful, but limited results were produced. The upper bound method has 

been widely used to estimate the bearing capacity of layered clays, but it may lead to a lower 

factor of safety for design that the real one. A more desirable solution is a lower bound estimate, 

as it results in a safe design and, if used in conjunction with an upper bound solution, serves to 

bracket the actual collapse load from above and below. The purpose of this paper is to take 

advantage of the ability of the limit theorems to bracket the actual collapse load by computing 

both types of solution for the bearing capacity of footings on a two-layered clay profile. These 

solutions are obtained using the numerical techniques developed by Sloan (1988) and Sloan 

Ming Zhu and Radoslaw L. Michalowski (2005) examined earlier proposals for shape factors 

used in calculations of bearing capacity of square and rectangular footings. These proposals are 

based on empirical data for small footings, whereas a new suggestion for these factors presented 

in this study is based on the elasto-plastic model of the soil and finite element analysis. The 

earlier factors modifying the contribution of cohesion and overburden were found to be 

conservative, but acceptable in design. However, bearing Capacity Factor Nc*27 proposals for 

the shape factor that affects the contribution of the soil weight to the bearing capacity indicate 

contradictory trends, and the factor calculated in this paper is suggested as an alternative. 

ZenonSzypcio and KatarzynaDolzyk (2006) analyzed various methods for calculation of the 

bearing capacity of layered subsoil. The values obtained are compared with the values 

calculated by means of PLAXIS Version 8, the latter being considered the correct ones. It is 

shown that Polish Standards and proposition modified by the authors are admissible to use only 

in the case of subsoil with a weak cohesionless lower layer, with small angle of friction. From 

the engineering point of view only the layer thickness H = 2B influences the subsoil bearing 

capacity. Accordingly to the Polish Standards the substitute foundation can be laid only on the 

top of a very weak cohesionless lower layer. The simpler authors’ modification of the Polish 

Standards proposition for that case is also correct. The most general, simple and correct 
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calculation of the bearing capacity of layered subsoil is done based on the Terzaghi formula 

with average parameters of homogeneous subsoil. There is no big difference in the bearing 

capacity if we use a direct formula for calculating the average angle of friction or indirect 

formula. In this paper, the investigation was carried out only for strip and square foundations of 

the width B =1.0 m loaded symmetrically and vertically. In authors’ opinion, similar 

conclusions are correct for other loaded foundations of different size and shape. Ming Zhu and 

Radoslaw L. Michalowski (2010) presented a finite element analysis of square and rectangular 

footings over two-layer clay foundation soil. Bearing capacity results are shown for a limited 

range of parameters. While the bearing capacity is distinctly affected by both the ratio of the 

strengths of the two layers and the depth of the weak layer, the shape factors are only dependent 

on the depth ratio. The bearing capacity of clay is reduced if a weaker layer of clay is present 

below a stronger crust. The limit load is affected by both the depth of the weaker layer and the 

ratio of the strengths of the two layers. However, the shape factor appears to be only weakly 

dependent on the depth, whereas it varies distinctly with a change in the strength ratio of the 

two layers. 

Ming Zhu and Radoslaw L. Michalowski (2010) presented a finite element analysis of square 

and rectangular footings over two-layer clay foundation soil. Bearing capacity results are shown 

for a limited range of parameters. While the bearing capacity is distinctly affected by both the 

ratio of the strengths of the two layers and the depth of the weak layer, the shape factors are 

only dependent on the depth ratio. The bearing capacity of clay is reduced if a weaker layer of 

clay is present below a stronger crust. The limit load is affected by both the depth of the weaker 

layer and the ratio of the strengths of the two layers. However, the shape factor appears to be 

only weakly dependent on the depth, whereas it varies distinctly with a change in the strength 

ratio of the two layers. 

 

2.2 Literature on Rigid plastic finite element method 

2.2.1 Limit analysis and application to finite element method 

In contrast to slip-line and limit equilibrium methods, the limit analysis method considers the 

stress-strain relationship of a soil in an idealized manner. This idealization, termed normality (or 
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the flow rule), establishes the limit theorems on which limit analysis is based. Within the 

framework of this assumption, the approach is rigorous and the techniques are competitive with 

those of limit equilibrium, in some instances being much simpler. The plastic limit theorems of 

Drucker et al. (1952) may conveniently be employed to obtain upper and lower bounds of the 

collapse load for stability problems, such as the critical heights of unsupported vertical cuts, or 

the bearing capacity of nonhomogeneous soils. 

One of the most important problems in Geomechanics is to analysis the limit state of soil 

structures such as foundations and slopes. There are many methods applied to this problem. A 

large number of material constants, however, must be specified before-hand and an elaborate 

step by step calculation is necessary to pursue along the loading history from the initial state. 

Although such an approach is accepted to some extend from a practical point of view, no exact 

information is offered concerning the limit state itself since the usual calculation procedure 

breaks down and becomes meaningless at this stage. 

Slip line theory is a well-known method to analyze the limit state, in which the characteristics of 

hyperbolic type of equations are composed in several ways. Many closed form solutions are 

obtained for typical problems by this method. However, skillful techniques are required to get 

solutions with a good accuracy and it difficult to use the slip line theory as an approach for 

general boundary conditions. 

Hill (1951) and  Drucker (1951, 1952) published their ground breaking lower and upper bound 

theorems of plasticity theory, on which limit analysis is based. It is apparent that limit analysis 

would be an effective tool to provide important insights into the bearing capacity problem. The 

complete formulation of these theorems is easy for numerical analysis since it can be converted 

into the primal and dual linear programming problems (Charnes, Lemke and Zienkiewicz, 1959; 

Martin, 1975; Sloan et al., 2005; Sloan et al., 2009). 

For instance, the elasto-plastic finite element method is considered to be a typical one. But it is 

often said that it suffers from some numerical difficulty in the stress range close to the limit state. 

Therefore different techniques for this problem are required to be established. Tamura et al. 

(1984) developed the rigid plastic finite element method with Drucker-Prager yield criterion 

which is only to analyze limit state of structures. First, they derive stress-strain rate relations 

with the concept of indeterminate stress. Second, substituting these into the equation of 
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equilibrium, the formulated the rigid plastic finite element method in a simple way. Equations to 

be solved consist of the condition of equilibrium, the constraint condition of volumetric change 

and a relation to normalize the magnitude of displacement velocity.  

 

2.2.2 The fundamental of the rigid plastic finite element method 

The most widely used theory is to assume that the plastic strain rate (or increment) can be 

determined by the following formula (Von Mises, 1928; Melan, 1938; Hill, 1950): 
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λ=ε          (2.34) 

where λd  is a positive scalar, and  

( ) ( ) 0I,I,Ifff 321ij ==σ=        (2.35) 

If the plastic potential is the same as the yield surface, then the plastic flow rule equation (2.34) 

is called the associated flow (or normality) rule. Otherwise it is called non-associated flow rule.  

If the unit normal to the plastic potential approaches a finite number of linearly independent 

limiting values as the stress point approaches the singular point in question. Koiter (1953) 

proposes the following generalized flow rule: 
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where idλ  are nonnegative and 
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∂
 are the linearly independent gradients. 

 

Fig.2.14Maximum plastic work principle      
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Suppose the plastic strain rate p
ijdε  is given and the corresponding stress state, ijσ , determined 

from the normality rule and the yield criterion, is represented by a point P in the stress path in 

Fig 2.14. If ∗σij
 is an arbitrary allowable stress represented by a point *P  on or inside the yield 

surface, then the difference between the incremental plastic works done by the two stress states 

on the actual plastic strain rate is 

( ) p
ijijij ddW εσ−σ= ∗       (2.37) 

Eq. 2.37 represents the scalar product of the vector PP*  and PQ. If the yield surface is strictly 

convex, the angle between these vectors is acute and the scalar product is positive. Therefore 

( ) 0d p
ijijij >εσ−σ ∗        (2.38) 

This condition, due to Von Mises (1928) and Hill (1948, 1950), is known as the maximum 

plastic work principle or theorem. Equation (2.38) is the basic for a number of important 

theorems concerning elastic-plastic solids. The maximum plastic work principle is always 

unique. It is a mathematical statement of the important idea that the plastic strain rate (or 

increment) is normal to the yield surface. 

To obtain definitions applicable to general stress states, we will adopt the proposal of Drucker 

(1951, 1964). Hypothesis of Drucker is maximum plastic work principle ( ) 0d p
ij0ij ≥εσ−σ .  

 

Fig.2.15 Stress cycle when the starting point A is below the current yield stress 
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Drucker’s postulate makes use of a stress cycle and to illustrate this concept as in Fig 2.15. First 

the material had been load to point B and then unloaded elastically to point A. the state 

indicated by point A with the stress 0σ  is now considered as the existing state of the material. 

We now image that an additional load is the first applied to the material; this brings us to point 

B with the stress σ . The additional load is now increased by the infinitesimal amount σd  and 

this brings us to point C with the stress σ+σ d . Then the entire additional load is removed and 

the material therefore unloads elastically to point D with the stress 0σ  equal to the stress at 

point A. It appears that the additional load has carried the material through a complete stress 

cycle is occasionally called an external agency. 

Letting W denote the work per unit volume performed by the external agency during a complete 

stress cycle: 

( )∫ εσ−σ=
ABCD 0 dW        (2.39) 

The strain increment εd consists of its elastic and plastic component pv ddd ε+ε=ε  and 

plastic strains only develop during load path BC. 
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     (2.16) 

The first integral express the change of elastic strain energy over the stress cycle considered and 

therefore this integral evidently becomes equal to zero. This implies that the second term also 

become equal to zero. 

( ) 0dW
C

B

p
0 ≥εσ−σ= ∫        (2.40) 

In this expression are illustrated in Fig. 2.15, where 0σ>σ , the second order becomes: 

( ) 0d p
0 ≥εσ−σ         (2.41) 
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Fig.2.16 Convexity of yield surface in the stress space 

 

It is assumed that the plastic work principle in the stress cycle is non-negative and monotonous 

loading is also non-negative. It will turn out that this postulate leads to the associated flow rule 

as well as to the convexity of the yield surface. Drucker’s postulate for hardening plasticity 

implies the two important points: convexity of the yield surface as well as the normality 

principle
ij

p
ij

f
d)(d

σ∂

∂
λ=ε  and also ensures the uniqueness of the elasto-plastic boundary value 

problem. 

For a given plastic strain rate p
ijε , we can define the rate of specific plastic energy 

dissipation )(D p
ijε : 

   
ijijij )(D ε=ε && σ         (2.42) 

where ijσ  is a stress on the yield surface associated with 
ijε&  through the normality rule. 

 

Fig.2.17 Two states of stress corresponding to a plastic strain rate 
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On the other hand, more than one stress state, say )1(
ijσ and )2(

ijσ , may correspond to give p
ijε  

when the yield surface contains a flat face or a line as some portion of it. But )(D p
ijε  can be 

regarded as a single valued function of p
ijε  since the difference ( ))2(

ij
)1(

ij σ−σ  is always 

perpendicular to p
ijε as Fig 2.17.  

The property of )(D p
ijε was shown as bellows: 

i) p
ijij

p
ijD εσε =)( is homogeneous of degree one in p

ijε since ijσ is independent of the magnitude 

of p
ijε . 

ii) The variation of D, denoted by Dδ , is calculated as 

    
p

ijijD δεσδ =
       

(2.43) 

iii) )(D p
ijε is convex in p

ijε if it is continuously differentiable.  

We consider a rigid plastic material subjected to a body force Xi in a region V and a surface 

traction Ti on the stress boundary σS . This steady state of flow invariably obeys the equation of 

equilibrium. 

   
0, =+ ijij Xσ

 
(in V)

       
(2.44) 

and the stress boundary condition on σS  

   ijij Tn =σ
 

(in σS )
       

(2.45) 

where nj is the outward normal on the boundary of the region. In equation (2.44), “j” means the 

differentiation with respect to the j-th coordinate. It should be noted that the stress ijσ is 

homogeneous of degree zero in ijε& . 

In the other words, the magnitude of the velocity field iu& or the strain rate ijε& in immaterial but 

the only proportional distribution of these values is crucial to determine the stress state in the 
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plastic flow. Here the relation between the velocity and the strain rate is assumed to be 

   













∂

∂
+

∂

∂
=

j

ij

i

jip
ij

x

u

x

u ,,

2

1
ε&

 
(in V)

      
(2.46) 

The displacement prescribed on the displacement boundary σS : 

   0uui
&& =

  
(in σS )

       
(2.47) 

The plastic collapse (at the limit load) occurs under constant the external forces 0=ijσ& . Since 

0=e
ijε& when 0=ijσ& we find that p

ijij εε && =  applies at the limit load. 

For a complete solid body, the principle of virtual work is mathematically given by the 

following basic energy equation 

   ∫∫∫ +=
VSV

dVdSdVd
u

uXuTσ δδε ... &

      
(2.48) 

We summarize the basic equation of the rigid plastic flow as follow: 

1) Equation of equilibrium equation (2.44) 

2) Compatibility equation (2.46) 

3) Boundary condition equation (2.45) and equation (2.47) 

4) Stress-strain rate relation as constitutive equation as equation (2.49) 

   
( )
σ

σ
σεεε

&
&&&&

∂

∂
+=+=

f
A

pe λ
       

(2.49) 

When the plastic collapse occurs, the virtual work can obtain constant the external forces Tρ , 

the stress σ and dtσσ &+ can be expressed as follows: 

   ∫∫∫ +=
VSV

dVdSdV
u

uXuTσ δδρεδ ... &

      
(2.50) 

   
( ) ∫∫∫ +=+

VSV
dVdSdVdt

u

uXuTσσ δδρεδ ... &&

     
(2.51) 

Therefore, the difference between equation (2.50) and equation (2.51) can be shown as equation 

(2.52) 

( ) 0...... =





 +−+−+− ∫∫∫∫∫∫ VSVVSV

dVdSdVdtdVdSdV
uu

uXuTσσuXuTσ δδρεδδδρεδ &&&

 

  ∫∫ =⇒
VV

dVdVdt εδεδ &&& .. σσ         (2.52) 
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To the above equation is satisfied 

   0. =εδ &σ          (2.53) 

Based on the hypothesis of Drucker 0≥pσε , this condition becomes: 

   0... =+= pe εδεδεδ &&& σσσ        (2.54) 

It is useful to know if the consistent distribution of stresses produced by applied surface 

displacement is unique, or if it depends upon the state of stress beforehand. Two answer this 

question, Hill (1948, 1950) proved that for a rigid-plastic solid there is not more than one 

consistent stress solution for which the hole mass deforms plastically. Suppose that ( ))1(),1( pε&σ  

and ( ))2(),2( pε&σ could be two consistent solutions corresponding to the same boundary 

conditions. It can be show that 

   ( )( ){ } 0)2()1()2()1( =−−∫V εδεδ &&σσ       (2.55) 

This condition is satisfied when either the surface displacements or the external forces are 

prescribed. The whole masses are possible in the plastic state. It is obvious that as long as the 

yield surface is convex they are all positive unless the two solutions for the stresses are the 

same )2()1( σσ = . We have therefore proved that in a rigid plastic material, there cannot be two 

distinct plastic stress solutions that satisfy the same boundary conditions. 

 

2.2.3 Rigid plastic finite element method based on the upper bound theorem 

Load factor ρ of external forces 

Let Ti be the surface force and Xi be the body force in V and the traction on the traction 

boundary σS , respectively. A proportional increase or decrease of external forces is expressed 

as iTρ . u& is some velocity field defined over the whole region V. 

When the plastic collapse occurs, the virtual work can obtain constant the external forces Tρ , 

the stress σ can be expressed as follows: 

   ∫∫∫ +=
VSV

dVdSdV uXuTσ &&& ..:
σ

ρε
      

(2.56) 

The stress strain rate relationships obtained here replace the stress by strain rateε& and λ . The 
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strain rate is related to the velocity by  

   








∂

∂
+

∂

∂
==

x

u

x

u
εε

T
p

2

1
&&

       
(2.57) 

To prove the upper bound theorem, we consider 

   
( )∫ −

V
dVε&:0σσ

        
(2.58) 

In general this stress field will not be in equilibrium. From the principle of maximum plastic 

work, it is obvious that the expression is non-negative, namely
 

   
( ) 0:0 ≥−∫V dVε&σσ

       
(2.59) 

which leads to 

   ∫∫ ≥
VV

dVdV εε && :: 0σσ
       

(2.60) 

The correct stress field determined from the principle of virtual work from the right-hand side of 

the above equation, and substituting external force work rate in equation (2.56) 

   ∫∫∫ +ρ≥ε
σ VSV

dV.dS.dV: uXuTσ &&&
      

(2.61) 

Therefore, load factor ρ can be defined: 

   ∫
∫∫

σ

−ε
≤ρ

S

VV

dS.

dV.dV:

uT

uXσ

&

&&

       
(2.62) 

According to the mathematical programming theory, equation (2.62) can be formulated as 

follows in the absence of body force: 

   ∫=
V

dVερ &:min σ
        

(2.63) 

Subjected to  1. =∫ σS
dSuT &         (2.64) 

 

2.2.4 Rigid plastic finite element method with the Mises yield criterion 

Mises criterion 

( ) 0:
2

1
f 2

0 =σ−= ss        (2.65) 
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When we apply a flow rule to yield function equation (2.63), strain rate is finally determined as 

in equation (2.66). Here, P is the mean stress. 
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Here 
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Therefore, 
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Equivalent plastic strain rate 

( )

0
2
0

:

::

λσ=σλ=

λ=

λλ==

               

                ss

ssεεe &&&

       (2.67) 

Plastic multiplier 

0σ
=λ

e&
         (2.68) 

Therefore, 

   s
e

ε 








σ
=

0

&
&         (2.69) 

Meanwhile, Mises yield criterion assumed that no volumetric plastic strain rate occur under the 
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limit state. Here, Vl is a small area obtained by dividing a region V. 

1,2,3...n)(l             ==ε∫ 0dV
lV v
&       (2.70) 

The internal dissipation rate is eventually expressed by the equation (2.71). Here, I1 is the first 

invariant of the Cauchy stress tensor and I is the unit tensor. 
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              (2.71) 

Based on the upper bound theorem, to satisfy the boundary condition on equation (2.64), load 

factor ρ is equal to the minimum value from equation (2.62). Moreover, the internal dissipation 

rate from the flow rule is a linear function of strain rate; objective function is also a linear 

function on ( )εu && , . It is permitted, through the above explanation, to state that the limit analysis 

by the finite element method is formulated as the problem of finding out the saddle point 

( )1l ,k, µu&  of the following function: 

( ) ∫∫∫∫ σ
µ+ε+−=µΦ

S1V vlVVl dS.dVkdV.dV:,k,
l

uTuXεσu &&&&&      (2.72) 

in which lk and 1µ are called the Lagrange multiplier. 

In addition, from the stationary condition (the value of the function does not change), the 

following simultaneous equations are obtained: 

( ) ∫∫∫∫ σ
µ+ε+−ε=λΦ

S1V vlVVl dS.dVkdV.dV:,k,
l

uTuXσu &&&&& for u&δ∀     (2.73) 

Subjected to 

  0dVk
VV

V vl

l
l

=εδδ∑ ∫
∈

&  for lkδ∀       (2.74) 

( ) 01dS.
S1 =−δδµ ∫ σ

uT &  for 1δµ∀       (2.75) 

The expression (2.73) and substituting internal dissipation rate equation (2.71), finally equation 

(2.76) is satisfied 
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=δµ+εδ+δ−δ=λΦ ∫∑ ∫∫∫ σ
∈

uTuXεσu &&&&&  

∫∫∑ ∫∫ δ+δµ−=εδ+δ⇒
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( ) ∫∫∑ ∫∫ δ+δµ−=δ+δ⇒
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( ) ∫∫∫ δ+δµ−=δ+⇒
σ VS1V l dV.dS.dV:k uXuTεIs &&&  

Therefore, 

( ) ∫∫∫ δ+δµ−=δ+
σ VS1V l dV.dS.dV:k uXuTεIs &&&      (2.76) 

In the above equation, undetermined coefficients of Lagrange ( )ρ=µ− 1 , it is regarded as the 

average stress P with kl on the area V; it has become the virtual work equation and the 

equivalent in extreme conditions. Equation (2.76) is based on the maximum plastic work 

principle; the stress is calculated in accordance with the setting of the strain rate. Therefore, any 

0=ε& will satisfy ( ) 0f =σ . 

Finite element method is a method for dividing up a very complicated area into small areas that 

can be solved in relation to each other. From equation (2.73), (2.74) and (2.75) for all area, we 

can divide in the small areas as the spatial discretization as bellows: 
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From equation (2.74), 
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From equation (2.75), 
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S

T
=−δµ⇒ ∫ σ

UNN &  

( )( ) 01dST
S

TT =−δµ⇒ ∫ σ
UNN &  

( ) 01dST
S

TT =−⇒ ∫ σ
UNN &  

Therefore, 

( ) 1dST
S

TT =∫ σ
UNN &        (2.79) 

where 

B: kinematic matrix (3x8 sizes) defined such as uε && B=  
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N: the shape function matrix (2x8 sizes)  

m: transfer vector. 

:U& vector of all nodal velocities 

t: surface force applied at nodes 

x: the unit node weight. 

In addition, we can show equation (2.78) and (2.79) as following manner: 

 ( ) ( ) 00dV0dV
ll V

T

V

T =⇒=⇒= ∫∫ ULUBmUBm &&&  

 ( ) 11dST1dST T

S

TT

S

TT =⇒=⇒= ∫∫ σσ
UFUNNUNN &&&  

and 

 ( ) XNN =∫V
T dVX  

Equation (2.77), (2.78) and (2.79) can describe into a form: 



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&       (2.80) 

 

where 

F: vector of all nodal forces 

:Sσ  stress boundary 

X: the total nodal force vector 

On the other hand, the stress-strain rate relationship of Mises yield function from the equation 

(2.69): 

 s
e

sε 








σ
=λ=

0

&
&  

ε
e

s &
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0σ
=⇒        (2.81) 

For a general strain tensor, the diagonal strain components 332211 ,, εεε are known as “direct” 
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strains, while the off diagonal terms 322331132112 ,, ε=εε=εε=ε  are known as “shear strain”. 

The shear strains are sometimes reported as “Engineering shear strain” which are related to the 

formal definition by a factor of 2. 

   232313131212 2,2,2 ε=γε=γε=γ  
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Therefore, to converts the engineering shear strain to the shear strain, the matrix Q is provided: 




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

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1     0     0
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and 

εQε
)
&& =         (2.83) 

Therefore, equation (2.69) can be shown: 

( )εQ
e

ε
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s
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σ
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Next, substituting the above equation to the system of equations (4.80), we have equations 

(2.85): 
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Here ( ) ( ) ( ) UQB
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In the above equation, undetermined coefficients of Lagrange ( )ρ=µ− , it is regarded as the 

average stress P with kl on the area V, equation (2.85) can be expressed as: 
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             (2.86) 

Equation (2.85) is a system of non-linear equation for ( )1l ,k, µu& . So we can solve this equation 

iteratively by the Newton-Raphson method. 

 

2.2.5 Rigid plastic constitutive equation on the rigid plastic finite element method 

The rigid-plastic finite element method (RPFEM) has been developed for geotechnical engineering 

by Tamura et al. (1984, 1987). In this process, the limit load is calculated without the assumption on 

the potential failure mode. The method is effective in calculating the ultimate bearing capacity of 

footing against the three dimensional boundary value problems where the soil condition is varied as 

multi-layered ground. Although RPFEM is originally developed based on the upper bound theorem 

in plasticity, Tamura et al. proved that it could be derived directly using the rigid plastic constitutive 

equation. The advantage of rigid plastic constitutive equation is the scalability for considering the 

material property of soils as the non-associated flow rule. This study improves RPFEM by using the 

non-linear shear strength property of soils and introduces the rigid plastic constitutive equation of 

parabolic yield function regarding the confining pressure.  

Tamura (1991) developed the rigid plastic constitutive equation for frictional material. The 

Drucker-Prager’s yield function is expressed as follows: 

0bJaI)(f 21 =−+=σ       
(2.87) 

where 1I  : first invariant of stress 

2J : second invariant of deviator stress 

The coefficients a, b express the soil constants corresponding to the internal friction 
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angle and cohesion, respectively 

 

Fig.2.18 Yield surface of Drucker-Prager criterion 

Following the non-associated flow rule, the strain rate pεε && = could be written as follow: 
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Fig.2.19 Stress decomposition for non-associated flow rule 

 

The volumetric strain rate is expressed as follows: 
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        (2.95) 

No volumetric plastic strain rate occurs under the limit state. Here, Vl is a small area obtained by 

dividing a region V. 

  1,2,3...n)(l             0

2
13

3
2

==
















+
−∑∫

∈VV
V

v

l
l

dVe
a

a
&&ε      (2.96) 

 

where λ: the plastic multiplier, and e& , the norm of strain rate. I and s express the unit and the 

deviatoric stress tensors. The strain rateε& , which is purely plastic component, should satisfy the 

volumetric constraint condition which is derived by equation (2.96) as follows: 
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The internal dissipation rate is eventually expressed by the equation (2.98). Here, I1 is the first 

invariant of the Cauchy stress tensor and I is the unit tensor. 
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We write the formal functional in terms of the Lagrange multiplier ( )1l ,k µ for the constraint 

conditions: 
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in which lk and 1µ are called the Lagrange multiplier. 

Furthermore, from the stationary condition, the following simultaneous equations are 

obtained. 0dSdVe
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       for u&δ∀            (2.100) 
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The expression (2.100) and substituting internal dissipation rate equation (2.98), finally 

equation (2.103) is satisfied: 
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Therefore, Drucker-Prager yield function can be expressed as follows: 

  

I
ε

σ l
l k

ea

akb
+

+

−
=

&

&

2
13

3

2

       

(2.104) 

The rigid plastic constitutive equation was expressed by Tamura (1991) as follow: 
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The variable of γ is determined by inserting 2J into the plastic potential of equation (2.87). On 

the other hand, the indeterminate stress parameterβstill remains unknown until the boundary 

value problem with the kinematical constraint conditions of equation (2.97) is solved. 
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Any strain rate which is compatible with Drucker-Prager’s yield criterion must satisfy equation 
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(2.111). η̂ is a coefficient determined from equation (2.111) on the dilation characteristics. 
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The rigid plastic constitutive equation is expressed by Lagrange method after Tamura (1991) as 

follows: 
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The first term expresses the stress component uniquely determined for the yield function and the 

second term, the indeterminate stress component along the yield function.  

Tamura.et.al derived rigid plastic constitutive stresses on the yield surface, obtained by 

decomposing on the basis of the flow rule; the result from rigid plastic constitutive equation 

(2.115) is quite consistent with the equation (2.104) by the upper bound theorem. 
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CHAPTER 3 

NUMERICAL FORMULATION ON RIGID PLASTIC FINITE 

ELEMENT METHOD 

 

3.1 Introduction 

In recent years, the finite element method (FEM) is widely accepted as one of the well-established and 

convenient technique for solving complex problems in various fields of engineering and mathematical 

physics. The latest four decades have observed a growing use of finite element method in geotechnical 

engineering. FEM has been applied to estimate the bearing capacity of strip footing on cohesionless soils 

such as Sloan and Randolph, 1982; Griffiths, 1982; Frydman and Burd, 1997. Rigid plastic finite 

element method is basically developed based on the upper bound theorem in the limit analysis. 

It is widely employed for the stability assessment of soil structures in geotechnical engineering. 

Tamura et al. derived the rigid plastic constitutive equation and proved FEM with the rigid 

plastic constitutive equation to match RPFEM developed by the upper bound theorem. The 

advantage of rigid plastic constitutive equation exists in the extensibility to more complicate 

material property such as the non-associated flow rule. In this chapter, the rigid plastic 

constitutive equation for the Drucker-Prager yield function is exhibited. Ohtsuka et al. (2011) 

derived the rigid plastic constitutive equation by introducing the dilatancy condition 

explicitly-modelled with the use of penalty method. 

 

3.2 Rigid Plastic constitutive equation for Drucker –Prager yield function 

The rigid plastic constitutive equation is expressed by Lagragian method after Tamura (1991) as 

equation (2.115): 
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The first term expresses the stress component uniquely determined for the yield function and the 

second term, the indeterminate stress component along the yield function. The indeterminate 

stress parameter β̂ still remains unknown until the boundary value problem with the kinematical 
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constraint conditions of equation (3.1) is solved. 

Constraint condition： ( ) 0ee

2
13

3
h v

2
v =η−ε=

+α

α
−ε= &&&&&ε  

To achieve internal dissipation rate and external force work rate, the formulation of the 

governing equations in the ultimate bearing capacity analysis based on constraints condition 

with volume change to solve an undefined stressβ . 

In this study, the constrain condition on strain rate is introduced into the constitutive equation 

directly with the use of penalty method (Ohtsuka et al., 2011). Penalty method is way to 

incorporate constraint condition directly to constitutive equation by using penalty constant. 

Moreover, the rigid plastic constitutive equation requires convergence calculation because it is a 

non-linear constitutive equation of the displacement speed, to improve the efficiency of 

calculation is very important. Therefore, the purpose of speeding up the calculations, to achieve 

applied formulates Penalty method of incorporating constraints into the governing equation. 

First, we do derivation of the governing equations in the ultimate bearing capacity analysis. The 

functional based on the Penalty Law; Penalty multiplier ( )κµ,  is created as follows: 
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Therefore, the constrain condition on strain rate is introduced into the constitutive equation 

directly with the use of penalty method 
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where, κ is a penalty constant. This technique makes the computation more stable and faster. 

FEM with this constitutive equation provides the same formulation of the upper bound theorem 

in plasticity so that this method is called as RPFEM in this study. 

From equation (3.2), (3.3) and (3.4) for all area, we can divide in the small areas as the spatial 

discretization as bellows:  
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Here, replace as below to the above part of governing equation. 

( ) UUDBB && KdV
V

=∫
Τ
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( ) FdSt
S
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Τ

σ

NN  

( ) XdVX
V

=∫
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NN  

U
．

 is decided by convergence calculate. 

Therefore,  
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Τ

Τ

Τ

Τ

U

U

UU

UU

UU
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&

&

&&

&&

&&

&&

 

where K is all stiffness matrix. 

 

3.3 Rigid plastic constitutive equation of sandy soils 

3.3.1 Strength tests of Toyoura sand by Tatsuoka et al. 

As mentioned above, the effect of confining pressure on shear strength is clearly presented in Fig. 3.1 

through experiments by Tatsuoka et al. on Toyoura sand. This figure shows that the internal friction angle 

decreases with the increase in confining pressure for constant void ratio. In this study, in order to estimate 

the influence of pressure level on ϕ in triaxial compression, the relationship between internal friction 

angle and first stress invariant is arranged in the normalization form. The general property in internal 

friction angle is surveyed against confining pressure. Fig. 3.1 indicates that the internal friction angle ϕ 

can be inferred by confining pressure for various void ratios. Fig. 3.2 demonstrates the relationship 

between internal friction angle ϕ and first stress invariant I1 at failure. In reality, the friction angle 

decreases with an increase in the first stress variant in a logarithmic function. The range of the first stress 

variant is chosen according to test results. The secant friction angle corresponding to the peak of each first 

stress variant was larger than the approximated value obtained from the Mohr-Coulomb approach. 

Although the relationship is different depending on the void ratio, the figure shows the internal friction 

angle decreased with an increase in first stress invariant, irrespective of void ratio. 
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Figure 3.1. Experimental result of Toyoura sand (Tatsuoka et al., 1986) 
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Figure 3.2. Relationship between internal friction angle and first stress invariant for Toyoura 

sand 
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The relationship between the internal friction angle and the first stress invariant is different from 

void ratio. This figure also shows the internal friction angle decreased with the increase in the 

first stress invariant. However, Fig. 3.3 indicates the relationship between normalized internal friction 

angle and normalized first stress invariant. ϕ0 and I10 are the reference values of internal friction angle and 

first stress invariant. The figure shows that the normalized internal friction angles display a similar trend 

irrespective of void ratio, which means that the obtained relationship exhibits the common property of 

Toyoura sand. 
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Figure 3.4. Relationship between internal friction angle and first stress invariant of Toyoura 

sand 

 

Fig. 3.4a expresses the internal friction angle of Toyoura sand for different void ratios and Fig. 

3.4b shows the normalized curves for Fig. 3.4a. Although the different values of ϕ₀ and I1₀are 

employed for normalization, the curves show the identical relationship between the normalized 

internal friction angle and the normalized first stress invariant in the figure. The obtained 

relationship, therefore, express the general property in the internal friction angle which is 

applicable to Toyoura sand. 
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Figure 3.5. Relationship between ϕ/ϕ₀ and σ/σ20 for various kinds of sand 
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Hettler and Gudehus (1988) used three different types of sands which are Degebo sand, Eastern 

Scheldt sand and Darmstadt sand. The results from experiments show that the internal friction 

angle depends on the lateral stress in triaxial test. The normalized internal friction angle ϕ/ϕ₀ 

and the normalized lateral stress σ/σ20 for all types of soils show the same trends as shown in Fig. 

3.5. It persuaded that the obtained relationship in the figure can be applied not only to Toyoura 

sand but also to various kinds of sands. Hettler and Gudehus (1988) have conducted triaxial test 

for some other sands and proposedthe formula showing the relationship between internal 

friction angle ϕ and ϕ₀ as below: 


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0
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2 1sin
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arcsin        (3.9) 

where, 
2σ : lateral stress, ζ estimated from triaxial tests. 

∗φ : internal friction angle for the specific lateral stress
20σ . 

Hettler and Gudehus (1988) also indicated that ζ is close to 0.1 and kept unchanged for 

various sands and densities as Table 1. Tatsuoka et al. (1986) and Ueno et al. (1998) indicated 

that the effect of confining pressure is considerable. Therefore, this study improves the rigid 

plastic finite element method by introducing the non-linear shear strength property against the 

confining pressure. 

 

Table 1. Data for different sands 

Sand ϕ₀ (ᵒ) (kPa)σ 20
 ζ 

Toyoura 41 10 0.1 

Degebo 40 50 0.1 

Eastern Scheldt 38 50 0.08 

Darmstadt 43.8 50 0.1 

 

Regarding Fig. 3.5, the references I10 and ϕ₀ are chosen depended on the examiner in the laboratory. 



Chapter 3: Numerical formulation on rigid plastic finite element method                |68 

 
 

However, the property of the normalization between internal friction angle and first stress invariant 

always holds irrespective of the reference value of the confining pressure in the standardization of 

internal friction angle. Tatsuoka et al. (1986) and Ueno et al. (1998) [42] indicated that the effect of 

confining pressure is considerable. Therefore, this study improves the rigid plastic finite element 

method by introducing the non-linear shear strength property against the confining pressure. 

 

3.3.2 Proposal of rigid plastic constitutive equation for non-linear strength property 

In this study, the higher order hyperbolic function is introduced into the yield function of sandy 

soils as follows: 

0)()( 21 =−+= bJaIf nσ
      

(3.10)
 

where a and b are the soil constants. The index n expresses the degree in non-linearity in shear 

strength against the first stress invariant. Eq. (3.10) is identical with Drucker-Prager yield 

function in case of n=1/2. The non-linear parameters a, b and n are identified by the testing data. 

In the figure, the results by triaxial compression test are plotted for various confining stresses. 

Based on the associated flow rule, the strain rate is obtained as follows for the yield function of 

Eq. (3.10) 
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In the above equation, λ is the plastic multiplier. The volumetric strainrate is expressed as 

follows: 
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The first invariant I1 is identified from Eq. (3.10) to Eq. (3.15) as the following equation: 
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Deviatoric stress 
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In this study, the non-linear rigid plastic constitutive equation for confining pressure is finally 

obtained as follows: 
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(3.19) 

In this equation, stress is uniquely determined for plastic strain rate and it is different from Eq. 

(2.115) for Drucker-Prager yield function. 
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CHAPTER 4 

NUMERICAL SIMULATION ON RIGID PLASTIC FINITE 

ELEMENT METHOD 

 

4.1 Ultimate bearing capacity of footing under plane strain condition using rigid Plastic 

constitutive equation for Drucker –Prager yield function 

In this study, the input parameters for ultimate bearing capacity analysis under plane strain 

condition are derived from triaxial compression tests in the same way with the conventional 

methods. If the computed results show the good agreement between the RPFEM and the 

conventional formulas, it indicates RPFEM can provide a good estimation for ultimate bearing 

capacity since the conventional formulas are developed semi-empirically. In this study, ultimate 

bearing capacity of strip footing subjected to uniform vertical load is investigated by RPFEM. 

The load is applied at the center of footing with the width B. This footing is modeled by a solid 

element, the strength of which is set large to be rigid. The typical finite element mesh and the 

boundary condition employed for RPFEM are shown in Fig. 4.1.  

 

 

Figure 4.1 Typical finite element mesh and boundary condition in case of B=10m 

 

In the case of vertical load, the typical finite element mesh and the boundary condition 

employed for RPFEM are shown in Fig. 4.1. This study computed the ultimate bearing capacity 

for internal friction angle ϕ=20deg, ϕ=30deg and ϕ=40deg, the obtained results are presented in 

Figs.4.2a, 4.2b and 4.2c. The bigger the footing width is, the higher the ultimate bearing 

capacity is. The values obtained from RPFEM with Drucker-Prager (DP) yield function are 

coincident with the results from the formulas of Meyerhof and Euro-code 7 when the footing 
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width is less than 30m. Since the Euro-code formula employs the different concepts regarding 

the bearing capacity factor, it leads to the ultimate bearing capacity values different from the 

other formula. Thus, the discrepancies among them become larger at the footing width of 100m. 

This width seems too large in practice, but it is considered clearly to discuss the size effect of 

footing on ultimate bearing capacity. 
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(a) ϕ = 20deg. 
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(b) ϕ = 30deg. 
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(c) ϕ = 40deg 

Figure 4.2. Ultimate bearing capacity for vertical load application in case (a) ϕ = 20deg, (b) ϕ = 

30deg and (b) ϕ = 40deg. 

 

      

      

Figure 4.3. Deformation diagrams of the Drucker-Prager yield function with B=10m 

 

Ultimate bearing capacity is computed for B=10m and ϕ=30deg. The obtained velocity field is 

shown in Fig. 4.3 which indicates the typical failure mode of ground. The norm of strain rate, 

e&  is presented by contour lines. It is illustrated by the range between maxe&  and ( )mine0 & since 

it is basically indeterminate and the relative magnitude in e&  affects the magnitude of ultimate 
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bearing capacity. The slip-line assumed in the conventional bearing capacity formula is also 

plotted in the figure. The failure mode that is inferred by computation result is similar with the 

slip-line assumed in the conventional formula. It is difficult to determine the slip-line by 

RPFEM since FEM is based on the continuum theory. However, it can be seen to provide the 

similar slip-line although it is slightly smaller than that of the conventional formula.  In case of 

rigid footing, stress concentration is widely known to generate at edge of footing. It causes a 

problem of singularity in stress distribution of ground. Since finite element analysis is based on 

continuous function for shape function, it can't analyze the singularity problem directly. Thus, it 

analyzes the problem approximately. In sandy soil, the shear strength at edge of footing is 

affected by free stress condition of ground surface outside the footing. The degree of singularity 

in stress distribution is, therefore, comparatively moderate in case of sandy soil since the shear 

strength depends on confining stress. In this study, no special numerical technique to analyze 

the ultimate bearing capacity is employed as the past references (Ukritchon et al., (2003) and 

Lyamin et al., (2002)). As shown in Fig. 4.3, the velocity field of ground at edge of footing is 

obtained greatly from the viewpoint of total balance in velocity field. It seems to reflect the 

above-mentioned problem, but it is due to the limitation of regular finite element method. This 

problem is partly resolved by using finer finite elements. The applicability of rigid plastic finite 

element method is examined through the comparison with the past bearing capacity formulas 

and finite element analysis. In preliminary analysis, the effect of mesh size on ultimate bearing 

capacity was investigated by comparing bearing capacities computed for 1640 and 3423 element 

meshes which produces ultimate bearing capacity of 201.9 kPa, 504.9 kPa, 1530.7 kPa, 3822.1 

kPa and 13691.2 kPa. The finite element meshes in this study produce ultimate bearing capacity 

of 201.8 kPa, 503.8 kPa, 1528.8 kPa, 3821.7 kPa and 13685.4 kPa with footing widths: 1m, 3m, 

10m, 30m and 100m, respectively. The obtained results are almost coincident for all cases 

where the footing width is varied from 1m to 100m. Thus, the employed finite element meshes 

provide good estimation for various cases in this study. 
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(a) ϕ = 20deg 
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(b) ϕ = 30deg 
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(c) ϕ = 40deg 

Figure 4.4. Effect of footing width on ultimate bearing capacity for vertical load application 

 

AIJ formula takes into account the size effect of footing on ultimate bearing capacity. Fig. 4.4 

indicates the comparison in ultimate bearing capacity among AIJ formula and others. The 

results from AIJ formula are smaller than those from others that don’t consider the size effect of 

footing. A great discrepancy can be seen in ultimate bearing capacity at footing width of 100m. 

Since AIJ formula is developed by semi-experimentally, it implies RPFEM needs to take into 

account the size effect of footing in ultimate bearing capacity assessment. 

 

4.2 Ultimate bearing capacity of footing under plane strain condition using rigid Plastic 

constitutive equation for non-linear shear strength property 

In bearing capacity problem, the larger the footing width is, the higher the confining stress is. 

This leads the internal friction angle to be decreased as discussed above. It is, therefore, 

necessary to apply the non-linear shear strength property against the confining stress to take into 

account the size effect of footing on ultimate bearing capacity. On the other hand, the internal 

friction angle is set constant in RPFEM in case of the Drucker-Prager yield function. Therefore, 

the ultimate bearing capacity calculated by using the non-linear rigid-plastic constitutive 

equation becomes smaller than that obtained from the Drucker-Prager yield function. It means 
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that the size effect of footing is properly taken into account in computation. Non-linear yield 

function (Eq.2.21) is defined by the parameters a, b, and n which are derived from the 

experiment. In this study, a series of numerical simulation are conducted for Toyoura sand 

based on the experiment of Tatsuoka (1986). Through the case studies, the non-linear shear 

strength parameters of Toyoura sand are set as a=0.24, b=2.4 (kPa) and n=0.56 for case internal 

friction angle 30deg and a=0.28, b=2.8 (kPa) and n=0.57 for case internal friction angle 40deg, 

respectively. 

 

 

Figure 4.5. Deformation diagram of the non-linear shear strength with B=10m 

Fig.4.5 shows the deformation of ground at the limit state computed by multiplying arbitrary 

time increment to the velocity field obtained by RPFEM for B=10m.The obtained failure mode 

of ground is similar to that in Fig. 4.3 for the linear shear strength of Drucker-Prager yield 

function. However, the deformation area in the case of linear shear strength is obtained larger 

than that in the case of non-linear shear strength, especially around the edge of footing.  
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(a) ϕ0 = 20deg 
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(b) ϕ0 = 30deg 
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(c) ϕ0 = 40deg. 

Figure 4.6. Ultimate bearing capacity with non-linear shear strength in case (a) ϕ0 = 20deg,    

(b) ϕ0 = 30deg. and (c) ϕ0 = 40deg. 

 

Fig. 4.6 shows the results of RPFEM with non-linear shear strength in the case the internal 

friction angle of 30 and 40 deg. In the figure, these results are clearly identical with those of AIJ. 

It means that the results obtained by employing non-linear shear strength property is rational 
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and it shows that the size effect of footing in ultimate bearing capacity can be well expressed by 

considering the non-linear shear strength against the confining pressure. 
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CHAPTER 5 

DISCUSSION ON SIZE EFFECT OF FOOTING ON 

ULTIMATE BEARING CAPACITY 

 

The conventional RPFEM with Drucker-Prager function does not take into account the size 

effect on ultimate bearing capacity, which is considered in the AIJ formula, because RPFEM is 

based on the same framework with the other conventional ultimate bearing capacity formulae. 

This study improves RPFEM by using the non-linear shear strength property of soils and 

introduces the rigid plastic constitutive equation of parabolic yield function regarding the 

confining pressure. This study has shown that internal friction angle is not constant and 

decreases with the increase in confining pressure in sandy soils. It implies the confining 

pressure dependency in soil shear strength may be one of the most important factors affecting 

the size effect of footing.  

 

5.1 Effect of non-linear shear strength property of sandy soils 

The computed results are utilized to determine the bearing capacity factor Nᵧ for the various 

internal friction angle from 0 deg to 40 deg. The obtained bearing capacity factor Nᵧ is 

compared with these factors defined based on the empirical method by Meyerhof (1963 - 

Semi-empirical), Muhs and Weiss (1969-Euro-code7, Semi-empirical). Although the cohesion 

of soils (c = 1 kN/m2) is introduced into the analysis to make the computation process stable, it 

does not affect the ultimate bearing capacity too much. Therefore, Eqs. 5.1 and 5.2 are applied 

to approximately define Nᵧ. The bearing capacity factor Nᵧ of RPFEM for Drucker –Prager is 

calculated by the following equation: 
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On the other hand, the bearing capacity factors Nᵧ for non-linear shear strength is determined by 

the equation:  
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=                 (5.2) 

The bearing capacity factor Nᵧ was compared among the bearing capacity formulas of AIJ, 



Chapter 5: Discussion on size effect of footing on ultimate bearing capacity            |82 

 

Euro-code 7 and Meyerhof with RPFEM. Fig. 5.1 shows the comparison in bearing capacity 

factor by changing internal friction angle from 0 to 40 deg. As shown in the figure, the bearing 

capacity factor by RPFEM employing non-linear shear strength against the confining pressure 

match those by AIJ formula in the wide range of internal friction angle. It is obtained smaller 

than that by the formulas of Euro-code 7 and Meyerhof. When the internal friction angle less 

than 30deg, there is not so much difference in bearing capacity factor among them. But, the 

difference becomes greater at the internal friction angle of 40 deg. 
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Figure 5.1. Relationship between bearing capacity factor Nᵧ and internal friction angle ϕ 

 

5.2 Effect of multi-layered ground system 

In ultimate bearing capacity assessment for multi-layered ground, the current ultimate bearing 

capacity formula cannot provide an estimation for complicate ground conditions. On the other 

hand, RPFEM can estimate various ultimate bearing capacity problems of footing which are 

difficult to solve by the conventional method due to the complicate conditions of material 

property and geometry of footing. Thus, this study discusses the size effect of footing on 

ultimate bearing capacity for multi-layered ground where sand layer overlays clay layer. FEM is 

a powerful tool to analyze the complicated boundary value problems. It is applicable to 

non-uniform materials such as the multi-layered ground and provides a good estimation for 

problems. Fig. 5.2a shows that thin sand layer overlays thick clay bed. In the conventional 

method, a sand mass of approximately truncated pyramidal shape is assumed to be pushed into 

the clay bed so that, the friction angle of sand layer and the cohesion of clay bed are mobilized 

in the combined failure zone. The ultimate bearing capacity is computed by the equilibrium 
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equation of sand block. Although the selected value of the side angles of the block α can have a 

main influence on the calculated bearing capacity, it is often not clear how its value should be 

nominated. In practice, the side angles of the block α proposed by various researchers are 

different from each other; for example, a value of α of tan-10.5 is often adopted (Houlsby et al. 

1989), 30 (deg) for Yamaguchi and Terashi (1971), tan-10.5 for Kraft and helfrich (1983) and ϕ 

for Baglioni et al. (1982). On the other hand, in the case of thick sand layer, the multi-layered 

ground can be modeled into uniform ground in the assessment of ultimate bearing capacity of 

footing. Thus, the size effect of footing on ultimate bearing capacity is exerted. However, these 

failure modes depend on the relationship between the footing width and the thickness of sand 

layer. The ultimate bearing capacity of footing is investigated for the footing width from 1 to 

100m under the condition of sand layer as 10m in thickness. It is performed by three methods of 

conventional method based on Meyerhof, RPFEM for uniform sandy soil and RPFEM for 

multi-layered ground.   

 

 

a) Thin layer     b) Thick layer 

Figure 5.2 Failure modes of soils in multi-layered ground  

 

In conventional methods, Hanna and Meyerhof (1980) are perhaps the most widely used in 

practice. Their methods are also known as punching shear models, as they assume the sand layer 

to be in a state of passive failure along vertical planes beneath the footing edges. For a strip 

footing of width B on the upper sand layer, Meyerhof and Hana (1980) proposed the ultimate 

bearing capacity given by 
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where 2c : representative strength of underlying clay )m/kN( 2  

Β  : footing width (m) 

γ1 : unit weight of sand )m/kN( 3  

H  : thickness of the sand below the footing (m) 

Ks : punching shear coefficient 

ϕ1   : internal friction angle of sand (deg) 
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Figure 5.3. Effect of footing width on bearing capacity factor 2q/γB                       

in case of multi-layered ground 

Fig. 5.3 shows the size effect of footing width on bearing capacity factor 2q/γB in the case of 

multi-layered ground. From the results by RPFEM, the ultimate bearing capacity of footing the 

width of which is within 3m is obtained to match that of uniform sandy soils. In the 

conventional method, by assuming diffusion of stress from the footing to the clay bed through 

the sand layer, the ultimate bearing capacity of footing is assessed by the failure of clay layer. It 

is widely employed to assess the ultimate bearing capacity, but the assumption of stress 

diffusion has not been clarified and the contribution of sand layer to the ultimate bearing 

capacity is not taken into account. Therefore, the results of ultimate bearing capacity of footing 

from RPFEM are different with the results from Meyerhof’s formula at the footing size from 

10m to 30m. At bigger footing width, the multi-layered ground can be modeled into uniform 

clay ground in the assessment of ultimate bearing capacity of footing. This leads the ultimate 
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bearing capacity results from RPFEM is similar to the results from Meyerhof’s formula at 

footing size 100m as shown in Fig. 5.3.  

 

 

 

 

 

 

Figure 5.4. Failure mechanism and strain rate distribution in the ground at various widths of 

footing (a) B=1m, (b) B=3m, (c) B=10m, (d) B=30m, (e) B=100m 
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Fig. 5.4 illustrates the deformation of ground according to strain rate distribution for the footing 

width from 1 to 100m. By comparing Fig. 5.4a to Fig. 5.4e, it can be seen that the area in 

ground failure becomes wider as the footing width is larger. It is inside the sand layer when the 

footing width is small. But it expands to the clay layer with the increase in footing width. Size 

effect of footing in ultimate bearing capacity can be observed for not only uniform grounds, but 

also multi-layered grounds. Since the ultimate bearing capacity formula is developed for 

uniform grounds, the applicability of the method is severely limited in design practice. The 

results in both ultimate bearing capacity and failure mode are shown appropriately obtained for 

the prescribed footing width. Through the examination on the computed results, the developed 

rigid plastic FEM is proved to afford a rational assessment for the problems in which the 

ultimate bearing capacity is difficult to be assessed by using the current bearing capacity 

formulas. 

 

5.3 Discussion 

(1) Bearing capacity factor Nᵧ was compared among the bearing capacity formulas of AIJ, 

Euro-code 7 and Meyerhof with RPFEM by changing internal friction angle from 0 to 40 deg. 

The bearing capacity factor by RPFEM employing non-linear shear strength against the 

confining pressure matched those by AIJ formula in the wide range of internal friction angle. It 

was obtained smaller than that by the formulas of Euro-code 7 and Meyerhof. The difference in 

bearing capacity factor was shown greater at the internal friction angle of 40 deg. 

(2) Size effect of footing in the case of multi-layered ground was investigated for the ground 

where sand layer overlaid clay layer. By simulation results, the size effect of footing was clearly 

shown to be generated by the change in failure mode of ground due to footing width. 

(3) Wide applicability of developed RPFEM to the assessment of ultimate bearing capacity was 

shown through the case studies. 
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CHAPTER 6 

ULTIMATE BEARING CAPACITY OF FOOTING ON SANDY 

SOIL AGAINST COMBINED LOADING 

 

The ultimate bearing capacity of footing related to inclined loads is an important aspect in 

geotechnical engineering. Because the number of superstructure buildings has increased and 

great earthquakes occur regularly, estimating the ultimate bearing capacity of footing with 

considering the effect of footing width is necessary. The strip footings are often subjected to the 

inclined loads and the combined loads. The ultimate bearing capacity for combined vertical 

and horizontal loads (with no moments) is resolved by Green (1954). The general case of 

vertical, horizontal and moment loads has received less attention. Several authors (notably 

Meyerhof 1953, Hansen 1970 and Vesic 1975) provide procedures for a general case; however 

they only conduct empirical generalizations of the simpler cases without examining in detail. 

Under such circumstances the ultimate bearing capacity theories presented in Chapter 2 need 

some modification, and this is the subject of discussion in this chapter. The chapter is divided 

into two major parts. The first part discusses the ultimate bearing capacities of footing subjected 

to centric inclined loads, and the second part is devoted to the ultimate bearing capacity of 

footing under vertical, horizontal and moment combination.  

In previous geotechnical research, the combined vertical and horizontal load is referred as the 

inclined loads. Their results showed that the vertical bearing capacity significantly decreased 

when the inclined angle ( )VHatan=θ  increased. Many researchers provide procedures for a 

general case; however they only conduct empirical generalizations of the simpler cases without 

examining in detail. 

There are few analyses related to inclined load for sandy soils except Loukidis et al. (2008). 

However, the effect of footing width on ultimate bearing capacity is not considered directly. As 

shown in Eqs. 2.5 and 2.6, the size effect of footing is large in case of sandy soil. It can be seen in 

the combined load space of vertical, horizontal and moment loads. This is a major topic of this 

study. 

There are few analyses related to inclined load for sandy soils except Loukidis et al. (2008). 

However, the effect of footing width on ultimate bearing capacity is not considered directly. The 
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inclination coefficient proposed by Loukidis et al. (2008) is also shown. They proposed the 

inclination factor iγ based on the FE analysis as follows: 

( )
( )24.0tan5.1

0 tan
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This research investigated the ultimate bearing capacity of footing on sandy soils against the 

combined load of vertical, horizontal and moment loads. This research applied rigid plastic 

finite element method which employs the rigid plastic constitutive equation in which non-linear 

shear strength properties against confining pressure in case the internal friction angle of 30 and 

40 deg. The vertical load V, horizontal load H and moment M, which were applied at the center 

of the footing, were subjects in this study. The analytical method provides the reliable 

computational results. The relation in normalization form of H/V0 vs V/V0 and V/V0 vs M/BV0 

were acquired and then were compared with the relationship by Meyerhof (1956), Architectural 

Institute of Japan (1988, 2001) and Loukidis et al. (2008). 

 

6.1 Ultimate bearing capacity for combined vertical and horizontal loads 

The rigid plastic finite element method was used to assess the ultimate bearing capacity of strip 

footings of which the width varied from 1m to 100m, subjected to the inclined load at an 

inclination angle θ with respect to the vertical. The boundary conditions and typical mesh for 

analysis are shown in figure 6.1. 

Because of the absence of loading symmetry, the entire soil domain of dimensions will be 

considered in this section and in the next section. The numerical simulation procedure used for 

the computation of the (H, V) failure envelope (where H and V are the horizontal and vertical 

ultimate footing loads respectively). 

For inclined load, the application of RPFEM is limited to the case where the contact pressure 

between footing and ground is positive. In other words, the ratio H/V is set comparatively in 

small range. Further detailed discussion will not conducted in this study. 
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a) Typical mesh for analysis 

 

b) Problem geometry and boundary conditions 

Figure 6.1 Formulation of finite element method 

 

Figure 6.2 and figure 6.6 provide the RPFEM result on the relationship between normalized 

horizontal and vertical loads on H-V space in case ϕo = 30deg and 40deg. Two cases considered 

include (i) linear shear strength property and (ii) non-linear shear strength property. The results 

by AIJ and Meyerhof formulae are also shown. Since AIJ formula employs the same coefficient 

with Meyerhof method, the results in normalization form from AIJ and Meyerhof show unique 

and coincident line.  
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a) RPFEM with linear shear strength properties 

 

b) RPFEM with non-linear shear strength properties 

 

Figure 6.2 The relation between normalized horizontal and vertical loads in case ϕo = 30deg 

 

Figs. 6.2a and 6.6a. In the figure, the normalized horizontal load is indicated greater than those 

of Meyerhof and AIJ. The obtained results by RPFEM are plotted for various footing widths. It 

is apparent that the results match with the model of Eq. 6.1 by Loukidis et al. though they are 
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varied for footing width. 
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Figure 6.3 Comparison inclination coefficients among the various methods at footing width B = 

10m in case ϕ = 30 deg 

 

Fig. 6.3 and 6.7 indicate the ultimate load in H/V0 and V/V0 space to compare the inclination 

coefficient among the various methods at B=10m in case ϕo = 30deg and 40 deg. It is readily 

seen that RPFEM affords the identical results by Loukidis et al. in case of linear shear strength, 

but the greater results than that by Loukidis et al. in case of non-linear shear strength. Although 

φ  is constant in case of linear shear strength, φ  decreases by confining pressure in case of 

non-linear shear strength. Since the decrease inφ mostly depends on the magnitude of vertical 

load, the decrease in ultimate bearing capacity is largest for vertical loading. For the inclined 

load, the decrease in φ becomes moderate with the increase in inclination angle of inclined load. 

It derives the normalized horizontal load in case of non-linear shear strength greater than that of 

linear shear strength. 

Figure 6.4 and figure 6.5 shows failure mechanism from analyses with resistance angle ϕ = 

30deg.  
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a) B = 1m (H = 30kN) 

 

b) B = 10m (H = 500kN) 

 

c) B = 100m (H = 30000kN) 

 

Figure 6.4.Deformatin mechanism from analysis in case internal friction angle ϕ = 30deg with 

non-linear shear strength properties 

 

a) B = 1m (H = 30kN) 
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b) B = 10m (H = 500kN) 

 

c) B = 100m (H = 30000kN) 

 

 

Figure 6.5.Deformatin mechanism from analysis in case internal friction angle ϕ = 30deg with 

linear shear strength properties 

 

Figs. 6.2b and 6.6b indicate the inclination coefficient in case of non-linear shear strength. AIJ 

formula is developed by taking account of the size effect of footing. However, since the 

inclination coefficient of Meyerhof is introduced into the formula, the applicability of AIJ 

formula for inclined load has not been examined. The results by RPFEM taking account of 

non-linear shear strength are plotted in the figure. 

 

In case phi = 40deg, the relationship between normalized H/Vo and V/Vo of non-linear shear 

strength and linear shear strength decrease and oscillate around AIJ at footing width 1m and 

30m, corresponding. 
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a) RPFEM with linear shear strength properties 
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b) RPFEM with non-linear shear strength properties 

Figure 6.6 Relationship between normalized horizontal load and vertical load              

in case resistance angle ϕ = 40deg 
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Figure 6.7 Comparison inclination coefficients among the various methods at footing width B = 

10m in case ϕ = 40deg 

 

Figure 6.8 and figure 6.9 shows failure mechanism from analyses with resistance angle ϕ = 

40deg.  

 

a) B = 1m (H = 30kN) 

 

 

b) B = 10m (H = 500kN) 
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c) B = 100m (H = 30000kN) 

 
Figure 6.8 Deformatin mechanism from analysis in case resistance angle ϕ = 40deg with 

non-linear shear strength properties 

 

a) B = 1m (H = 30kN) 

 

b) B = 10m (H = 500kN) 

 

c) B = 100m (H = 30000kN) 

 
Figure 6.9 Deformatin mechanism from analysis in case resistance angle ϕ = 40deg with linear 

shear strength properties 

 

The results from analysis computation show that the failure mechanism is asymmetrical and 

confined to one side of the footing for all values of the inclination angle when ϕ = 30deg (Fig. 
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6.4, Fig. 6.5) and ϕ = 40deg (Fig. 6.8, Fig. 6.9). Furthermore,the failure modes of ground for 

non-linear and linear shear strength. They are similar, but the deformation area in the case of 

linear shear strength is larger than that in case of the non-linear shear strength. The mechanism 

is found composed of three different zones and similar to the mechanism assumed by Meyerhof 

and Hansen. 
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a) Non-linear shear strength properties 
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b) Linear shear strength properties 

Figure 6.10 Relationship between Normalized Horizontal load and vertical load for LINEAR 

and NON-LINEAR shear strength properties for difference value of internal friction angle 
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From Fig. 6.10a and 6.10b, the results showed that the relationship between H/Vo and V/Vo of 

small internal friction angle (30deg) is higher than those of larger internal friction angle (40deg) 

at the same footing width. 

Moreover, the results from RPFEM have the same trend for various magnitude of footing width. 

    

6.2 Ultimate bearing capacity for vertical, horizontal and moment loads 

The type of loads, which is often known as combined loads, is important to the stability of 

superstructure where footings are subjected to vertical, horizontal and moment loads 

combination. Typically, the vertical force is stemmed from the weight of 

superstructure hq stv ×= γ
0

, while the horizontal load comes from the seismic coefficient kh = 0; 

0.1; 0.2; 0.3; 0.4. 

The overturning moment load is caused by the horizontal load: 

     hBqM
0h0 2

1
××=        (6.2) 

A series of finite element analysis were conducted for sandy soil with Using sandy soil with unit 

weight γsoil = 18 kN/m3, Density of building γst= 18 kN/m3, cohesion c = 5 kN/m2, internal 

friction angle 030=φ  and 040=φ , the footing width 1m, 10m and 30m were computed. Initial 

loads are considered as Fig. 6.11. 

 

Figure 6.11 Initial loads applied to computation 

 

The moment load is given to the footing by the external force where the summations in vertical 

and horizontal loads are zero and the resultant moment at the center of footing is same with the 

prescribed moment load. The results demonstrated the interaction between the vertical, 

horizontal and moment loads. Fig. 6.12 shows the representative finite element meshes of 
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analysis. 

At each height of superstructure value, the ultimate bearing capacity of footings subjected to 

combined loading was computed under the condition of seismic load applied to superstructure. 

By changing superstructure height and the seismic coefficient kh, the forces qh, qv and the 

moment load was computed. 

 

Figure 6.12 Representative finite element meshes under superstructure on the strip footings 

condition 

 

Ultimate bearing of footing related to inclined loads or combined loads (vertical, horizontal and 

moment loads combination) is an important aspect in geotechnical engineering. Meyerhof and 

others (e.g. Hansen, 1970, Vesic, 1975) conducted empirical generalizations of the simpler cases 

without examining in detail. Moreover, the size effect of footing does not consider in the 

previous research. In this chapter, the ultimate bearing capacity of footing that is subjected to 

the combined loads of strip footing has been investigated. 

Fig. 6.13 shows ultimate bearing capacity of footing in the normalized V-M form by changing 

footing width (1m, 10m and 30m) at the internal friction angle of 30 deg and 40deg. The results 

from Fig. 6.13a showed that the normalized load V/V0 decreases with an increase in M/BV0. In 

the case of linear strength, the values that represent the relationship between the normalized 

V/V0 and M/BV0 obtained greater than that by RPFEM employing non-linear shear strength. 

When the internal friction angle is 40 deg (Fig. 6.13b) , there is no much difference in the 

normalized V/V0 and M/BV0 among footing width 1m, 10m and 30m in case linear strength. 

But the difference becomes greater in case non-linear strength. It is explained that this case 
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influences the internal friction angle responding to the confining stress. It means that the effect 

of moment load in non-linear case is clearer than that in linear shear strength property. 

 

 

a) ϕo = 30deg 

 

b) ϕo = 40deg 

Figure 6.13 The relation between normalized vertical and moment loads 

 

Figs. 6.14 and 6.15 show the distribution of equivalent strain rate and Figs. 6.16 and 6.17 show 
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the contour plot of pressure in the ground in case ϕ = 30deg. The results indicated clearer the 

effect of moment load in non-linear case than that in linear shear strength property. 

 

 

kh = 0.1 kh = 0.4 

  

a) Linear shear strength property 

  

b) Non-linear shear strength property  

Figure 6.14 Deformation mechanism analysis subjected to combined loads in case ϕo = 30deg 

with B/h = 1 

 

 

kh = 0.1 kh = 0.4 

  

a) Linear shear strength property 

  

b) Non-linear shear strength property  

Figure 6.15 Deformation mechanism analysis subjected to combined loads in case ϕo = 30deg 

with B/h = 0.25 
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kh = 0.1 kh = 0.4 

  

a) Linear shear strength property 

  

b) Non-linear shear strength property  

 

Figure 6.16 Contour plot of mean stress subjected to combined loads in case ϕo = 30deg with 

B/h = 1 

 

 

kh = 0.1 kh = 0.4 

  

a) Linear shear strength property 

  

b) Non-linear shear strength property  

 

Figure 6.17 Contour plot of mean stress subjected to combined loads in case ϕo = 30deg 

with B/h = 0.25 
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CHAPTER 7 

CONCLUDING REMARKS 

 

7.1 Main fidings 

Terzaghi (1943) and others (e.g. Meyerhof, 1951, 1963) have proposed many formulas to 

evaluate ultimate bearing capacity. However, the application of formulas is limited due to their 

disadvantages. Rigid plastic finite element method is effective to solve the complex problems 

such as multi-layered soil and footing shape in the three dimensional condition. Moreover, limit 

state analysis is possible to be conducted without the assumption on potential failure modes. In 

this study, RPFEM is employed for the assessment of ultimate bearing capacity. The 

applicability of the method is presented through the comparison with those by the 

semi-experimental ultimate bearing capacity formulas. 

Size effect of footing is observed in ultimate bearing capacity, but basically not accounted in the 

ultimate bearing capacity formulas. In this study two discussions on the size effect were 

conducted. One is the size effect in case of a uniform sandy ground and the other is in case of a 

multi-layered ground. On sandy soils, a rigid plastic constitutive equation is proposed by 

considering the experiments, where the secant internal friction angle reduces with the increase 

in confining pressure. This equation is expressed by the higher order parabolic function and 

easily applied to RPFEM. The obtained ultimate bearing capacity shows a good agreement with 

that of the ultimate bearing capacity formula by Architectural Institute of Japan (AIJ, 1998, 

2001) which takes into account the size effect of footing. It is clear that RPFEM with the use of 

proposed constitutive equation provides a good estimation in ultimate bearing capacity 

assessment by considering the size effect of footing. 

The size effect of footing in ultimate bearing capacity is also observed in case of multi-layered 

ground. In conventional methods, it is difficult to assess the ultimate bearing capacity for 

multi-layered ground due to the complexity in failure mode of ground. RPFEM is, however, 

applicable boundary value problems. Through the case studies for various footing widths, the 

change in both ultimate bearing capacity and failure mode due to footing width is shown 

properly simulated.  
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Moreover, ultimate bearing of footing related to inclined loads or combined loads (vertical, 

horizontal and moment loads combination) is an important aspect in geotechnical engineering. 

Meyerhof and others (e.g. Hansen, 1970, Vesic, 1975) conducted empirical generalizations of 

the simpler cases without examining in detail. Moreover, the size effect of footing does not 

consider in the previous research. In this study, the ultimate bearing capacity of footing that is 

subjected to the inclined loads and the combined loads of strip footing has been investigated. 

The obtained conclusions are summarized as follows: 

(1) On sandy soils, the size effect of footing in ultimate bearing capacity was well simulated by 

RPFEM with the use of proposed constitutive equation. It was proved by the comparison in 

ultimate bearing capacity between the semi-experimental bearing capacity formula of AIJ and 

RPFEM. 

(2) Rigid plastic constitutive equation was proposed for sandy soils based on the experiments by 

Tatsuoka and other researchers for various soils. The relationship between the secant internal 

friction angle and first stress invariant was uniquely expressed in normalized form although 

some scatters existed. The yield function was modeled into the higher order parabolic function 

regarding the first stress invariant. 

(3) Bearing capacity factor Nᵧ was compared among the bearing capacity formulas of AIJ, 

Euro-code 7 and Meyerhof with RPFEM by changing internal friction angle from 0 to 40 deg. 

The bearing capacity factor by RPFEM employing non-linear shear strength against the 

confining pressure matched those by AIJ formula in the wide range of internal friction angle. It 

was obtained smaller than that by the formulas of Euro-code 7 and Meyerhof. The difference in 

bearing capacity factor was shown greater at the internal friction angle of 40 deg. 

(4) Size effect of footing in the case of multi-layered ground was investigated for the ground 

where sand layer overlaid clay layer. By simulation results, the size effect of footing was clearly 

shown to be generated by the change in failure mode of ground due to footing width. 

(5) Wide applicability of developed RPFEM to the assessment of ultimate bearing capacity was 

shown through the case studies. 

(6) The results from analysis computation show that the failure mechanism is asymmetrical and 

confined to one side of the footing for all values of the inclination angle. Furthermore, the 
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mechanism seems to be composed of three different zones and similar to the one assumed by 

Meyerhof and Hansen 

 (7) Ultimate load space in normalized vertical and horizontal loads was shown to match with 

that by Loukidis et al. (2008), Meyerhof (1956) and AIJ (1988, 2001) in case internal friction 

angle 40deg and be greater than those by Meyerhof (1956) and AIJ (1988, 2001) in case internal 

friction angle 30deg of linear shear strength. Moreover, the internal friction angle decreases by 

confining pressure and the decrease is the most for the case of vertical loading. It makes the 

obtained result greater than that by Loukidis et al. in case of non-linear shear strength   

 (8) In the case of linear strength, the values that represent the relationship between the 

normalized V/V0 and M/BV0 obtained greater than that by RPFEM employing non-linear shear 

strength and normalized load V/V0 decreases with an increase in M/BV0. At the internal friction 

angle of 40 deg, there is no much difference in the normalized V/V0 and M/BV0 among footing 

width 1m, 10m and 30m in case linear strength.  

(9) Effect of non-linear strength was investigated for combined loading case (horizontal and 

vertical loads vs horizontal, vertical and moment loads). From computation results, the 

non-linear strength was clearly shown by the change in failure mode of ground. 

(10) The non-linear shear strength model for sandy soil is employed in RPFEM to evaluate 

the size effect of footing on ultimate bearing capacity. Through the case studies the applicability 

of the method was clearly exhibited. 

 

7.2 Future research 

7.2.1 Propose new model based on the modified stress tensor tij 

A. Druker – Prager yield function   

Propose new model based on the modified stress tensor tij to describe uniquely the deformation 

and strength of soils under three different principle stresses. 

 - Influence of intermediate principal stress on the deformation and strength of 

geomaterials. 

     - Dependence of the direction of plastic flow on the stress paths. 

     - Influence of density and/or confining pressure on the deformation and strength of 

geomaterials. 
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Table 7.1 Comparison between tensors and scalars related to stress and strain increments in the 

ordinary concept and the tij concept 
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Figure 7.1 Drucker-Prager yield function in tij space 
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Equilibrium equation: 
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Constraint condition： 1=⋅∫
σS
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The load factor ρ instead incorporate to constraint condition by using penalty method: 
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Here, replace as below to above part of governing equation. 
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Here, K  is all stiffness matrix. 

 

B. Hibino - Hayashi yield function   
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Where e&  is called the equivalent strain rate and defined by: εε= &&&e  
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We can check： 
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Here, replace as below to above part of governing equation. 
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Here, K  is all stiffness matrix. 

 

7.2.2 Numerical simulation of bearing capacity on sand consider to intermediate stress 

 - Bearing capacity analysis 

 - Effect of intermediate stress to bearing capacity of soils. 
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Figure 7.2 Block Diagram 
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