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ABSTRACT

Sediment and ice, solid substances, can be found in rivers in cold regions. In some case, they
are a problem together as considered often problems separately. As approaching to the ultimate
purpose of modeling the interactions between sediment and ice, this thesis properly aimed to
study sediment and ice problems separately in two different modeling scales, respectively.
Numerical studies of sediments and ices have been done in order to understand their physics in
fluid flows and to find whether the approach to accomplish the ultimate purpose found in
different modeling scales. Herein the studies are organized in two parts.

The sediment problem in an estuary of the Ohkouzu diversion channel of the Shinano River
studied by macroscopic models is discussed in Part 1. The macroscopic models include the
Navier-Stokes equations simplified by the Boussinesq approximation for estuarine flows and
the advection-diffusion equation and a novel sediment particle tracking method for the
sediment transports. The particle tracking method is featured by a simple model accounting a
flocculation effect for sediments and provides quantitative results involving sediment local and
spatial characteristics in transport and interactions with estuarine hydrodynamics.

For the ice problem, as mesoscopic modeling, the lattice Boltzmann methods are proposed as
a numerical framework in Part 2. Lattice Boltzmann models for free surface flows, heat
transports with liquid-solid phase transitions and fluid-solid interactions are discussed and
validated. The results of validation and testing applications for the proposed numerical
framework indicated the potential of the method to be applied to real field problems.
Applications for the open water forming mechanism in ice covered-outlet channel of a small
hydropower plant results the detailed interpretation of the open water forming process in open
channel flows.

Consequently, the modeling of the sediment and ice provides confidence for the ultimate
purpose that can be modeled whether in macro and mesoscopic modeling. Particularly, the
lattice Boltzmann method has advantages to bring a simple solution for the complex physics
such like the sediment and ice.

Key words:

Sediment transport modeling, Sediment particle tracking method, Ice-free surface flow
modeling, Thermal-free surface-immersed boundary-lattice Boltzmann method
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JH3XYY AOKTOPBIH CyJajJraaHbl XKW/ Hb IIMHI3HUM ypcraj Jaxb xarmaac 60JI0OH MeCHUH
Y33rAJIMUT TOOH 3arBap4/aJjblH apraap cyjajcaH Tyxad eryyJHa. IIMHraHu# ypcrana faxb
xaruaac 60JI0H MecC Hb XaTyy OUeT r3/IaT epeHXHUil OUITOJITOOP XOOPOHZ00 X0J60TA0HO. ['9BY
IIMHT3HUN YPCTasIbIl TaiabapJsaxXx 1ap Xyp33HI3C xXaMaapy 3/r33p Y33rjAJIMUT TyC TYCHA Hb
MaKpo 60JI0H Me30-0pYHbI 3arBapyyAbIT alllMIJIaH CyaJicaH oM.

Tyxain6aa rosplH ajar Aaxb XarilaacHbl 366r/6X XeJeJ/IIeeH/]| 30pHUYyJICaH MAaKpO-OPYHbI
3arpapyyApIl XarumaacHbl 06erHepex Y33r[JIMUT WJIIPXUHJIIXYHUL, XarlmaacHbl MeXJIerHUr
MOIITeH TOLOPXOMJIOX H3H LIHMHI aprblH XaMT 060JIOBCPYYJICaH I0M. XapHH 46J1e6T rajjapryyran
IWIMHI3HUN ypcranj, 6ailx MecHUW y33r4aJ/[, 30puyJiaH LIMHIM3H 6a XaTyy TeJeBUHH
IW/LKUITUAT TOOLIOX CY/KI3HUM BoJsibiMaHBbI apra [33p YHZ3CJI3C3H TOOLLOH 600X H3TA3J
O6yxUil aprauJiajbll Me30-0pYHbl 3arpapu/iaj I'ac3H HIPUHH A0p WHUHI3P YHILCIH 10M. [33pxu
Makpo 6a Me30-OpyHbl 3arBapuJaayyzabir llnHaHo rosbiH (AnoH) ajar Aaxb xarulaacHbI
xeJ1e/ireeH 60y10H TOCOHLIHI3J ycaH LaxuiraaH cTaHublH (MoHrou) yc 3aiiyysax CyBrUiH
MOCHHUH Y33rA3J[, TYC TyC allUIJaX 30XUX YP AYHTYYAUWUI rapraH aBy IIMHXXWJICIH 6GOJIHO.
TooHn 3arBapuJsiasiblH Yp AYHIYYZ [33PX ra3pyyZaj XWNCIH aXXUTJAAJITBIH Yp AYHTIM HUKALIK
6alicaH rafiIrUUr AypbAax Hb 3yUT31 10M.
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Abbreviations

1D One dimensional

2D Two dimensional

3D Three dimensional

ACM Artificial compressibility
method

ADE Advection-diffusion equation

BBGKY Bogoliubov, Born and Green,
Kirkwood and Yvon

BGK Bhatnagar-Gross-Krook

CDE Convection-diffusion equation

CPU Central processing unit

CUDA Compute Unified Device
Architecture

D1Q3 1 dimension, 3 velocities

D2Q9 2 dimension, 9 velocities

D3Q15 3 dimension, 15 velocities

DEM Digital elevation model

DF Distribution function

DNS Direct numerical simulation

EFG Element-free Galerkin method

ELBM Entropic LBM

EOS Equation of State

ExLBM Extended LBM

FDM Finite difference method

FEM Finite Element method

FHP Frisch, Hasslacher and Pomeau

FPM Finite point method

FVM Finite volume method

GFLOPs Giga floating point operations
per second

GPGPU  General-Purpose computing on
Graphics Processing Units

HPP Hardy, Pomeau and Pazzis
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LB
LBE
LBM
LES
LGA
MAC
MPS

MRT
NSE
NUT

NZ

PM
PTM
rms
SHPP
SIMPLE

SMAC
SOLA
SPH

SRT

SS
StLBM
SWA
TRT
VoF
T-FS-IB-
LBM

Immersed Boundary
Lattice Boltzmann

Lattice Boltzmann equation
Lattice Boltzmann method
Largy Eddy Simulation
Lattice Gas automata
Marker and Cell

Moving particle semi-implicict
method
Multiple-relaxation time
Navier-Stokes equations
Nagaoka University of
Technology

McNamara and Zanetti

Projection method

the particle tracking method
Root-mean-square

small hydropower plant
Semi-implicit method for
pressure-linked equations
Simplified MAC

Solution Algorithm
Smoothed particle
hydrodynamics

Single Relaxation time

Suspended solids

Standard LBM

Shallow water approximation
Two-relaxation time

Volume of Fluid
Thermal-free surface-
immersed boundary-LBM
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1 INTRODUCTION

1.1 Research objectives and scopes

The main objective of this thesis is to model fluid flows with solid substances by using
numerical approaches. In general, the fluid flows in hydraulics are considered. The word solid
substance stands for a solid matter in a fluid flow. More precisely, the sediment and ice are the
main interest of solid substances rather than the other solid object that founds in a flow or
bounds a fluid. Sediments and ices are different but share common things such as both exist in a
natural river in cold regions and are engineering problems (Ettema, 2008) in general. These
particular interests are explained in motivation section. The general questions for the main
objective are (1) how many possible approaches to model are exist, (2) how to model the
problems and (3) can we provide a general model that valid for the purpose or for every flow
with any solid substances. The question (1) leads the different descriptions of fluid flows.
Furthermore, the different descriptions have many existing models that can be applied to the
problem. The specific models should be selected and studied for the problem. The question (2)
provides research works based on the answers from the question (1). And during the research
work for the model development, the question (3) is evaluated and clarified.

There are three different description scales for fluid flows (Guo & Shu, 2013) described in
Section 1.3. Theoretically, we have an opportunity to get involved with two approaches namely
macro and mesoscopic modeling. With these approaches, we conducted studies investigating
the existing numerical models and developing novel extensions to the models considering the
specific objectives and motivations. Thus, this thesis focuses on the macro and mesoscopic
numerical models of the sediment and ice in different flow regions. The scopes of this thesis are
the finite difference method for sediment transport in an estuary and the lattice Boltzmann
modeling of ice melting or water freezing in open channel flows. The latter one can be stated as
a liquid-solid phase transition in free surface flow (Ayurzana & Hosoyamada, 2017).

As a macroscopic modeling for a fluid flow with solid substances, the Navier-Stokes
equations (NSE) formulated in the Boussinesq approximation governs a fluid flow, whereas the
traditional advection-diffusion equation (ADE) and a novel particle tracking method (PTM)
models the sediment transport. The fluid governing equations are solved by the solution
algorithm (SOLA) (Hirt, et al, 1975) with the finite difference approximations for sediment
transport models. One particular highlight of the PTM is an introduction of a practical
flocculation model in an estuary. From the mesoscopic models, the lattice Boltzmann methods
(LBM) are emerging numerical tools (Chen & D.Doolen, 1998) in computational fluid dynamics
(CFD). Herein lattice Boltzmann (LB) solutions for fluid flows, scalar transports, free surface
flows and fluid-solid interactions are studied with the implementation techniques. Firstly, the
existing models for these are combined with each other for the liquid-solid phase transition in
free surface flows as a main contribution. Among with the several attractive new solutions, an
immersed boundary method is applied to the phase transition as well as a freely moving body in
free surface flows. I hope this thesis will share useful knowledge for readers who are interested
in the above methods and problems.
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1.2 Motivations

Fluids are always interacting with solids. Fluid flows are bounded by solids and transport solids
with a fluid (G. K. Batchelor, 1967). However, the most of researches have devoted to
understanding effects of the solid that bounds a fluid and this is termed as a fluid-structure
interaction (Belytschko, 1980). In cold nature, a common fluid, the water, interacts with two
major solid substances named sediment and ice (Ettema, 2002), (Prowse, 1993). Those are not
boundaries, but substances transporting with water flows. Fluid flows with such substances are
motivations for this study. For example, hydropower plants in cold region face problems caused
by sediments and ices (Tuthill, 1998). During a flood event, a large amount of sediments
transports through a river and traps by hydraulic structures at upstream side as sedimentation
(Morris & Fan, 1998). The sedimentation reduces capacity of a reservoir and it causes the
reduction of the power production. Meanwhile, the ice makes a huge problem during winter
time (Gebre, et al, 2013). Ice and sediments can be a problem at the same time during the
spring, since a large amount of broken ice as an ice jam prompts the sediments from the bottom
and bank of a river (Ettema, 2002). However, in this thesis, we do not intend to model these
problems together. Rather that we explore and develop the numerical models for these
problems separately as research parts in this thesis. Generally, our implicit aim is remained to
lay the foundation for the models to solve these problems simultaneously.

For the sediment problem, we devoted our study to the sediment transport in an estuary.
Estuaries are unique places where sediment and fluid flows interact in complicated dynamics
(fILIE 45 =, et al., 2001). The density current reasons interesting transport phenomena for
sediments while sea water activates the flocculation process for cohesive sediments (Einstein &
Krone, 1961). These were the specific motivations to study and develop numerical models in
Part 1. On the other hand, the LBM had been expecting many extensions from the researcher to
every field of fluid dynamics (Guo & Shu, 2013). The LBM was also starting to be applied to
hydraulic problems (Karpinski, et al., 2013). Free surface flows and phase change processes
were rarely connected in the LBM. More elaborations for the phase change have to be done.
Especially, the immersed boundary method has been shown potentials for fluid-structure
interactions (Mittal & laccarino, 2005). These were the motivations for the numerical works
reported in Part 2.

Besides, | had internal motivations to complete my Ph.D. course with these studies with
respect to build my skills. My numerical career starts with my Ph.D. course and is aged 3 years
now. Before starting my Ph.D. course in the NUT, I have many wishes to do numerical works
related to fluid dynamics. But that time, I did not know how to get started and even did not
know how numerical studies get done. There was nobody to mentor me in my environment. My
motivations were too specific and a few, namely to learn numerical methods, coding the
numerical models and to solve common problems in hydraulics. I found a seemingly impossible
plan when I was a first-year Ph.D. student that if [ have a time, | would study one of the above
problems: the sediment or ice. Attractive features of the computational fluid dynamics with the
other great factors surrounds brought me here with the accomplishment of a most percent of
my wishes. With the motivations, the research questions in Section 1.1 are herein answered
along with the outcomes of the numerical studies during this Ph.D. course.

W Ph.D. dissertation 2



o SR PR

MNagaoka University of Technology

1.3 Descriptions of fluid flow in different scales

Let us discuss about different descriptions of fluid flow in fluid dynamics. Consider a proper
heavy ball falls into stagnant water from a certain position above the free surface of water in
confined domain. Humans with rare eyes only can see the splash of water due to falling ball and
then can see the free surface of water sloshing above the sinking ball into the water.
Interestingly, humans with special interest, say explorer, can see spatial distribution of physical
variables of splashing water, sloshing waves and trajectory of the ball with experimental tools.
Even advanced one with special sight, say engineer or physicist, can predict the spatial
distribution of physical variables without falling ball into water in reality with modern tools and
can show variables with easily readable colorful images and graphs, as shown in Figure 1 (a). In
this case, some researchers take the assumption that the fluid is a continuum and it is regardless
that the fluid is made of molecules and atoms. This is generally a macroscopic scale of fluid
flow. In the different point, with knowledge of the science about the matter, one wants to
explore the fluid flow at the molecular level to understand the molecular interaction between
solid and liquid states, maybe. This can be said microscopic scale of fluid flow and illustration
shown in Figure 1 (c). At the molecular level, fluid molecules are traveling at a high speed and
are doing multiple collisions with other molecules and bombarding the bounding solid
molecules. If one groups molecules at a proper range as an ensemble of molecules and can
observe the behavior of the group molecules. The proper range in length should exist between
the macroscopic scale and microscopic scale in order to be said mesoscopic scale. As seen in
Figure 1 (b), the connection between micro- and macroscopic scale must be interpreted in the
mesoscopic scale.

(a) Macroscopic scale (b) Mesoscopic scale () Microscopic scale

O oo

S o de | -0 L I
| , Caoar Bl [T e

Solid and Fluid Particles distribution Molecule

I Kn number
[ )

0.1 10.0

84

Figure 1. lllustration for different scales of fluid flows.

1.3.1 Macroscopic scale

In the macroscopic scale, physical variables of a continuous flow field such as density, velocity,
pressure and temperature are considered. Fluids are considered continuum fields and fluid
flows are described by continuum models. More precisely, a macroscopic continuum model is
valid, if the Knudsen number is near or lower than one (Laurendeau, 2005). The Knudsen
number (Kn) is defined as the ratio of a mean free path (A) of molecules to a characteristic
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length (L) of a fluid flow. In the continuum model, the spatial distribution of physical variables
with regards to others under the physical laws such as mass and momentum conservation, and
expressed by a set of partial differential equations (Pope, 2001), respectively:

9p V- =0 1
STtV (W =0, (1)
6((/;tu) +V:-(puu) =-Vp+V-1, (2)

where p is the density [kg m-3], u is the velocity vector [m s'1], p is the pressure term [pa] and T
is the deviatoric stress tensor including the viscosity. The continuity equation (Eq.(1)) and
Navier-Stokes equations (Eq.(2)) contain p, u and p as unknown, dependent variables, and one
further scalar equation is needed to make it possible the determination of fluid flows (G. K.
Batchelor, 1967). This additional relation can be provided by the equation of state (EOS) for the
fluid, which may be generally written as

f(,p,T) =0, (3)

where T is the temperature. For many fluids, the viscosity u significantly depends on the
temperature. If the temperature difference in the fluid domain is small enough for the variation
of u, it is taken as uniform over the fluid. In that case, the flow system is called isothermal
system. When the appropriate temperature difference exists in the flow domain it is necessary
to regard u as a function of position and the complexity of the deviatoric stress tensor is
increased. In this case, the temperature in the system is not constant, the system is known as
non-isothermal system and one needs to consider the energy conservation equation (Guo & Shu,
2013)

d(pe)
ot

+V-(pue) =-V-q—pV-u+r7:Vu (4)

where e is the internal energy, q is the heat flux, which is usually related to the temperature
gradient following the Fourier’s law.

A solution of these differential equations for a fluid flow is difficult to be found by an analytic
way due to many reasons such as nonlinearity and complex boundary of the flow domain, etc.
To solve the equations numerically, the flow domain should be discretized into finite sets of
elements as grids or meshes. With these elements, the above differential equations need to be
approximated into linear algebraic equations using a numerical discretization method such as
the finite difference (FDM) and finite volume method (FVM). The simple algebraic versions of
the differential equations compute the time evolution of physical variables with the initial and
boundary conditions in iterations. Part 1 of this thesis discusses the macroscopic solution for a
fluid flow in case of sediment transportations in a river mouth.

1.3.2 Microscopic scale

In a smaller scale, the medium can be considered as space containing particles like the
substance made of molecules. A particle in the space can be indexed by i to be distinguished
with other particles in an account. The particle has a mass m;, a velocity &, at a position x;=(x, y,
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z;) and a time moment t. The motion of that particle is described by the Newton’s equation of
motion

mX, = F;, (5)

where F; is the total force experienced by the particle. Another description of particle motion is
the Hamiltonian mechanics about N-body system, where more generalized coordinates that are
particle positions and momenta are considered.

As the nature of molecules motion, particles collide with other particles in a system and the
collision results interaction forces between the particles, usually termed as interatomic
potential. The total force term, including interaction force between the particles can be written
as

N
= > —¢(nD+Gi, ©)
j=1,j#i
where ¢ is the interaction potential between colliding pairs i and j (Rapaport, 2003), r; ; is the
distance vector between two particles, N is a number of particles in the system and G; can be an
external force field involving the gravity. Solution of Eq.(5) gives only position and velocity of
each particle at every time and procedure to solve particle motion is referred as molecular
dynamic simulation. Molecular dynamic simulation is expensive in terms of time and memory of
a computer, thus a simulation domain is often limited in a very small space. The governing
equations are integrated using a numerical integration scheme with boundary conditions
controlling pressure and temperature condition. Usually, during the integration, molecular
dynamics simulation suffers with accumulation of errors. To reduce the cumulative error for the
simulation, higher order numerical methods such as the predictor-corrector scheme, Verlet and
Runge-Kutta schemes, are often employed. Numerical methods from the macroscopic scale are
often applicable for the molecular dynamics.

It is difficult to determine macroscopic fluid flow characteristic with the information of
particles defined by the molecular dynamic simulation in a direct way. In addition, physical
parameters, such as viscosity and thermal diffusivity of fluid, are meaningless in microscale
description and they are the result of the molecules interaction and transitions in a much bigger
scale. However, it is possible to get approximated quantities for the macroscopic scale from the
information on the microscopic scale by taking the ensemble average. For instance, temperature
and pressure can be described by the ensemble averages of the kinetic energies of the particles
and frequencies of the particle bombardments on the boundaries, respectively. Physical
properties of fluid can be also measured according to the linear response theory (Guo & Shu,
2013). Thus, this scale of fluids is excluded from the study of interest.

1.3.3 Mesoscopic scale

This is well studied scale in terms of the description of gas flow. Generally, knowledge about a
mesoscopic view of fluid flow fills the gap between the microscopic and macroscopic scales.
Also, it has been discovered to explain fluid phenomena at a range where the theory of the both
scales is invalid. The main assumption is that the behavior of the single particle in microscopic
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scale can’t describe macroscopic phenomena of fluids; however, a characteristic of a group of
particles might be important in the macroscopic scale. In the simplest way, the fluid density can
be defined by the sum of the particle mass in a very small volume (Viggen, 2014) as

N
) 1
p(x,t) = 11/1£r(1) v Z m; |. (7)
xXi€V

In the selected volume, the average motion of particles can be expressed by the momentum as

N
1
pu(x, t) = ‘1/1_r)r(1) V Z m; Ei ’ (8)
Xi€V

and temperature can be found by assuming the EOS of gas at a critical condition and the kinetic
energy of particles as

T(xt) = —hm Z m; 1512 ), 9)

xLEV

where k is the Boltzmann constant. Considering many particles in the system, calculation
approaches to appreciate a macroscopic scale, but it leads complexity for the calculation. From
the particle motion, gas pressure can be easily expressed by the kinetic energy of particles

_ 2N (mup _n 10

where N is the number of molecules in unit volume, KE is a gas kinetic energy and u, is the
average velocity of molecules in the system. When introducing the gas pressure into the EOS, a
relation of temperature and velocity can be found

2

=§k(1mup) (11D

where m is the molecule mass (particle mass). This relation is known as the kinetic temperature
and is the background of Eq.(9). For the purpose of defining gas pressure and temperature, the
velocity in Eq.(10) and Eq.(11) can be defined by Eq.(8). However, as so far mentioned, it is a
difficult way to define the averaged velocity if the total number of particles is enormous. To see
the correlation of the particle velocity, we can rewrite Eq.(11) as a function of temperature

3kT

u, = - (12)
From Eq.(12), it is obvious that average velocity of particles proportional to temperature. In
other words, the particle velocity can be expressed in function of temperature and
molecular/particle mass. It is also true that all particles can’t move at similar velocity in the
system. The velocity of a particle is delayed or sped up depending on its collision pattern with
other particles. The collision is measureless and it happens with probability. Hence it is possible
to define particle velocity based on the probability at a certain temperature. This was the idea of
Maxwell and later Boltzmann to define particle velocity distribution function, ignoring the
characteristic of each particle: a position and velocity of each particle is not important. The
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velocity probability of particles in the system can be described by the Maxwell speed
distribution function as

3 2
m \2 _mc”
=4 _ 2 2kt 13
f(e) = 4m (5)” c?e 2k, (13)
where c is the probable speed of the particle and f{c) is the fraction of the molecules in the
system at a range between velocity ¢ and c+dc. With Eq.(13), we can define several
characteristic velocity values of particles as shown in Figure 2, where speed distributions of
dioxygen (0O2) is presented as an example.

T T T T T T T T T
Max speed i
+Average speed -
4/ /Root-mean-average

0.0015
Characteristic velocities
of O, at T =25°C

Cra = 393.42

max

Cove = 443.92
Coms = Up =481.84

0.001

0.0005

Probability distribution fc)
Cumulative distribution ¥ f{c)
=)
[=))
I

T =25°C =—t—
T=125C ewayess

0 1
0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400
Speed ¢ [m/s] Speed ¢ [m/s]

Figure 2. Probability and cumulative distribution function of dioxygen at two different temperatures.

The speed distribution function gives several characteristic speeds of particles in the system.
For instance, the root-mean-average speed of the distribution function is the same as a velocity
defined in Eq.(12). As temperature increases, speed distribution becomes smooth and the peak
of the distribution moves in the right direction. Integration of the speed distribution function is
a unit by its definition that any one particle can be found in the curve of the speed distribution
function. One can derive the Boltzmann distribution function integrating the Maxwell speed
distribution in velocity field. The Maxwell distribution function shows the distribution of
particles by its kinetic energy, while the Boltzmann distribution function shows the distribution
of particles by its potential energy. Equation (13) was detailed by Ludwig Boltzmann in 1872 to
considering the total energy in the system and formulated as

F(E) = AeFer. (14)

The Maxwell and Boltzmann distributions are covered in Eq.(14) and it is known as the
Maxwell-Boltzmann distribution function. This distribution is the cornerstone of the gas kinetic
theory and thermodynamics. It is also used in the mesoscopic numerical model for fluid flows in
part 2.
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1.4 Qutline of this thesis

This thesis is organized in two main parts to maintain the objectives of the thesis. Part 1 discuss
about fluid flow and sediment transport simulations with macroscopic numerical models. Part 2
explores about the mesoscopic approach to flow simulations in particular hydraulic applications.
The thesis outline is given in Figure 3. The thesis is written in simple and very detailed manners
so that the new beginners for these models will get comprehensive understandings.

1.1 | Scope and

1.2 | Motivations
Sediments Ice problem

[Solids in Fluid flows
1.3 [Macroscopic model—s———— Mesoscopic model|
b |
Part 1 Part 2

2 /Governing equations 5 | Lattice Boltzmann models
3 |Numerical techniques 6 | Numerical implementations
4 |Numerical applications 7 | Numerical validations
8 | Numerical applications
9 | Toward to parallel computation
. I
v

10 | Conclusions Appendixes
Future works| | Derivations of the NSE and ADE

Figure 3. Dissertation outline. Light blue numbers at the front are Chapter numbers in the thesis. Black
solid lines show direct flows, while the dotted line shows a potential of applications.

In part 1, the NSE with the approximation of Boussinesq and shallow water precedes the ADE
and novel sediment PTM. For a particular application, the Smagorinsky sub-grid scale model is
presented for the fluid governing equations. Then the numerical techniques for the models are
discussed in great details. Before the application, a simple numerical validation, the lock-
exchange problem, for the sediment transport numerical models are given. As a problem, the
sediment transport in the estuary of the Ohkouzu diversion channel in the Japan Sea is
investigated by the 2 and 3D numerical models.

In Part 2, the lattice Boltzmann (LB) models for fluid flows including free surfaces, scalar
transports, phase changes and fluid-structure interactions. Then, the numerical
implementations of these LB models are discussed in detail. After that, validations for fluid
flows, liquid-solid phase changes and combination of above problems are given. The LBM is
applied to the ice melting problems for the 2D open channel hydraulics in the latter. And finally
an attempt to the parallel computation with the LBM is given in concise. The LB models base on
the LBM with the BGK collision, including the Smagorinsky turbulent model, double distribution
functions approach for scalar transport, enthalpy-based method for phase change, immersed
boundary method, and the Entropic lattice Boltzmann method (ELBM).

Conclusions and future works summarize the studies in two parts and suggest possible
studies in the future. QR codes through this dissertation direct to the animated results. Note that
the symbol notations may coincide for some terms in two parts.
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PART 1: MACROSCOPIC MODELING
FOR SEDIMENT TRANSPORTS

includes the descriptions and results of research work using the macroscopic models for fluid
flow with sediment transport.

2 GOVERNING EQUATIONS

The macroscopic fluid governing equations designed for particular applications are presented
here.

2.1 Navier-Stokes equations (NSE)

As briefly discussed in Section 1.3.1, fluid flows qualified as Kn = 1/l < 1 are considered as
continuum fields (Pope, 2001). In the continuum field, common physical quantities averaged
over a volume of size V = [*3, where [* is the intermediate length scale (A < [* « 1), are the
density, velocity, pressure and external forces. With the statistic description of molecular
interactions and transports (Kerson, 1987), the viscosity, the physical quantities are related to
each other in terms of space and time conserving the momentum. The relations of the physical
quantities and properties are called the Navier-Stokes equations that govern the continuum
fluid flow (Pope, 2001), (G. K. Batchelor, 1967), (o, et al., 2013) in macroscopic scale. For the
incompressible fluid flow, the mass and momentum conservation equations in Eq.(1) and (2)
can be rewritten as

V-u=0 The continuity equation

ou Ju ou ou 10 )

atx + uy axx +u, ayx + u, azx = Fpy — [—)a—p +vV2u,
du,, Ju,, du,, du,, 10dp ) . .

T + u, o +u, 3y +u, P Fny — E@ + vV*u, » The Navier — Stokes equation,
du, du, du, du, 10dp

- —-— —-— — =Fp, ————+VvV?

ot gy T c')y+uz oz ™ paz+v Yz )

where u is the fluid velocity of coordinates of x, y, and z, F is the external forces, p is the
pressure, p is the fluid density and vis the viscosity of a fluid. Assuming the fluid is only
accelerated by the gravitational field, the governing equations become as follows in summation
convention

aui

—=0 15
(')xl- ’ ( )
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at umaxm_ gl i3 paxl v ul’ ( )
where g; is the gravitational acceleration, i is the component index, m is the conventional
notation and § is the Kronecker delta function. Among the unknown variables in Eq.(15) and
(16), the pressure can be satisfied the Poisson equation,

du,, 0u,
P dx, 0x,, a”n

Vip =

that is, in turn, a necessary and sufficient condition for the continuity equation (Pope, 2001).
Also, the pressure for the incompressible flow is no longer connected to the density as the
equation of state (EOS). However, the density variations due to physical and chemical additions
in the fluid must be considered for the pressure, as well for the external force. For instance,
either the salt dissolved in water or the sediment immersed in water or heat given to water
(non-isothermal fluid flow) results the significant density and viscosity variations in system,
which then leads to the onset of fluid flows.

The modeling water body on earth under the atmospheric pressure brings very good
simplifications for the NSE. In the following we review two important approximations for the
NSE to be convenient for numerical solution methods.

2.1.1 Boussinesq approximation

As a problem, an estuary is where the river and sea water meets. In consequence, the density
current happens due to the density difference between river and seawater. A simple method to
account the density difference for the governing equations is the Boussinesq approximation. In
general discussion, one of the conditions the Boussinesq approximation to be effective (Tritton,
1988) is

!

p
— K1, (18)
Po
where p, is the reference density and p’is the density variation. We can anticipate that the
density of the fluid is
p=potp. (19)
Multiplying Eq.(16) by p and then inserting Eq.(19) into p yields
o~ (OU; duy; , dp ,
(po +p") (a_tl + U, ﬁ) = ~8:0i3(po + ') = 5=+ (o + PV (20)

For flows satisfying the general condition (Eq.(18)) with certain conditions depending on the
problems, Boussinesq in 1903 suggested that the density variations in the fluid can be neglected
except in the gravity term (Kundu & Cohen, 2004). Applying this approximation to Eq.(20) and
dividing the result by p, gives

aui 6ui ! 10 2
¥+umm=—gi6i3 1+ — ———.+VV Uu; . (21)
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This is the conservation of momentum with the Boussinesq approximation. The Boussinesq
approximation for the conservation of mass (Eq.(1)) gives the incompressible continuity
equation given in Eq.(15). It should be noted that some physical or thermal properties such as
the viscosity, diffusivity, and heat capacity are treated as constant in the Boussinesq
approximation.

2.1.2 Shallow water approximation

Solving the pressure term in the NSE has been a difficult challenge. The pressure term was
one of the motivations to develop different methods to solve the NSE. The pressure term also
brings the simplification to the NSE without loss of generality. For this, the concept of the
shallow water equations can be applied to the NSE to simply define the pressure term as a
hydrostatic pressure. We do not derive the shallow water equations, but we use the concept of it
for the further simplification to solve the NSE. The condition (Kundu & Cohen, 2004) to use the
shallow water approximation (SWA) can be

H<<1 H<<1 22
— %_
) -1, 22)

where H is the water depth (vertical length scale) and A is the wavelength (L is the horizontal
length scale). Under this condition, the effect of the vertical velocity component is negligible
small in the conservation of mass and momentum. Thus, from the z component of the
momentum equation, one can derive the following relations by eliminating the advection and
viscous term:

P\ 1dp
0=-g, (1 + Po) 09z (23)

This is the hydrostatic pressure equation derived under the SWA. A vertical integration from the
bottom (—h) to the water surface (1) of Eq.(23) gives the hydrostatic pressure definition,

p=-9(p,+p)n—h). (24)

Along with the simple calculation of the pressure with Eq.(23), the time evolution of the
velocities can be defined as

u
For the x component: c’)tx + U, 3 +u, 3y + u, Fraa ;& + vV2u,
ou ou ou ou 10
For the y component: a_ty + uxa—xy +u, a—; + uZa—Zy =— ;% + VVZuy . (25)
Ju, ou, OJuy,

For the z component:

2.1.3 Modeling the density variations

Using an example of density current in an estuary, we show how to model the effect of the
density variations for the NSE. The density variation, i.e. concentration field, must be modeled
by another differential equation involved with the velocity field obtained by the NSE. If the
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problem is temperature dependent, one should evaluate the temperature field with the
additional differential equation: the heat equation (Tritton, 1988), so that the density variation
can be calculated from the designated EOS. The differential equation of convection-diffusion is
the best adequate equation for scalar type variations, such as temperature and concentration.
The change of density induced by the salt concentration, which causes a density current flow in
an ocean, can be written as
dp dp
— + Uy — = AV?p, 26
where p is the density of water, u,, is the velocity vector transporting the concentration and A
is the diffusion coefficient expressing the rate of diffusion of concentration in a medium. In
order to define the temporal evolution of density variations, we can only trace the density
deviation instead of total density by substituting Eq.(19) into Eq.(26)

! !

dp dp

E+um$ = stzp’. (27)
m

In the common case, the scalar diffusion coefficient, D;, can be considered as a turbulent
viscosity coefficient resulted by the turbulent model.

2.2 Smagorinsky turbulent model

In nature and engineering field, most flows are turbulent and some characteristics of
turbulence are randomness, nonlinearity, diffusivity, vorticity, and dissipative (Kundu & Cohen,
2004). Modeling of turbulence must present the above characteristic for the results. Very
straight approach to model turbulent flow is the direct numerical simulation (DNS) (Orszag,
1970), which resolves turbulence based on the sufficient scale of discretization of the NSE
without using any turbulent model. The DNS is expensive and inapplicable to large scale
problems. To develop more effective models in terms of validity and computational expense, the
idea to distinguish vorticities are developed. In turbulent flow, vorticities can be seen as large
and small scale eddies. When solving the large scale eddies explicitly, because in the large scale
problem, where the large eddies may be primary, one can model the effect of small scale eddies
with a help of a model. The small scale eddies can be found in a scale range (an analogy to the
sub-grid scale (Deardorff, 1970)) that is smaller than the characteristic filter length. To describe
the large eddies in the NSE, the variables need to be filtered in space and time with filtering
functions, which has dimensioned by the characteristic filter length. Like that, a simple model of
the effect of the small scale eddies was introduced by Smagorinsky in 1963 closing the
momentum equations for the filtered terms by an eddy viscosity term (Smagorinsky, 1963). The
Smagorinsky turbulent model is a member of the Large Eddy Simulation (LES) modeling of
turbulent flows. General conceptual ideas of the LES models are the filtering the variables,
especially the velocity field, modeling the residual stress tensor for modeling the small scale
eddies, and deriving the filtered NSE with the residual stress tensor (Pope, 2001). Here, we
briefly review the Smagorinsky model for the NSE with the Boussinesq approximation.

According to the gas kinetic theory (Kerson, 1987), the diffusive properties of the gas
molecules, roughly speaking the viscosity, is of the order of the product of root mean square
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(rms) speed of molecular motion and the mean free path defined as an average distance
between successive collisions of molecules. By analogy with this hypothesis, using the eddy
viscosity proposal with the turbulent stress of Boussinesq (Boussinesq, 1877) (Schmitt, 2007) ,
the order of eddy viscosity can be

Ve~u'ly, , (28)

where u' is a typical scale of the fluctuating velocity or a residual (or sub-grid scale) component
of the velocity and [, is the mixing length defined as the cross-stream distance traveled by a
fluid particle before it gives up its momentum and loses identity (Kundu & Cohen, 2004). More
precisely, the eddy viscosity can be expressed by

a(u)

v, = 14 2y

; (29)

where (u) is an average velocity. The velocity can be decomposed by the filtering function as
ulx,t) =UX,t) +u'(x,t), (30)

where U is the filtered velocity. Having the same concept with Eq.(29), Smagorinsky in 1963
(Smagorinsky, 1963) proposed the eddy viscosity term

Ve = l?l.s_‘l = (CSA)Z ’2‘5_‘1]51] f (31)

where [ is the Smagorinsky length scale, Sis the characteristic filtered rate of strain (Pope,
2001), C; is the Smagorinsky constant and A is the filter width. With the Smagorinsky model, the
NSE in Eq.(21) for the filtered velocity fields becomes

p 1 dp —
=—g8is|1+—|——=—+v;V20;, 32
g 13< +po> Do axi+VT i ( )

aU; T aU;
ot ™ 0x,,

where v; = (v + v,,) is the turbulent viscosity, whereas the continuity equation becomes

a7,
o = (33)

2.2.1 Turbulence in stratified medium

Stratified medium, such as atmospheric and geophysical medium with the density variations,
has an effect on the turbulent closures. If the density variations, induced by temperature or
concentrations, are significant, the use of the Smagorinsky turbulent model may produce the
unstable solution for the system. Stable and unstable stratified medium can be characterized by
the Richardson number as

. g Vp .
Ri =— >1 stable (buoyancy driven flow
b (V)2 (buoyancy ) (34
Ri<1 unstable (external force is dominant)

It is claimed that if the flow is stable stratified flow, all turbulence are completely suppressed
(Tennekes & Lumley, 1972). In other words, the buoyant destruction removes turbulence at a
rate larger than the rate which it is produced by shear production (Kundu & Cohen, 2004).
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Accounting the negative buoyancy effect, an anisotropic Smagorinsky model (Ikehata & Honji,
2000) can be defined for the stratified medium as

— 2 |9&..¢ Ri
Ve = (CsD)? (25,5, (1 - P—rt) , (35)
where Pr; is the turbulent Prandtl number, which defines the relative efficiency of the vertical
turbulent exchanges of momentum and heat. We can assume that Pr; = 1. The recommended
value for the Smagorinsky constant is C; = 0.1~0.2, but it should be noted that the Smagorinsky
constant is a function (Pope, 2001) relevant to a Reynolds number and filter width etc. The filter
width can be computed as

A= (Apa,0,)"" (36)

where Ay, A, A, are considered as a grid spacing of the geometric discretization and D can be

a number of dimensions. The Richardson number in Eq.(35) can be defined as

ap'
Ri=9_0z (37)
Po 25:jSij

Computationally, the Smagorinsky turbulent model can be applied for the determination of local
turbulent viscosity based on the condition in Eq.(34).

2.3 Sediment transport modeling

Transporting the solid material by fluid flow is widely studied subject in physics. It is still
leading subject for researchers and scientists to understand its undiscovered corners. As same
as the other mechanical topics, the sediment transport was explained and modeled by using
empirical description until the computer were available for computing. As the sediment
transport in nature was complex, revealed understanding of it was widely applicable not only in
engineering, but also in industrial processes. From the observation of not equal distribution of
velocity over the depth of a river due to bed resistance to the knowledge of fluid-particle system,
the countless number of people contributed their understanding into the sediment transport
through several centuries in the past (Walter, 1984).

Speaking in hydraulic research, the phenomenon is well described by the phrase “the loose
boundary hydraulics” (Bagnold, 1941), which identify a set of problems involving the
interaction of fluid with the erodible material of its confined boundaries (Raudkivi, 1976). The
early stage of the modeling was based on the sediment continuity equation accounting the
entrainment and deposition rates in suspended and bed loads. Then, the modeling of the
sediment transport adapted to use the advection-diffusion equation (ADE) with source and sink
terms. Comprehensive review of the widely used sediment transport models are discussed in
(Papanicolaou, et al., 2008). The importance of cohesive sediment transport and scale of
consideration confines the modeling in continuous approach. In fact, however, the continuous
approach of modeling was used to describe the particulate nature of the movement. As long as
the continuum modeling is realized as inadequate for the non-cohesive sediment transport
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characteristic, reliable and comprehensive descriptions about the two-phase phenomenon of
sediment and flow are developed (Drew, 1983). However, two-phase models diverse in
continuous and discrete modeling, and the scale limitation of models have created the gap in the
knowledge. To fill that and other gaps in the knowledge of sediment transport research,
researchers have created the international organizations, such as the International sediment
initiative (ISI) launched by UNESCO (Spreafico & Bruk, 2004), to support sustainable and
systematic development of the sediment transport research.

In this thesis, we discuss two approaches for sediment transport: an ADE based model and a
particle based model. Purpose to use the ADE system of sediment transport modeling is to
validate the newly proposed particle based modeling (PTM). All presented results are partially
reported in (Takeshi, 2016), (Takeshi, et al., 2016a) and (Takeshi, et al., 2016b).

2.3.1 Advection-diffusion equation

An amount of suspended sediment particles in fluid flow can be assumed as a concentration
averaged over a control volume. Distributions of suspended sediments in fluid flows are
commonly modeled by the differential equation of advection-diffusion in terms of conservation
of mass. Although such a model does not account adequately for all influences, it has been found
to explain satisfactorily many suspension problems (Walter, 1984). To determine a temporal
evolution of spatial distributions of sediment concentration, the following ADE can be solved,

dc dc dc . .

E-I—uia_xi-l—(W_WS)&:Dcv c,i=1.2 (38)
where, ¢, u, w, wg and D, are the sediment concentration, the horizontal and vertical velocity
components, the settling velocity and the turbulent diffusion coefficient for the sediment
concentration, respectively. For the diffusion coefficient, we assumed the turbulent diffusion
coefficient, which is determined by a turbulent model described in Section 2.2. So that, the
sediment concentration in Eq.(38) is seen as a filtered variable to be presented in turbulent

flows.

The settling velocity ws of sediment is an important rate for a vertical distribution of
sediments. Proper values of the settling velocity depending on sediment mechanical properties
are widely studied and recommended in many literatures ((FZ/=.5 U Z, 1985), (54 A—, et
al,, 1989). In the conventional studies, the Stokes velocity determined by the balance between
ascending force (sum of the drag and buoyance forces) and gravity force is used for the settling
velocity. However, the Stokes velocity is a final falling rate of particle in water. With a small
time step in simulation, it is confirmed that the settling velocity takes the value of the Stokes
velocity immediately in the ADE. Another way to define the settling velocity is to conduct
experiments with the samples collected from the study area.

Since the ADE is solved by an Eulerian approach in the fixed grid, the local changes and
historical properties for sediments does not determined in such an approach. To overcome the
limits of a conventional approach with the ADE, the Lagrangian approach was proposed and
solved for the sediment transport in the follow.
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2.3.2 Sediment particle tracking approach

In order to capture the particulate nature of sediment transport, we purpose the sediment
particle tracking method (PTM). In this method, an individual particle will be considered rather
than a volume representation of sediments. This approach can be seen as a representative
sediment particle tracking approach, in which the particles deputize the real sediment particles
in a proper space. Conceptually, it is acceptable to use the representative particle for the model
in order to represent the dynamics of the real sediment particles, since it is difficult to involve
all of the sediment particles in the large scale sediment transport simulation. The representative
sediment particle concept is depicted in Figure 4 and the radius of that particle can expressed
as,

n
i=1Ti
=, 39
r n ( )

where 1; is the radius of real sediment particles in selected region and n is the number of
particles exist in the region. In computational practice, of course, we do not calculate the radius
and position of the representative particles. The particles radius and position can be generated
randomly by considering the problem scale and sediment concentration with respect to the grid

sizes.
r, el2 7 1
e °, ° Total 15
Iy I's y
. 9) particles
9" Or diameter are r
8y ts © 8y
d10 O Org |:>
O Oryy averaged for
the diameter of
Or5 Or 14 a3 a representative RN
particle
very fine grid
3x 8x

Figure 4. Example of defining representative sediment particles in very fine grid

In the PTM, time evolution of all particles will be continuously tracked in the space-time
through the whole simulation. Advantages of considering individual particles provide some
opportunities to handle specific behavior of sediment particles such as the flocculation process.
The flocculation is a phenomenon that cohesive sediment particles aggregate with each other as
attracting by their electromagnetic forces (Einstein & Krone, 1962). In consequence of the
flocculation process, particle volume must be expanded by the circumstances of that process.
For instance, the flocculation of sediment in the sea water may be thought as a function of time
such as traveling time of the particles in the sea water. This process for individual particle
traveling within sea water will be handled easily by storing the memory of the time history of
particle accounted by the PTM. It also allows the particle to have a different traveling velocity at
each time step in the simulation.
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If a particle shape is simplified to be a sphere, the following equation of motion can be solved
to capture particle position for every computational moment,
4 . du, E (40)
=nr —=F,,
3 Psed dt r
where u,, 7, pseq, and F,. are the traveling velocity, the sediment particle radius, the density of a
sediment particle, and the drag force acting on a particle. As mentioned, the sediment particle
size and its spatial distribution in the simulation can be given by the generation of the random

number according to the normal distribution and the uniform distribution function, respectively.
The right hand side of Eq.(40) is a drag force and can be expressed as,

1
F. = EAPWCDurlurl (41)

where p,, is the density of water, Cj, is the drag coefficient of a sediment particle, A4 is the cross
sectional area of a particle and u, is the relative velocity between particles (see Figure 5) and a
fluid flow. Since the drag coefficient is a function of the Reynolds number, we used an
approximated function extracted from an experimental chart of dependency of Cp on the
Reynolds number for an individual particle evaluation in Eq.(41). Consequently, depending on
the instant situation of individual particle, whether laminar or turbulent regime, the drag
coefficient can be estimated from such an approximated function. From the balance of forces
acting on the single particle, it is presumable that sediment particles can take instantly its final
sedimentation rate (Stokes velocity or settling velocity) from a stationary position when falling
downward in still water. Therefore, it is reasonable to consider the Stokes velocity in Eq.(40)
instead of the gravitational acceleration.

Vj’j = “t=t, +3At
1 @
up //u t=t, +2At
t=t, +At \:
Us,, . u
l-lyj-b/ D " Ui
y Fr
=t v i
// tin Vl,]—l

Figure 5. Schematic illustration of a particle moving through the computational cell in the particle
tracking approach. A particle is traveling from initial time t;,, to time instant t;,, + 3At.

The relative velocity can be defined as
U =ur—u,, (42)

where the fluid velocity, uf, is obtained by weighting the velocities in a cell. The sediment

particle velocity, u,, is updated by computing Eq.(40) in time advance.
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2.3.3 Simple model for flocculation

Sediment transport and sedimentation are clearly dependent on a particle weight and
cohesion. Cohesion and sediment particle size are solely related. Cohesion describes the
tendency of fine sediment particles binding together under some circumstances. For instance,
sediments in fresh water may have no repulsive force, because they are negatively charged, but
this will no longer exist when sediments enter to salt water. After sediment particles are
traveling in a certain time in salt water, the repulsive force does not exist between sediment
particles and adjacent particles make flocs together. According to (Raudkivi, 1976), for the
suspended particles of D < 10 u not only gravitational forces but also electrochemical forces
become important. On the other point, a suspension of solid particles, where physicochemical
forces are dominant because of chemical influence within the environment, made the collision
with others and the results bring the flocs. In other words, the collisions of particles also make
flocs. These processes of sediment particles stick to each other make a floc are called the result
of the flocculation process (Walter, 1984). Studies of flocculation of suspended fine sediment
are fronted by Kruyt (Kruyt, et al,, 1952), Einstein (Einstein & Krone, 1961) and many others
(Yanagi, 1989) generally in subject of estuary. An aggregation of neighboring particles as a floc
accelerates the sedimentation rate of cohesive sediments (Walter, 1984). Many studies about
the flocculation, these are rather descriptive or highly fundamental or even very empirical, have
been carried out to understand the variation in the number of particles, or the changes in
concentration (Winterwerp, 1998). However, rather complicated models are currently
describing the result of flocculation, more significantly, the important variation in floc sizes and
settling velocity with time. With the ADE system of suspended sediment transport, the relation
between concentration and floc size are difficult to handle.

To understand the effect of flocculation for the sediment distribution, we propose a simple,
practical flocculation model (Takeshi, et al., 2016a). Since the particle tracking approach or PTM
is the method to track the representative particles, the number of particles in the system is no
correlation with the flocculation. Simply, the flocculation process becomes only a matter for the
changes of particle size in respect with time. Taking advantage of the PTM described above, the
sediment particle size can be changed in the result of flocculation:

r=a(t)ri, (43)

where a is the scaling rate in respect with time and r;, is the initial radii of the cohesive
sediment particles. The scaling rate must be determined by the experimental studies and it can
be expressed according to the sigmoid function of time as

, 12
ot m with tp = tc_r trouch — 6, (44)

where @, is a base scaling, t, is a time parameter, t;q,cp iS a time for particle lapsed in
flocculation condition and t., is a flocculation time. The base scaling can be assumed to be
Qy = Apy — 1, in which a,, is experimentally defined scaling. In case of an estuary, the
flocculation is caused by the salt concentration in seawater. Thus, the t;,, ., must be counted
when the particle enters into seawater. The sigmoid function in the model just provides the
smooth changes in particle size.
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3 NUMERICAL TECHNIQUES

In solutions of fluid dynamic problems, the numbers of methods and algorithms have been used
to solve the NSE. The methods differ by their concept and geometric configuration, or even
designed conditions such as compressible or incompressible fluid flows. Widely used
conventional methods are the finite-family methods, namely the finite difference method (FDM),
finite element method (FEM) and finite volume method (FVM), based on an Eulerian grid
discretization. Many of them share the same numerical algorithms in order to solve the NSE in
preconditioned problems. In chronological orders, the marker and cell method (MAC) (Harlow
& Welch, 1965), pseudo-compressibility method (or the artificial compressibility method -
ACM) (Chorin, 1967), projection method (or velocity pressure simultaneous iteration method -
PM) (Chorin, 1968), simplified MAC (SMAC) (Amsden & Harlow, 1970), semi-implicit method
for pressure-linked equations (SIMPLE) (Patankar & Spalding, 1972) and highly simplified MAC
(or the solution algorithm - SOLA) (Hirt & Cook, 1972) are the popular methods for the
incompressible fluid flows and they are ancestor of the many other numerical algorithms
(Chung, 2002). In this thesis, the SOLA method will be presented.

3.1 SOLA algorithm for the NSE

The marker-and-cell method (MAC), precursor of the solution algorithm (SOLA), uses an
Eulerian finite difference formulation with pressure and velocity as the primary dependent
variables and originally designed for problems involving free surfaces. As branching from the
MAC, the SOLA method is simplified by eliminating some complicated refinements of the MAC
algorithm, especially the marker particles (Hirt, et al., 1975) are removed from the scheme.

Geometric discretization of a problem is formed in a computational domain of the SOLA,
which has an extra fictitious single layer of boundary cells surrounding the actual sized problem
domain, as shown in Figure 6 (a). A fictitious layer of boundary cells prevents unphysical
oscillation that may emerge from the implementation of some boundary conditions. In other
words, the boundary cells eliminate the influence of boundary condition for the problem
domain. The computational domain consists of parallelepiped cells in the 3D space or
rectangular cells in the 2D space having a grid spacing of Ax, Ay,and Az, respectively. Fluid
variables are positioned on the cells as staggered fashion in order to avoid the checkerboard
type error in pressure-velocity related formulation (Harlow & Welch, 1965). Precisely, we use
u, v, w for the velocity components with their location indicated as i, j, k. The fluid velocities are
located on the center of side or face of a cell in a 2D or 3D domain, respectively. Whereas, the
scalar values of pressure, density or concentration are placed on the center of a cell in the 2D or
3D cell, as seen in Figure 6 (b) and (c).

© Ayurzana Badarch 19



o, R RFKF

Nagaoka University of Technology

(a) g Z Boundary region k+1
]
Problem domain ui,k
Length AX md k
Y Origin of the domain X k-1
i+1

Figure 6. (a) Computational domain in the SOLA method, (b) a three dimensional cell and (c) a two
dimensional cell possessing the fluid variables.

3.1.1 Explicit approximations for the governing equations

The simple Eulerian finite difference discretization of Eq.(32) in the x-direction can be
written as

1 dp p' ou;
u?f,% = ugj'k + At (——— — 2,03 (1 + —> — Uy, 3 vV ), (45)
p ' Po Xm

where the time dependent part of velocity is differed only. Assigning the notations for the
differential terms in brackets on the right hand side of Eq.(45) becomes

uie =ul, + At(P} — R} —Fl — L, — Bl + Fliy), (46)

where P, RY, Ejy, EJy, B, and Fjj, are the differential terms of the pressure, external forces
(for the gravity in the x- and y-directional terms are zero), advection terms of velocity in the x-,
y-, Z-directions and viscosity term. Time advance is t = (n + 1)At, in which n is the number of
cycles in a computation. The staggered gird is very convenient for differencing the terms in
Eq.(46), as we give them later. As like as the difference equation of the x-component of the NSE,

the other component can be written as
v = vl + At(P}' — R} — Bk — Y, — FLL + Fﬁisy) for the y — direction

wite = wl + At(P — R} — F — Fjhy — B, + Fpig,)  for the z — direction

(47)

If one wants to upgrade the first order of explicit systems in Eq.(46) and (47) by the second
order explicit scheme, the Adams-Bashforth method may be employed as

ulty = ul;) + At(L5TE — 0.5T 1)

i,jk
v = vl + AE(1L5TR - 0.5T 1) (48)
wlfe = wl .+ At(L5T — 0.5 1)

where T" = P" — R" — F' — FJ' — F' 4+ FJ is the terms in the (n)® time step and 7"~ is the
terms in the (n-1)t% time step. Note that in the expression of T", we removed the notation of
coordinates.

While, the continuity equation in Eq.(15) can get the discretization of

n+1 n+1 n+1 n+1 n+1 n+1
Uije — Ui-1,jk + Vijk — Vij-1k + Wijk ~Wijk-1

Ax Ax Az

0 (49)
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and the new velocities defined by the discretized NSE in Eq.(46) and (47) must satisfy the
continuity equation in Eq.(49). However, in general, the new velocities computed from the NSE
will not satisfy the continuity equation; moreover, the artificial incompressibility condition
must be imposed for the scheme. Depending on the value of the divergence in Eq.(49), an
appropriate adjusting for the pressure, which leads the correction for velocities, must be made.
In other words, the divergence in a current cell is

n+1 n+1 n+1 n+1 n+1 n+1
pm = Uijk — Uitk + Vijk — Vij-1k + Wijk = Wijk-1 (50)
Ax Ax Az ’

and the resultant pressure change can be defined as

spm = —pm 207 _ _pmg— _pm ° (51)
oDk 2At (L_FL L)
w Ax? * Ay? " Az?

where m is the current iteration cycle, §is the constant containing the over relaxation
parameter, w (= 1.8), and the computational parameters such as a grid spacing and time step.
The pressure and velocity corrections must be done iteratively, however, because when one cell
is adjusted to its neighbors are affected. For the each cell of the computational domain, the most
recent velocities, corrected with previous iteration or updated by new time step, are used to
compute the divergence and the pressure change in current iteration n. During the iterations,
the pressure change corrects the pressure in order to make D™ approaches to zero, as

Pk = Pijtop™ (52)
and the cell relevant velocities become
ROt L L L
A YL PR PR L (53)
B = et = - s

Convergence of the iteration is achieved when all cells have D™ values satisfying the inequality
maxD™ < g, (54)
where ¢ is a typical value order of 1073 or smaller.

A constant time step in the numerical method, not only in the SOLA, leads the unstable
solution for the computation. Once the grid spacing has been chosen to be a constant, the choice
of the time step necessary for the stability is governed by a stability condition for the solving
equations. Stability analysis of the numerical scheme is often carried out the von Neumann
stability analysis (Crank & Phyllis, 1947) and the chosen time step should satisfy the von
Neumann criteria in general (Vreugdenhil, 2012):

, At
|0|S1,w1tha=uﬂ, (55)

where o is the Courant number. Motivated from the Courant-Friedritchs-Lewy (CFL) condition
in Eq.(55), general conditions of the time step for the stable solutions of the pressure-velocity
iteration techniques (Bulgarelli, et al., 1984) are formulated as
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( At (u v w><1
M\ ax' 2y’ 2z) =3
(56)

1 1 1\t '
kAt < [ZM (m + A_yz + m)] ' mm(p)

For the incompressible fluid flow, the criteria to choose a time step could be generalized from
Eq.(56) as follow:

1

< =
(At - 3. max (uzlax ’ vrAnax ’ Wzlax) dtl
X Z
{ N s At=a-min(del,de2)  (57)
lAtS[ZV(1+1+1)]=dt2
Ax? * Ay? " Az?

where a is a safety factor which insures the order of time step lower than the minimum grid
spacing. Depending on the problem, the additional time step criteria can be embedded in the
condition in Eq.(57).

3.1.2 Approximations for the terms in the governing equations

Now we give finite difference equations for the terms in Eq.(46) and (47) as follows. The
pressure terms are

_ _l(pln+1,j,k - pir,lj,k)

P =
* Po Ax
n — ph.
P;l - _ l (pl,]+1,k pl,j,k) (58)
Po Ay
pn_ _ L (PZjje+1 — PLjk)
‘ Po Az
and the external force terms are
pl
R? = Ay <1 + E)
n_ P
Ry=a,(1+—]|, (59)
Po
1A

P
R?=az<1+ﬁ>

wherea:{ax,ay,az} is the force acceleration, for instance, in gravitational field, it is
a = {0,0,g}.

The advection and viscous terms are relatively important terms in the SOLA method in terms
of accuracy (Wilson, et al.,, 1988). They are expressing the advection of velocity flux and the
acceleration of viscous forces in fluid flows. For example, F/, is the advection flux of u in the x
direction. These terms are evaluated using old time step values for velocities. For the regular
grid, the advection flux terms can be approximated as:

For the x - component
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(ul e +ultn i) (i + s i) + alule + ufiy el (Wle — wlha i) —

B, = _[
A ] (Ut ula) (Wit ula) = afud g+l (g — ul) |
[ (vljk+vl+1]k)(u'l]k+u’l]+1k)+a|vl]k+vl+1]k|(u1]k ui,j+1,k)_
uy 4Ay (vlj 1,k + vl+1] 1k)(u'lj 1,k + u’l] k) |v1,]—1,k + vl+1,]—1,k|(ul,]—1,k - ult,lj,k)A

o= 1 [ (Wliie + Wl i) (i + wlen) + alwle + why e (Wle = ul ) —
uz —

40z
For the y - component

Fno— (u'l]k+ul]+1k)(vljk+vl+1]k)+a|ul]k+ul]+1k|(vl.]k vl+1,j,k)_
vxX T

e (W + V1) (V00 + Vi) + vl + 00 il (Wl = vi0s) =
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For the z - component

o= 1 [ (ud)e + u{fj,kn)(Wi’,lj,k + Wir:—l,j,k) + a|u2j,k + ulr,lj,k+1|(wi7,lj,k - Wiy-li—l,j,k) -
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wz —

The viscous terms for each component are

1

n n o _ . n —y.n nooo_yn. .
AxZ[VTi+LLk(uv+LLk ufjn) = vrig (Wl 1“—1Jk)]
1
n — n n _ n _ n n _ n
Fisx = +_Ay2 [VTi,j,k(ui,jﬂ,k ulir) VTi,j_1,k(ui,j,k ui,j—l,k)]'
+L vl (un- —ul; )—v n (uT‘- —ul; )
Az2 L Tijre\ iy k+1 i,jk Tijk-1\"ijk i,jk—1
iv" (Wi —vl) = v, (Ve — v k)
Ax2 L Tijr\ itLjk i,j.k Ti-1,j,k\"ijk i-1,j.k
1
n — n n _ n _ n n _ n
Fyisy = *‘ZE;E[VTLj+Lk(VLj+1k vLLk) vTLLk(vLLk vLj-Lk)] and
+L vl (Ve = V) = vl (Ve =V o1)
Az2 Tijk\"Yijk+1 i,j,k Tijk—1\"ijk i,j,k—1
ivn (W.n o= wh )—Vn (W.n. —wh . )
Ax2 L Tijk\"it1jk ijk Ti-1,j,k\"ijk i-1,jk
1
n o _ n n ) ) n . _ ..n
Fisz = +Ay2 [VTi,j,k(Wi,jH,k wli ) VTi,j_l,k(Wi,j,k Wi,j—l,k)] :

1
n n n n n n
*‘Azz[VTLLk+1(“GJk+1"‘”Lﬁk)“VTLLk(“GJk"‘”LLk—1)]
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For the SOLA method, initialization for the pressure can be arbitrary, i.e. hydrostatic pressure
distribution can be assigned for open channel flows.

3.1.3 SOLA for the shallow water approximation

In Section 3.1.2, we saw the possibility to use the SWA for the numerical simulation with the
NSE. In the SWA, the continuity equation is used for the calculation of the vertical component of
velocity instead of the vertical component of the NSE. For a 3D computation, Eq.(25) can be
solved. For a 2D computation, the momentum equation of the y direction is removed. Then the
governing equations can be discretized as

Ju du Ju  10p

For the x component: — 4+ u—+w—=———+vV?%u
P ot " Hax Tz T Toox R
For th . ow Jdu
or the z component: — =
p 0z 0x
u?’-cl—l = uzr,lk + At(Pxn - RJTcl - Furgc - Funz + F;lisx
N un+1 _ un_+1 , (72)
er'lljl — l,k L 1,k AZ + Wl;r'lk_l

Ax
where P, R}, F%, F% and F,,, are the same as the difference equations given in Eq.(58) - (71)
after removing the variables with presence of the y - axis, i.e. variables with the index of j. For
each time step with the SWA, the pressure is calculated by the finite difference approximation of
Eq.(23)
Pik = Plrs1 + (0o +p)g,02. (73)

This hydrostatic pressure approximation also is valid for a 3D numerical simulation.

3.1.4 Finite difference scheme for the density variations

Since the Boussinesq approximation is considered for the problem, the convection-diffusion
equation (CDE) for the density derivation must be solved with the NSE. The CDE in Eq.(27) can
be approximated as

Pt = PNk A= f5 = 5 — 5+ f Ry + f] (74)

where the convection/advection and diffusion terms exist in square bracket. The convection
terms are expressed by using the upwind differences as follows:

m m
nP itk —Pijk

ifu? <0
C A 1 c =
R . (75)
ul LIk 3 i1k iful >0
x
moo_pm
(vglp L,]+1,Z p i,j,k ifvcn < 0
fr’;={ o , (76)
kvcn LIk 3 Lj—1k ifv} >0
y
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m m
nPijk+1 ~Plijk

M ifwl<0
M=y _A;m, . 77)
kwcn Lik A7 Lik-1 ifwl >0

where u, vt and wl* are the average velocities for a cell. The velocities are averaged as
n n n n n n
n Wik T Uisqjk n_ Vijk T Vij-1k Wikt Wik

U = —————— > —, vl = 2' — and w}! = —F—F"— > —, (78)

with the velocities obtained from the NSE.

The diffusion terms in Eq.(74) are differenced by the central difference scheme as

n m m m
o= Ds; ik (p i+1,jk P i,j,k) — Dt 1]k(p Lk~ Pi-1jk) (79)
XX Ax? !
n m _m m
oo Dsi ik (p ij+1k P i,j,k) D) 1k(p Lik ~ Pij-1k) (80)
Tyy Ay?
n m _am m
o= Dg; ;i k (p ijk+1 P i,j,k) SL]k 1(p ik~ Pijk-1) 81)
rzz AZZ !
where the diffusion coefficients, Dg, are written as a function of space-time, because the
turbulent viscosity can be used instead the diffusion coefficient: vT Ds?] -

3.2 Implementation for sediment transport modeling

3.2.1 The finite difference advection-diffusion equation

The approximation of the ADE is the same as the previous CDE. The finite difference form of the
ADE in Eq.(38) for the suspended sediment concentration can be written as

ot =l + A~ fR = fR = fR 4 R+ [y + 2] (82)

Using the upwind difference scheme, the advection terms in Eq.(82) can be differenced as

ik —Clik
i+1,], ijk .
?# iful <0
fr= Ax (83)
“ Cljk — Cit1jk '
ij, i-1,jk .
?4 iful >0
Ax
( .. —cn
i,j+1,k i,j,k .
UglJA—yJ lfvgl <0
fey = ch ot ) (84)
L,j,k Lj—-1k .

ot -t
Ljjk+1 ~ Cijk .
Wl —wg) == jfwn —w <0

o= . B2 , (85)

Cijk — Cijk-1 .
((we —wy) - AZ”’ ifwl —w, >0
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where the averaged velocities for a cell are determined with Eq.(78).

The diffusion terms in Eq.(82) are approximated by the central differencing scheme

n n _.n _ n n.__.n
Dci'jrk(ci+1,j,k Ci,j,k) DCi—l,j,k(Cl,J,k Cl—l,],k)

i = — , (86)
D (el = elin) = Dy (el — Clljmak)
fcyy = Ayz ’ (87)
Dt (c?"- —cl ) —D.t (et —clti_1)
J,k\"L) k+1 i,j,k Ci,jk— i,j,k i,j,k—1
fCTZlZ — i,j J J i,j,k—1 J J (88)

Az? ’

in which the turbulent viscosity can be used instead the concentration diffusion coefficient. To
improve the accuracy and stability for ADE (the same for the CDE), the Adams-Bashforth
method applied to Eq.(48) can be employed.

3.2.2 The particle tracking method
The equation of motion for a sediment particle given in Eq.(40) can be rewritten as

du F
Pm ™m
= , 89
at W, (89

where m is a numbering of a representative sediment particle, simply a particle, in the system
and W, is the weight of the mth particle:

4 2
Wi = §7TTmpsedm . (90)

The velocities of the mt particle at (n + 1)At are computed with the following difference

equations,
fpxn
1_
upnm+ =up + W,,:{n At, 91
foyy
1_
v, =, + W,,’:ln At, (92)
foz,
1_
Wp:ln"' =wp + W_T}T}nAt , (93)

where u,, v, and w), are the particle velocity and Wy} terms the temporal weights of particle, if
the flocculation is present for the sediment particle. The forces for Eqs.(91-93) are the drag
forces expressed as

1

fpx:1 = Epo CDurlecrllbsArr;L ’ (94)
1

fpynm = EpoCDvT;ancrllbsAgl ’ (95)
1

fpz:ln = Epo CDWr::lUZlesA;Ln ’ (96)
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where p, is the water density, the same as the reference density in the NSE, Cp is the drag
coefficient with respect to the Reynolds number of the m* particle, u,, v, and w,. are the

relative velocities, Ul is the absolute relative velocity and A}, is the cross-sectional area of the
mth particle: A, = mr,2. The relative velocities are defined by

n_, n _ . n

Urm = ufi,j,k upm
n_.n _.n

Urm = vfi,j,k Upm , 97)
n_.,n _.on

Wrim = Wfi,j,k me

where uy = (us, vr, wy) is the weighted velocity and the absolute value of the relative velocity is

n = Jur,zn 0,2 fwl . (98)

Since the particles are traveling through the computational cell with the Lagrangian coordinate
of X,,, (Figure 5), an appropriate fluid velocity cannot be fit the velocity defined on the side or
face of the cell. Thus the weighted velocity in proper accuracy can be defined by the volume or
areal weights for the relevant velocities of control volumes as

N
llf = ZAI“EV , (99)
=1

where [ is the numbering of section or fragment divided by the position of the particle, as shown
in Figure 7, N is the total number of section or fragment and A, is the area of a section or the
volume of a fragment in percent in the 2D or 3D cell, respectively.

AX |
(b) 1 Wik k+1
Uik Ay A ik
Sy X, =
w
A, A,
o T Vik k-1
i-1 ] i+1/

Figure 7. Fragments (a) and sections (b) of a cell divided by the position of particle in the cell. The
fragments are separated by colored panels in the 3D cell, while the sections are divided by dashed lines in
the 2D cell.

Special care must be given to average the velocity, uZ,, as Eq.(78) by their existing control
volume. With the updated velocities for a new time step, the particle position is updated by the
following equations

n+1 _ n+1 n
Xm = =Up At + x7,

X = Ym' = vp AL + v , (100)

n+1l _ n+1 n n+1
Zm T = Wp At + zy, — Ws, At
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n+1

where Wsp is the settling velocity of the particle and can be defined by the Stokes equation:

Wt = ergl(psed - po)gy
Sp 9# ’

(101)

where 1;,, is the radii of the sediment particle. For the ADE, it is difficult to use the settling
velocity as flexible as that used in the PTM given in Eq.(101) and we just choose the settling
velocity according to the references like (Flemming & Thum, 1978) and (Gibbs, 1974) or
experiments in Section 4.2.5.

3.2.3 Boundary conditions

For fluid flow, there are an inlet, outlet, free-surface and solid surface boundaries. As shown
in Figure 6, the computational domain has an extra layer of cells as a boundary region. Since
one face or side (3D or 2D space) of a boundary cell belongs to the problem domain, the
variables on that face/side will be defined by the computational procedure. The variables of
another 5 faces or 3 sides and center will be defined by the boundary condition. For the bottom
and the top, slip and non-slip boundary condition can be imposed to model smooth and rough
surface of the reality, respectively. For instance, at the bottom, fluid flow interacting with the
sea bed can be modeled as a non-slip surface. Either the solid surface is slip or non-slip, the
velocity that is perpendicular to the surface must be zero to be impermeable. The velocity that is
parallel to the solid surface can be

n .
—u;jj foranon — slip surface

n = 102
Uij-1k { ull; for a slip surface (102)

for the bottom surface.

At the inlet and outlet boundary, the discharge must be maintained the same. Usually, the
prescribed inlet velocity will be given to the inlet boundary cells and the inlet discharge is
estimated by integrating over inlet boundary cells. Then the outlet discharge is equated to the
inlet discharge. The outlet boundary velocities are estimated from the outlet discharge.

For the scalar variables, for instance the density deviation and sediment concentration, the
zero gradient boundary conditions can be assigned at the all boundaries including the inlet,
outlet and solid surfaces.
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4 NUMERICAL APPLICATIONS

In this section, we apply the models described in Section 2 and 3 to solve the sediment problem
in a lab scale and in a practical scale. The lab scale application is devoted for the model
validations.

4.1 Lock-exchange problem

Gravity currents, which result whenever fluid of heavy density flows horizontally into fluid of
a lighter density, are frequent occurrences in both natural and engineering situation (Huppert &
Simpson, 1980). There are several types of gravity currents observed in the both situations, e.g.
turbidity current caused by suspended sediment and density current induced by the salt
concentration (Benjamin, 1968). To validate the mathematical and numerical model designed
for the density current flow, a lock-exchange problem is extensively solved and experimented as
a benchmark problem. In a lock exchange experiment, fluids of different densities initially at
rest are separated by a vertical gate in a tank. When the gate is removed, differences in the
hydrostatic pressure cause the denser fluid to flow in one direction along the bottom boundary
of the tank, while the lighter fluid flows in the opposite direction along the top boundary of the
tank (Shin, et al., 2004).

We solved a 2D lock-exchange problem with the presence of the suspended sediment, which
was originally reported in (Takeshi, et al., 2016a) and (Takeshi, 2016). The density current is
caused by the salt concentration difference between the fresh and seawater. The main purpose
of the laboratory scale lock-exchange problem was to validate the sediment PTM against the
ADE of sediment concentration. The problem geometry is depicted in Figure 8 where the left
hand side is filled with fresh water having a density of 1.0 g cm3, while the right hand side is
filled with seawater having the density of 1.01g cm-3. In addition, the upper half of the domain of
water has the suspended sediments: the concentration and sediment particles exist
simultaneously. The density of sediment particles were 2.6 g cm=3 and settling velocity for the
ADE system was given as 0.01 cm s-t. The density current might be caused by the sediment was
neglected in the simulations. Two cases of runs, without flocculation and with flocculation, were
performed in order to understand the effects of flocculation on the sedimentation. The
flocculation time criteria set as 5 s for simplicity and until that time the particle size becomes
twice following the sigmoid function in Eq.(44). The total time of the simulations was 20 second.
In both cases, a flow field was simulated by the SOLA method described in Section 3.1.
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Figure 8. Specification of the lock-exchange problem with the hindered sediments in the upper part.

The results of the lock-exchange problem with the sediments - concentration field and particles
- for two cases are shown in Figure 9 and Figure 10. In the figures, red contour lines present
the sediment concentration while blue contours show the salt concentration predicting the
interface between fresh water and seawater. The brown points are the sediment particles. The
figures show the situation of the exchange flow of fresh and seawater with the sediment
transport at the selected times followed by the velocity magnitudes of the particles for each case.
Most significant argument on the results shown in Figure 9 is the agreement between the
results of the PTM and the ADE. The PTM is properly validated against the ADE. We can observe
that the development of the vortex of Kelvin-Helmholtz instability is appeared at 8 s and after
due to the strong shear stress at the interface between seawater and fresh water. Because of the
vorticity generated by shear stress in interface of fresh and sea water, the sediment particles
and concentration field are also rounded up with the flow. Due to flocculation process, the
particles traveled during 5 s in the sea water become larger and the sedimentation rate is
increased. The growth of the sedimentation rate and the sizes of sediment are clearly shown in
the second column of each case in Figure 9 and Figure 10. Also, it is shown that the
sedimentation occurred in the left bottom corner of the enclosure at 12 s and afterward in case
of the flocculation is present, while the situation is different in the case without flocculation. In
the case without flocculation, the particles follow the flow field dynamically and resuspension
due to vertical flow is shown clearly (at 16 s left bottom corner in Figure 9). In the case with
flocculation process, the resuspension of the sediment particle is lower than that of the other
case. More precisely, no sediment ascending appears in the left top corner at 20 s in the case
with flocculation, while the plenty of sediment particles are transported in the same area in the
case without flocculation. Although it is obvious, the results of the simulations brought the
concrete conclusion that the effect of flocculation process is important for the sedimentation of
cohesive sediments.
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0cmvss

Figure 9. Time sequences snap shots of the lock-exchange without flocculation model. The first column of
figures shows the concentration of salt and sediment as well sediment particles while the second column
of figures only shows the absolute velocity of sediment particles.
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12 sec

0cmv/s

16 sec

20 sec

Figure 10. Time sequences snap shots of the lock-exchange with the flocculation model. The
representations are the same as previous figure.
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4.2 Sediment problem at an estuary of the Ohkouzu diversion
channel

4.2.1 Introduction to the estuary of the Ohkouzu diversion channel.

The Ohkouzu diversion channel is a shortcut channel of the Shinano River to the Japan Sea
preventing flood inundation disaster of the downstream area of the Shinano River. The Ohkouzu
diversion channel was constructed 90 years ago and since then sediments have been discharged
to an estuary of the channel. Origin of the estuary was formed by rocks. After the completion of
the Ohkouzu diversion channel, a nearby coast has been gradually formed as sandy and has
extended to the offshore about several hundred meters (see Figure 11). It is important to
mention that a sediment contribution of the Shinano River to the Japan Sea has split into two
estuaries; a mouth of the Ohkouzu diversion channel and a mouth of the Shinano River. An
amount of sediment contribution in the estuary of the Ohkouzu diversion channel is higher than
that of the Shinano river mouth, because of the flow regulation on a diversion structure at the
head of the Ohkouzu diversion channel (Sane, et al., 2005). Sediment phenomena in estuaries of
the Japan sea are affected by seasonal influences such as wind waves caused by monsoon in
winter, floods due to snow melting in spring, large scale floods during rainy season and typhoon
in summer. While the most of the coastlines near the estuaries of the Japan Sea has been eroding,
the coastline of the estuary of the Ohkouzu diversion channel has been extended. However, the
erosion is taking place in the river mouth and has been warning the possible damage to the
control structures in the estuary.

G

The sea of Japan

The estuary of the
Ohkozu diversion
channel

Figure 11. The estuary of Ohkouzu diversion channel, the Japan Sea. Points, A, B, C, D, E, F, and G are the
observation sites where salinity and turbidity were measured.
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4.2.2 Observations at the estuary

The estuary of the Ohkouzu diversion channel has experienced large floods and the most
recent and substantial flood happened in July 2011. The maximum flow rate was more than
8310 m3/s. During this flood event, large amount of sediment discharged to the Japan Sea by the
estuary. In order to assess variation of the estuary terrain change after the flooding, the Shinano
river authority conducted a narrow multi-beam bathymetric survey in the estuary, as shown in
Figure 12. Also, researchers (Hideo, et al., 2013) have conducted a survey of the littoral
sedimentary environment using core sampling of sedimentation layers and have concluded that
the sediment supplement of the Ohkouzu diversion channel has played an important role in the
formation of nearshore coastal area. In the survey, they (Hideo, et al., 2013) measured the
vertical distribution of salinity and turbidity for several sites in onshore and offshore area,
shown in Figure 11. An ADCP (Acoustic Doppler Current Profiler) flow measurement and
vibrocore sampling of sedimentation layer were also conducted. In the report, they explained
that the fine sediments transported by major flood late on July 2011 have created a mud layer in
offshore sea bed, where samples were collected. Figure 13 shows vertical distributions of
salinity and turbidity on the site A to G, whose locations are shown in Figure 11. The
configuration of the most shore sites, point A, was close to the river mouth site, point B, which
does not have salinity and has huge account of turbidity. Amount of turbidity tends to be slightly
increased through the river terrace according to the point A to B. However, turbidity and
salinity of the point C had become different from the point A and B, because of the influence of
sea water. On the point C, salinity actively increased up to 2 m below the sea surface and
remained almost constant to down. In contrast, turbidity decreased rapidly until around 2 m
below the sea surface and gradually decreased through the bottom of the sea. But in the
offshore of the estuary, the point C and D, had a high turbidity in the vicinity of the sea bed,
which might show that the sediment settlement process caused by the flocculation due to sea
water in that area. From the points C to G, turbidity in near sea surface was still remained. This
can be explained that the sediments may be re-suspended by the waves or density currents.
When sediments discharged from the river mouth enter into the sea water, settling processes of
flocculated sediments are described by turbidity decrease in the latter points. Near the free
surface of the sea within 2 m depth, turbidity decrease with the increase of salinity shows the
density current of the sea water. The fine sediments may be suspended in this region. This
tendency of salinity and turbidity profile had been observed at the offshore measurement sites
E, F and G. In the point F and G, a disappearance of turbidity showed the sediments eventually
settled and deposited on the sea bed. Those are an interpretation of the sediment transport
processes in the estuary of the Ohkouzu diversion channel given a basis of the observation. This
observation need to be confirmed by the numerical simulation (Takeshi, et al., 2016a).
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Figure 12. Two- and three-dimensional bathymetry data of the estuary of the Ohkouzu diversion channel.
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Figure 13. Measured salinity (PSU-Practical Salinity Unit) and turbidity (FTU-Formazin Turbidity Unit) at

sampling sites in the estuary of the Ohkouzu diversion channel (Hideo, et al., 2013).
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4.2.3 Problem statement

Sediments discharged from a river mouth during a flood are transported long distance away
due to inertial flow force, even though cohesive sediments bind together when they enter sea
water and increase their settling rate. Eventually, fine sediments settle down gradually on the
sea bed as an unconsolidated layer. Unlike, coarse sediment particles settle down in
sedimentation area, where they will contribute to the further development of a river terrace.
Nearshore coastal area formation is performed by the transported sediments due to wind
driven waves. Although, these general processes are the same for the estuary of the Ohkouzu
diversion channel, more detailed understandings of the sediment transport at the estuary has
been in demand.

Coarse sediments discharged from the river with fresh water are ascended by a salt wedge,
before they enter into sea water. While, fine sediments are not only affected by density current,
but also affected by the waves. Also, it is possible that sediments are re-suspended from weakly
formed sand waves at the sea bottom by shear stress driven by the salt wedge. Successfully
ascended sediment particles from bedload become fully suspended sediment particles until
settling back in somewhere. All those known phenomena from the observation at the estuary
need to be confirmed by the numerical simulations. In order to study the process, we have
developed a numerical model with flocculation effects for sediment transport discharged from a
river mouth using the models described in Chapter 2 and 3. The model also involves the density
current, since it is stated that the density currents have significant influences for bedload in the
vicinity of the salt wedge as well for the suspension of sediments. Density stratification and
interaction between salt wedge and fresh water flow must be considered in an estuary sediment
transport modeling (Tokuzo, et al., 2001). The sediment transport was modeled by the PTM and
the ADE simultaneously. The salinity concentration of intrusion of density current was also
treated by the CDE. It is worth to mention that the use of Lagrangian particle tracking approach
for sediment transport provides many opportunities as well as handling the flocculation process
in sea water.

The aim of this modeling was to describe the sediment transport process at the estuary of the
Ohkouzu diversion channel reported by (Hideo, et al., 2013) to verify their observation and to
get more a clear understanding. In order to fulfill the purpose, numerical modeling, including a
density current and a flocculation of sediment was carried out in the 2D and 3D space.

4.2.4 Settling velocity and flocculation

The settling velocity for the sediment transport is the most important parameter in order to
account the sedimentation. The settling velocity is a function of the sediment concentration. As
increase of the concentration, the settling velocity of the sediment increase. When the
concentration becomes about several thousands the interaction between the sediment particles
decrease the settling rate of the sediment. This is considered as a hindered settling process. In a
study of Tsurutani et al. (B54*/ix—, et al., 1989) corresponded with other studies, the maximum
value of settling velocity of estuary sediments was observed around 0.258 cm/s, which gives the
particle size of 55 pm when the same velocity applies to the Stokes velocity formula. Simplifying
the Stokes equation yields the relation between the settling rate and the sediment diameter as
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ws = 8711d? , (103)

where d is the sediment particle diameter in cm. With the minimum settling velocity observed
in (854 )A—, et al,, 1989), the minimum size of the sediment particle can be approximated
around 10 pm. So the average particle size will be interpolated as 32 pm. With this average
particle size, we can obtain settling velocity of 0.09 cm/s from Eq.(103).

We also carried out simple experiments settling sediments in fresh water and seawater. In a
beaker of 500 cc, fresh and sea water with the suspended sediment of 4000 mg/L was filled and
stirred for the same time. The seawater of 3 percent was sampled from the estuary. Also the
sediments used in the experiments were prepared after collected from the bottom of the
estuary. After the sediments are uniformly distributed in the two cases of water, the
concentration of the turbidity (suspended solids - SS) was measured for each second with
equally leveled optical turbidity meters for the beakers. The amount of the suspended solid
against the experimental times is given in Figure 14. As seen in Figure 14 (a), the decrease of
the suspended solid in seawater is higher than that of fresh water. In other words, the sediment
in seawater settles faster than the sediments in freshwater. This can be described by the
flocculation process in seawater. An enlarged part of the SS against time shown in Figure 14 (b)
gives more detailed explanations for the settling rate and the flocculation. The SS increased for
initial 20 s because of the presence of the velocity field by stirring. After the external velocity
field is suppressed, the sediment particles are only experienced by the gravitational field and
started to settle. The amount of the SS in two cases is almost the same until a point A, which is
the starting point for the difference. Actually, the point A is the starting point of the sediment
flocculation in seawater and is measured at 60 s. The amounts of settling SS in two different
waters are bifurcated until a point B. From the point B, the rates of decreasing SS were the same
in the two cases of water. This implicates that the flocculation of sediments in seawater is faded
away and started to lose the effect on the sedimentation. From the point B to the end of the
experiment, the decreases of the SS were the same and curves continued in parallel.

Using the data of the SS in two cases of water, the settling rates against time in these cases
can be estimated from Eq.(38) by eliminating the advection term and the diffusion term in the x
direction. The equation for the inverse problem for the settling rates can be written as

dc 0dc d%c

WSEZE‘F sed 5.2 (104)

where c takes the value of the SS. The settling rates obtained with Eq.(104) against the
experimental times are plotted in Figure 15. The fluctuation of the SS yields the fluctuation for
the settling rate. However, the trend lines for the estimation give the clearest view for the
changes of the settling rates in time. A ratio of settling rates over whole time shows that the
settling rate of sediment in seawater almost doubled the settling rate of sediment in freshwater.
In the flocculation effected range, until the time of 400 s, the settling rate was accelerated 1.71
times in seawater. The flocculation results the bigger sediment particles stuck to each other.
The increase of the particle size accelerates the settling rate. Thus, with these average settling
rates no matter what is estimated in whole time or initial 400 s, the radius of an sediment
particle is expressed as r = 213, by using Eq.(103). This expression confidently proves the
simple flocculation model given in Section 2.3.2 can be applied to the study. This experiment
and the sediment size observation with a microscope gives the base scaling in the flocculation
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model as a, = 1. The critical time for the flocculation is found 300 s from the experiments. The
average particle sizes are found as 26 ~ 37 um, which agree with the average approximated

from (54—, et al., 1989).

Some of the complicated parts to model sediment transport with the traditional and the new
particle approach have been severally clarified with the preceding discussions and experiments.
Basically, the settling velocity discussed above is used for the simulation of the ADE for the
sediment transport. Similarly, the particle sizes in the PTM are given in the sediment size range
defined above. For each case of simulation, the settling velocity is the velocity for an average

sized particle considered in the PTM.
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Figure 14. Sediment settling experiments: (a) time series of suspended solid in fresh and seawater in full
experimental time and (b) time series of suspended solid in the enlarged area until 400 s.
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Figure 15. Settling rate estimation from the time series of suspended solids: settling rate in (a) seawater

and (b) fresh water.
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The sediment concentration at the inflow boundary in the ADE is assumed to be 1.0 and it
will be distributed further due to river inflow. It is also possible to get higher concentration
value than 1.0 at the bottom of the sea because of the sedimentation. In other words, the
amount of sediment concentration ¢ = 1.0 means that just for a reference value. Numerically, a
total amount of sediment has no limitation for the large value.

4.3 2D numerical simulations for the sediment problem

4.3.1 Model setup

The results of the lock-exchange problem confirm that the novel particle tracking approach
can be applied to the real field problem. The numerical scheme composed as Figure 16 was
applied to the two-dimensional numerical simulation of the estuary of the Ohkouzu diversion
channel. The numerical scheme consists of two approaches for sediment transport and two
options for the NSE. The particle tracking approach has coupled with the simple flocculation
model. For the PTM, the sediment sizes are important parameters, which should be defined in
the way that corresponds to the settling velocity of the ADE. In general, the settling velocity and
particle sizes are defined by the experiments and are reconciled with [#54/A—, et al,, 1989].
For the flocculation model, the flocculation time criteria, which is practically valid time for
particles flocculating with each other gradually, for fine sediments traveling in seawater was
given as parameter based on the experiments.

Bathymetric data (geometry), Initial
and boundary conditions

*  Sediment particle tracking method (PTM)

Sediment with flocculation model
transport * ADE based continuum approach
are solved simultaneously -
! E
Density stratification/density current §
| LES turbulent model I R
)
i Options are:
Stokes *  The SOLA (pressure-velocity iteration)
Equation *  The shallow water approximation
)

Boundary conditions

Figure 16. A numerical scheme for the sediment transport modeling in an estuary.

Two dimensional terrain data used in the computations was prepared from the digital
bathymetry data of the Ohkouzu diversion channel of 2011 shown in Figure 12. A
computational domain of the field scale simulation was formed with the rectangular grids in an
area of 2.490 km in length and 29 m in height and the additional layer of the cells are generated
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for the boundary condition. The computational domain depicting the initial condition for
sediment and salt stratification is given in Figure 17. For the ocean bed, the no-slip boundary
condition was imposed. The upper surface of the domain where a free surface would be
presented is modeled as the slip boundary. For inlet, the inlet velocity of 32 cm st (10 percent of
design flood discharge) was given in all cases. Whereas the outlet boundary condition is
imposed in the condition that balances the discharge computed from the inlet velocity.

1.245km
Problem boundary

ny=40
inflow outflow
density '
River stratifications

E on terrace I —
o} ~ Seawater - &
[ap] S <
!l Ground il

dy

dx=500cm nx=249

Figure 17. Schematic description of the computational domain for the sediment transport modeling in
the estuary of the Ohkouzu diversion channel.

4.3.2 Numerical results

In the field scale simulation, the SWA was selected instead of the SOLA method for the NSE
in order to exploit the computational efficiency and comfortability of geometry in the SWA.
Meanwhile, the sediment transport in the estuary was solved by two methods explained in
Section 2.3. The cases involved in this research are given in Table 1 with the other important
parameters in the simulations.

Table 1. The simulation cases and parameters

Cases wg c Drnax Dpnin Dsed N!? o' Ax Ay
1 0.12 1.0 54.4 4.0 2.6 100 0.02 500 35.7
2 0.09 32.2

3 0.05 24.4

4 0.02 12.2

Units: cm st - pum pum g cm-3 pieces g cm3 cm cm
Notes: | Parameters for Parameters for the particle tracking Density | Grid spacing

the ADE method current

Each case has experimental parameters including the particle sizes and settling velocity.
The time step for the computations was adaptively computed by the stability condition
described in Section 3.1.1. The computation was totally performed for 16 hours, 6 hours of
which have spent only for creating the fully developed flow condition like a natural flow in the

1N is the number of representative sediment particles generated randomly in a single cell within given
range of the diameter. Totally, 98200 particles were considered for the 2D simulations.
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estuary and the rest are devoted to the simulation of the sediment transport and the density
current. Times presented in the following explanation and figures are the count when the
sediment and the density current simulation started in the simulation. Generally, sediment with
fresh water is flowing from the left side inflow boundary (river mouth) toward to the right side
outlet boundary (offshore), see Figure 17. The bathymetry profile shows a river terrace outside

of the river mouth.

Based on the solution of the ADE, we measured the vertical distribution of salinity and
sediment concentration at several points, since the simulation domain has included the
observation sites B to D (see Figure 11 and Figure 13) approximately. The vertical distribution
of salinity and sediments are plotted in Figure 18 for the approximated sites, which are close to
the above observation points and are titled by distances measured from the inlet boundary. In
Figure 18, the first graph, 50 m from the inlet, shows the guarantee of no salinity near the inlet
boundary and the last graph at 950 m from the inlet shows the sediment and salinity
distributions in offshore parts. Despite it, the other graphs are assumed to be equated to the
corresponding the nearest observation points. Roughly speaking, the salinity is still not detected
at 50 m and 250 m from the inlet. But the point at 750 m, the sediment concentration decreases
with the salinity increases, which shows the same properties with the observation point C. The
point at 850 m from the inlet has less sediment concentration near the sea surface than the
bottom of the sea and the salinity distribution is kept its previous and next shapes of profiles. At
the point at a 950 m from the inlet boundary, comparatively large sediment concentration takes
place near to the sea surface and the sea bed as like as the observation site E. Practically, it is
obvious that the sediment and salinity distributions by conventional method can be defined
more accurately on the fine grid, however, it is difficult to evaluate how does the sediment
particle size effects on the spatial distributions of sediments from the results obtained the
conventional methods. Moreover, the combined effects of the flocculation and the density
current on the sediment transport could be a challenge for the conventional method.
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Figure 18. Simulated vertical distribution of salinity and sediments by the ADE. From those, the middle
three plots are approximately nearest points to B, C, and D points in Figure 13, respectively. The profiles
are measured at 2 hours after the simulation considered. A parameter used in this simulation: w;=0.09
cm/s.
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The numerical results of the sediment transport and density current field in the 2D domain
are given in Figure 19 and Figure 20 for four cases changing the settling velocity and particles
sizes. The blue and red contours show salinity and sediment concentration, while the particles
are expressed by brown points. At the upstream side of the computational domain (see Figure
17), initially hundred particles are generated and distributed randomly in every single
computational cell in order to represent the sediment particles. Only a one-time generation of
the sediment particles for whole simulation time enables to figure out the sediment transport
clearly in the domain rather than the generating particles in every time step of the computation.
Lines of contour remark the spatial changes in salinity and sediment concentration in Figure 19
and Figure 20. It is shown that the river water pushes the seawater toward the offshore
direction, meanwhile the density current acts opposite direction to the flow. Subsequently, an
interaction of freshwater and seawater makes the upward flux near an interface between them
and creates the density current front backward of the river terrace. In front of the density
current, the flow forms circulation due to strong shear stress between the river flow and the
density current. When the settling velocity or sediment particles have a bigger value, the
sediments are totally settled down around the river terrace and the steep side after the terrace
until 5 hours, shown in Figure 19 (a). Because the flocculation effect on the larger sediment
particles intensively accelerates the settling process. The flow circulation and the front of a salt
wedge cannot effect near bed sediment particle transport in case of large sediment particles,
case 1. In Figure 19 (b), case 2, the sediment particle size and settling velocities are smaller
than case 1 in Figure 19 (a) and the sediment particles near the front of the salt wedge are
circulated with the flow and this is still appeared end of the simulation time. It shows that the
settled or tumbling sediment particles near the front of the salt wedge or the interface between
the fresh water and the seawater are re-suspended again and again. In Figure 20, the results
with more fine sediment particles and lower settling velocities are shown. In case 3 with the
most fine sediment particles, the sediments are transported straightly in the offshore direction
and large amount of sediment stays suspended for a long time, as seen in Figure 20 (d) during
the middle of the simulation time. This reveals that the finer sediments such as fine silt and clay
sediment can be transported for long distance and deposited in the deep ocean bed. This was
also reported with the observation of sedimentation at the Ohkouzu diversion channel estuary
in 2011 (Hideo, et al,, 2013). Generally, the sediment particles are transported with the inertial
flow force until a 1 hour and then the sediment particles greatly settle down due to the
flocculation effect between 1 hour and 5 hours.
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Figure 19. Time sequencing results of the sediment transport and density current at the estuary of the
Ohkouzu diversion channel: (a) case 1 with the sediment settling velocity wy=0.12 cm/s, sediment
particle sizes D=54.4-4.0 um, (b) case 2 with w,=0.09 cm/s, D=32.2-4.0 um.
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Figure 20. Time sequencing results for the sediment transport and density current at the estuary of
Ohkouzu diversion channel: (c) case 3 with wy=0.05 cm/s, D=24.4-4.0 pm and (d) case 4 with w,=0.02
cm/s, D=12.0-4.0 pm.

The PTM has a drawback related to the treatment of the total amount of sediment deposition
on the sea bed. Even if a new personal computer has a successful advancement of the
performance, the total amount of sediment particles is beyond the limit of the computer
memory and CPU processing speed. However, the distribution of probability of particles yields
valuable information on the sediment distribution.
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To investigate more about sediment distribution, we measured the vertical and horizontal
distributions of sediment particle in four cases and shown in Figure 21 and Figure 22,
respectively. In case 1 with the coarsest sediments, the vertical distribution is not included in
Figure 21, since the large number of sediment particles is settled down at around the river
terrace. But it can be appeared with violet color in Figure 22. In case 2 with the particles of
D=32.2-4 um, the distribution of particle distance between 750 m to 950 m is lower than that of
the succeeding cases (case 3 and 4) with the finer sediments as well as the lower settling rates.
The sediment particles are settled hugely near 250 m and slightly at 850 m and 950 m, more
slightly at 750 m and almost no sedimentation at 50 m at 5 hours after the simulation
considered. The same tendency shown in case 3 with D=24.4-4.0 um, but the distribution of the
suspended sediment particle is increased during an 1 hour to 5 hours between distances 750 m
to 950 m. Case of the most fine sediment particles, case 4, shows a huge amount of distribution
stayed as suspended after 750 m, but it shows no sedimentation after 5 hours at the points of
750 m, 850 m and 950 m. In all cases, there are no suspended sediment particles transporting at
50 m and 250 m after the 1 hour, but a plentiful settled sediment particles. There are no settled
sediment particles at 50 m and less settled particles at 250 m after 3 hours, which means that
the sediments are re-suspended and transported in the offshore direction as seen clearly in
Figure 22.
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Figure 21. Vertical distributions of sediment particles at the specific times: (a) case 2 (b) case 3 (c) case 4.
In single cell, hundred particles are randomly distributed and it can be assumed to be the amount of total

particles nyot.
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With the measurement of more small time instants, the vertical distribution of sediment
particle at arbitrary places can be seen more precisely; however the distribution of settling
sediment particles on the bed and horizontal circumstances are not shown clearly. In order to
show the horizontal distribution of sediment particles along the longitudinal section of the
terrain, the particle distributions are measured at 3 hours, 5 hours and 7 hours in all simulation
cases and are plotted in Figure 22. At 3 hours after the simulation considered, the sediment
transport occupies a range from 150 m to the end of the domain (2490 m) in case 4 (a red
histogram in Figure 22 (a)), while the sediment transport only takes place between 150 m to
1000 m in case 1 (a violet histogram in Figure 22 (a)). The distributions and settlements of the
sediments in cases with D=32.2-4 um and D=24.4-4.0 um are situated in between (a blue and a
green histogram in Figure 22, respectively). For the further simulation times, the beginning of
the distribution range is addressed to the offshore direction up to around of the river terrace
and the large number of coarse sediment particles settled down there, as seen in Figure 22 (c).
Whereas, the finer sediment particles are tended to settle down in the offshore part, as shown in
Figure 22 (b) and (c).
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Figure 22. Longitudinal distributions of the sediment particles in the all simulation cases. The results
were obtained at the time (a) t=3 hrs, (b) t=5 hrs, and (c) t=7 hrs. In those figures, the total amount of
particles n: is the amount of all particles exists in the simulation domain.

4.4 3D numerical simulations for the sediment problem

4.4.1 Model setup

Less than a three dimensional modeling is sufficient excluding the specific directions of three
dimensions that show no physical variations in the problem. An estuary, where a number of
factors, including a uniqueness of the environment effects on the hydrodynamics, must be
considered as a three-dimensional problem. The sediment transport in two-dimensional space,
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ignoring the third direction based on an assumption that may be the transports in shoreline
direction would be less than that of the vertical direction. Thus the offshore direction of the
sediment transport is discussed in the receding sections (the x-z plane model) ignoring the
transport in the y directions, more clearly. We saw that the two-dimensional modeling can
provide significant results on the sediment transport and spatial distributions in considering
directions of x and z. But for the sediment problems relevant for the shoreline, one needs to
consider the x-y plane for the modeling. Of course the number of substantial results will be
found when one uses the three-dimensional model.

Here, we discuss the results of 3D numerical modeling of the sediment transport at the
estuary of the Ohkouzu diversion channel, which were reported in (Takeshi, et al,, 2016b) and
extensively discussed in (Takeshi, 2016). For the simulations, we used the SOLA method to
compute the flow field. The same cases given in Table 1 were adapted in the 3D simulations, but
some of the parameters are different because of the dimension and memory consumptions. A
number of sediment particles generated in a cell at initial time has reduced to 10 particles and
grids spacing are chosen as Ax = 1000,Ay = 1000 and Az = 50 cm. The boundary conditions
were the same as the condition applied in the 2D simulations. The bathymetry data for the 3D
simulations, given in Figure 23, were interpolated to be a digital elevation model (DEM) from
the raw point data shown in Figure 12. The discharge was constant for all simulations and was
the same as the 2D simulations.

18.0m

dz=

Figure 23. DEM model of the geometric data for the bathymetry of the estuary.

The computational time was 16 hours, 6 hours of which are devoted only for the calculation
of the flow field. The rest of hours, total 10 hours were used to simulate the sediment transport
and density currents. So that the times used for the results are counted since the subroutines of
sediment and density current are active in the simulations. The flocculation model and its
parameter were the same.
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4.4.2 Numerical results

The reason choosing the SOLA method instead of the SWA is a three-dimensional behavior of
the estuary flow. As applying the SWA for the NSE, the vertical velocity is roughly calculated and
would be different from the velocity that could be calculated with the SOLA method. This
difference might have an influence on the transporting mechanism in a spatial distribution of
sediments. We run four cases with the same flow condition in order to study the influence of the
settling velocity and sediment sizes. For simplicity, the axes in figures are named as shoreline
direction for the y-direction, cross-shore direction in the x-direction and elevation for the z-
direction. The flow field and salt concentration at the upper surface of the domain is given in
Figure 24 showing the absolute velocity and the intrusion of a salt wedge into the river mouth,

respectively.
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Figure 24. Plan views of the velocity magnitude and density deviation of the upper surface of domain at
10 hours after the simulation started in the estuary.
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Figure 25. Slice views of the velocity vector and a salt wedge through the river channel at 10 hours after
the simulation started in the estuary.
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The given discharge, which is about 300 m3 s! and the 10 percent of the design flood
discharge, was moderate for the estuary. As that, the density current pushed river water up to
the river mouth as the salt wedge, shown in Figure 24 (b) and Figure 25. Similarly, the fewest
amount of river water flows to the offshore direction as the exchange of the salt intrusion, as
seen in Figure 24 (a) and Figure 25. With the discharge more than 15 percent of the design
flood discharge, the river flow could push the density current forward over the river terrace and
other figures of the sediment transport resulted are discussed in (Takeshi, et al., 2016b).

The conventional solution for the sediment transport, the ADE, gives the general
characteristic of the suspended sediment transport without the flocculation. Three-dimensional
distributions of the suspended sediments and salt concentrations for four cases at 10 hours are
given in Figure 26.
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Figure 26. Suspended sediments of four cases changing the settling velocity transport to the offshore
direction against the density current.

Sediments distributed in large area found in case 1 and in small area found in case 4. In other
words, the results show that the settling velocities are key factors in the distribution of
suspended sediments for each case when the transport happens in the same flow field. It is
explained by the adjustments of the sediment advection by the settling velocity. It is not meant
to be the sediment particles having higher value of settling velocity, which, in turn, gives the
bigger particle size, can travel such a long distance.

In time development, the density current pushed the river flow back to the river terrace for
an initial 30 minutes when the moderate discharge is given. Then the salt concentration in the
estuary becomes steady state after that, as shown in Figure 27 and Figure 28, and only the
small interchanges took place. Whereas the time advances of the sediment transports were
different for cases. At 0.5 hours after the transport considered, the distribution of the sediments
was little different and case 4 shows the leading transport to the offshore direction. Like the salt
concentration evolution, the sediment transports for an initial 30 minutes were active and the
sediment front reaches 1000 m immediately, as seen in (a) of Figure 27 and Figure 28. It is
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because that the sediment had transported with the inertial moments of the river flow. Soon
after mixing sediments with the seawater, the advection rates of the sediment transport are
reduced and slow but offshore directed transport took place for further hours, as seen in (b-e)
of Figure 27 and Figure 28. After 3 hours of transporting, the leading front of the sediment had
been dispersed by the local flow field in case 1 and 2. Some of dispersion to the shoreline
direction appeared on the cheek of the sediment mass, shown in Figure 27 (c) and (d). As time
advances, the sediment transport of case 1 lasted with the highest concentration at the upper
part and with two bifurcations near the outlet part of the domain, as seen in Figure 27 (e).
Dispersed parts from the main body of the sediment mass in case 1 and 2 looked transporting to
the shoreline in Figure 27 (d) and (e). If the surface wave is present in the simulation, the
sediment concentration at the upper part of the domain would definitely be transported into the
shoreline.

In case 3 and 4, more interesting figures come up. Thanks to the less settling velocity, most of
the sediment particles transported as suspended, so that the front of the sediment mass
completely reached the outlet boundary after 3 hours, shown in Figure 28 (c). The advection
rate of the sediment reduces more slowly as the settling rate reduces. Like previous cases with
higher settling velocity, the dispersion appeared at the leading front in Figure 28 (d) and this
dispersion transported to the shoreline more actively. Interestingly, the left cheek dispersion for
all cases was constantly reduced as settling velocity reduces and completely disappeared in case
4. Additionally, the dispersion originated from the leading front was quantitatively increased to
the right side of the sediment mass in case 4, as shown in Figure 28 (e). Generally, the sediment
concentrations higher than 0.5 in cases were stayed within the range of the 500 m from the
river mouth, which is the inside of the river terrace.

Figure 27. Time sequences of the suspended sediment and salt concentration at the estuary. The first
column is results of case 1 and the second is of case 2 (see next page).

Y Ph.D. dissertation 52



(@) o

w
=3
=3

=3
=3
=3

UONDAILP IOYS-SSOL)

1500

£ i 552 1iff B 2 K2

Nagaoka University of Technology

|
Sediment
concentration

(b)o

w
=3
=3

UONDAUIP AIOYS-SSOI)
=3
(=3
(=3

1500

0 500
Shoreline direction, m

1000 1500

Case 1: w=0.12 cm/s

Time = 0.5 hours

|
Sediment

concentration

Density
— deviation

©o

w
=]
=]

UONOIP DIOYS-§SOI))
=
(=3
(=]

1500

500 1000 1500 )
N Shoreline direction, m g?s‘* 1w =012 em/s
ime = 1 hour
|

Sediment
concentration

' Den sity

(d)o

deviation

500 1000 1500
N Shoreline direction, m ~ $ase 1: w=0.12 cm/s
Time = 3 hours
|

Sediment
concentration

Q
S 500
g
@
3
(=}
@
2.
=
£1000
g
3
1500 -l —
Density
107 500 1000 1500 deviation
R Shoreline direction, m ~ €ase 1 w.=0.12 em/s
Time = 5 hours
|
e
(€ o Sediment ‘
concentration
@]
2 500
H
o
&
]
a
e
5
21000
g
1

1500

[ Density
deviation

0 500 1000
Shoreline direction, m

1500
Case 1: w=0.12 cm/s
Time = 7 hours

© Ayurzana Badarch

(2) 0

o
=3
=3

=3
=3
=3

UOTAIIP DIOYS-SSOL)

Sediment
concentration

Density
deviation

500

1000
Shoreline direction, m

1500

Case 2: w =0.09 cm/s
Time = 0.5 hours

=]
=3
=3

UONDAUIP DIOYS-SSOIY

1500

Sediment
concentration

! Density
— deviation

500 1000

Shoreline direction, m

1500

Case 2: w =0.09 cm/s
Time = 1 hour

(c)o

w
=]
=]

UONDIP AIOYS-SSOI)
S
(=3
[=1

1500

Sediment
concentration

500

1000
Shoreline direction, m

1500

Case 2: w =0.09 cm/s
Time = 3 hours

(d)o

w
=]
=]

UONOIP AIOYS-SSOIT)
=
=
o

1500

Sediment
concentration

500

1000
Shoreline direction, m

1500

Case 2: w =0.09 cm/s
Time = 5 hours

(e) o

w
=3
=]

UONDIIP AIOYS-SSOIY)
=
>
=

‘ Sediment ‘
concentration
1.200
0.982
0.764
0.545
0327
0.109

500 1000
Shoreline direction, m

1500
Case 2: w =0.09 cm/s
Time = 7 hours

53



RERMAFRZ

Nagaoka University of Technology

a 1 a 1
QR Sediment @o Sediment
concentration concentration
g g
2 500 3 500
2 &
& &
= &
g 2
a a
B B
5 g
1000 21000
=8 S
3 5
1500 pensi_ly 1500, Density
L 500 1000 1500 S 10 500 1000 1500 deviation
B Shoreline direction, m ~ Sase 3: w.-0.05 emvs e Shoreline direction, m ~ Sase 4: w-0.02 emvs
Time = 0.5 hours Time = 0.5 hours
| |
(b) 0 Sediment (b) 0 ¥ Sediment
concentration concentration
1.200
M - 0982
A " | B
E] o 0545
g 500 g 500 P
I I b 0.109
=3 &
2 2
a a
= =
21000 21000
2 2. 0022
5] ]
1 =1 0017
0012
| 0007
1500 ;'je"SiFY 1500 Density
eviation . ot
1 500 1000 1500 _ 1 500 1000 1500 deviation
N Shoreline direction, m g?s" 3: w.=0.05 cm/s B Shoreline direction, m ~ £ase 4 w.~0.02 cmis
ime = 1 hour Time = 1 hour
| |
c c
©o Sediment ©o Sediment
concentration concentration
o %
; 500 § 500
v o
=3 =3
g g
[+] (4]
=2 =2
a a
1 1000 4 1000
=3 =3
3 5
1500 Density 1500 Density
1 deviation 1 deviation
500 1000 1500 500 1000 1500
Shoreline direction, m ~ £ase 3: w.=0.05 em/s N Shoreline direction, m ~ ase 4: w.=0.02 cm/s
Time = 3 hours Time = 3 hours
| |
@o Sediment @o Sediment
concentration concentration
Q (90}
S 500 S 500
Z 4
@ o
= =
g E
@ a
= (=
5 ]
&1000 &1000
=3 =3
3 ]
1500 chps1.13' 1500 | Density
leviation ¥
1 500 1000 1500 ! 500 1000 1500 doviation
Shoreline direction, m ~ ¢2se 3 w.~0.05 em/s 8 Shoreline direction, m ~ Case 4 w.=0.02 em/s
? Time = 5 hours ’ Time = 5 hours
| |
(€ o Sediment ‘ ©o Y ‘ Sediment ‘
concentration concentration
1.200
0982
o o 0764
] 8 03545
g 500 g 500 0127
& &
5 =
] °
3 a
e e
5 5
&:IOOO EIUOU
=3 =3
<] 5
1500 Density 1500

deviation

500 1000

Shoreline direction, m

Y Ph.D. dissertation

1500
Case 3: w =0.05 cm/s
Time = 7 hours

500 1000

Shoreline direction, m

1500
Case 4: w =0.02 cm/s
Time = 7 hours

54



o SR PR

MNagaoka University of Technology

Figure 28. Time sequences of the suspended sediment and salt concentration at the estuary. The first
column is results of case 3 and the second is of case 4 (see previous page).

Another figure that cannot be disclosed by the ADE of the sediment transport could be
explained by the PTM. For the sediment transport modeling with the PTM, a total of 16,640
representative particles was tracked for all cases. The particle number for the simulation was
limited by the memory of the running computer. In Figure 29, the three-dimensional
distribution of sediment particles at 10 hours after the sediment transport considered is plotted
for the four cases. We cannot see the large distribution area of the sediment particles having the
higher settling velocity. It is not controversial for the results of the ADE, where the sediment
distributed in the biggest area in case 1 which has a higher settling velocity or is representing
the bigger particle size. If we discharge the sediment particles at every time step of the
simulation, we could get the large area of sediment distribution with case 1 in the PTM. The
bigger particles have a tendency to have a higher settling rate than the coarse particles. It makes
sense that the bigger particles settled down immediately and hugely in the river mouth. Only
the small number of coarse particles is transported in the offshore direction passing the river
terrace in case 1 in Figure 29 (a). The large area of distribution is seen in case 4 in Figure 29
(d). The distribution of sediment particles is increased in case 1 to case 4, while the settling rate
is increased, vice versa.

(a)

Case 1: 54.4~4.0um
t = 10 hours

Particle radius, pm (b)

- B - Case 2: 32.2~4.0um

10.00 30.00 50.00 70.00 90.00 t = 10 hours

Particle radius, pm

. n |

10.00 20.00 30.00 40.00 50.00 60.00

10

=
Elevation

500 500

& 5 Ry
o i, 1000 i ﬁore/,n 1000 i
7 Ay &
ey, 1000 & ey, 1000 5e
op 1500 LA o 1500 L
50 g0
1500 c 1500 C
(C) Particle radius, pm (d) Particle radius, pm
Case 3: 24.4-4.0um | I Pl case4:122-4.0um | IS [ 1
t= 10 hours 10.00 20,00 30.00 40.00 t =10 hours 6.00 10,00 14,00 18.00 22,00

Elevation

500

Sb{]
g
e/ .J( 00

WUy
Coy, 0 )
' s 100 0

1500 1500

Figure 29. Spatial distribution of the sediment particles released from the river mouth at 10 hours for the
four cases: (a) case 1, (b) case 2, (c) case 3 and (d) case 4.

The large particles tend to settle at the estuary terrace, while the fine sediments are transported
to the offshore directions in all cases and it can be seen in the time sequences of results given in
Figure 30 and Figure 31, where the color of the particle indicates the sizes of particles. The
general tendency of the particle transport was the same as the results of ADE. For the first 30
min of the simulation, the sediment particles immediately reached at 1000 m with the inertia of
the river flow and large particles settled around. Case 4 shows the most active transport to the

© Ayurzana Badarch 55



|, RE BB F K
Nagaoka University of Technology

offshore direction and it kept for all times, as seen in Figure 31 (a-e). In Figure 30, almost all
particles in case 1 are settled down within 1 hour and almost no particle motion observed after
3 hours except the couple of particles. These particles are the representative of the possible
coarse particles transported in the offshore direction. In all cases, where a salt wedge invaded
the river mouth and passed the river terrace, the sediment particles make flocs very quickly.
This results the traveling distance short for the particles bigger than 30 pm. Like the seawater is
important for the flocculation, the discharge is very dominant factor in the sediment transport.
In that sense, the two types of the discharge with different cases of sediment particles were
discussed in (Takeshi, et al., 2016b) and (Takeshi, 2016). In later cases, the front of the sediment
particles reached the outflow boundary of the domain at 1 hour, which was 2 hours prior to the
ADE results. This is one of the advances of the PTM over the ADE. The particle motion of
independent from the others is likely in the PTM, but the concentration separated from the
concentration mass might be recognized as error or instability. Unlike the ADE, the dispersion at
the cheek of the sediment mass was not observed in case 1-3 in the PTM. However the sediment
particles transporting to the shoreline were observed for all cases and the particle number was
increased as the particle size decreased. In other words, the large amount of sediment particles,
particularly in case 4, from the outlet part of the domain was transported to the shoreline at the
left side of the sediment mass, as shown in Figure 31 (e). Generally, the fine sediment particles
lead the sediment mass in the transport. In the results of the PTM for sediment transport at the
estuary of the Ohkouzu diversion channel, the sediment particles having sizes of less than 20 um
have a potential to be transported in the offshore direction over 1500 m from the river mouth.
From the results, the right side of the shoreline is likely to receive more sediment particles than
the left side. The horizontal distribution, more precisely the distribution in the shoreline
direction (the y-direction), seems to be hugely dependent on the ocean surface dynamics as well
as the interaction of the river flow and density current.

4.4.3 Advantages and disadventages of the new PTM

Based on the numerical experiments, I would like to stress some advantages and dis-
advantages of the newly purposed PTM in a comparison with the ADE. The settling velocity is no
longer an issue for the PTM because it depends on a sediment particle size and weight.
Initialization in the PTM becomes more realistic than that of the ADE, which leads reliable
results. The PTM can present a particulate nature of sediment transport and provides an error-
free analysis of the sediment distribution. In general, the PTM is applicable for the cohesive and
non-cohesive sediment transports. More importantly, the PTM brings simplicity for handling the
individual characteristic of sediment particles like the flocculation and de-flocculation processes.

The main disadvantage is the computational cost, including memory and time consumptions.
With respect to this, the increase of problem scale decreases the performance of the PTM. An
inherent bottleneck of the PTM is the poor connectivity to the concentration based evaluation.

Figure 30. Distribution of the sediment particles released from the river mouth at once in case 1 and 2
(see next page).

Y Ph.D. dissertation 56



o, RE R R

Nagaoka University of Technology

(a)e

w
=]
S

UOIIAIIP JIOYS-SS017)
8
=

1500

(b)e

w
=
=3

1000

UOTOAIP AIOYS-SS017)

1500

(c)o

w
£
S

UOIDAIIP JIOYS-SSOIT)
g
=

1500

[Case 1: 54.4~4.0pm
't=0.5 hours

Particle r@hs, |,_eri
100.00

90.00
80.00
70.00
60.00
50.00

40.00
30.00
20.00
10.00

0 500 1000

Shoreline direction (m)

¥
| |
1500

X

“Case 1: 54.4~4.0pm
‘t: 1 hour

Particle radius. um

100.00
90.00
80.00
70.00
60.00
50.00
40.00
30.00
20.00
10.00

0 500 1000

Shoreline direction (m)

Y
1
1500

X

" Case 1: 54.4-4.0pm

t =3 hours

Particle radius, ym
100.00

90.00
80.00
70.00
60.00
50.00

40.00
30.00
20.00
10.00

(d)e

wn
2
S

1000

UOIPAIP IOYS-8801)

1500

0 500 1000

Shoreline direction (m)

-

X

1
1500

+ Case 1: 54.4~4.0pum

adius, pm
100.00

s

90.00
80.00
70.00
60.00
50.00

40.00
30.00
20.00

t =35 hours
10.00

(e)e

w
=]
S

1000

UOIDALP JIOYS-SSO1)

1500

o 500 1000

Shoreline direction (m)

1
1500

—

['Case 1: 54.4-4.0pm
t =7 hours

adius, um

100.00
90.00
80.00
70.00
60.00
50.00
40.00
30.00
20.00
10.00

0 500 1000

Shoreline direction (m)

© Ayurzana Badarch

v
1
1500

X

(a)o FCase 2:32.2-4.0um
[t,= 0.5 hours
o
5
S s00
o
&
=
=]
°
=3
g 1000
£
8
1500 M
| I ]
107 500 1000 1500
Shoreline direction (m) %
(b)e [Case 2: 32.2-4.0pm
| [t=1hour
Q
%
S S00f{—— ol
@
=
=
o
=3
g 1000 — e S
g
=
1500 = .
107y S00 1000 1500
Shoreline direction (m) X
(c)o [Case 2 32.2-4.0um
t =3 hours
Particle radius, ym
2 B 60.00
g s L 50.00
2 40.00
g 30.00
: 20.00
2 J000 10.00
z
= -
1500 ———— e i e y
1079 500 1000 1500
Shoreline direction (m) X
(d)or- |"Case 2: 32.2-4.0pm
t =35 hours
Particle radius, pm
g 60.00
2 500 50.00
& 40.00
5 30.00
e 20.00
{E 1000 10.00
£
=
150 N e : v + Y
1079 500 1000 500
Shoreline direction (m) x
(e)or [Case 2: 32.2-4.0um
| [t=7 hours
Q
é 500
&
S
H
E-: 3
glooo 10.00
g
B
1500 z = -
1
107 500 1000 1500

Shoreline direction (m)

57



(a)e

500

UOIIAIIP JIOYS-SS017)

1500

(b)e

500

1000

UOTOAIP AIOYS-SS017)

1500

(c)o

w
&
S

UOIDAIIP JIOYS-SSOIT)
g
=

1500

RERMAFRZ

Nagaoka University of Technology

+ Case 3: 24.4~4.0pm
t=05hours

Particle radius, um
45.00

40.00
3500
3000
25.00
20.00

15.00
10.00
5.00

0 500 1000

Shoreline direction (m)

1500

" Case 3: 24.4~4.0pm
t=1 hour

0 500 1000

Shoreline direction (m)

1500

" Case 3: 24.4-4.0pm
t =3 hours

Particle radius, ym
45.00

40.00
35.00
30.00
25.00
20.00

15.00
10.00
5.00

(d)e

500

1000

UOIPAIP IOYS-8801)

1500

1000

Shoreline direction (m)

1500

—

+ Case 3: 24 4~4.0pm
t =35 hours

Particle radius, pm

(e)e

500

1000

UOIDALP JIOYS-SSO1)

1500

1000

Shoreline direction (m)

1500

3:24.4-4.0um
hours

~a

t=

1000

Shoreline direction (m)

W Ph.D. dissertation

1
1500

(a)o

500

0oo

UONIIP AIOYS-SSOIT)

1500

(b)e

500

000

UOTPDAIP AIOYS-SS01)

1500

(c)o

500

000

UOIDAIIP JIOYS-SSO17)

1500

+Case 4: 12.2~4.0pm
|[t=10.5 hours

500 1000

Shoreline direction (m)

1500

A e

~Case 4: 12.2~4.0um
| [t=1hour

500 1000

Shoreline direction (m)

1
1500

" Case 4: 12.2-4.0pm
|t=3 hours

Particle radius, ym
22.00

20.00
18.00
16.00
14.00
12.00

10.00
8.00
6.00

(d)e

500

000

UOIIAIIP IOYS-8801)

1500

500 1000

Shoreline direction (m)

1500

—

Case 4: 12.2~4.0pm
|[t=15 hours

Particle radius,
22.00

20.00
18.00
16.00
14.00
12.00

10.00
8.00
6.00

(e)e

500

000

UOIDAMP 3IOYS-SSO1)

1500

1500

['Case 4: 12.2-4.0pm
| [t=7 hours

500 1000

Shoreline direction (m)

1500

58



o SR PR

MNagaoka University of Technology

Figure 31. Distribution of the sediment particles released from the river mouth at once in case 3 and 4
(see previous page).

SUMMARY FOR PART 1

In this part, we discussed the macroscopic modeling of the sediment transport problem in the
estuary. The descriptions of models and methods were focused on the problem to be solved and
the problem, sediment transports at the estuary of the Ohkouzu diversion channel, was studied
by the 2D and 3D numerical models.

The numerical models are organized as the numerical framework. The fluid flow can be
optionally solved by two different numerical techniques featured by the solution algorithm
(SOLA), namely the pressure-velocity iteration and shallow water approximation, depending on
requirements and problem condition. The two techniques implement the Navier-Stokes
equation with the Boussinesq approximation. In addition, the Smagorinsky turbulent model was
introduced to the fluid flow in a form for the stratified medium. The sediment transports were
solved by another two models, but simultaneously. The first was the traditional solution: the
advection-diffusion equation. The second was the sediment particle tracking method which is
newly introduced in the external articles. The particle tracking method brought two important
features that could be difficult or impossible in some aspect to be involved with the ADE. These
are the local transport behavior and the flocculation process of the sediment particles. The
solutions came with the simple flocculation model verified by the simple experiments of settling
sediment particles in the fresh and seawater.

The numerical models for the sediment transport were validated with each other in the
laboratory scale lock-exchange problem. Then the numerical framework was applied to the
problem in the estuary of the Ohkouzu diversion channel. Four cases, changing the velocity and
particle sizes, which originated from the experiment, were considered in the both 2D and 3D
studies. The difference between 2D and 3D studies were not only the computational parameters,
but also the solving technique for the flow governing equations. However, the two different
dimensional studies provide the qualitative results which confirmed the observations made in
the estuary of the Ohkouzu diversion channel. The comprehensive description of the sediment
transport at the estuary was found in the 2D and 3D studies. The numerical framework with the
results of the application to the estuary of the Ohkouzu diversion channel shows its potential to
be applied for the sediment transport modeling in a large river estuary.
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PART 2: MESOSCOPIC MODELING FOR
ICE PROBLEMS

contains the description of lattice Boltzmann (LB) models, their implementation techniques and
applications to problems.

5 LATTICE BOLTZMANN MODELS

The family of LB models is getting large. In this chapter, we will explore an origin of the LB
models and will present developed models for fluid flows, scalar transports and other
substantial problems in hydraulics.

5.1 Basic theory of the lattice Boltzmann method

In this section, we will briefly discuss the basic theory of the LBM and its originality.

5.1.1 Origin of the lattice Boltzmann model

The history of the LBM starts from the method in gas kinetics, so called lattice gas automata
(LGA). Very first LGA was the HPP2 model proposed by Hardy, Pomeau and Pazzis in 1973
(Hardy, et al., 1973). The HPP model describes a fluid flow using simple rules for motion of
particles residing on the lattice nodes. Those simple rules conserve mass, moment and energy,
and handle the steaming and collision of the particles on the lattice nodes. The main variable of
the HPP model is the Boolean number, n;, defining particle existence, n; = 1, or absence, n; = 0, on
the lattice node. The motion of the particle containing the streaming and collision can be
described by the following discrete kinetic equation (Guo & Shu, 2013),

n;(x + ¢;6t,t + 6t) = ny(x,t) + C;(n(x, 1)) (105)

and the Boolean variable is used to define macroscopic variables,

m
p= Z mn;,  pu= Z mein;,  pe = Z; (ci —u)’ny, (106)
7 7 7

where i is the lattice direction (see Figure 32 (a)), c; is the discrete velocity for each lattice
direction and (; is the collision term. The discrete velocity set in the HPP model is given by
¢; = s;¢; withcy = (1,0), ¢, = (0,1),¢c3 = (—1,0), and ¢, = (0,—1), and s; = §x /4t is the lattice
speed where §x is the lattice spacing and &t is the lattice time step, as seen in Figure 32 (a).
However, the HPP model satisfies the basic physical laws; consequently derived macroscopic
variables do not manifest hydrodynamic continuum properties of the fluid flow. Reasons are

2 HPP is the initials of the authors’ names.
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that the HPP model was devoted for microfluidic dynamics rather than macroscopic fluid flows
and the square lattice used for a discretization has insufficient symmetric properties etc.
Nevertheless, the HPP model had introduced very basic components of the modern LBM in its

y ¥
2 EVARY:
3 [ i=1
o 4 o o 5 6
BX ' La_x—. '

2D space

diligent period.

(a) (b)
=]

dy

Figure 32. Two dimensional lattices for the Lattice Gas Automata: (a) Square lattice for HPP model, (b)
Equilateral triangular lattice for FHP model

After over a decade, in 1986, Frisch group (Frisch, et al.,, 1986) and Wolfram (Wolfram, 1986)
simultaneously revealed that the lattices used in the LGA must have symmetric properties. The
model proposed by Frisch group has named the FHP model after the authors. The FHP model
uses the equilateral triangular lattice (see Figure 32 (b)) for the simulation and altered to have
more collision rules than the previous HPP model. A big contribution of the FHP model is not
limited by the symmetry properties of the lattice and the model also brings an equilibrium state
for the collision term in Eq.(105). This revolution contribution was enabled the FHP model can
recover the incompressible NSE in low Mach number. However, still in some case, the Galilean
invariance was violated in the FHP model. Thanks to the equilibrium distribution in the collision
term, several lattice terms and properties, such as the lattice speed of sound and the lattice EOS,
are introduced to activate further development of the LGA. Still in the FHP model, the main
variable is the Boolean number. Although the Boolean variable brings unconditional stability for
the simulation, it leads whether a particle crowd in some place and a particle devastation in
other place. This crowd and devastation are not described by the kinetic equation implemented
on the lattice. The physically uneven distribution of the Boolean variable results a discordant
macroscopic flow field and it was termed as a statistic noise. Further LGA models were
successfully explored and applied to multiphase and porous media flows. However, these
models were still suffering by the statistic noise caused by the Boolean variables, the violation of
Galilean invariance and the velocity dependence on pressure. Those are said the key driver for
the LGA to be altered into the LBM.

Historically, beginning of the LBM was initiated by Frisch group in 1987 improving the
existing LGA based on the evaluation of the hydrodynamic properties and introducing the lattice
Boltzmann equation (LBE) into the LGA (Frisch, et al., 1987). But they did not proclaim that
their improved scheme was the new computational technique out of the LGA. Soon after, the
LBE was formulated to solve fluid flow with the elimination of the statistic noise of the LGA as a
new numerical method by McNamara and Zanetti in 1988 (McNamara & Gianluigi, 1988). The
model uses the evolution of the mean values of one-particle distribution functions to eliminate a
basic affliction of the LGA, the noise, instead of the Boolean variables on the lattice. The model
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named NZ model after the authors and Eq.(105) can be rewritten as the basic equation of the NZ
model:

filx + ¢;6t,t + 8t) = fi(x, ©) + Q(f(x, 1)) (107)

where (); is the microscopic collision operator that was still the Boolean algebra expression that
corresponds to the chosen set of collision rules (McNamara & Gianluigi, 1988) of the LGA.
Further research works were mainly focusing on the simplification of the collision operator.
However, the collision operator was still remained to be dependent from the LGA knowledge.
Later, around in 1991, the collision operator was simplified as a linear term (Chen, et al., 1991),
(Koelman, 1991) including the collision frequency and the equilibrium distribution function fieq,
which was the same as the Bhatnagar-Gross-Krook collision operator (Bhatnagar, et al., 1954) in
the gas kinetic theory constructed back in 1953. Consequently, a simple LBE can correctly
describe the hydrodynamics of a macroscopic flow and can derive the correct version of the
incompressible NSE in isothermal condition at low Mach number. The simple collision operator
is referred among the literature whether the Bhatnagar-Gross-Krook (BGK) operator or the
single relaxation time operator (SRT). The equilibrium distribution function in the BGK operator
is now fully independent from the LGA and made the LBE path straighten to the LBM. In
isothermal flow, the equilibrium distribution function must satisfy the mass and moment

p=Zfi=Zfieq andpu=Zcifl-=Zcifieq, (108)

and the BGK collision operator is inserted into Eq.(105) as
fi(xf t) - f;eq (xl t)

4

conservation,

fix+c;6t,t +6t) = fi(x, t) — (109)

where 7, is the relaxation time. Principally, the variations of approximation for the collision
operator leads many versions of the LBM. In this thesis, we will mainly focus on the BGK
collision operator exploiting its simplicity and capability.

5.1.2 The Boltzmann equation

We shall derive the Boltzmann transport equation in two ways to simply revisit underlying
microscopic models and assumptions. Then we discuss about collision terms in the Boltzmann
equation to lay the cornerstones of the LBM considered here.

The Boltzmann equation from the BBGKY hierarchy

Normally, let us consider an infinite volume V contains an N number of molecules. Please
note that the molecule and particle are the interchangeable terms in this thesis. The function
defining their state can be f" and let it name the N particle distribution function. Thus, the
distribution function fV is the function in a phase space depending on a position (x%) and
velocity coordinates (X%) of a generic molecule « in volume V with a =1, 2, ..., N. A state of the N
molecules can be defined as
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fN(x% x%)dx*dx“,
wherea =1, 2, ..., N.

Above expression gives the probability to find N molecules in the position vector between x¢
and x* + dx% and velocity vector between X% and x* 4+ dx* at time t. The normalization of the
distribution function over all time, t, gives the property

f NV (x%, %%, t)dx%dx* = 1. (110)

The time evolution of the N particle distribution function follows the Liouville’s equation
(Guo & Shu, 2013) (Michael & Daneal T, 2006), i.e.,

N N N
or- +Z< af ?Z{w):o (111)

Solving Eq.(111) is much more difficult than solving the equation of motion for N particles. Only

a way to simplify Eq.(111) is to derive a time evolution equation for a lower particle distribution
function. To reduce the complexity of the distribution function, we can derive another lower
particle distribution function f™ from the distribution function f" such that

XM, XM, £)dx™, dX™
- U £V (x99, 6)dx™L, .., dxNdx™tY, de] dx®, .., dxVdx", .., dx"  (112)

gives the probability to find n molecules in a certain interval of a position and velocity vector at
time t. To derive the time evolution for the distribution function f™ (n<N), we can multiply
Eq.(111) by dx™*1, ..., dxNdx™*?, ..., dx" and it yields,

N
afN ] N
j[L+ E <5c“ fr + i of >]dx"+1,...,dx”d)'("“,...,d)'(”=0. (113)

ot L oxE " Bxe

a=1
The first integral of Eq.(113) can be changed to the order of the time derivative of f™ according
to Eq.(112):

afvN afm
;t dx™1, .. dxNdx™1, .. dxN =%. (114)

Moreover, the second and third terms in left hand side of Eq.(113) alters with some conditions
and the subsequent form of Eq.(113) becomes

Tt Sm )i

n
0
— Z(N - n)ax—.afXf”’n“fn“dxn“dfc”*l, (115)
a=1 L

where Ff is the external force per unit of mass which acts on the molecule a being independent

ap

of the molecular velocities, X; " is the force per unit of mass which acts on the molecule a due to
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its interaction with the molecule § and the forces can be composed as the acceleration of the o

molecule as ¥{ = F* + Zﬁleiaﬁ.

As we see, Eq.(115) is the time evolution equation for the distribution function f" dependent
on the distribution function f™*1. Hence, Eq.(115) represents a hierarchy of coupled equations,
which is known as BBGKY hierarchy, since it was deduced independently by the researchers
Bogoliubov; Born and Green; Kirkwood and Yvon (Stewart, 2004). Still, we have complexity to
solve Eq.(115) if n is enough big as N. The BBGKY hierarchy is equivalent to the original
Liouville equation and lower order equation of the hierarchy can nearly represent its upper
order equation of the hierarchy. With some assumptions, we can consider the first order
equation from the BBGKY hierarchy and it reads

1 1 1
o L F} of _ —(N — 1)%J-Xi12f2dx2dxz, (116)
l

+ Xx; =
at ' ox} b ox}

+

where f2 is the two particle distribution function. As there are several ways to derive the
Boltzmann equation from Eq.(116) in the literature, we shall follow Krikwood’s method
(Kirkwood, 1947) and shall consider following four hypotheses (Gilberto, 2010) to derive the
Boltzmann equation.

Hypothesis 1: Only the interactions between two molecules are considered as a binary
collision for a rarefied gas.

Hypothesis 2: The effect of the external force is small in comparison with the effect of
the interaction force between two molecules.

Hypothesis 3: Initially, at t=0, molecules with uncorrelated velocities are unevenly
distributed in space and are far from each other. In other words, a chaos assumption is
valid for the state of molecules.

Hypothesis 4: The spatial gradient of the distribution function in comparison with the
molecular size is small, so that the distribution function is assumed to be continuous.

The main procedure to derive the Boltzmann equation is to eliminate f2 from Eq.(116) by
expressing f2 in function of ! with the hypotheses 1 to 4. Consequently, we can write the time
evolution equation for the one particle distribution function independent from the two particle
distribution functions as

oft  ,oft  ,oft
R LTS

=0(fl(x, % 1",t)), (117)

where the time average of the distribution function is taken as

fixxt) = T—l*fr fl(x,x,t + s)ds . (118)
0

The time interval in Eq.(117) and (118) is chosen to be 7¢ < t* « t, where ¢ is the mean
collision time and 7 is the mean free time for a mean free path. For simplicity, changing f—1
notation with f, the Boltzmann transport equation can be written as

of af of

—+x +Fi§
i

3 ia—xi =Q(f(x,x,7%1)). (119)
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The Boltzmann equation from gas Kinetics

Let us discuss another simple way to derive the Boltzmann transport equation. Before that,
we will take some time to discuss about what is the meaning of the distribution function in the
kinetic theory. We saw that the distribution function is a main variable in the gas kinetic theory
with a mention of the Maxwell-Boltzmann distribution in Section 1.3.3 and the many (N or n)
particle distribution function in the BBGKY hierarchy. Thus, the main aim of the kinetic theory is
to define the distribution function in a given interaction of the molecules and to find the time
evolution of the distribution function in the system with the purpose of the realization of
thermodynamics. The distribution function gives the probability to find a molecule in a position
between x and x+dx and a momentum between p and p+dp at time t. In other words, the
distribution function gives the possible number of molecules in a given interval of the position
and momenta at a time.

The distribution function is a continues function in phase space, i, coordinated by a position
(x =x, z) and a momentum (p = px p), pz)- If the molecules in a system are indistinguishable,
the velocity (x = p/m) can be considered as a coordinate of the phase space. At any instant of
time, the state of the entire system of N molecules can be presented by N points in p space. The
volume containing N points in p space is d®>xd®p as an element and the total number of the
points in infinitesimal volume is f(x, p,t)d3xd3p by the definition. The p space is obviously
constructed by the number of elements and the density of point in each element does not vary
rapidly from the element to a neighboring element, then the distribution function can be defined
in entire p space as

Zf(x, p,t)d3xd3p =~ ff(x, p,t)d3xd3p . (120)

Let the volume element notation be d3xd3p = du(t). The number of molecules in the volume
element at time t is

n(t) = fx,p,)du(t). (121)

Assuming the hypothesis 3 for the system, the number of molecules in the volume element
depends on time. Thus, after the instant of time At, the number of molecules in the volume
element becomes

n(t + At) = f(x+ Ax, p + Ap, t)du(t + At) . (122)

If the time instant At is small as the mean free time T, the quantities n(t) and n(t + At) become
equal to each other and the equality shows a free stream of the molecules. Generally, the time
instant At is considered to be At > 7 and a collision of the molecules needs to be considered in
the number of molecules existing in the volume element. Further discussion should assume the
hypothesis 1. An effective rate of a collision can be expressed by the two numbers of molecules
attime t and t + At

An = n(t + At) — n(t). (123)

To show Eq.(105) from Eq.(123), we could change the notation of collision by C; and rewrite
Eq.(123)

n(t + At) =n(t) + C;, (124)
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which is the basic kinetic equation used in the LGA. Substituting Eq.(121) and (122) to Eq.(123)
gives

An = f(x + Ax, p + Ap, t)du(t + At) — f(x, p, t)du(t) . (125)

Note that evolution equation, Eq.(107), of the NZ model can also be seen from Eq.(125). If the
change of the volume element is negligible, we can rewrite Eq.(125) as

An = [f(x+Ax,p + Ap, t) — f(x,p, )]du(t) . (126)

The changes of the position and momentum vectors of the molecules during the time interval At
are defined by

Ax = XAt, Ap = mFAt, (127)

where F denotes a specific external force which acts on the molecules with the hypothesis 2.
The expansion of f(x + Ax,p + Ap, t) in around (x, p, t) using the first order Taylor series
(Paacangopx, et al., 1999) gives

of of of

= e et e 2
fx+Ax,p+Ap,t) = f(x,p,t) + 5% At + o, Ax + , Ap + O[(At)?] (128)

Substituting Eq.(128) into Eq.(126) and dividing the both side by At yields

An _|of ~of . Of ,
ar - |ae Tax 1 gy, ™ 0lADT] du(® (129)

and Eq.(129) can be rewritten in an organized way as,

of of _of  An

T L LI INT: 1
ot F gy, T Figg, = Aran 014" (130)

or

of of of

—+x—+F—=Q(f, 131

o T Xox T oy, = AU s
which is the Boltzmann equation, a nonlinear integro-differential equation for the one particle
distribution function f. General form of the collision term in the Boltzmann equation is an

integral equation (A.A.Mohamad, 2011).

1.1.3 The collision term

Now, we will briefly discuss about the collision term on the right side of Eq.(119) or (131).
The collision term is only one complexity of solving the Boltzmann equation and contains all
details about molecular interactions and the irreversibility of the kinetic description (Carlo,
1988). To approximate the integral form of the collision term, one needs to reduce the number
of molecules of the interaction. Recalling the hypothesis 1, let us assume that only two elastic
molecules undergo a collision during time interval . Asymptotic pre-collision velocities are
denoted by v; and v; for the two colliding molecules, respectively. Let an origin of the coordinate
be at the molecule 2 in order to be relative motion with the total momentum is zero. The
molecule 1 is approaching to the center molecule 2, as shown in Figure 33.
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Figure 33. Sketch of a binary collision for the collision term and scattering of a molecule (Kerson, 1987).

The relative motion is characterized by the impact parameter b and by the azimuthal angle ¢.
Let their differential be db and d¢. The pre-collision relative moment, p, of the molecule 1
become a rotated relative momentum, p’, after the collision with the molecule 2 without
changing its magnitude. It is that the collision merely rotates the relative energy and momentum,
the energy conservation, |p| = [p'|, is valid at the elastic collision (Kerson, 1987). The
probability to find the molecule 1 with velocity v; is f; = f (X4, p1, t) while the probability to
find the molecule 2 with velocity v. is f, = f(x,,p,,t) at the pre-collision state. If the
probabilities at the post-collision become f;' and f;, the collision integral reads

Of.f) = f(f{fz' — fif2)Iv1 — v;|bdbdpd>p, . (132)

The collision integral, given in Eq.(132), is a general form of the collision term and the
approximation or the model kinetic for the Boltzmann collision operator must hold some basic
properties (Gilberto, 2010), (Kerson, 1987), (Ansumali, 2004) listed below.

a. Locality

The Boltzmann collision operator is local for the physical space and nonlocal for the
momentum space. In other words, the molecules considered in the Boltzmann kinetic theory are
points in physical space and the intermolecular forces in a limited range is considered for the
interactions.

b. Summation invariants

Since the collision operator is reduced to the two-body elastic collision, the total mass,
momentum and energy are conserved. This fact satisfies the following theorem.

Theorem 1: A continues function ¥ (X) is a summation invariant if and only if
Y(x) =A+B-x+ Dx?, (133)

where A and D are two constant scalar functions (might be seen as density and energy)
and B is a constant vector function (might be seen as momenta), all of them being
independent of x.

The collision operator must satisfy the Theorem 1 in its form.

c. Zero point of the collision
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Boltzmann describes that the all non-equilibrium system goes to an equilibrium state. In the
equilibrium state, the collision integral becomes Q(f, f) = 0 and its solution gives

fife=fif2, (134)
which is an important balance in the Boltzmann kinetic theory. If this property is valid, a class of
fOX) = exp(A+ B - x + Dx?) (135)

function exist. In other words, a function satisfying the collision term in a collisionless state will
be an equilibrium case of the distribution function f. In the class of Eq.(135), there is one
physical rigorous solution, known as the Maxwell speed distribution function given in Eq.(13).

d. Boltzmann inequality

In any form of the distribution function f, Boltzmann stated that the property,

flogf Qf,Hd3p <o, (136)

holds. It is referred as a Boltzmann inequality and the equality sign applies if, and only if, fis
given by Eq.(135) (Carlo, 1988). Hence, the collision term can describe the relaxation of the
distribution function towards the local Maxwell distribution function. The Boltzmann inequality
is also the implication of the Boltzmann H-theorem, which is the property of the collision term,
too.

The model kinetics, alternative collision operators for the Boltzmann collision term, not only
satisfy above properties and but also retain the average qualitative and quality properties of the
true collision operator. The widely used model for the kinetic theory and LBM is the Bhatnagar-
Gross-Krook model (BGK) proposed by Bhatnagar’s group (Bhatnagar, et al, 1954) and
Welander (Welander, 1954), independently. The BKG model assumes that the average effect of
the collision is to change the distribution function f by an amount proportional to the departure
of ffrom an equilibrium distribution function f°4. Thus, the BGK model is given by

Qe (f, ) =w(f° = 1), (137)

where w is a parameter of order of the collision frequency, which can be respected to x. With
the BGK model, the Boltzmann transport equation (Eq.(119) or (131)) becomes

of | of  _of
E+X6_JQ+F6_9'ci_W(f0_f)' (138)

And it is the same as Eq.(109) without an external force term, where w = 1/7,,.

The BGK model is not a linear operator, because the equilibrium distribution function f°
contains the moments of the distribution function f. So before the discussion about the
equilibrium distribution function, let us consider the moments of the distribution function.

5.1.3 Macroscopic variables

The Boltzmann equation describes the time evolution of the distribution function, which is
the main variable in the mesoscopic description of a fluid flow. The main question to be
answered in this section is that how we can evaluate the macroscopic independent variables
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(density, velocity, energy, etc.) with the distribution function f. In other words, we shall discuss
here the relationship between the Boltzmann equation and macroscopic fluid dynamics.

The distribution function, f (X, p, t), is the function of phase space and the possibly molecule
number in the system can be defined N = [ fd3xd>p by its definition. If the molecules in a
system have the same mass (a fluid is homogeneous), we can rewrite f(X,v,t). Moreover, the
distribution function behaves as the hypothesis 4, the number of molecules become

N = d3xffd3v . (139)
Multiplying the both sides with m gives the total mass in the system:
mN = md3xf fd3v. (140)
From here, the density in a physical space can be defined as
p(x,t) =ZIT]Z=mffd3v
or, simply changing the space notation d3 to d and including m into f:
p(x,t) = ffdv. (141)

This is called the zeroth order moment of the distribution function and is identical to the
ensemble average in Eq.(7).

The macroscopic velocity can be given by the average of the molecular velocity
[vfdv
u=-—-,
[fav

where the integral in the denominator is used to normalizing f to unity. According to Eq.(141),
the velocity vector can also be written as

(142)

;n1=‘[vfdv. (143)

Even if a flow is at rest by the macroscopic observation, in other words u=0, the molecules have
non zero velocity in the microscopic scale. This means there is the velocity deviation between
the molecular velocity ¢ and the macroscopic velocity u, which can be written as

C=v—u. (144)

The velocity C is called peculiar velocity (Carlo, 1988), (Gilberto, 2010) and is equal to
molecular velocity v if the flow is macroscopically at rest. We have an important property of the
peculiar velocity when we write its moment with the distribution function:

Cfdv=|vfdv—u | fdv=pu—pu=0, (145)
Jorav=[vrav-uf

where Eq.(141) and (143) have been used.

Now it is interesting that how the other physical variables can be interpreted by the
distribution function. To be simple, we can write the i-th component of velocity as
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pu; = f vif dv, (146)

which can be said the momentum density in i-th direction. The j-th momentum flow in i-th
direction can be written as

fvi(vjf) dv = fvivjf dv, (147)

where we use the general fact (baacangopxk, et al, 1999) and Eq.(147) shows that the
momentum flow is described by a symmetric tensor of the second order. In order to find out the
macroscopic implication of the term above, we have to change the molecular velocity by its
peculiar part, v = u + C. Equation (147) becomes

fviv]-f dv = f(ui + Cl)(u] + C])fdv
= uiujffdv[=uiujp +u]fle dV[=0 +uLfC]f dV[=0 + f ClCdeV

= uiujp + f CLC]de (148)

The resultant two terms describe the momentum flow decomposed into two parts, one of which
can be recognized as the macroscopic momentum flow, while the second part can be related to a
momentum flow driven by the peculiar velocity. Indeed, this can be addressed to the pressure
tensor due to the peculiar velocity as

The expression of Eq.(149) with the minus sign is known as the stress tensor.

The energy density,%fvzf dv, can receive the similar analysis to Eq.(148) in order to

identify the macroscopic appearance of it. The resultant term is

1 1 1
Efvzfdvzzpuz +EfC2fdv, (150)

1 , e . 1 ,
where Epu2 is the macroscopic kinetic energy density andEfCZd dv can be ascribed to the

internal energy of the fluid. If we note the internal energy as e, the second term in Eq.(150) gives
the internal energy per unit volume as

pe=%f€2fdv. (151)

Introducing i=j into Eq.(149) gives the same term with the i-th component of internal energy.
Hence we can write the relation between the pressure tensor and the internal energy as

Dii = f C%f dv = 2pe. (152)

Moreover, the hydrostatic pressure of the fluid (gas) can be defined by the trace of the pressure
tensor as
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1 1
PO =5pu =3 [ Cfav. (153)
The derivation of the internal energy leads us to the relation
2
p=3pe, (154)

with Egs.(151) and (152). This is the EOS of the gas and shows the possibility to define pressure
in terms of the internal energy and density. Also, we can see that p/p is the constant when flow
is isothermal. This statement will give us the EOS used in the LBM in the following sections. On
the other hand, we have the EOS for the perfect gas (Boyle’s law)

p = pRT, (155)

where R is the constant and T is the absolute temperature. Equations (154) and (155) give

3
e=3RT, (156)
or Eq.(153) and (155) gives
T(x ) =1=ifc2fdv (157)
’ Rp 3pR '

Let us investigate the energy flow; the total energy flow can be written by

jci (%V2f> dc = %f c;vifdv. (158)

Introducing Eq.(144) into Eq.(158) and then applying Eq.(141), Eq.(145), Eq.(149), and
Eq.(151) yields

1 2 1 2 1 2
Efciv fdv=u; (Epu —pe)—ujpi,j +EfCl-C fadv, (159)

where the first term is the macroscopic energy flow due to the convection, the second term is
the energy due to the work done by the pressure tensor per unit time and the third one is to be
the additional energy called heat flux vector. The heat flux is given as

1 1
qi(X, t) =§fCiC2fdv=Epjﬁ . (160)

The common macroscopic variables such as Eqgs.(141), (143), (151), (153) and (154) will be
used for the LB modeling in further sections and the others will be mentioned if we need.

5.1.4 Equilibrium distribution function

If we observe the state of a fluid (gas) with an arbitrary distribution function at time without
giving an external force to the system, we found that the state goes into an equilibrium situation,
eventually. The distribution function belonging to the equilibrium state is called the equilibrium
distribution function. In other words, the equilibrium distribution function of the gas will be the
limiting form of the any distribution function, if time tends to infinity (Kerson, 1987). As said, let
us assume that there is no external force. This assumption leads us to write the distribution
function: f(p,t), because the function is no longer dependent from physical space. The
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equilibrium distribution function, denoted by f°(p, t), can be found at% = (. Putting this and
the assumption into Eq.(131) yields

0=0(.1), (161)

and f°(p, t) must satisfy the collision term. To solve Eq.(161), a sufficient condition is Eq.(134)
and introducing f°(p, t) to Eq.(134) become

o)) — P f°(pz) = 0. (162)

To show the sufficiency of Eq.(162), we write the Boltzmann functional

H(D) = f df (p, Dlog F(p, 1), (163)

and the distribution function in Eq.(163) is independent from physical space, but function of
time, satisfying

af(p.t)
at

=Q(f.f). (164)

If we differentiate the Boltzmann functional with time, we have

OH(t) [ .. 0f(p.t)
T2 fd x T2 (14 inf (,0)) (165)
To Eq.(165), substituting Eq.(164) and recalling Q(f, f) = 0, gives
OH(t)
=0. 1
Py 0 (166)

This is the same as the condition in Eq.(162) and is a statement of finding the right form of the
equilibrium distribution function. Equation (166) is also one case of the Boltzmann H-theorem.

Theorem 2: If the distribution function satisfies the Boltzmann transport equation, then

dH ()
<0, (167)

which is called the Boltzmann H-theorem.

With Boltzmann H-theorem, we saw that the equilibrium distribution function can be found
from the condition in Eq.(162). Let us take logarithm of both sides of Eq.(162):

Info(py) + InfO(py) = InfO(ph) + Inf°(p3). (168)

Recalling the Theorem 1, the summation invariant is valid for function y(x) and the solution of
natural logarithm of £° can have a form of the function 1 (X) as

Inf°(p) = Y(X). (169)

Hence, the general solution of Eq.(168) can be written as

Info(p) = Y(%) + InC
or

fop) = Ce¥®, (170)
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where we would like to introduce a peculiar velocity C instead of a molecular velocity
(p = mv = mx), since the two velocities are equal in the case of an equilibrium state. The
summation invariant )(x) as a polynomial of the x with arbitrary scalar value in Eq.(133) can
be rewritten in a simple form

P(E) =A+B-x+Dx? = —AKX)? = —A(C)2. (171)
Mixing Eq.(170) and (171) gives
fOv) = Ce™4©*, (172)

where C and A are arbitrary constants and can be found by using the moments of the
distribution function. Substituting Eq.(172) into Eq.(141), we can define the relation between
density and the arbitrary constants as follow

3
I T —A©2 g — ()2
p—ff dv—fCe dC—C(A) , (173)

where the Gaussian integral rule and three components of C have been considered. Since the
arbitrary constants are stated as they are independent from velocity according to the Theorem
1, we do not find any relation from the analysis with Eq.(172) and (143). Now we proceed with
Eq.(151) to see the connection of the constants with the internal energy:

1 1 3 3
- 2,0 —_ 2, ,-A(C)? - -
e Zfo dv 2fCCe dC 4A—>A 1 (174)
We know A constant and substituting A to C in Eq.(173) gives
3
C = 5 ) 175
P (4en> ' (175)

Gathering defined constants A and C and recalling the internal energy term with an absolute
temperature in Eq.(156) into Eq.(172) yields

3
o) = p () e
ffv)=p >oRT) ©

and then replacing the peculiar velocity C with its definition in Eq.(144) gives

N|w

o =p (Zn%)_ exp |-

which is the Maxwell-Boltzmann distribution function, the probability of finding a molecule

(v— U)Z]

1
2RT (176)

with velocity ¢ in the gas at the equilibrium condition. To reduce the Maxwell speed distribution
in Eq.(13), Eq.(176) must be multiplied by the factor 4mv? (which is the surface area of a sphere
in the velocity space) and replaced the density by the molecular mass.

To ensure mass and momentum conservation of the equilibrium distribution function, we
can write following properties of the equilibrium distribution function with a help of the
Gaussian integrals and they are:

7 (v-w?
_[fodv=f m “SRT dv=p, (177)

w
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and

fvfo dv=0. (178)

We will give the higher order moments of the equilibrium distribution function where they are
used. Derivations of moments are the same. Equations (177) and (178) shows the mass and
momentum conservation of the equilibrium distribution function.

So far we have successfully laid down the basic theory of the LBM discussing about the
Boltzmann transport equation to its relation to the macroscopic scale. At some point of view, the
LBM is the solving method for the Boltzmann equation. In the following sections, we will
concentrate on the specific numerical techniques called the LB methods.

5.2 Lattice Boltzmann method for fluid flows

5.2.1 Discretized Boltzmann equation

We have derived the Boltzmann transport equation with the BGK collision operator. We have
found that the equilibrium distribution function can be the Maxwell-Boltzmann distribution
function. To solve such a differential Boltzmann equation in analytic way can be fulfilled by the
moment method (Gilberto, 2010) and functional analysis (Carlo, 1988). We are interested to
solve the Boltzmann equation by a numerical way, which requires the discretization for the
Boltzmann equation in physical space. A distribution function in the Boltzmann equation is a
function in phase space and one can replace the molecular velocity with a finite set of discrete
velocities, which leads f(x, v, t) to be associated with f;(X,t). Hence, the Boltzmann equation in
Eq.(138) becomes a discrete-velocity Boltzmann equation:

f; of; ofi _f—fi

Ofi g Ofi _fi =i 179
ot Vo, Tlion T 1, (179)

where v;(= %)) is the finite set of discrete velocities and its set need to be defined by the way
that the discrete-velocity Boltzmann equation can produce the Navier-Stokes equation correctly.
To make it suitable for a general analysis, we can remove units of the variables from the discrete
Boltzmann equation using the following parameters:

. fi v; U X; T, - U?

L 2 N
fi ;Cl=_'t=_t;xl’=_!TU=_'Fi=Fl

, 180
Do UL L te L (180)

where p, is the reference density of a fluid, U is the characteristic velocity, L is the characteristic
length, t. is the time between particle collisions. The equilibrium distribution function is also
scaled as the distribution function with the reference density. The nondimensionalization with
parameters in Eq.(180) for Eq.(179) gives the dimensionless discrete-velocity Boltzmann
equation:

af of: _of FfO—4£
a];l+cii+F-i=fl fl, (181)

A

o L
0x; dc; ("

The dimensionless discrete Boltzmann equation is not yet discrete in terms of space and time.
To make the equation fully discrete, we need to discretize Eq.(181) in time and space as
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fix,t + 6t) — fl(xt) ﬁ(x+6xt+6t) fi(x,t + 6t) ﬁo—ﬁ _df;
— - F,—, (182)
5t 6x Ty o
in which, introducing c; = % yields,
. o 5% .0 of;
fi(x + 6%, t + 6t) — fi(x, 1) =f—(fi —fi)—&Fa— (183)
v

The external force term in Eq.(183) is not calculated directly because the derivative of the
distribution function depending on the velocity set is unknown. Assuming that the gradient of f
can be approximated by the gradient of its equilibrium part (He, et al., 1998), the force term can
be expressed as

d E (v u) B V-1 ., 184
ac; ZnRT " 2RT ||~ ' (184)

where we have substituted Eq.(176). The discrete Boltzmann equation with the approximated
external force term can be written as
afi+ ofi _fP—fi _v-u

iy = +F
ot T Vax, T 1, ITRT

2 (185)

whereas the discretized Boltzmann equation can be given

=)

v —
lRTfi.

) o 5t 5

filx+6%,t+6t) — fi(x,t) :f—(fl — f;) + 6t (186)
v

Main terms in Eq.(186) are dimensionless and the results driven by this equation need to be

scaled to a physical space. Scaling of results is discussed in Section 6.3. For simplicity, we can

remove the tilde of variables denoting their dimensionless in Eq.(186). Hence, the

dimensionless discretized Boltzmann equation for further discussions is given

FiX + 6%, ¢ + 60) — fi(x, ) = ?(f;’ — ) + 6tF; %fio . (187)

Note that the velocities in the force term are dimensional. Also the external force term and the
equilibrium distribution functions are still continuous terms and should be discretized into the
physical space from the phase space.

Approximated equilibrium distribution function

The Maxwell-Boltzmann equation in the discretized Boltzmann equation is non-linear and
implicit still depends on molecular velocity. In order to approximate f;° in a physical space with
a finite set of velocities, we need to expand it by the Taylor series. Expanding Eq.(176) up to
0(C?) yields

0 . 1 vZ —2uv + u?
fO=fl=p———exp YT —
(27RT)2
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1 _ v? _2uv—u2
=p————=e 2RT [e™ 2RT

(2mRT)2
= ! ‘% uwv o’ u’v? udv ut 3
_pme [1+ﬁ_2RT+2(RT)2_Z(RT)2+8(RT)2_O(C )]
_ 1 _2‘;; uv  u? uzv? ,
oy TR 2RTY a0 )] (188)

Before introducing a discrete velocity set in the equilibrium distribution function, let us write
£ in the following form:

fea ot [1 e 0(c3>] ¢ Fer. 89)
=p — e _—— —2 — = — .
(21RT)2 RT 2RT  2(RT) (2mRT)2

To discretize f¢?in a velocity space, we now can use the Gauss-Hermite quadrature for the
integration of Eq.(189) in a velocity space, which gives

+ 00

!
where w; are the weights. We can see that w;f;"? = £.°? ~ f°, which can be written by

Py B PR AL L s (191)
: ¢ v ' RT 2RT Z(RT)2 ’
and in which, Eq.(189) has been used. On the other point, Egs.(177) and (190) indicate the

following properties offieq:

fo" = p. (192)
i=1

Now it is time to nondimensionalize the equilibrium distribution function in terms of velocity
using ¢ = v/U and u « 1 = u/U (to have simple notations), Eq.(191) becomes

uc u? u?c?
1+——— (193)

eq _
it =wip |1+ o = or7 ¥ 2RT)2

Note thatw; in Eq.(193) depends on the discrete set of velocities and we will discuss it in
Section 5.2.2.

From discussions in above, f° ~ f is an important approximation and those functions are

interchangeable variables, therefore Eq.(187) can also be given as
ot eq —U
fix+6x,t + 6t) — f;(x,t) =—(f; ﬁ)+6t ; 1, (194)
Ty "RT
where velocities in the force term are nondimensionalized. The equilibrium distribution

function in Eq.(194) is given by Eq.(193), while the force term still requires the adequate
approximation.
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Force term in a discretized form

Discretization applied in Eq.(182) is a simple finite difference approximation for the discrete
Boltzmann equation in time and space. Another discretizing method is the integration of
equation between definite time ranges. For simplicity, we can denote the collision and force
terms in Eq.(181) as

f—fi_,of

K; = rI Fi ac,’ (195)
and its integration from t = 0 to t = §t gives
st
f Ki(x,t) = %(Ki(x +6x,t + 8t) — Ki(x, 1)), (196)

0

where the trapezoidal rule has been used. It is possible to replace the right hand side of
Eq.(187) with Eq.(196) and the discretized Boltzmann equation becomes

fix+dx,t+6t) — fi(x, t) = %Ai(x, t)

where A; = K;(x + 8x,t + 6t) — K;(X, t) and which gives the distribution function as

ot
fi=fit 7Ai(x, t). (197)

At this point, the moments of the distribution function in Eqs.(141) and (143) become

p =ffl-dc=f(fi+%Ai(x,t)> dc=ffl-dc+f%Ai(x,t)dc =p, (198)

=0

ot ot
puU; = f cl'fl' dc = fcl' (fl +?Ai(x,t)) dCi = f cifi dc +?Fl . (199)

Sums over the finite set of velocities of integrals in Eqs.(198) and (199) are constructed through
the Gauss-Hermits quadrature as,

pziﬁ., (200)

C St
pu=2cifi+7Fi, (201)

L

where F; , a macroscopic external acceleration of the force, denoted as F;. Note that the sum of
the weight, > w;, derived from the Gauss-Hermits quadrature is unit, thus it is neglected in
Egs.(200) and (201). We saw that above sums are the same as given sums in Eq.(108). The
additional term in the velocity momentum comes from the force term. We stated that the force
term in the discretized Boltzmann equation needs the approximation to have a discrete form.
Introducing the approximated equilibrium distribution function in Eq.(193) into the force term
yields
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F(Cl’ — U) (F . U)Ciz 3(F . Cl')u2
RT | (RT)? _ 2(RT)?

A= F S Mpea _ +0(C3 202
i =Fi—pr fi 7 =wip €|, (202)
which is called a moment-expansion scheme (Guo & Shu, 2013). The modification of this scheme
with a relaxation time gives the He-Shan-Doolen force scheme, which is defined by
1 ¢, F u-F c¢?@u-F

) wip

A =1-=— - , 203
! ( 27 RT  RT © (RT)? (203)

where F is the acceleration of external force. Now the discretized Boltzmann equation is

6t  eq
fi(x + ¢;6x,t + 8t) — fi(x, 1) :r_(f" — f;) + 6tA;, (204)
v
where the viscosity is realized as
1 1 1 ,
V=(St(;—§)RT=(St<TV—E>CS. (205)

After the temporal evolution of Eq.(204), we will compute the macroscopic density and velocity
with the distribution functions according to Eq.(200) and (201), respectively. There are many
versions of force terms (Guo & Shu, 2013) embeddable in the discretized Boltzmann equation
and the simplest one is

C;- F
Ap = Wi (206)
which is originated from the LGA and is constructed based on the minimal force term
properties:
n
of
fdvFE - ZAL- -0, and (207)
L
n
af
deFEV = ZAici = pF. (208)
i
If the force scheme in Eq.(206) is considered in a simulation, the macroscopic density and
velocity are computed by
n n
p=Zfi and pu=2cifi, (209)
i i

respectively. Numerical works in this thesis use the force scheme given in Eq.(203), which also
satisfies the constraints given in Egs.(207) and (208).

A numerical procedure to solve the discretized Boltzmann equation (Eq.(204)) is split into
two numerical steps called streaming and collision. Those steps are seen from a general pattern
of the discretized Boltzmann equation and are suitable to handle boundary conditions for a
complicated geometry. In appendix A, we show how the lattice Boltzmann equation derives the
NSE. But now we will proceed to show what kind of lattices can be used to the numerical
simulations in the standard approach. The word standard refers the original LBM without any
alteration, modification or numerical ingredients.
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5.2.2 Lattices for discretized Boltzmann equation

We have found two things, the weights and the finite velocity sets, from the discretization of
the Boltzmann equation in Section 5.2.1. Now we shall define them for specific cases of, let us
say, lattices. In a physical space, velocity vectors of a group of particles/molecules direct to
everywhere. We can approximately sort them to the certain directions depending on the
dimension, e.g. we can find how many particles with velocity in a given finite space
approximately direct to the cardinal directions in the two dimensional spaces. Those cardinal
directions are considered as a selected finite velocity set, as illustrated in Figure 34.

o o7
Total 33 L ]
-:;‘ C(}o/ fO\ O:f 2 partticles o 7
0\ /o*orp g ? velocities are Cy
o b ~od :;‘d‘ —>
o °\‘° R 10

\ ~8X

Figure 34. Example of selecting the finite velocity set: Four ordinal directions are selected as finite
velocities and each of which a certain number of particles belongs to. For an instant, in a given range, 6
particles velocities are directed to west direction, approximately.

But, choosing the finite set of velocities is not arbitrary. A selected velocity set must satisfy
hydrodynamic laws and Galilean invariant, and results with this must be the same as what
would be obtained from the Boltzmann equation in velocity space. Generally, the finite velocity
set is referred as a lattice. For the each direction of lattice, we need to define the weights and
velocities.

Constraints of the lattice weights

In Section 5.1.4, two moments of equilibrium distribution functions are derived in Eqgs.(177)
and (178), which can be given in discretized forms as follows:

Zfio(x. t) =pxt), (210)

Z c.fP(x,t) = p(x,Hu(x, t). (211)
L
All moments, including moments up to the third order moments of the equilibrium distribution
functions, will be used to define the lattice weights. To illustrate a procedure to derive
constraints on the weights, we will use above the zeroth and first order moments. In order to
analyze the weights, let us introduce Eq.(193) into Eq.(210):

2

. u u?c?
p= qu ZPWL[ + a7~ 3R7  aRTY
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u u? [ 1 5
=p Zwi +ﬁzwici +_2RT ﬁzwici _Zwi ,
i [=1 i

[=0 l [=RT i

where the counterpart of the square brackets must be 1. Assuming the weights are constant, the

Zwi -1, (212)

Zwl-ci =0 and (213)
i

Zwl-ci2 =RT. (214)
i

Those are the first three of constraints for the lattice weights and finite set of velocity vector.

above moment is true, only if

From Eq.(211), we can write:

2

u—z S = Zc ppue_w o we
p G PVl T RT T 2RT T 2(RT)?

2

u? u 5 u 5
=p Zciwi 1—m +ﬁ2ciwi —chiciwi B
i [=0 i [=RT i

[=0

which gives the fourth constraints of w; and c; as

Zcfciwi =0. (215)

i
In order to write the higher order constraints in a convention form, let us introduce following
summation conventions:

UgCig = Z U Ciq = UxCix + UyCiy + ULC1, = U €, (216)
a
1 ifa=pfand

Oap = {0 ifa=p (217)

where a and f are the indexes indicating components, .4 is the Kronecker delta function. All

constraints of w; and c; are

Z w; =1, (recalled from Eq. (212)) (218)
z wici, = 0, (recalled from Eq. (213)) (219)
Z WiCiqCig = RT 6,4 , (recalled from Eq. (214)) (220)
Z WiCigCigCiy = 0, (recalled from Eq. (215)) (221)
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Z WiCiaCipCiyCis = (RT)2(8upby5 + OayBps + 6as8yg) and  (222)
i

z Wi CigCigCiyCisCie = 0. (223)
7

The latter two constraints would be derived from the second and third order moments of the
equilibrium distribution function (Viggen, 2014). The even moments of w; and c; are isotropic
tensors, whereas the odd moments are vanished due to the even symmetry (Wolf-Gladrow,
2000).

Grid and lattice

As mentioned above, a finite velocity set discretized from the continuous velocity of a
particle is considered as a lattice. The geometric domain of the flow problem governed by the
discrete Boltzmann equation has also gotten to discretized into a grid depending on the
dimension. As is descended from its ancestor, the standard LBM usually uses a uniform
structured grid for the discretization. Like other conventional methods, each cell of the grid in
the LBM has the temporal physical values from macroscopic scale. However, the main variable
in the LB computation is the distribution function, which has discretized into the finite velocity
set with a lattice in Section 5.2.1. A spatial address of the distribution function allows us to let
coincide the lattice on the grid for the LBM.

A A
T c| f2 T c| f2
s u(i,j) I 3 c; i 3 u(i,j)c,
i a cell of f3 S i f3 f1
square grid | £ ¢ fa
a lattice with four the cell with

85X
- " discrete velocities the lattice

Figure 35. An example of compounding the computational grid (generally called lattice) for the LBM:
Cartesian grid with regular lattice.

The computational grid (lattice) in the LBM is composed from the alignment of the grid and
lattice, the procedure of which is depicted in Figure 35. Generally, the lattices for the LBM are
notated as DdQq, where D is an initial of dimension, d is a number of dimensions, Q is an initial
of qualifiers and q is a number of discrete velocities (Qian, et al., 1992). For instance, the lattice
depicted in Figure 35 can be D2Q4, however, this arrangement of the lattice is barely used for
fluid simulations. We shall discuss about representative lattice arrangements for each spatial
dimension, namely D1Q3, D2Q9 and D3Q19, and shall define the lattice weights and velocity
sets for them.

One dimensional lattice: D1Q3

To solve one dimensional fluid problem by the LBM, we can use many lattices with different
arrangements, such as D1Q2, D1Q3, and D1Q5. Depending on the number of finite velocities,
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lattices can be classified as lower and higher order lattices. The most popular one is D1Q3 lattice
arrangement, which has three velocities, as shown in Figure 36 (a).

(a) D1Q3 (b) D2Q9 (c) D3Q19
15

+ neighboring lattice center
6\ T / 2 12

Cf2 ¢ ¢ f \|/ ¢; and f; 8@ “/—__::,*i:l

X fo /|\ = 1\ k10
..S_X_. 7 8 acellof 14
‘ | / i \ grid I3

Figure 36. Widely used lattice arrangement for LBM in (a) one-, (b) two-, and (c) three dimensional
spaces.

All formal lattices used for the LBM have two types of velocities: non-zero velocities and
zero-velocity. Zero-velocity vector and associated distribution function define particles being at
rest on the lattice. Non-zero velocities direct and reach up neighboring lattice center. For D1Q3,
non-zero velocities, ¢;.o, are equal to each other and can be defined asc; = ¢, = 6x/6t.
Similarly, the weights for those velocities can be denoted as wy and w; = w, = w,, where x is
horizontal velocities. The constraints, given in Egs.(218-223), for the weights are:

Z w; =wy + 2w, =1, (from Eq.(218))
i

5x\
Z WiCigCig = WoC§ + Wy € + Wy €3 = 2wy (E) = RT(1) , (from Eq. (220))
7
and

Sxy\*
Z WiCigCigCiyCis = Wo€o + Wy CF + WyCs = 2wy (ﬁ) = (RT)%(3) . (from Eq. (222))
7

We have three unknowns for D1Q3 arrangement, and above expressions give a system of
equation

w0+2wx=1

5x\2

ZW"(&) =RT (224)
4

l2wx (i—f) = 3(RT)?

which gives solutions of:

2 1 sx\* 1
Wy = §,W1'2 =w, = 3 and RT = (g) 3 (225)

We know that the RT comes from the approximation of the Maxwell-Boltzmann distribution
function and is the product of the absolute temperature and ideal gas constant. Since the RT is
defined as a constant parameter, a flow system is enforced to be an isothermal process. Defining
the RT from the EOS derived in Eq.(155) and introducing the resultin Eq.(225) gives
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9 5x\? 1
RT:%E—Z:CSZZ(E)g, (226)

where ¢, is the speed of sound by definition and it is called the lattice speed of sound. The
equilibrium distribution function can be rewritten with the speed of sound as

eq

fi " =wp|l+ (227)

— =t
2 2¢s? 2ct

uc u? uzcz]

One dimensional numerical example by the LBM with D1Q3 lattice arrangement is given to the
comparison to the finite difference method in Section 5.2.4.

Two dimensional lattice: D2Q9

Two dimensional fluid flows often carried out on D2Q9 lattice arrangement, as shown in
Figure 36 (b), which has 9 velocities including the zero-velocity. Other lower and higher order
lattices, e.g. D2Q4 and D2Q12, respectively, can be used for the LB computations. However,
some of them not satisfy the conservation laws in case of fluid flows, while others require high
computational costs. From the arrangement, there are three types of velocity vectors, let say
zero-velocity, axis velocity and diagonal velocity. They can be denoted as w,,w; = w, = w3 =
w, = w, and ws = wg = w; = wg = Wy, where a means axis and d means diagonal. In addition,
the RT can be different, thus we need to construct four of equations from the constraints. The
equations are:

Zwi=wo+4wa+4wd=1,

l
z WiCiaCiﬁ =2 Z WiCixCiy + Z WiCixCix + Z Wiciyciy = RT(Z) g
i i [=0 i i

5x\2 5x\ 2 5x\2
-2 ZWa (E) + 4Wd (E) = 2RT - (E) (ZWa + 4Wd) = RT,

and

ZWiCiaCiﬁCinié‘ = 42 Wl'CisziZy + (Z Wicgc + Z Wﬂ{‘},) = 4(RT)2 + 6(RT)2,
i i i i

which can be extracted as
Z wict.ch, = (RT)? and Z wich + Z wicy, = 6(RT)2.
i i i

Those expressions give

sx\*
4wy (E) = (RT)? and

sx\*
22w, + 4wy) (E) = 6(RT)? ,respectively.

Gathering derived equations for the weights in the system becomes
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wo + 4w, +4w,; =1
2

ox
(E) (2w, + 4w,) = RT

5x\* ) 228

1 4w, (8—’:) — (RT)? (228)
5 4

(2w, + 4wy) (6—’;) = 3(RT)?

which yields solution of

sx\* 1 4 1 1
RT:(§> §’W0:§,Wa:§andwd:%, (229)

The speed of sound defined in the 1D space is the same as the speed of sound defined in the
2D space. Therefore the speed of sound for a regular lattice used in fluid simulations by the LBM
can be

ox
cs = E/\/? : (230)

All computational works in this thesis are performed in the 2D space using D2Q9 lattice
arrangement. Implementation of the regular LBM is the same for all dimensional cases and is
discussed in Chapter 6.

Three dimensional lattice: D3Q19

For three dimensional computations D3Q15, D3Q19 and D2Q27 arrangements are often used.
More convenient one is D3Q19, which has 19 velocities as shown in Figure 36 (c). Three
dimensional lattice is composed from several planes of two dimensional lattice. Accordingly,
there are three unknowns of the weighting: wy, w, = wy..4 and w; = w,_4g, where a and d
meant to be axis and diagonal. We need to construct a system with four equations using the
same procedures presented in previous examples and the system results following parameters:

1 1 1 (Sx)z 1
5t

§'W1~6 = 7~18 = 5~ and RT = —. (231)

Wo = 18" 36 3

Once the lattice is defined according to isotropic properties, the discretized Boltzmann equation
on that lattice becomes the so-called lattice Boltzmann equation.

Velocity vectors for lattices

A discrete velocity set must hold the same constraints of the weights. In a use of regular
lattice, velocity vectors can be defined from the lattice arrangement. For example, the discrete
velocities in D2Q9 lattice can be estimated as

(0,0) i=0
¢ = Cy (cos [(i -1) g] ,sin [(i -1 g]) i= 1~4’ (232)
|V2ex (cos [(i - 5)g+%],sin [(i - 5)g+%]) i =5~8
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where ¢, (= 6x/6t) is the lattice speed and dx is the grid spacing. In the regular lattice
arrangement, §x = dy and the lattice spacing and lattice time step are assumed to be unit.
Simply, the unity of the lattice space and time step give the unit velocity vectors as shown in
Table 2.

Table 2. Velocities for D1Q3, D2Q9 and D3Q19 with dx = 1 and 6t = 1.

i G € € € ¢ € € C€; € € €y €3 €y €3 €y Cgs € €7 Cgg
D1Q3 0 1 -1
D2Q9 0 1 o -1 0 1 -1 -1 1
0 0 1 o -1 1 1 -1 -1
D2Q19 0 1 0 -1 0 0 1 -1 -1 1 1 -1 -1 1 0 0
0 0 1 0 -1 0 0 1 -1 -1 0o 0 O O 1 1 -1 -1
0 0 o o0 o0 1 -1 o o 1 1 -1 -1 1 -1 -1 1

Because the lattice Boltzmann equation is a dimensionless equation, its discretization
parameters, such as lattice spacing and lattice time step, do not have physical unit. In some
reference, units from lattice assigned for them as 6x = 1 lu and §t = 1 It, where [u is lattice unit
and It is the lattice time (Michael & Daneal T, 2006).

5.2.3 Boundary conditions

In a limited space, boundary conditions are used to implicate characteristic of regions that do
not consider in a computation. Boundary conditions must express the correct phenomena on
the boundary, which is a surface that created by cutting of a region to select a computational
domain. In fluid flows, a common boundary is a solid surface of the container, in which a fluid
flows. The surface interacting with the fluid flow should be modelled as a boundary condition. In
conventional method, such as finite difference and finite volume method, a boundary condition
is given by the expressions having the macroscopic variables. In the LBM, however, boundary
conditions are usually given in terms of the distribution function. The solid surfaces are
considered either slip or non-slip surfaces depending on the roughness of the materials. In the
LBM, the slip and non-slip boundaries are modeled by using a bounce forward and bounce back
scheme (Guo & Shu, 2013) (A.A.Mohamad, 2011) (Jansen & Krafczyk, 2011), respectively. If a
solid surface is moving relatively with a fluid flow, the Galileo’s invariant need to be considered
for the boundary condition (Alexander, 2008). Among the many boundary conditions with the
different accuracy in the LBM, we present the widely used boundary conditions herein.

Bounce-back boundary condition

A bounce-back boundary condition is used to model rough surface, where the tangential
velocity is zero due to the friction of the wall. Bounce-back boundary conditions are originated
from the LGA (Wolfram, 1986) (Michael & Daneal T, 2006) and can be used to model both the
stationary and moving surface. The main concept to fulfill this condition is to bounce back the
distribution function on the surface to the direction that the distribution function comes from.
Several versions of bounce back boundary conditions can be found in the literatures. We will
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review only two of them, namely half-way and full-way bounce back boundary condition, as
shown in Figure 37.

(a)

%}

el
ek

N
AN
AN

NZARN
2

AN

= fxn = = flx+e,t+8r)  F
= post-collision = = post-streaming

Figure 37. Bounce-back boundary condition: (a) post collision state, (b) half-way bounce-back scheme
and (c) full-way bounce-back scheme.

After a collision process, the streaming process takes place to transfer the distribution
functions to their designated directions. For a cell, which adjacent to the wall, as shown in
Figure 37 (a), some distribution functions, for example f;, remain unknown during the

streaming process. The unknown distribution functions of the fluid cell adjacent to the solid cell
can be defined by the distribution functions that would transfer into the wall as follows

Half — way: fi(x,t + 6t) = fi (x,t), (233)
Full — way: fi(x,t + 8t) = fi (x + ¢;6t, t) or
fi(x,t +68t) = fi(x, t + 8t), (234)

in which,

Y
fl(xt) = fix,t) +r_(f" T—f;) + 6tA; (235)

is the distribution function after the collision process. Note that 7is the inverse direction to i.
The main difference between half-way and full-way scheme is time, as shown in Figure 37 (b)
and (c). In this thesis, we mainly use the half-way bounce back boundary condition to merit its
simple implementation. In the literature, the half-way bounce back boundary condition is
known as the mid-way (A.A.Mohamad, 2011), mid-plane (Michael & Daneal T, 2006) or mid-link
bounce back scheme.

Bounce-forward boundary condition

A smooth surface can be modeled by using a bounce forward scheme, which reflects the
distribution function as a mirror. The bounce forward boundary condition in the LBM is realized
as a slip boundary condition. In this boundary condition, the tangential velocity of fluid does not
become zero. Two types of the scheme can be used on a surface, as shown in Figure 38.
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Figure 38. Bounce forward boundary condition: (a) post collision state, (b) half-way scheme and (c) full-
way scheme.

The missing distribution functions on the fluid node adjacent to the solid surface are assigned in
Half — way: f;(x,t + 6t) = f; (x — ¢;N6t, t), (236)
withN={n=0,t=1},

where n and T are the normal and tangential unit vectors on the surface. While the distribution
functions on the solid surface can be defined in

Full — way: fi(x,t + 6t) = f;(x, t), (237)

where 7 is the mirrored direction to i. The full-way bounce forward condition has streaming and
collision on the solid surface and collision on the surface performs the process of boundary
condition.

Neumann boundary condition: The velocity is given

If the spatial derivation of the velocity on the boundary is prescribed, the velocity boundary
condition can be assigned on the boundary. This boundary condition is known as the Zou/He
boundary condition and can be used to model an inflow and outflow boundary. For D2Q9 lattice,
constraints to construct the velocity boundary condition are the zeroth and first order discrete
moments of the distribution function (Eq.(209)):

8

fi  pu=>) f (238)

1=0 =0

p:

-

and the bounce-back rule for non-equilibrium part of the distribution function (A.A.Mohamad,
2011)

file, ) = £2900 ) = fi(x, ) — £59(x, £) . (239)
Let the velocity on the boundary be

u={u,u,}. (240)
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To demonstrate the derivation of the velocity boundary condition, the north surface of the two
dimensional domain is considered as an inflow boundary, as shown in Figure 39.

2
« T 45 Outside
Boundary R W4

i ‘A:iiii\t X !

/ l ! Inside

L] L] L ]

Figure 39. Boundary lattice on the north boundary of the computational domain.

Equations (238) and (239) with the known velocity give a following system of equations

(Pin:f0+f1+f2 ththfatfstfetfitfs (a

pnUx=fi—fatfs—foe—f1+fs (b) 241
< Pinty=fo—fatfstfe—fr—1s (©’ 4D
! fo=fo= £+ 1 @

where p;,, fa, f7 and fg are unknowns after a streaming process, as shown in Figure 39. Finding
fa + f7 + fg from (a) and (c), then equating them gives the first unknown, density

1
1+uy

Pin = o+ fitfat2(fatfs+fel. (242)
In the determination of density, we notice that f, + f5 + fg in parenthesis of Eq.(242) is the
summation of the inverse distribution functions for the unknown distribution functions and
fo + f1 + f3 is the summation of the distribution functions which are tangential to the boundary.
Now we can define the second unknown, f,, from (d) using the equilibrium distribution function
formulation given in Eq.(193):

2
fa=fa— gpinuy , (243)
where — % Pinly is the only term remained from f,? — £,°?. Finding fg from (b) and substituting

it with Eq.(243) into (c) yields the third unknown

1 1 1
f7=f5+Z(f1_f3)_gpinuy+§pinuxf (244)

where f5 is the opposite distribution function to the unknown f; and, f; and f; are the
tangential directed distribution functions on the boundary. Similarly, finding f; from (b) and
substituting it with Eq.(243) into (c) yields the fourth unknown

1 1 1
f8=f6_E(fl_fS.)_gpinuy_Epinuxr (245)
where f; is the opposite distribution function to unknown f5 and f; — f3 is the subtraction of the
tangential directed distribution functions on the boundary. Those are telling us the boundary
condition formulae have a similarity. We can apply those similarity conditions for the
determination of the formulae for the velocity boundary conditions on the other boundaries. We
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give the velocity boundary conditions with their schemes on the boundaries in Figure 40 to

Figure 42.

Inf]pw 6

5 )
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Figure 40. Boundary lattice on the south.

The velocity boundary condition on the southern boundary, Figure 40, can be defined as:

1
1—uy

Pin =
2
fo=fat §pinuy

1 1 1
fs =17 _E(fl _f3) +gpinuy +§pinux

1 1 1
fe = TIs +_(f1 _f3) T = Pinly — 5 Pinlx -
2 6 2

Boundary
Outside  Inside

Figure 41. The boundary lattice on the west.

The velocity boundary condition on the west boundary, Figure 41, can be defined as

1
1—u,

Pin =
2
=13 +§pinux

1 1 1
fs =17 _E(fz _f4) +gpinux +§pinuy

1

1 1
fe=Tfe +§(f2 _f4) +gpinux _Epinuy-

© Ayurzana Badarch

fot+tfitfat2(fatfr+fs)]

[fo+ fo+ fat2(fs+ fo + f7)]

(246)

(247)

(248)

(249)

(250)

(251)

(252)

(253)
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Figure 42. Boundary lattice on the east. Dashed distribution functions are known because the streaming
process.

The velocity boundary condition on the east boundary, Figure 42, of the domain can be
defined as

1
Pin = T us o+ fat fat2(fit+fs+ [l (254)
2

f = fi + 5 Pintix (255)

_ 1 1 1
f7 _fS_E(fz_f4)+gpinux_5pinuy (256)

_ 1 1 1
f6 _fs_z(fz_f4)_€pinux+§pinuy- (257)

. . o1 1 o o
The sign of the terms with velocity, < Pinllx and > Pinlty, Mimics the direction of the unknown

distribution function. For instance, in Eq.(257), an unknown is directed in the north-west
direction and its vertical component has a positive sign while the horizontal component has a
negative sign.

Dirichlet boundary condition: The pressure is given

Giving a pressure on the boundary sometimes leads a stable simulation in the LBM. As we see
in Section 5.1.3, the pressure can be defined by the density through Eq.(155). With the
prescribed density, we can construct missing distribution functions on the boundary as well as
the velocity. The pressure boundary condition is usually given at the outlet boundary and we
will derive it at the north boundary using Figure 43.
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Figure 43. Boundary lattice on the north as outlet boundary.

A procedure to derive the pressure boundary condition is the same as that of the velocity
boundary condition. But the velocity components are unknown and should be computed from
the density. In addition, we have the three unknown distribution functions and all together we
have four unknowns. If we assume that the tangential velocity on the boundary is adjusted to
zero, we can formulate the pressure boundary condition using a system with the four equations.
In case of non-zero tangential velocity on the boundary, the additional constraint can be given
by Eq.(239) using the tangential directed distribution functions. The system of equations can be

(Poue =fothi+tfatfitfutfst+fotfitfs (q

Poutix =f1—fs+fs—foe—f7+ fs (b)

Pouty =fo—fa+fs+fs—f1—Ts (©) . (258)
fas o=KL+ (d)
A-R1=f-f1 (€)

To define u,, the first unknown, f; + f7 + fg should found from (a) and (b). Equating the results
of f4 + f7 + fg gives the vertical component of the velocity vector

=f0 +f1 +f3+2(f2+f5+f6)_

Pout

y 1. (259)

The horizontal component of velocity vector can be computed from (e) as
3
e = s+ f)5- (260)
The third unknown, f, , is readily defined from (d) as before
2
fa=fo— §poutuy . (261)

Now, we proceed to find f5 from (b). Substituting the result with Eq.(261) into (c) gives the
fourth

1 1 1
f7=f5+§(f1_f3)_gpoutuy_zpoutux- (262)
Similarly, defining f3 from (b) and substituting it with Eq.(261) into (c) gives the last unknown
as
1 1 1
fs =f6_E(fl_fS)_gpoutuy+§poutux- (263)

The pressure boundary condition on the other boundaries can be formulated by the symmetry
properties using the five equations (Eqs.(259)-(263)) above.
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Outflow boundary conditions

Beside the pressure boundary condition, more simple boundary conditions can be assigned
at the outflow boundary. These boundary conditions are adequate for the case that the velocity
and pressure are unknown. One of them is the second order extrapolation boundary condition
(the Neumann boundary condition) and it can be written by

fi(xb't) = Zfi(xb + CiN, t) - fi(xb + 2Cl'N, t) , (264)

where x;, is a coordinate of the boundary cell and N = {n = 1,7 = 1}is a unit vector on the
boundary.

Another widely used boundary condition is the zero-gradient boundary condition and it can
be given as

fi(xb' t) = fi(xb + CiN' t) ’ (265)

which is the first order accuracy.

Periodic boundary condition

A periodic boundary condition often used for the modeling infinite characteristic of the
domain. It means that the periodic boundary condition provides opportunity to simulate flow in
small domain of the large system.

5 e “Inside 6 T
N T’ 5  the domain -'T #5
=S ‘,/ . ;3
w30 s 73——+1
Inflow e l\g S / \L/\\'S Outflow

7 8 7%.
4 S RN

Boundary Boundary
Figure 44. Periodic boundary condition on the inflow and outflow boundaries.

For instance, a periodic boundary condition is required on the inflow and outflow boundaries of
the flow through infinite channel, as shown in Figure 44. The periodic boundary condition on
the inflow boundary

fix,, t+6t) = fi(xy,t), =158 (266)
and on the outflow boundary
fixy, t +6t) = fi(x,,t), i=3,67 (267)

where x, and x are the coordinates of the inflow and outflow boundaries.
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5.2.4 Stokes second problem: 1D flow

Consider that there are two parallel infinite plates that bound a fluid between them and the
upper plate moves as the sinusoid oscillation as shown in Figure 45. The oscillating plate
generates a laminar flow between the two infinite plates. The problem is called Stokes second
problem (G. K. Batchelor, 1967) because the analytical solution of this problem was founded by
George Gabriel Stokes in 1851. In the literatures, the problem is referred as oscillating Couette
flow or Rayleigh-Stokes flow. We shall solve the laminar flow between two plates by using the
FDM and LBM to compare numerical procedures of methods.

y Oscillating plane
y=L'}7//7ﬁU)
Viscous
fluid
y=

X

Stationary plane
Figure 45. Schematic illustration of the Stokes second problem.

Let us write the NSE (Eq.(16)) in the x-direction

6u+ 6u+ 6u+ ou 16P+D 62u+62u+62u
ot ' “ox ”ay r p 0x 0x2  0dy? 0z%)°

(268)

With the characteristic of the flow, depicted in Figure 45, spatial derivatives for the x- and z-
direction can be neglected and only the time and the y-directional derivation remain:

ou 16P+D62u 269
ot pox ay?’ (269)

which is the governing equation of the Stokes second problem. The pressure term can be

neglected or can be assigned as a constant term. The coefficient D can be viscosity for
momentum or diffusion for heat transfer. Initial and boundary conditions on the plates are

u(y,0) =0 fory >0 and (270)
u(L,t)=U fort >0 (271)
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respectively. The velocity of the harmonic motion of the upper plane is given as
2m
U(t) = Asin <? t) , (272)

where A (= 1.0 ms) is the amplitude of harmonic motion, T (= 5 s) is the wavelength or period
and t is time.

Simple Euler method

Taking the Euler approximation for the time derivative and the central difference scheme for
the second order spatial derivative of Eq.(269) gives the finite difference equation for the
problem:

—2ul

ult
i L+ ant, (273)

Ay?

ult  —
j+1
u}‘“ = u}‘ + AtD J

where u}”l is the velocity in time advance n + 1 atj cell, At (=0.001 s) is the time step, Ay (=0.2

m) is a grid spacing, D (=20 m2s-1) is the diffusion coefficient and « is the constant pressure term.

Lattice Boltzmann method

We use well explained D1Q3 model for this problem. There is no discretization of governing
equation in Eq.(269), instead we shall define the lattice Boltzmann equation with an
appropriate equilibrium distribution function. The to-be-solved lattice Boltzmann equation is

fin+1(j + Cyi6t) — (1 _ Wv)fln(]) + fieq(]')wv , (274)

where f**1(j) is the distribution function in time advance on j cell, Cy; is the y-component of
discrete velocity of lattice, 8t is the lattice time step, wj, is the relaxation parameter. Time step
6t for the lattice is assumed to be unit to maintain the unit discrete velocity as well as the unit
lattice spacing. Time step and spacing of the lattice are different from the computational time
step, At, and grid spacing, Ay. The equilibrium distribution function, fieq (j), can be given as

£ = wu(), (275)

where w; is the weights for the lattice. Please have a look at Figure 36 (a) and refer to Section
5.2.2 to get the weights and discrete velocities. Equation (274) must be solved by two steps
called the collision and streaming process, which are presented in the code given in Table 3.
The relaxation parameter can be calculated from the diffusivity D according to Eq.(205), like

1

B
Ay?

w, =
cD

: (276)
+0.5

where c¢? = 2. The time step At for the LBM can be defined from a velocity scaling between the
physical and the LB variables as

Ay
UR = ULA_t ) (277)
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where U, is the dimensionless boundary velocity at the upper plate. As seen so far, all variables
in the LBM must be dimensionless and after the simulation, they must be scaled appropriately
just like Eq.(277). A velocity for new time step can be computed with the distribution functions

untl =

£ (278)

,..
IIMw
o

Comparisons

With the same grid spacing, the LBM gives a stable simulation with At = 0.01, while the FDM
uses At = 0.001. It means that the LBM method can be faster than the FDM. The simple Euler
code was shorter than the LB code, as given in Table 3.

100 fp

Y coordinates (grids)
oy N oo
- f] (]

o
o

40 60 80
Time*Wave period

Figure 46. Numerical results for the Stokes second problem by Euler method (color) and LBM (isoline).

It is because that the LBM uses an additional variable named the distribution function except
the physical variables of the problem and an additional scaling operation except the obligatory
computation in numerical procedure.

As seen in the computer code, the Euler method uses three nodal stencils, while the LBM uses
two nodal stencils for streaming and single node for other operations. This is an inherent
advantage of the LBM for parallel computations.

The computation of the LBM took shorter time than that of the Euler method and the results
are compared to each other in Figure 46 and Figure 47. Total computational time was 20 s and
velocity variables for each second are presented in Figure 46, where the color fields for the
Euler method and the iso-line for the LBM. At specific times, all measured velocity profiles are
compared in Figure 47, where we can observe some little discrepancies. Reducing time step in
both methods increases the numerical accuracy.
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Table 3. The comparison of main parts of the code for the Stokes second problem

Simple Euler method (FDM) Lattice Boltzmann method (LBM)
1 ! initial conditions !initial conditions
2 do j=1,m do j=1,m
3 u(j) =0. ! zero clear u(j)=0.0
4 n(i)=0. ! zero clear do k=0,2
5 end do £(k, ) =w(k)*u(j)
6 end do
7 ! main loop end do
8 do n=1,nt !time starts
9 ! main loop
10 time=n*dt do i=1,nt !time starts
11 ! streaming
12 ! boundary condition do j=m,1,-1
13 u(l )=0.0 £(1,3)=£(1,3-1)
14 un(1)=0.0 £(2,m-J)=£(2,m-J+1)
15 u(m)=amp*sin (2.*pi*time/wp) end do
16 un (m) =u (m) ! boundary condition
17 ul=amp L*sin(2.0*pi*i/per L)
18 do j=2,m-1 £(2,m)=ul*(w(l)+w(2)+w(0))-£(1,m)-£(0,m)
19 £(1,1)=-£(2,1)
20 rh=cc* (u(J+1)+u(j-1)-2.*u(j))+alfaxdt ! ~opic variable
21 un (j)=rh+u(j) ! next time do j=1,m
22 u(j)=£f(1,3)+£(2,73)+£(0,7)
23 end do ! j ! collision
24 £(0,3)=(1.-ome) *£(0,J) +ome*w (0) *u (7J)
25 u=un ! for next time £(1,3)=(1.-ome)*£(1,7)+ome*w (1) *u(7j)
26 £(2,7)=(1.-ome) *£(2,7) tome*w (2) *u (J)
27 end do ! time end do
28
29 end do ! time
100
90
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= 60
g 50
2
P~ 40
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20
10 F FDM ° .
LBM °
0 | | | !
1 0.5 0 0.5 1

Normalized velocity (u/U)

Figure 47. Comparison of the velocity profiles for the Stokes second problem measured at intervals of
0.1T and predicted by the FDM and LBM.
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5.3 Lattice Boltzmann method for scalar transports

In the previous sections, we have discussed how the LBM solves fluid flows based on the
mesoscopic modelling. Many problems of fluid flow involving transport or diffusion of another
matter in a fluid encounter in engineering practices, such as heat transfer and sediment
transport. Such problems are modeled by the scalar transport equation, e.g. Burgers’ equation,
ADE or CDE, or heat transfer equation, while fluid flow is modeled with the Navier-Stokes
equation in conventional methods, as discussed in Part 1. This paradigm is used to model such a
problem in the LB methods. In other words, while aforementioned LBM solves the flow field,
another set of LB model, which we discuss in this section, needs to take a care for the transport
phenomena.

First attempts for the scalar transport in the LBM were based on the LGA, where the
macroscopic equations can be derived the contribution of the some magic and the LG4, itself,
had a complexity to model such a problem (Wolf-Gladrow, 2000). Depending on the
transporting matter, different approaches developed after 1990s. For instance, two types of
approach, namely a multi-speed approach and a double-distribution function approach, have
been simultaneously developed for heat transfer in fluid flows. While, for the convection-
diffusion problem, double-distribution function or the coupled model with the conventional
method was proposed (Guo & Shu, 2013). A multi-speed lattice Boltzmann was introduced as
the direct extension of the general lattice Boltzmann method exploiting the higher order
moments of the distribution function and exploring the thermal possibility of the Boltzmann
equation. In contrast, a double-distribution function approach uses the second lattice
Boltzmann equation to model scalar transport process and keeps the isothermal LBM for the
fluid flow. One of the first double-distribution function models was proposed by Bartoloni et al
in 1993 (Bartoloni, et al., 1993) to model the Rayleigh-Benard convection. In the model, the
temperature was solved by the second LBE as a passive scalar and no temperature effect was
modeled for the fluid flow. Another model of a double-distribution function approach was
developed by Wolf-Gladrow in 1995 for the diffusion of substances in an arbitrary number of
dimensions, which was the simplest LBM for diffusion problems (Wolf-Gladrow, 1995). More
detailed research was done by Elton et al in 1995 (Elton, et al., 1995) exploring consistency,
convergence, stability and efficiency of the LBM for the macroscopic scalar transport equations.
The double-distribution function model was further extended by Shan in 1997 (Shan, 1997) to
model the Rayleigh-Benard convection by considering the Boussinesq approximation on
convection (generally discussed in Section 5.1.1), which was traced from their previous
research about multi-component flow modeling with the LBM (Shan & Chen, 1993). Further
contributions made to widen the application of the model and improve the accuracy, such as a
double-distribution function method on an irregular lattice (Van der Sman & Ernst, 2000) and
coupled methods with conventional method. A comprehensive review of the double-distribution
function model for a passive scalar transport can be found in (Zhou, 2009) and (Huang, et al,,
2011).

In this section, we will discuss the widely used double-distribution function model for scalar
transport because of its applicability to the both problems in sediment transport and heat
transfer, as objectives of this thesis. The macroscopic diffusion and CDE (ADE) will be derived
from the LBE through the multi-scale expansion analysis in Appendix 2.
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5.3.1 Lattice Boltzmann model for scaler transport

If we put tracing dye to a small river, dye will be transported by flowing water into
downriver and will spread out to invade all the cross-section of the river flow as diffusion. In the
nature, instead of dye there are number of transporting substances in rivers like waste,
sediment and dissolved matter or heat. Physical interaction with flow field and quantity of
substances in a fluid is governed by the ADE:

2

Z_f-l_u“;%:DgT(:' (279)
where ¢ is the dependent variable of a substance and D is the diffusion coefficient, which can be
affected by the molecular diffusion, turbulent mixing, etc. The word advection can be
interchanged with the convection depending on the use of Eq.(279). This ADE is a combination
of the simple-wave equation and the diffusion equation, but mathematically it has the
properties of the latter one (Vreugdenhil, 2012). If we introduce a variable K = D — ux for the
x-component of Eq.(279), we get the diffusion equation

0 0%¢
——K—=0, 280

ot 0x? (280)
which means the diffusion in a frame of reference moving with the mean flow. On the other
point, if the flow velocity is zero: no motion of fluid is observed in the system, Eq.(279) gives

diffusion equation, directly

ap 9%

ot 9x2’

(281)

The dependent variable of the substance can have a unit of concentration for sediment or
pollutant wastes and temperature in the heat transfer. The advection, diffusion and advection-
diffusion terms are described in Figure 48.

¢ A Quantity of substance
Advection
Diffusion i Advection-Diffusion

|

| a

l -

|

Uit Uty "

Figure 48. Diffusion, advection (convection) and the advection-diffusion phenomena.

The LBE for a scalar transport problem is the same as the LBE without the force term used in
a fluid flow in Eq.(204),

8t . oq
gix+6x,t +6t) — gi(x,t) = T—(gi - gi) , (282)
S
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where g;(x, t) is the distribution function for a scalar variable, 7, is the dimensionless relaxation
time regarding with the diffusion coefficient, D. The distribution function to accommodate the
advection-diffusion and diffusion effect can be
c'u
eq _ i eq _
g; = ow; [1 + 2 ] and g;" = ¢w;, (283)

S

respectively, where 6 is the dimensionless quantity for the dependent variable, which can be
computed by

N
P =) gix 1), (284)
i=0

where N is the number of velocities in a lattice. The speed of sound, c;, takes value of 1/+/2 for
D1Q2, D2Q4 and D3Q6, and 1/+/3 for D1Q3, D2Q5, D2Q9 and D3Q15. Based on the symmetry
properties of the lattice, D2Q4 and D3Q6 models can produce the same results like the use of
D2Q9 and D3Q15 lattices, respectively. For the simplicity that comes from the shareable
properties with fluid flow modeling by the LBM, we use D2Q9 for the two-dimensional scalar
transport problem. For D2Q9 arrangement, the relaxation time can be determined by

Ax? 1

D= &A—t(rs _ 5) e, (285)

which is just the same as Eq.(205). If the diffusion coefficient is dimensionless, then space and
time steps are removed from the relation in Eq.(285).

For a non-passive substances transporting with a fluid flow, the effect of the substances on
the fluid flow must be accounted as a force term for the governing equation of fluid. For instance,
during the heat transport, the density deviates as temperature changes. The density deviation
generates the local inertia force for the fluid and it can be approximated by the Boussinesq
approximation for the LBM, as using the same concept described in Section 2.1.1. The force
induced by the density variation due to the temperature changes is presented in Section 5.6.2.

5.3.2 Boundary conditions for scaler transport

Boundary conditions for scalar field evolution in the LBM are essential to get a good result
from the simulation. From boundary conditions discussed for a flow field in Section 5.2.3, the
outflow and periodic boundaries can be applied directly, if the boundary requires such
treatments. We shall discuss some widely used boundary conditions in following contexts.

Dirichlet-type boundary conditions - 1

We derive a boundary condition when the scalar value on the boundary, which can be a solid
surface or an inflow/outflow, is known. A schematic illustration of the boundary is given in
Figure 49 and we will not discuss the derivation or statement of the conditions for other
boundaries.
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Figure 49. Inflow boundary at the west. Scalar variable at inflow boundary is given.

It is obvious for the boundary lattice

N=8
> ) = ¢, (286)
i=0

where ¢ (i, j) is the known scalar variable. From Figure 49, the missing distribution functions
after the streaming process are g, gs and gg, which can be defined with the weights as

g1 = wW1¢r,9gs = ws and gg = wgo,., (287)

where ¢, is the residual value to satisfy Eq.(286) after the evaluation of the boundary condition.
With Eq.(287), the residual value can be calculated as

d—(Got+9g2+93+9s+9ge+97)
wy + ws + wg '

¢, = (288)

Using this residual value, we can construct the missing distribution functions with Eq.(287)
(Michael & Daneal T, 2006).

Dirichlet boundary condition - 2

When the scalar value of the boundary, the same boundary in Figure 49, is given, we can
derive the boundary condition based on the detailed flux conservation equation (A.A.Mohamad,
2011). For the normal to the boundary, the detailed flux conservation is

gl =g1+95 —g:=0, (289)
which gives the unknown distribution function g, as
91(Xo, t +68) = w1 + w3 — g3 = (w1 +w3) — g3, (290)

where the equilibrium distribution function, gieq = w;¢, was used. Using the first expression in

Eq.(283) gives the same result. The other two distribution functions are defined as
gs(X,, t + 6t) = p(ws + w;) — g7 and (291)

gs(Xo, t + 6t) = p(wg + wg) — g - (292)
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Dirichlet boundary condition - 3

Another possible way to derive a Dirichlet boundary condition is to use a bounce-back
condition for the non-equilibrium part of distribution functions. For the diagonal distribution
functions, the bounce-back to the non-equilibrium distribution function, using Figure 49, is

gs—9get =g, — g5 . (293)
The unknown, gs, is
gs=97+9s —4g;°. (294)

Substituting the distribution function for the advection-diffusion problem into Eq.(294) yields

csu
gs = g7 + 2W5¢C—2 : (295)
S
Similarly, we can state the boundary condition as
c;u
9i(Xo, t +6t) = gi(x,,t) + 2Wi¢c_z . (296)

S

Dirichlet boundary condition - 4

A boundary condition based on the Ladd’s boundary condition (Zhang, et al., 2012) is given
as

gi(Xp, t + 6t) = —g'1(x,,t) + 2w; ¢, (297)

which is a similar boundary condition to the Dirichlet boundary condition - 2, but uses a post-
collision distribution function.

Neumann boundary condition - 1

We only give the derivation of the boundary condition on Figure 49 and the boundary
conditions on the other boundaries can be defined by using the symmetry condition. For the
Neumann boundary conditions, the scalar flux at the boundary is prescribed and given as

d¢

—D—+up=gq, (298)

where the first term is a diffusion flux, the second term is an advection flux and the flux value g

is given.

The first Neumann boundary condition can be derived when the advection flux is ignored on
the boundary. Thus, the finite difference approximation of Eq.(298) without the advection flux is

B L) = ¢
Ax -
Defining (i + 1,j) = g1 (i + 1,j)/wy, ¢(i,j) = g1(i,j)/w; and substituting into Eq.(299) yields

(299)

.. , ] q
91, ) = g;(i + ,1)+W1D, (300)
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where the flux and diffusion coefficients is dimensionless and spacing 4x is omitted. The
boundary condition can be written as

q

9i(Xo, t + 6t) = gi(X, + ¢ n, t) + WD’

(301)

Neumann boundary condition - 2
If the diffusion flux is zero, the advection flux is remained to be a flux at the boundary:
U =q. (302)

We can state that the advection flux can be defined by the moments of the distribution functions

N=8
> gcin=q. (303)
i=0

Reusing Figure 49 and substituting Eq.(287) into Eq.(303) gives

=CI+93+96+97
wy + ws + wg

¢, (304)

which can be embedded in Eq.(287) that gives the unknown distribution functions. If we
prescribe g = 0, we will get the zero flux boundary condition.

Neumann boundary condition - 3

If the diffusion and advection fluxes are considered and an resulting expression after the
finite difference approximation for Eq.(298) is

. _9—=Do(i+1,))
J) = ) 305
d@,)) L, —D (305)
which leads the boundary condition on the west boundary
—Dg;(x, +c;-n,t
gi(X,, t + 6t) = 1 9iXo + ) ,wheret=1,5,8. (306)

Uy (X,,t) — D

Adiabatic boundary condition

If the scalar gradient near the boundary is zero, an adiabatic boundary condition is required.
The condition,

09

= =0, (307)

can be approximated using the Euler method:

¢ +1,/)—¢Gj)=0. (308)

Recalling the zeroth order moment of the distribution function for Eq.(308), the condition
becomes
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N=8 N=8
Z 9i(Xy, ¢+ 6) = Z gi(Xy + ¢ 1, 1) (309)
i=0 i=0

where n is the normal vector to the boundary. Simply, an adiabatic boundary condition is
fulfilled by copying the all distribution functions on the adjacent lattice into the boundary lattice.

Anti-bounce-back boundary condition

To maintain the zero scalar value on the boundary, an anti-bounce-back boundary condition
is served as

gi(xm t+ 6t) = _gi(XO! t) ) (310)

which is a case of the Dirichlet boundary condition - 2, if the known scalar value is zero on the
boundary. Note that all boundary conditions presented above is based on Figure 49 and the
most of them is stated for the west boundary as the inflow/outflow.

5.3.3 Example of scalar transport problem

Let’s have a simple numerical example for the scalar transport by the LBM. Consider now the
release of a quantity of salt in a channel, 400 m in length, in which there is a flow defined by a
sinusoidal wave. With the given condition, let us compute the advection and diffusion of the salt
concentration through the channel. We will use the simple FDM and LBM with D1Q3 lattice in
the one dimensional channel.

Finite Difference method

The one dimensional FDE for the advection-diffusion problem reads

¢?+1 - 2¢Ln + ¢Ln — Atu ¢Ln+1 - ¢Zl (311)
Ax? * o Ax ’

= ¢ + AtD

where ¢ is the concentration of salt, D (=2.0 m2s) is the diffusion coefficient and u, is the
channel velocity computed from Eq.(272). We choose the time step to be At = 0.01 s to ensure
the stable simulation and the grid spacing is Ax = 4.0 m. The total simulation time is given as
1000 s, which includes 5 phases of the velocity field. An initial condition for the concentration of
saltis

1 180m<x<220m

¢ (0 = {O otherwise (312)

Lattice Boltzmann method

The lattice Boltzmann equation for the scalar field is Eq.(282) and we can write it in
streaming and collision steps as follows

1
Collision: g';(x,t) = g;(x,t) + o (9" —9:), (313)
S
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Streaming: g;(x + 6x,t + 8t) = g';(x,t) . (314)

where 7, will be defined by using Eq.(276). Using the same spacing for space discretization, we
find the time step At = 0.4 s for the LBM. The equilibrium distribution function is given by the
first expression in Eq.(283).

Comparisons

The results comparison is given in Figure 50. In the first figure, the horizontal axis shows the
channel length while the vertical axis shows the time advances, where we have selected 5
different times and have plotted the concentration of them in the second figure.

U I T 1 T U I 1

500 t=1000
400
) 2
=
i .
300 =600 z
g I =z,
= =
i =
200 g
i S
n t=300 §
g &)
100
- t=100
B FDM ———
0 ' T t:O Sec L L 2 . ‘LB’M L '&””'
0 100 0 10 20 30 40 50 60 70 80 90100
Grids Distance (grids)

Figure 50. Solution of the simple advection-diffusion problem by the FDM and LBM.

Color gradient shows the result of the FDM and solid lines show the result of the LBM in the first
plot. Interestingly, the results of the two methods were different until ¢t = 400 s as shown in the
profile of the £ = 100, 300 in the second plot and after that the results matched each other until
the end of the simulation. The FDM was overestimated and instability was observed on the left
edge of the distribution, as seen att = 100. To get a more accurate result, we can reduce time
step in the FDM. The higher order FDMs are available, but those are supposed to be not
adequate to be compared with the second order accuracy of LBM. If we use a bigger time step
for the FDM, e.g. the time step as the same as one used for the LBM, the simulation will be
unstable. The LBM gives rather stable and faster simulation than the DFM on the same grid
discretization.
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5.4 Turbulence and stability

Here we discuss about a numerical stability of the LBM with turbulent models or extensions of
the LBM, because the turbulence has been a challenge of stability for the LB computation.

5.4.1 Numerical stability of lattice Boltzmann method

Numerical stability is a challenging aspect of the LB models. Particularly, the standard LBM,
which we have discussed so far, is suffering from instability in a simulation at a high Reynolds
number. Numerical stability is sometimes related to a numerical accuracy, since the standard
LBM is a second order accurate method and the LB equation can recover the NSE in a limited
condition of a low Mach number. The certain two reasons to become instability of LB
computations can be the discretization and the collision operator. Although, the LBM uses a
flexible Boltzmann equation with the linear collision operator, the discretization of the
Boltzmann equation uses a finite difference approximation in space and time. Therefore, the
computation of LBE has a characteristic of the finite difference scheme and error of the space
discretization. The second reason is the definition of the relaxation time, which is defined in a
result of the multi-scale expansion to the macroscopic equations. The relation between the
relaxation time and molecular viscosity can be written as

Ax? 1y ,
Vr =A—t<‘[v—§) Cs, (315)

where v; [m2s-1] is the molecular viscosity of a fluid, At [s] and Ax [m] are the grid spacing and
time step. To ensure the stability in the first glance, the relaxation time 7, must be greater than
0.5. The lower limit of relaxation time, 7, > 0.5, leads a zero lattice viscosity of fluid, as shown in
Figure 51.

The relation of Lattice viscosity and Relaxation

L5 i | 7

Relaxation parameter ()
\
\
Lattice viscosity (V)

0.5 1 1.5 2 2.5 3 35 4
Relaxation time (t,,)

Figure 51. Relation between relaxation time and lattice viscosity/relaxation parameter.
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: 1 e e
In respect to a relaxation parameter, w = py’ the stability limit is 0 < w < 2. A turbulent nature
v

of flow is often found in a low viscosity, which leads instability for the numerical scheme
(Sterling & Shiyi, 1996). Let us see how the stability can be related to the other parameters in
Eq.(315). Dividing Eq.(315) by UL, being characteristic velocity and length, respectively, is

VR Ax( 1) cs Ax (316)
UL~ ae\" T 2)JUL

where the left hand side is the Reynolds number, Re, U/c, is the Mach number, Ma, L/Ax is the

grid number, N, and Ax/At is the unit velocity as U/U;. Assigning the appropriate terms in

Eq.(316) and writing it in incompressible condition become

U cg 1
Ma = ReU_LN(TV — E) <0.2, (317)
where Re and ¢, are constants and U and Uy, are proportional to each other. To ensure the
incompressible condition in Eq.(317) at a certain Re number, we have options to increase the
grid number as a decrease of velocity and relaxation time or their combination. However, the
relaxation time has the lower bound of magnitude. The lattice viscosity can positively be

conditioned by the lattice Boltzmann equation (Qian, et al., 1992) as

. _ fed
0, Sup (M—lﬂ (318)

v = Max
forferfd\ fi 6

Practically, the velocity, U;, used in the LBM simulation is suitable to be less than 0.2
(A.A.Mohamad, 2011). Similarly, another stability condition requires the mean flow velocity in
computation to be below a maximum stable velocity that is a function of several parameters
(Chen & D.Doolen, 1998), including sound speed, the relaxation time, and the wave number,
which defined by the linear von Neumann analysis for the LB equation (Sterling & Shiyi, 1996).
Based on the same concept, adaptive time step and grid refinement techniques had been
introduced to perform stable simulations with the LBM (Thiirey, et al., 2006). Using a small time
step or fine grid for a discretization, as well as an adaptation of grid, can be said the direct
numerical simulation (DNS) with the LBM for turbulent flows.

There are many other methods to improve stability of the LBM, for instance the use of an
irregular grid or the higher order finite difference scheme for a discretization (McNamara, et al.,
1995), the use of two relaxation time (TRT) or multiple-relaxation time (MRT) for the collision
term, contributions of turbulence models and conditions of Entropy or Boltzmann H-theorem
and the use of different collision operator based on moments or microscopic modeling, like the
discrete unified gas-kinetic scheme (Guo, et al., 2013).

5.4.2 Stabilization techniques with relaxation times

Among the other stabilization techniques, we will briefly discuss the techniques based on the
relaxation time, which causes the diversity for LBMs. It is stated that two-relaxation time (TRT)
and multi-relaxation time (MRT) schemes for the collision term brings not only stability, but
also accuracy and efficiency (Luo, et al., 2011) over the single-relaxation time scheme (SRT),
which is the BGK model. Please note that the BGK and SRT are the same models in this context.
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The MRT scheme is developed as the same time as the BGK model introduced and is involved
by the all possible degrees of freedom to optimize the LBE. Unlike the BGK model, which uses
the same relaxation rate for a collision, the MRT uses multiple relaxation times and different
eigenvalue with the collision matrix (Guo & Shu, 2013). Successful application of the MRT
spreads over the problems which cannot be solved by the SRT (d'Humieres, 2002) without the
improvement.

The TRT scheme decomposes the BGK collision operator into the solution of the symmetry
and anti-symmetry components (Ginzburg, 2005). Like the SRT, fluid viscosity, both the bulk
and molecular viscosity, is related to the symmetry eigenvalue (relaxation parameter), while the
coefficient of the diffusion tensor is respected with the anti-symmetry eigenvalue. The
eigenvalues considered in the TRT model are the most important two relaxation rates (Luo, et
al, 2011). If the symmetry and anti-symmetry eigenvalues are equal to each other, the scheme
reduces the SRT scheme. If the additional collision freedom is involved for the TRT, one derives
the MRT scheme (Ginzburg, et al., 2008). None of those models, the TRT and MRT, is elaborated
in further and is used for the simulations presented herein.

5.4.3 Turbulence modeling with Large Eddy Simulation

As we stated that solving a turbulent flow with the LBM often leads the lower limit of the
relaxation time. There are two possible ways to model turbulent flows with the standard LBM
(Hou, et al, 1996). The first way might be the revisions into the small scale fluctuation in the
LGA and the idea to use it in large scale resolved flows by the LBM. Unfortunately, no attempt
has been made in this way, since it is difficult to connect the small scale and large scale
dynamics based on the microscale particle nature. The second way is to introduce or adapt the
traditional turbulence model into the LBM. Based on the similar properties, the sub-grid scale
models can be easily introduced into the LBM. The basic concept of the sub-grid scale model is
considered the models, which account the effect of the small scale eddies in resolved large
scales. Smaller scales in a fluid flow are ignored in the model during the computation to reduce
the cost with the help of a spatial filtering function for the variables. Among the models, the
simple Smagorinsky model (Deardorff, 1970), described in Section 2.2, uses a positive eddy
viscosity to represent the small scale energy damping and is successfully introduced in the
framework of the standard LBM. From the numerical analysis point of view, the Smagorinsky
model in LBM (Hou, et al,, 1996) brings the stable numerical scheme rather than resolved
turbulent flow.

In the some literature, the LBMs incorporated with the LES model or k-epsilon models are
termed as the extended LBM due to its extension to the high Reynolds number flow (Liu, et al,,
2008), (Chen, et al., 2003). The distribution function and the equilibrium distribution function
are related to the large scale flow and the resolved solution by the standard LBM is available to
define the local unresolved small scale effects on the fluid flow, which is represented by the
effective eddy viscosity. In order to define the eddy viscosity term and to evaluate the effect of
small scale eddies on the fluid flows, the filtered distribution function is introduced as

i = f FOOGE X)dx' (319)
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where G is the spatial filtering function depending on the filter width in space. It is stated that
the multi-scale expansion with the filtered distribution function, fi(x), reduces the NSE with the
total viscosity, including the eddy viscosity, and the macroscopic variables resulting p = ¥; f;
and pu = Y, f;c;. Eventually, it is equivalent to replace the filtered variables with the unfiltered
variables and again the lattice Boltzmann equation reads

filx+c;ot, t + 6t) = fi(x, t) — !

(fi — f°7) + 6t4;, (320)

Ttot

where 7., is the total relaxation time with respect to the addition of the molecular viscosity and
the eddy viscosity (Hou, et al., 1996). The total viscosity can be found by the Smagorinsky model
as

Vot =V + Veg =V + CA?|S], (321)

where v,4 is the eddy viscosity, C (= C2inEq.(31))is the Smagorinsky constant, Ais the
filtering width, which can be identified as a mesh resolution or a geometric average of grids

spacing, and |§| = /2§ij5_'ij is the magnitude of the large scale strain rate tensor. The total

viscosity gives the total relaxation time as the follow,
1 - 1
cs 2

The local magnitude of the strain tensor can be easily defined by the non-equilibrium stress
tensor and the molecular viscosity as

i \/vz +18CA2 (PapPag)'” — v
- _ 2
51 — (323)

The second order moments of the non-equilibrium part of the distribution functions is

Pug = Z caCip(fi — 7). (324)
i
In the different form (Liu, et al., 2008), the total relaxation time can be defined as
1 18 1/2
Ttot = E \/T% + szp CAZ(ZPO_,BP“B) + Ty | (325)

where Ax is the grid spacing and 7, is the relaxation time with respect to the molecular viscosity.
Conceptually, the Smagorinsky constant, C, can be defined by the resolved Reynolds stress term
using the test filter width, however, the recommended values for it is often used. In traditional
methods, for instance in Part 1, the recommended values for the constant is € = 0.01~0.04,
while for the LBM, this values is suggested as C = 0.0025~0.0625in channel with the
vegetation (Gac, 2014), C = 0.0169~0.0289 for the near wall turbulence (Wang, et al., 2014)
and C = 0.006 for the air flow (Fernandino, et al., 2009). Our research with Eq.(322) shows the
constant likely to be € = 0.01 — 0.03 (Ayurzana, 2016) in water flow.
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5.4.4 Advanced fluid-kinetic model: Entropic LBM

One of the promising methods in the stabile LB turbulent computation is the entropic LBM
(ELBM) of Karlin’s group (Gu, et al., 2014), in which, the distribution functions are straightened
to satisfy the maximum condition of the entropy at the every time step of a simulation. But this
ELBM is based on the advanced fluid-kinetic theory for the low-dissipative hydrodynamic flow
(Karlin, et al.,, 2014), where the Gibbs’ principle with the maximizing the entropy is used to
derive a lattice kinetic theory for the turbulent flow. There are several versions of the entropic
LBM reported (Karlin, et al., 2014).

Based on the Boltzmann H-theorem (Theorem 2 in Section 5.1.4), a simple entropic stabilizer
was proposed to stabilize a LBM simulation at a high Reynolds number in an incompressible
flow. The entropy of the LBE in D2Q9 lattice can be written as

STf] = —iﬁ- m(L) (326)
i=0 t

where f; is the density distribution function, w; is the weight and S[f] is the entropy. Further,
we write the f; as a component of the velocity moments:

fi=ki+s;+h; (327)
where k; is the kinematic part of populations, which depends only on the locally conserved
fields, s; is the shear part of populations, which depends on the stress tensor and h; is the higher
order moments of populations as a linear combination of the remaining higher order moments.
Introducing deviations As; = s; — s/ ?and Ah; = h; — h{, the extremum condition of the S[f]
take the form:

° (1 — By)Ah; — (28 — DA
ZAhi In (1 + i l) =0, (328)
= fi
where 8 can be defined from the kinematic viscosity as v = c?2 (% — %) and the maximum of

stabilizer y can be computed as

=l ( 1) (AslAh) ieh (x|v) AL (329)
==—(2—= wi = .
" 7B \" 7 B anian) L7
Non equilibrium part of the distribution function can be written as
fi— 79 = As; + Ak, (330)

and it is used for the calculation of higher order moments Ah;. The deviations of shear part of
the populations are defined by following velocity moments:
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- u? —v?] _
A50=p<4uvﬂxy—[ > ]N),

p<[1+cixu+u2—v

As; . =2
13 =3 2

Ao, =P —1-cyv+u?—v
272 2

2
]IV — [2¢iv + 4uv]ﬁxy>,
(331)

2
]IV - [ZCL-yu + 4uv]ﬁxy>, and

—u? +v? —Zcixu + ciyv] N),

p -
LASS’6’7’8 =2 <[4uv + cixCiy + 2ciyu|Tl,y, + [

where ﬁxy and N are the central moments and cx; and cy; are the discrete velocities of the

lattice. The central moments are defined by the natural moments and velocities as

8 8 8
M, = Zficixciy —uvand N = Zficl-zx — Z fick, — (w? —v?). (332)
i=0 i=0 i=0

After defining the stabilizer with above formulae, the post collision state of the distribution
function is computed in the form:

fi = fi — BQ2As; +y"Ahy) (333)

and the streaming is done by copying the distribution functions to their designated directions as
usual. The determination of the macroscopic variables, density and velocity, is the same as the
standard LBM, as well as the equilibrium distribution function.

5.5 Free surface Lattice Boltzmann method

After the brief review of a free surface flow modeling, we will provide the solution of the LB
modeling for the free surface flow. The implementation of the described model will be found in
Section 6.1 with the general numerical algorithm of the LBM.

5.5.1 Review for free surface flow modeling

One of the primary subjects of this work, as well as hydraulics, is a free surface flow. The
problem of fluid flow with the presence of the free surface often occurs in the civil engineering
field, whether in designing and construction stages of hydraulic structures, which interacts with
fluid flow, or in natural disasters such as flood inundation, storm surges and Tsunamis. In the
past, many afford of mathematical and numerical models on free surface predictions for a flow
had been made since the accurate freely moving interface for two immiscible fluids had
practically needed. The numerical methods can be classified in terms of numerical techniques
and fluids of interest, as shown in Figure 52 (a) and (b), respectively.
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or mesh-free methods methods methods
- VoF
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Figure 52. Classification of free surface flow models: (a) based on the involving fluids in a model and (b)
based on the technique used in a solution.

In terms of fluids involved in the modeling, the method can be single- and multi-phase
modeling. For single-phase free surface modeling, the primary fluid, e.g. the water is considered
and the secondary fluid, e.g. the air, is neglected with the existence of the precise boundary
condition on the interface between the primary and secondary phases. The boundary condition
is called the free-surface boundary condition. Examples of the single-phase free surface
methods are the mesh-free methods, such as smoothed particle hydrodynamics (SPH) (Gingold
& Monaghan, 1977), (Monaghan, 1994) and the element-free Galerkin method (EFG)
(Belytschko, et al., 1994), and the fixed grid methods, such as the shallow water approximation
(Sielecki & Wurtele, 1970) and the LBM (Korner, et al.,, 2005). For the multi-phase flow, two or
more fluids are considered and interfaces of those flows are determined as a free surface under
the influences of those fluids on it. Famous representatives of multi-phase models are the
Volume of Fluid (VoF) (Hirt & Nichols, 1981) in Eulerian approach and multi-phase particle
methods (Monaghan & A, 1995).

In the aspect of numerical techniques used in a model, the methods can be grouped into the
Lagrangian, the Eulerian approaches or the coupled scheme of them. The particle based
discretization for the NSE in a frame of the Lagrangian approach developed many mesh free
methods such as the SPH, moving particle semi-implicit method (MPS) (Koshizuka & Oka, 1996),
(Koshizuka, et al., 1998), finite point method (FPM) (Onate, et al.,, 1996), the EFG and so on (Li &
Liu, 2002). In the Lagrangian viewpoint, the free surface is tracked by the particles creating a
free surface; the motion of those particles can be governed by the following equation (Lin & Liu,
1999) in general:

dX(t)
Y =T

(334)

where X is a position vector which provides the coordinate of a fluid particle on the free surface
at time t. The SPH and MPS are more attractive than others and have been shown the ability to
solve a free surface flow as matured techniques in a wide range of space scale, more precisely
from the bubble (Das & Das, 2009) in the laboratory scale to the near field Tsunami in the real
field scale (Debroux, et al.,, 2001). While the Eulerian approach for a free surface modeling takes
as much responsible as the Lagrangain approach. Although the very first numerical modeling for
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a free surface flow introduced by Harlow and Welch (Harlow & Welch, 1965) was the
Lagrangain-Eulerian coupled technique, the following methods, such as the solution algorithm
for VoF (SOLA-VoF) (Nichols, et al.,, 1980), height function method (Hirt & Nichols, 1981), level
set method (Sussman, et al., 1994) and vortex based method (Baker Gregory, et al., 1982), are
fully described on the grid which are whether fixed or moving grids. A comprehensive review
on the Eulerian approach for the free surface flow can be found in (Lin & Liu, 1999) or
(Scardovelli & Stéphane, 1999). The Eulerian approach for tracking the free surface is to update
the free surface location based on the following equation:

619+ V=0 335
ac U o (335)

where ¥ is a scalar quantity carrying the material information. For example, the quantity, 9, in
the VoF method is the fractional volume of fluid (to simply, the fluid fraction value), 9 = F, and
the equation conserves the mass for two fluids which are considered. While, the density
function, ¢, is considered as the quantity, 9 = ¢, in Eq.(335) for the level set method.

As shown in Figure 52, the LBM for a free surface flow is a single-phase fixed grid approach
and is first introduced by Korner and Singer (Koérner & Robert F, 2000) to model the metal
foaming process. Besides that, several approaches for the LBM to handle a free surface flow has
been made by the single- and multi-phase modeling. Briefly, during the early stage of the LBM
development, a two-phase immiscible fluid model is introduced in (Gunstensen, et al., 1991)
based on the discrete immiscible lattice-gas model using the collision rule for two phases,
colored with red and blue, to obtain surface tension between the two fluids. Further
developments based on this method are known as color-gradient model for multi-phase flow
and the model have the possibility to handle the free surface flow. Another popular multiple
phase LBM was introduced by Shan and Chen (Shan & Hudong, 1993). The model is celebrated
as the Shan-Chen model and became the origin of other multi-phase and multi-component
models (Huang, et al,, 2015). The basic idea of the Shan-Chen type model is to use distinct
distribution functions for each fluid and to evaluate the repulsive force on the interface between
fluids, which leads the phase separation. Other multiple-phase models in the LBM, such as the
phase-field model (He, et al., 1999) and the free energy model (Swift, et al., 1996), are applicable
for the free surface flow, when the density ratio is adjusted. Very good review for the multi-
phase LBM can be found in (Li, et al,, 2016) and (Huang, et al., 2015). After that, the featured
LBM for the free surface flow is the single-phase color method modified from the color-gradient
model by Ginzburg and Steiner (Ginzburg & Konrad, 2003), in which the collision is carried out
only on the active cells filled fully or partially with fluid and the model maintain a sharp
interfacial front with the help of an anti-diffusion algorithm for re-coloring scheme. Borrowing
the idea of earlier marker-and-cell method, the coupled model of the LBM and the front tracking
method is proposed in (Lallemand, et al., 2007) for the free surface flow including the dynamics
of gas phase. Recently, based on the same concept, the coupled algorithms of LBM with the VoF
or Level set technique are proposed in (Janssen & Krafczyk, 2010) and (Riide & Thiirey, 2004).
The coupled method of Janssen et al, (Janssen & Krafczyk, 2010) uses an additional advection
equation for the VoF carried out with a classical finite volume method, while the free surface is
reconstructed by a piecewise linear interface reconstruction. Korner et al (Kérner, et al., 2005),
(Ride & Thiirey, 2004) formulated the VoF or Level set method in terms of mesoscopic way and
in the model, the free surface is tracked by the flux-based advection scheme. A general
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discretization of the geometry of the coupled techniques is depicted in Figure 53. In the
discretization, the interface cells and fluid cells are considered as active cells if the model is
single-phase. The interface cells define the free-surface.

(a) (b)

Gas cells

Solid cells

Concrete 5

Figure 53. Geometry discretization of the VoF based LBM methods: (a) reality and (b) discretization.

In the following sections, we give the detailed explanation of the so-called free surface-lattice
Boltzmann method of Korner et al (Kérner, et al.,, 2005) and (Thiirey, et al., 2006).

5.5.2 Free surface representation

The free surface algorithm for a use in the LBM was first introduced by Kérner and Singer
(Korner & Robert F, 2000), (Korner, et al., 2005) for the simulation of metal foaming and was
later corrected for and tested on the two- and three-dimensional free surface flows by Thiirey
(Nils, 2007) and (Thiirey, et al., 2006). Since the free surface in the LBM can be described using
the same concept applied to the VOF method (Hirt & Nichols, 1981), each cell has a volume
fraction value of a fluid that is expressed as the ratio of the mass to the density of the cell, i.e., € =
m/p. Depending on the volume fraction value of the liquid, each cell is marked by flags as an
indication of the materials in the computational cell, such as F for fluid (water), G for gas (air),
W for solid, and IF for interface cells, as shown in Figure 54 (b).

(a)

(b)

Wall (W)

Air

(gas - G)

Free surface
(Interface - IF)

dy :T‘_O _t-;\ fix.0 F Water
Y JJ[{ & _____ (liquid - F)
7: dic }8 % -~ o Possible mass
x. = D2Q9 model exchanges

Figure 54. General scheme of free surface-lattice Boltzmann method: (a) D2Q9 lattice arrangement on
the 2D grid and (b) materials in the domain and free surface representation.

The free surface is represented as chained single-layered interface cells having an arbitrary
volume fraction value of 0 to 1, and the evolution of the free surface is tracked by mass
calculations of the interface cells and cells other than solid and gas cells, which have no water
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fraction content. The scalar quantity for this method is the volume fraction of fluid, which in
turn, the mass in a cell. Equation (335) in this case becomes

am+ Vm =20 336
T u-vm=20. (336)

In contrast to the VOF method, the mass value of the cell is directly updated by mass exchange
with neighboring cells at each time step of a computation (Korner, et al., 2005). So that the
mesoscopic time and space discretization for Eq.(336) yields,

8
m(x,t + 6t) = m(x,t) + Z Am;(x,t + 8t), (337)
i=1

where X is the space vector, t is the current time, 8t is the time step, and i denotes the lattice
direction (Figure 54 (a)). Mass exchange Am,; is allowed for interface cells with neighboring F or
IF cells, but does not allow for interface cells with neighboring G or W cells, as shown in Figure
54 (b). Mass exchange between IF and F cells is easily defined by the difference between coming

and leaving distribution functions before the streaming step, as

Am;(x,t + 6t) =5, = fi(x+¢;,t) — fi(x). (338)

We shall describe the collision and streaming steps for the time evolution of distribution
functions, as well as their connections with the free surface-LBM in Section 6.1. However, the
mass exchange between interfaces must have a special contribution by the volume fractions of
the mass exchanging pairs, as follows:

e(x + 6tc;, t) + e(x,t)
2 ’

Am;(x,t + &t) = s, (339)

where the difference between distribution functions, the flux exchange s,, captures the
neighboring status of the cell pair. The neighboring status of a cell reveals what types of cells
exist in the surrounding space, as shown in Figure 55 (b). Except the standard cell, other cell
status for the interface cell is assumed as invalid cells, which need to be corrected during the
excess mass distribution.

(a) (

=7
N

Wall (S)

Q| a|a|a
{4

P A—
e(x,1), m(x,t)

Figure 55. Flags used in the free surface-lattice Boltzmann method: (a) temporal state of cells as flags and
(b) neighboring states for interface cells; S - standard cells, NF - no fluid neighbor, NG - no gas neighbor
and NN - no interface neighbor.
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Appropriate values of s, based on the neighboring status prevent undesired IF cell from being
filled or emptied (Thiirey & Riid, 2009). The value of s, can be defined from Table 4 based on
the neighboring status.

Table 4. Substituting s, of Eq.199 with the appropriate term given here forces the undesired interface
cells to fill or empty. In this table x,, denotes the position of the neighboring cell: x,, = x + dtc; (Nils,

2007)
Neighboring status of | Standard cell at X,,;, | No fluid neighbors at x,,;, | No gas neighbors at x,,;,
current and neighboring
cell
Standard cell at x i t) — fi(%) fiXnup t) —fi(x)
No fluid neighbors at x —fi(x) i, t) — fi(x) —fi(x)
No empty neighbors at x fiXpp, t) fiXnp, t) fiXnp, t) — fi(x)

The neighboring status of cells also helps to correct the evolution and the advection of interface
cell, properly. The free surface is discretized as interface cells, so that the motion of the free
surface must be represented by the transformation/advection of interface cells.

5.5.3 Interface advection

After the mass is updated over the entire domain using Eq.(337), the streaming and collision
steps for the fluid flow (Eq.(204)) are performed in order to obtain new macroscopic variables
(Eq.(200) and (201)) on the active cells. Since the density of the cell is updated by Eq.(200), the
interface cell might be transformed into a G or F cell based on the following criteria:

IF - Fwhenm(x,t+6t) > (1 + k)p(x,t + 6t) or

IF - G whenm(x,t + 6t) < (—k)p(x,t + 6t), (340)

where k (= 10-3) is the additional offset value for the emptied or filled threshold ignoring a cell,
which were previously treated. Depending on the filled or emptied status of the IF cell, the flags
of neighboring G or F cells should be changed and the cells should obtain appropriate mass
according to the excess mass distribution:

m(x + &tc;) = m(x + tc;) + me* (L) (341)

Ntotal

where m® is the positive or negative excess mass of the filled or emptied IF cell, and n, ., is the

sum of all weights n,, each of which is computed by the normal vector n on the free surface as

follows:
mi= (™ ifn-ci >0 g the filled cells, and
0 otherwise (342)
n; = {—n "G ifm Ci < O for the emptied cells.
0 otherwise

Depending on the filled or emptied status of the current cell (IF cell), further changes of the
neighboring cells flag are determined. Examples of the flag changes are given in Figure 56 (b)

© Ayurzana Badarch 115



§ RAERRTAT
and (c). Actually, the flags of the changed cells, i.e., the emptied or filled IF cells and their
neighboring G or F cells, are not allowed to change their real flags before the excess mass
distributed. Based on Eq.(340), these cells will have temporal transition flags during the excess
mass distribution. Moreover, the distribution functions of the newly generated interface cells
having temporal transition flags, which changed from G to the IF (shown in Figure 56 (b)), can
be initialized with the equilibrium distribution functions, as follows:

fixt) = f; “1(p®, u™), (343)

where f; %4 is the equilibrium distribution function for the fluid flow. The average macroscopic
variables, density p%” and velocity vector u®’, in Eq.(343) are computed using macroscopic
variables of surrounding non-gas cells and must be assigned as the variables of the newly
generated cells. Now, truly, the flags of cells are assigned as G, F or IF to interface cells leaving
the temporal flags. Then the estimation of the mass values takes place for the next time step.

5.5.4 Initial and boundary condition

Initially, if water (fluid) is at rest and the depth of water is considerable for a computation,
the hydrostatic pressure condition must be given in the initial condition to balance the force
field. This initial condition (Bogner, 2009) can be expressed in terms of density derived from the
barometric formula using p, = 3Py:

p(2) = ppe’®, (344)

where y is the depth of water in an initial state and P is the reference pressure at the free
surface. This initial condition also provides an excellent calculation for the hydrostatic pressure.

Right after the streaming step in the fluid flow, the free-surface boundary condition must be
imposed on the interface cells in order to recover the distribution functions that would be
streamed from cells for which the following condition holds:

(e o),

To derive the free-surface boundary condition, the detailed flux conservation equation can be

e(x+c;)=0orn-c; > 0,wheren = (345)

used. In that derivation, the free-surface boundary condition assumes that the fluid has a much
lower kinematic viscosity than the gas state (Thiirey, et al., 2005). Consequently, the free-
surface boundary condition is expressed in terms of the following distribution function:

ff ,(X, t+ 5t) = f; e (pA' U) + f;‘ e (pA! U) - fi(xl t), (346)

where p, is the gas density implicitly acting as an air pressure onto the free surface and the

velocity u is defined by using Eq.(201) in the previous time step or by initial condition at first.
Reconstructing the distribution functions by the free-surface boundary condition is shown in
Figure 56 (a).
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a b) |IF c) [IF reconstructed DFs
) (E f. ®) F;I o “IF © ¥ by the free surface BC
Il | g oy . P
[Ei. . B |IF IR _|IF IF R JIF Streamed DFs from
Mg - 442 /| fluid cells
T E B |1 ol | e || g e
£ E IF IF IR, IF cell is transforming
! -
IFIFIF EGG Fi into F cell (current cell)
F IF F IF IF G IF 4| Excess mass distribution
F F I IF IF IF ' to new cells

Figure 56. Free surface movement: (a) free surface boundary condition, (b) IF cell is being filled and
neighboring G cells recognized to change into IF cells and (c) IF cell is being emptied and neighboring F
cells recognized to change into IF cells.

This is only a boundary condition for the free surface. The bounce back scheme (Eq.(234)) is
imposed on the motionless wall interacting with IF cells to express the interaction of the free
surface with the solid surface.

5.6 Liquid-solid phase transitions in free surface flows

Hereafter, we discuss a particular LB solution for the liquid-solid phase transition in a free
surface flow as a proposed model. Boundary conditions for the moving solid interface resulted
by the phase transition will be discussed. The implementation of the proposed LBM is found in
Section 6.2.

5.6.1 Review of LB phase change modeling

A phase change (transition) is a physical phenomenon which shows the changes of uniform
physical properties of a matter. The phase change is often happened with the changes of the
thermal energy in the system. The thermal energy of the system can be explained by the entropy
of or simply the temperature field of the system. Among communities, conducting numerical
studies on phase changes by applying conventional methods, fixed spatial grid and front
tracking methods are extensively used in the confined domain (Hu & Argyropoulos, 1996),
(Virag, et al., 2006) without the free-surface condition. Recent models for a use in the
conventional method are effective, but cumbersome and require several systems of equations to
solve flows and phase changes, as well as adaptive or moving grids to clearly define
melting/solidification front and iterative techniques (Danaila, et al., 2014) to solve nonlinear
equations. However, phase changes in a natural convection flow remain a primary focus of these
studies. But there exist a plenty of phase change problems in open channels like the ice in the
rivers. Particle-based methods, which have an inherent ability to represent the free surface, are
beginning to be applied to melting and solidification problems in free surface flows (Iwasaki, et
al.,, 2010).

Skipping the advances in the continuum thermodynamic modeling, a brief review for the
application of LBM for the heat transfer is roughly emphasized here. The modeling of the heat
transfer in the LBM is introduced among with the other development of the standard LBM at
almost the same time. When Alexander et al.,, (Alexander, et al, 1993) introducing the first
multi-speed LBM for the thermodynamics extending the isothermal models explained in Section
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5.2, Bartoloni et al., (Bartoloni, et al., 1993) introduced the double distribution function
approach based on the idea of conventional numerical method for the thermodynamics. The
later one was an appropriate approach to be used for phase transition problems. Soon after,
Wolf-Gladrow (Wolf-Gladrow, 1995) proved that the lattice Boltzmann modeling of heat
transfer can be more attractive and advances for the numerical method by deriving the LBE for
the diffusion equation. Including the advection term to the equilibrium distribution function in
the LBE for diffusion can lead the advection-diffusion solution in the LBM. This formulation for
the ADE is modeled as a scalar field in the LBM having the second set of distribution function.
The double distribution function approach, explained in the Section 5.3, is used to model phase
transition problem in this thesis. The model adopted in this thesis was firstly introduced by
Jiaung et al., (Jiaung, et al.,, 2001) and later demonstrated by Hubert et al., (Huber, et al., 2008).

As of this writing, the liquid-solid phase change models in the LBM have not yet been applied
to a free surface water flow in the fields of hydraulics. The free surface LBMs coupled with the
phase transition in material science in (Attar & Korner, 2011) and (Ammer, et al., 2014) are the
pioneering works in this particular interest.

5.6.2 Liquid-solid phase change modeling

A liquid-solid phase change problem is often referred to as a Stefan problem, and basic
modeling approaches have been presented in (Alexiades, 1992) and a number of other studies.
When applying the LBM to a phase change problem, the complexities encountered by
conventional methods are a large extent eliminated. In the framework of the LBM, the problem
of heat transfer with phase changes can generally be solved by several approaches, such as a
phase field method or an enthalpy-based method (Chatterjee & Chakraborty, 2006). These
methods have been successfully tested and improved through application to metal
melting/solidification problems (Semma, et al., 2008), but have not yet been applied to free
surface water flows. As stated above, the numerical model uses two distribution functions
expressed through the lattices on a fixed grid: one for a flow field and the other for heat
transport, as shown in Figure 63. In the proposed method, the local enthalpy is updated non-
iteratively with a temperature field.

In the modeling of heat transfer with phase transition, the temperature field is considered to
be an essential variable and can be calculated by the following thermal lattice Boltzmann
equation with latent heat of fusion (Jiaung, et al., 2001):

gi(x' t) _gieq(x't) L
( - )— WiC—Z(lf(x,t —5t) — I (x, t)),(347)

gi(x+c;6t, t +6t) — g;(x,t) = —

where g;(x,t) is the distribution function of the temperature field, 7,(=3a + 1/2)is the
dimensionless relaxation time with respect to the thermal diffusivity «, Lj is the dimensionless
latent heat of fusion, ¢, is the specific heat capacity of water or ice and lf is the liquid fraction
defining liquid-solid region in a domain, shown in Figure 57. The liquid fraction value of 1
represents the liquid region in a domain, whereas 0 represents the solid region. Between 0 and
1 shows the interface zone in a single layer of cells. At the interface between a liquid and solid,
l(x) takes a value of between 0 and 1, where a “mushy” zone (Voller & Prakash, 1987) may be
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observed when conduction dominates heat transfer (Ayurzana & Hosoyamada, 2016) and can
be defined when the solidus and liquidus temperature are distinguished (Jiaung, et al., 2001).

- 7
(a) /// " o /// 7, (b)
B o G
//,’///,/
S =
—_— e IF —
V S, // e V
S
___:M ALl S =
il S A
¥ i
lf=10 g / lf—0.0/ lf=l.0 g
o /// ////// z sy
7. s
////////////
//// b //// F
% ///, oA
S ,/ s
liquid mushy solid water  interface ice

Figure 57. Liquid and solid regions in a computational domain: (a) single phase flow domain, (b)
multiple-phase flow domain (for instance ice in free surface flow)

The specific heat capacity and thermal diffusivity must be defined appropriately in the
computational cell depending on the cell type:

a= (1 - lf(x)) a' + L (x)a" e and

. (348)
¢ = (1= 1:®) i + L @)cyer,

where the superscripts ice and water indicate the thermal diffusivities and specific heat
capacities of ice and water, respectively. The specific heat capacity of water in lattice form can
be obtained from the Stefan number,

CwaterAg
st ="L——f (349)
Ly
and is related to the specific heat capacity of ice as

R,ice ice

‘p Cp
R,water = water * (350)
Cp Cp

The Stefan number in the simulations of the present study can be defined by Eq.(349) either
using real values or lattice values. The equilibrium distribution function of the temperature field
can be given as

8
eq _ c;-u . _
g; =wif|1+——| witho = i, (351)
i=0

Cs

and the macroscopic temperature T can be converted into a dimensionless temperature 6 as
follows:

T. —T
T = _max _melt (9 - gmelt) + Tmelt . (352)

emax - gmelt

After the dimensionless temperature evolution, the local enthalpy, obtained by
En = c,0 + [;(x,t — At)Ly, (353)

can be used to linearly interpolate the liquid fraction,
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0 for En < Eng = cp0mers

En — Eng ’

1 forEn>Eng+ L, =En
lf(x) ={
km fOTETlS SEnSEnS+Lh

(354)

and the liquid fraction defines the liquid (water) and solid (ice) phases in a domain. The model
does not require iteration for the local enthalpy, since it was reported that the enthalpy update
without iteration has negligible effects (Huber, et al., 2008). And also the model uses exact
thermal properties for phases, which are often neglected in existing numerical methods, i.e., the
thermal properties of the liquid are used for both the solid and liquid phases.

The force F experienced by the density difference (variation) induced by the temperature
difference can be defined with the acceleration of gravity according to non-Boussinesq
approximation (Tong & Koster, 1993) for the buoyance as

F=g(l—ay(8-6,)%) (355)

where g is the dimensionless acceleration due to gravity, ay, is the thermal volume expansion of
water, and 6, is the dimensionless reference temperature at the maximum density of water. The
value of ga;, can be defined in terms of the Rayleigh number (Ra) definition as

— gﬁ(Thot - Tcold)H3
va '

Ra (356)

For the heat transfer module, Eq.(347) can recover the following dimensionless macroscopic
equation using the multiscale expansion:

tUug—=
ot “ox,

26 00 A\ 920 Ly dl;
(Th - 2) ot

2
— -2 7
9x2 ¢, ot (357)

a
where the heat source term, i—h% is directly derived from the last term in the right hand side of
P
Eq.(347) (Jiaung, et al., 2001). A general procedure to derive the macroscopic equation from the
LBE is given in Appendix A2.

5.6.3 Models for moving liquid-solid interface

In order to evaluate a moving melting/solidification front, a liquid fraction value can be used
to reflect DFs on a surface of a solid zone. The effect of the solid region can be simulated easily
in the LBM using the probabilistic boundary condition or the immersed boundary condition.
The probabilistic or partial-bounce back boundary conditions are introduced to model porous
media flow. The three types of method of the probabilistic boundary conditions, namely
outgoing bounce-back (Dardis & McCloskey, 1998), post-collision bounce-back (Thorne & Sukop,
2004), and pre-collision bounce-back (Walsh, et al, 2009) are compared and evaluated in
(Walsh, et al,, 2009). The first two probabilistic boundary conditions do not require additional
modification for the determination of macroscopic variable, however, in some cases, the mass
conservation is not ensured as reported in (Walsh, et al,, 2009). However the later one, the pre-
collision bounce-back shows better performance in terms of accuracy and efficiency, one need
to consider the modification for the estimation of the velocity field (Walsh, et al., 2009). Based
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on porous media flow simulation and the new simulation step (e.g. the outgoing bounce-back
(Dardis & McCloskey, 1998)) can follow after the normal collision process,

1
Frxt+6t) = (%) +;(fieq(x, - f{(xt), 0<i<8

as
fix, t+8t) = fi"(x, t + 6t) + ng[fi7"(x+ ¢;6t) — ;" (x,t)], 1<i<8, (358)

where ng(= 1 — I) is a solid index, f;"(x,t) is the post streaming DF from the previous time,
fi7(x,t + 6t) is the post collision DF before the porous step, and 7 subscript is the opposite
direction to i. A numerical procedure of the partial-bounce back boundary treatments for the
both problems, porous media flow and liquid-solid moving boundary, is the same as given above.

Similarly, the immersed boundary condition also can be used to impose no-slip velocity
boundary condition on a liquid-solid interface and the first application was carried out in
(Huang, et al,, 2013). More details about the adoption and application of liquid-solid phase
transition in a free surface flow (Ayurzana & Hosoyamada, 2016), (Ayurzana & Hosoyamada,
2017) are discussed in Section 6.2 and in Chapter 7 and 8.

5.7 Immersed boundary method

5.7.1 Immersed Boundary LBM

A fluid flow is always bounded by solid surface or interacted with the solid body. If a solid is
moving, a numerical solution, even a mathematical modeling for the effect of a moving boundary
in a fluid flow becomes complicated. In the early development of the conventional numerical
method, the treatment of a moving body or surface was required the continuous grid generation
for each simulation step and additional solution process (Guo & Shu, 2013). As the immersed
boundary method is introduced, the pre-existing these difficulties in numerical method was
eliminated. Because the boundary condition on the solid surface, which does not need to be fit
conform a Cartesian grid, can be imposed as the modification of the fluid governing equation
(Peskin, 1977). In general a surface of solid does not intersect with the grid node, so some of the
computational cells will be cut. The effect of cut cells can be treated in several ways, such as a
continuous forcing approach, a discrete forcing approach and cut-cell methods (Mittal &
laccarino, 2005), (Bandringa, 2010). Early work of the immersed boundary method coupling
with the LBM had done by Noble and Torczynski (Noble & Torczynski, 1998), who had
introduced the immersed boundary modification into the discretized LBE without losing the
generality. The next attempt to adapt the conventional numerical concept for immersed
boundary into the LBM was done in (Feng & Michaelides, 2004), where the restoring force term
was estimated and added to the LBE. Inspired by the simplicity of Noble and Torczynski’s
solution for an immersed boundary method, the further developments on that solution were
extendedly studied by Strack and Cook (Strack & Cook, 2007) and others. The immersed
boundary modification is reasonably formulated from the mass and momentum balance
perspective. With the immersed boundary modification, the discretized Boltzmann equation in
Eq.(204) is rewritten as
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fi(x + c;6t,t + 6t) — fi(x,t) =
ot(1—-p)

Ttot

(6 = £, %1 0) + Bf; "(x,£) + 6tA,, (359)

where c; is the discrete unit velocity in the i direction, 7;,; is the dimensionless relaxation time
with respect to the lattice viscosity v and is adjusted with the sub-grid scale turbulent model
(Hou, et al,, 1996) explained in Section 5.4.3, and £ is the parameter given by (Strack & Cook,
2007)

sf(t—0.5)
- sf) +(t—-0.5)

B(ss,T) = a (360)
in which s¢ (%, t) is the solid fraction value of the cell, which takes a value between 0 and 1. Solid
fraction values of 0 and 1 represent the fluid (water) and solid (ice), respectively, as shown in
Figure 57. In Eq.(360), the total relaxation 7;,; can be used instead of the relaxation time 7. The
immersed boundary modification can be used for not only dynamic separation of solid (ice) and
liquid (water) phases, but also for a moving body (e.g. moving ice) in a fluid flow. An additional
collision term f;™ is for cells partially or fully covered by a solid, i.e., ice cell, is given as

fi m(x’ t) = ff(xi t) - fi(xl t) + f; eq(P; us) - ff eq(P: ll), (361)

where ug is the velocity of the moving solid, which set to 0 for some study, i.e., the ice is fixed. It
is visible that the additional collision in Eq.(361) is based on the concept of a bounce-back for
the non-equilibrium part of the distribution function.

(@) Partially (b) T
covered cells Fully covered s =0.
— cells //""‘\ lleo
e s y \
/ \‘. j{\ A0 N
{ — ._~®
\ / W= 0.0//
/ AN
/‘ e \ / | L
physical boundary next position previous position computational
boundary

Figure 58. Immersed body discretization on Cartesian grid at two subsequent of time: (a) initial position,
(b) next position.

5.7.2 Immersed boundary method for phase change

To apply the immersed boundary modification into a liquid-solid phase transition is straight
work except the liquid fraction value need to be inserted instead of the solid fraction value.
Those two variables are contrasted to each other as shown in Figure 58. For liquid-solid phase
transition problem, the Eq.(360) becomes

1—-1)(r—0.5)
lr+(t—05) ’

Bl T) = ( (362)

in which l¢(x,t) is the liquid fraction value of the cell, which takes a value between 0 and 1.

Liquid fraction values of 0 and 1 represent ice (solid phase) and water (liquid phase),
respectively, as shown in Figure 57.
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5.7.3 Arbitrary shaped floating body simulation

A moving solid body in the fluid flow can be effectively simulated with the immersed
boundary (IB) modification into the discrete Boltzmann equation (see Eq.(359)). Noble and
Torczynski’s version of the IB method generates the smooth hydrodynamic force for a fluid flow
and solid motion. We firstly proposed an algorithm to use the immersed boundary LBM to the
floating object in the single phase free surface LBM (Ayurzana & Hosoyamada, 2018). Floating
ice in free surface flow is an arbitrary shaped floating body because body shape changes over
time due to its phase change. In the explanation, we use an ice body in example of floating solid.
First, the force and the torque acting on an ice covering n cells are simply modified as:

8
. Ax? m
f=sar 2B ) Il

n i=0
8 )

_— szz( ) Z "

f_SAt X, — Xc) X ﬁ,_ofiCi

where s is the submerged volumetric percent of the floating ice body (Figure 59 (c)), x,, is the

(363)

coordinate of the current cell, X, is the coordinate of the central cell of the floating body, as
shown in Figure 59 (b). The hydrodynamic force acting on the submerged part depends on the
situation of the body position.

The motion of the ice body is resolved by the equation of motion:

dx F,+F
m— =
) 364
1 dw ] (364)
dt 7/
where m is the ice mass [kg], I is the moment of inertia of the body [kg m?], w is the angular

velocity [rad s1],F, = g(p. Ai.

[N], Agyp is the area of the submerged part the floating body [m?2]. The equation of motion should

— PyaAsup) is the buoyance force in two-dimensional space

ice
be solved by the FDM explained in Section 3.2.2 and the implementation for the floating body
can be found in Section 6.5.

If phase changes of water take place around the interface between ice and water, mass and
shape of the ice body will be changed over time. The changes of the body will effect on the value
of every physical variables of the body at each time step. To enable body shape changes over
time or to simulate arbitrary shaped body, the algorithm must use the body shape of previous
time step for the computations in the current time step. In addition, the staircase discretization
of a body may generate an error and the accumulation of the error leads unphysical body shape
changes for a moving body. To avoid this unphysical body shape change and to reduce error
accumulation on the body shape, an integer center of mass for the moving body is introduced in
Eq.(363) and it must be residing on the lattice node in order to discretize ice body into the
computational domain. The integer center of mass x. should be obtained from the real center of
mass X, defined by Eq.(364), see Figure 60 (a). Moreover, the movement of the ice body
requires a special care for the cell types. When the ice body moves to a new position, previous
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cells, which are being released from the occupied cells by the ice body, need to be converted into
appropriate cell types (Figure 60 (b)).

(a) Air (b) 7T jq
g ey %] A
Water 7
(c) Submerged -
sand A, The water cells

Figure 59. Floating ice on the free surface: (a) a general view, (b) discretization into 2D grid and (c) the
representation of the submerged part implying displaced water by the floating ice.
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Figure 60. Movement of ice body: (a) Released and newly occupied cells and the centers, (b) letter flags
on the cells show their changes due to the movement of ice body.

As the ice moves, newly occupied cells by the ice body are correctly initialized with the
thermal and physical variables of the ice at the current time step. For instance, a temperature
field of ice must be translated and rotated with the ice body movement to maintain the fields
inside the ice. The same numerical procedure should be applied for the thermal distribution
functions, as well as physical and numerical variables unique for the ice cells. This translation
and rotation of the variables can be done by storing variables into temporal polar coordinate
fields originated at the integer center of the ice body. Then the variables initialization for the
cells of a new position of moving ice body uses the stored variables in the polar coordinate after
the ice movement. This is most critical implementation of the moving body algorithm, since the
phenomena inside the solid body are a major for the computation.

If gas cells are newly occupied by the ice body discretization, shown in Figure 60 (a), they
mainly become IF cells and distribution functions for them need to be reinitialized with
Eq.(343). The mass of a released IF cell, which are going to be G cell, need to be distributed
among the neighboring IF cells as Eq.(341) in order to ensure the mass conservation. This
algorithm for a floating object is also applicable for the fully immersed body simulation, such as
bed forming and sedimentation.
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6 NUMERICAL IMPLEMENTATION

So far, we have discussed the theory and methods of different LB models from different interest
of application. Here we shall give the pseudo codes to explain the implementation of these LBM.

6.1 Free surface flow modeling by the LBM

Before the implementation of the free surface LBM, the widely applied implementation for
the discretized Boltzmann equation, the collision and streaming scheme, should take a place.

6.1.1 General implementation of lattice Boltzmann method

As often addressed, the very attractive feature of the LBM is its simplicity of the
implementation. The LBM inherited the collision-streaming paradigm from the ancestor the LGA
(Guo & Shu, 2013) (A.A.Mohamad, 2011) (Alexander, 2008). The collision-streaming paradigm
is a base for the different implementation versions depending on the computer language in use
(Latt, 2007). In the collision-streaming paradigm, the discretized lattice Boltzmann equation
Eq.(204) is divided into two equations, namely

Collision: f';(x,t) = fi(x,t) + Tl (ff" = f;) + A; and (365)

Streaming: f;(x + &x,t + 6t) = f';(x,t) . (366)

There are two fashions for the collision-streaming paradigm, depending on which step
(equation) is solved first in algorithmically, so called collision-streaming fashion and streaming-
collision fashion. They are conceptually identical, however, they leads different result in some
cases. For instance, the results depend on the initialization for the distribution functions.
Generally, the following two initializations can be used for the initial value of distribution
functions as

filt=o = wipor fi|i=o = fieq . (367)

It is obvious from Eq.(367) that the initial condition for velocity field will define the differences
in the results. The most studies use the collision-streaming fashion with the second initialization
of Eq.(367) for the distribution function. In this thesis, we use the streaming-collision fashion
with the shifted initialization with Eq.(367) depending on the problem. We do not use two
distribution functions for f; and f’;, since the streaming step is coded to be not overwrite or
destroy data from the storage. An algorithmic scheme of the general computational procedure
for the LBM is given in Figure 61 with the inclusion of the free surface algorithm.

© Ayurzana Badarch 125



|, REEM A FRFE

Nagaoka University of Technology

To capture the free surface,

Initialization additional variables m, € are added

Variable declarations, loading geometry, recognizing the to computation. Each cell must be
computational domain, initialize the constants and variables p, || identified by flags. If moving body is
u, f; at t=0, defining control parameters t, v presence, solid/liquid fraction must
be inciluded
/ \ Before the streaming step, mass
transfer between cell must be

Main computational loop performed.

A free surface boundary condition

£

- Streaming step. - I should follow the boundary
- conditions
- Boundary conditions. &
- Calculate macroscopic variables p, u. For free surface flow, a stabilization
o o s | technique or a turbulent model
- Calculate equilibrium distribution function £, perform the need to be introduced to adjust the
collision. Body forces/source terms are considered here. control parameters. It should be
Repeat until convergence before the collision step
or time criteria match. Free surface tracking with the

\ / excess mass distribution.

Post processing

Figure 61. General computational algorithm for the LBM with inclusions of a free surface algorithm.

As shown in Figure 61, the LB numerical algorithm including equations is very simple. A
computation is straightforward and no iteration is required. The macroscopic variables will be
defined from the distribution functions, which are the main variables in a LB simulation. The
macroscopic variables are used for the computation of equilibrium distribution function. In
some case, it is adequate to compute the equilibrium distribution function separately from the
collision. In the following, we give the implementation of the above algorithm with the
pseudocode using the Fortran 77 programming language.

6.1.2 Implementation of free surface LBM

To solve a free surface flow, the general flow of the algorithm with the equations of the LBM
is not destroyed. Instead the inclusions from the free surface flow modeling is inserted where
the procedure takes place in, as shown in Figure 61.
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Figure 62. Explanation of streaming process for D2Q9 lattice arrangement. The distribution function of 0
direction, f;, is not shown here because f, don’t leave its location.

Generally, two subroutines, massev and change, are added to the basic algorithm of the LBM, as
seen in Code 1. The pseudo-code is devoted to explain the basics of the algorithm and is
possible to extend it to an in-house serial code. Note that the pseudo-code listed in the thesis is
not advanced or efficient implementation for the free surface-lattice Boltzmann method.

Code 1: Main program of the free surface lattice Boltzmann simulation

1 program free surface
2 include 'paramc.h'
3 open (*,file="**** _dat"') ! new files for result printing
4! Initialazation
5 compute dimensionless number
6 compute viscosity or relaxation parameter
7 call initial !where initialize the variables and distribution functions
8 '!as well as flagging for each cell
9 ! main computational loop
10 DO kk=1,mtotal ! discrete time step (lattice time step)
11 time=kk*dt ! dt is physical time step in second
12 call massev ! mass evaluations on cells
13 call streaming ! streaming for the distribution functions (DFs)
14 call fluidbound! boundary conditions for DF's
15 call densvel ! evaluation of macroscopic variables
16 call subgrid ! sub-grid scale model for turbulent
17 call collision ! collision for the DFs
18 call result ! printing results
19 call change ! updating of cell information for the free surface
20 check the time criteria
21 END DO
22 ! end of the main computational loop
23 stop
24 end

25 ! end of the main program

Every global variables in the code are declared in the header file, paramc.h, so that
subroutines don’t need to mention the arguments used in it. The computation of the control
parameters, such as viscosity or relaxation parameter, is a less complicated issue and will be
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described in Section 6.3, because it is related to the scaling of the macroscopic variables. For
simplicity, we describe each subroutine embedded in Code 1 by giving their pseudocodes.

In the initialization, all variables in the code need to get initial values as well as constants like
lattice weighting and discrete velocities. This subroutine, Code 2, contains the realization of the
geometry of a computational domain with the boundaries. The main implementation of a free
surface model is the marking cells by assigning the flags as material, depicted in Figure 54.
Flags can be logical, character or integer depending on programming design, since the code does
not use them for an arithmetical operation. Generally the flagging makes much easier to
implement operations for the LBM as well as to implement boundary conditions. After
initializing the macroscopic variables, the initialization of the distribution function takes place
with Eq.(367). Another important thing for the implementation is to use another set of flagging
to possess the status about the neighboring information.

Code 2:Pseudocode for initialization for LB simulation.

1 subroutine initial
2 include 'paramc.h'
3 integer icc(0:n,0:m) !temporal memory
4
5 open (**,file='gridData.dat') !loading the grid data
6 do j=m,0,-1
7 read (**,*) (icc(i,7),1=0,n)
8 end do
9 ! lattice constants
10 w(:)=(/4./9.,1./9.,1./9.,1./9.,1./9.,1./36.,1./36.,1./36.,1./36./)
11 cx(:)=(/0.0,1.0,0.0,-1.0,0.0,1.0,-1.0,-1.0,1.0/)
12 cy(:)=(/0.0,0.0,1.0,0.0,-1.0,1.0,1.0,-1.0,-1.0/)
13 ! density. velocity, fluid fraction, mass, flag and DFs are initialized.
14 do i=0,n
15 do 7=0,m
16 rho(i,3j), p(i,j), tau(i,j)=1./ome ! initial values
17 ! use Fig.25 to mark cells by flag
18 if(icc (i, ) .eq.free surface) then
19 flag(i,j), u(i,3j), v(i,J), e(i,j), ma(i,j) !'for interface cell (IF)
20 else if (icc(i,j).eq.fluid) then
21 flag(i,j), u(i,j), v(i,3), e(i,j), ma(i,j) !'for fluid cell (F)
22 else if (icc(i,j) .eq.solid) then
23 flag(i,j), u(i,j), v(i,j), e(i,j), ma(i,j) 'for solid cell (9)
24 end if
25 ! initialization for the DFs
26 do k=0,8
27 f(k,i,9)=w(k)*rho(i,j) 'Eq.(367)
28 enddo
29 end do
30 end do
31! initial neighborhood imformation
32 do i=0,n
33 do 7=0,m
34 assign the neigboring information on the cell ! use Figure!55
35 end do
36 end do
37
38 return

Y Ph.D. dissertation 128



o SR PR

MNagaoka University of Technology

39 end

After the initialization, the main loop takes place until the convergence or total time meets
with time criteria. In the main loop, Code 1, totally seven main subroutines are included to
accomplish the tasks for the free surface flow modeling (massev and change), streaming-
collision fashion for the LBM (streaming, fluidbound, densvel and collision) and turbulent
modeling (subgrid).

A subroutine for the mass exchange between the cells is not a trivial thing. It is carried out by
using the concept explained in Section 5.5.2. Generally, the mass exchanges between the fluid
cells (F cell) can be ignored, because they have the same values of fraction in terms of free
surface. An attention must be paid to the interactions between the cells that have unequal
values of fraction. In other words, interface cells (IF cells) must be a center for the
implementation. An IF cell exchange mass with F cells and IF cells, which exist in adjacent to the
current cell. If the current cell is F cell, the mass exchange with the adjacent IF cell is simply
calculated by Eq.(338). However, if the current cell is IF cell, we need to consider the
neighboring status for the current cell and the mass exchanging pair using Table 4. Then the
total mass of cell is updated with Eq.(337) for all IF and F cells.

Code 3: Subroutine to compute the mass exchanges between cells

1 subroutine massev

2 include 'paramc.h'

3 real delm(1:8,0:n,0:m) ! mass change in specific direction
4 do i=0,n !computational domain

5 do 7=0,m

6

7 if(flag(i,j) .eq.1l) then ! F cell
3 do k=1,8

9 delm(k,i,j)=use Eq.338
10 end do
11 ma(i,j)=ma(i,j)+tasum ! Eq.198
12 else if(flag(i,Jj).eq.2) then ! IF node
13 do k=1,8

14 delm(k,i,9)=use £q.339 with Table 4
15 end do

16 ma (i, j)=ma (i, J)+asum ! F7337
17 end if

18

19 end do
20 end do
21
22 return
23 end

The streaming step is simple for D2Q9 lattice arrangement, as shown in Figure 62. In the result
of streaming process, some set of distribution functions will be missed at boundaries. Those
missed distribution functions are reconstructed by the boundary conditions explained in
Sections 5.2.3 and 5.5.4 for the fluid flow.

Code 4: Subroutine for the streaming step

1 subroutine streaming
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2 include 'paramc.h'
3 ! streaming

4 use Figure 62

5 return

6 end

In a subroutine for boundary conditions (Code 5), we give a full implementation of few
boundary conditions which can be used for the two dimensional channel flow: an inlet
boundary on the left, blocked by solid at the bottom and the top surfaces and an outlet boundary
on the right. As mentioned above, the single-phase free surface LBM ignores the gas cells for
every operation. In addition, the gas and solid cells are only used to impose the boundary
conditions.

Code 5: Subroutine to impose boundary conditions

L subroutine fluidbound
2 include 'paramc.h'
3
. nx=0.
ny=0.
5
6 . o
- ! bounce-back boundary condition for obstacle Eq.233
8 do i=0,n
9 do j=0,m
10 if(flag(i,J) .eq.0) then
do k=1,8
11
17 op=opp (k)
13 if (flag(i+cx(k),Jj+cy(k)) .eq.2
14 & .or.flag(i+cx(k),Jj+cy(k)).eq.1l) then
L £(k, i+cx (k) , j+ey (k) ) =f (op, i+ex (k) , +ey (k)
endif
16
enddo
17 .
endif
18
enddo
19
20 enddo
21! Velocity boundary condition for inlet Eq.250*253
29 do j=1,m
23 if(flag(0,7) .eq.l.0r.flag(i,j) .eq.2) then
24 uo=known velocity
5 vo=known velocity
26 rhow=£(0,0,3)+f(2,0,3)+f(4,0,3)+2.*(£(3,0,3)+£(6,0,3)+£(7,0,73))
27 rhow=rhow/ (1.-uo0)
28 £(1,0,7)=f(3,0,7)+2.*rhow*uo/3.
29 £(5,0,7)=f(7,0,7)+rhow*uo/6.+0.5*rhow*vo
30 £(8,0,7)=f(6,0,7)+rhow*uo/6.-0.5*rhow*vo
31 endif
32 enddo
33 ! Outflow boundary condition for outlet
34 do j=0,m
35 if(flag(n,Jj).eq.l.0or.flag(n,j) .eq.2) then
36 £(3,n,3)=£(3,n-1,7)
37 f(6,n,j):f(6,n—1,j)
38 f(;trflr]):f(7ln_1lj)
39 endi
40 enddo
41 ! free surface boundary for interface
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42 do i=0,n
43 do j=0,m
44 if(flag(i,j) .eq.2) then
45 use Eq.346
46 endif
47 enddo
48 enddo
49
50 return
end

After successful treatment of streaming, including boundary conditions, a subroutine (Code
6) to calculate the macroscopic variables will take place in the code. The density, velocity and
pressure, if necessary the vorticity, the streamlines and the shear stress, can be calculated in
this subroutine.

Code 6: Subroutine to calculate the macroscopic and hydrodynamic variables.

subroutine densvel

; include 'paramc.h'

3

4 do j=0,m

5 do i=0,n

6 do k=0,8

7 rho (i, j)=use Eq.200

8 if Eg.112 is used

9 u(i,j)=use Eq.201

10 v(i,])=use Eq.201

11 else if Eq.206 is used
12 u(i,j)=use Eq.209

13 v (i, )=use Eg.209

14 end if

15 end do

16 p(i,j)=rho(i,Jj)*RT !Pressure Eq.155
17 end do

18 end do

19
20 return
21 end

After the calculation of the macroscopic variables, the collision step must be performed in
terms of numerical procedures. If a flow is a turbulent or unsteady, one should incorporate with
a turbulent model or a stabilization technique to secure the successful simulation. In our case,
we use the sub-grid scale turbulent model to adjust relaxation time to locally defined relaxation
time to capture the turbulent structure, in addition to stable a simulation. The implementation
of the sub-grid scale model is given in Code 7.

Code 7: Subroutine for the sub-grid scale turbulent model

1 subroutine subgrid

2 include 'paramc.h'

3 cc=suggested value ! smagorinsky constant
4

5 do i=0,n

6 do 7=0,m
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7

8 if(flag(i,j).eq.l.or.flag(i,J) .eq.2) then !only for F and IF
9 do k=0,8
10 compute feqg(k,i, )
11 compute Pab with Eq.324
12 end do
13 compute Sbar with Eg.323

14 cmpute tau(i,j) with Eq.322 or Eq.325
15 end if

16

17 end do

18 end do

19
20 return
21

end

In the collision step (Code 8), the most of variables in the code are used. For instance the
density and velocities are used to calculate the equilibrium distribution functions. The
distribution functions after streaming and boundary conditions are used to derive the post
collision distribution function for next time step. The local relaxation time defined by the sub-
grid scale turbulent model is also used for the collision operator.

Code 8: Subroutine for the collision step.

1 subroutine collision

2 include 'paramc.h'

3

4 ! force on fluid

5 do i=0,n

6 do j=0,m

7 if(flag(i, ) .eq.l.or.flag(i,j) .eq.2) then
8 compute force with Eq.203 or Eq.206

9 end if
10 end do
11 end do
12 ! collision ste
13 do i=0,n

14 do j=0,m

15 if(flag(i,Jj) .eq.l.0r.flag(i,]) .eq.2) then
16 do k=0,8

17 compute feq(k,1i,j) with Eq.193

18 perform collision f(k,1i,7J) with Eq.365
19 end do
20 end if
21
22 end do
23 end do
24
25 return
26 end

Now it is time to update flags for each cell based on the fluid fraction value which in turns
relates to the cell mass. A subroutine to do cell updates will be the last unit, where a free surface
motion is tracked with the movement of IF cells and mass distribution to the new cells are made.
The mass conservation is ensured here.
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Code 9: Subroutine to perform the free surface movement related cell information update

1 subroutine change
2 include 'paramc.h'
3 real sumw(0:n,0:m),mex(0:n,0:m) !sum of weight to distribute an excess mass
4 real averh,aveuu,aveuv !an average density and velocities
5 integer tempflag(0:n,0:m) !temporal flag
6
7 temporary flag setting on each cell
8 do §=0,m
9 do i=0,n
10 if(flag(i,j).eq.2) then ! only for IF cell
11 use Eq.340 to assign temporal flags
12 end if
13 end do
14 end do
15 ! changing the neighboring flags
16 ! bacause of ordering current cell flag change
17 do 7=0,m
18 do i=0,n
19 if (tempflag(i,]).eq.IFF) then ! IF to F cell
20 do k-1,8
21 use Figure 56
22 compute averh, aveuu, aveuv ! average variables of
23 !'surrounding non-gas cells
;é f(k,i+tcx (k) ,j+cy (k) )=use Eq.343
26 flag(it+tcx (k) ,j+cy(k))=2 ! newly generated cell
57 end do
end if
ii end do
end do
ii do 7=0,m
32 do i=0,n
33 if (tempflag(i,j) .eq.IFG) then ! IF to G cell
34 do k=1,8
. use Figure 56
36 compute averh, aveuu, aveuv ! average variables of
37 !'surrounding non-gas cells
18 f(k,i+tcx (k) ,j+cy (k) )=use Eq.343
39 flag(i+tcx (k) ,j+cy(k))=2 ! newly generated cell
40 end do
a1 end if
47 end do
43 end do
44 ! excess mass determination and distribution
45 do j=0,m
46 do 1i=0,n
47 use Eq.341 and 342
48 end do
49 end do
50 ! volume fraction change
51 do j=0,m
52 do i=0,n
53 compute e(i,j) from ma(i,j)
54 end do
55 end do
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56 ! temporary flag is changed to major flag
57 do j=0,m
58 do i=0,n
59 flag(i,j) 1is assigned based on
60 tempflag(i,j) which will be deleted
61 end do
62 end do
63 ! set neigboring information on IF cell
64 do 7=0,m
65 do i=0,n
66 assign the neigboring information on the cell ! use Figure 55
67 end do
68 end do
69
70 return
end

From the subroutines embedded in Code 1, we don’t give the subroutine called resuit. This
subroutine will have not only printing the results, but also scaling the macroscopic variables to
the dimensional variables using the scales. The scales and the aforementioned control variables
are tied to the dimensionless numbers. We will discuss about it in Section 6.3.

6.2 Coupled algorithm for free surface and phase change
modeling

6.2.1 Direct integration

As described in Section 5.6, the computational model use two set of distribution functions;
one for fluid flow, another one for scalar field which is a temperature field in our case, as shown
Figure 63 (b). When the two modules use the same time step, the modules are integrated as a
direct integration. Fortunately, the implementation of a coupled algorithm for a free surface
flow and heat transfer modeling with phase change in direct integration is quite straightforward.
Additional variables devoted for heat transfer and phase transitions will be inserted to
subroutines as additions. For instance, the liquid fraction value, lf, is assigned to F and IF cells to
distinguish a cell either water or ice. If a cell is an ice, it should be treated as a solid cell, but
having the distribution functions to continuously define the macroscopic variables. Just like the
free surface algorithm, the distribution functions of the scalar field are only calculated on the F
and IF cells.
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Figure 63. Schematic description of the coupled numerical model: (a) free surface representation with
cell types and the possibilities of mass exchange between cells, (b) a description of two sets of
distribution functions model for fluid flow and temperature field.

The numerical model for a liquid-solid phase transition in a free surface flow will have totally
ten subroutines, the seven of which is described in Section 6.1. The rest of three subroutines are
added to the evolution of temperature field and the estimation of phase transition. The main
program is given in Code 10 for the numerical model for a liquid-solid phase transition in a free
surface flow.

Here, we only give the specific subroutines for the scalar field. We just mention tips or hints
for the modifications or additions due to a scalar field to the fluid flow modeling subroutines. In
the initial subroutine, the variables like th(i,3), 1f(i,j) and En(i,j), and the
distribution functions of the scalar field are initialized. In the mass exchanging subroutine
massev, the mass exchange with an ice IF cell must be disallowed, as shown in Figure 63 (a). It
is the same for ice F cells. An ice IF cell means that the cell is IF, but having lf = 1.0 for its liquid
fraction value. The streaming step is the same for a fluid flow and scalar field. Only one
subroutine streaming can work for two sets of the distribution function, since the lattice
arrangement for two modules is the same.

Code 10: Main program for the liquid-solid phase transition in free surface flow modeling

1 program phase free surface
2 include 'paramc.h'
3 open (*, file="'**** _dat"') ! new files for result printing
4 ! Initialization
5 compute dimensionless number
6 for fluid flow and scalar field
7 compute viscosity or relaxation parameter
8 for fluid flow and scalar field
9 call initial !where initialize the variables and distribution functions
10 'as well as flagging for each cell
11 define time cycling !if code uses different time steps
12 ! main computational loop
13 DO kk=1,mtotal ! discrete time step (lattice time step)
14 time=kk*dt ! dt is physical time step in second
15 call massev ! mass evaluations on cells
16 call streaming ! streaming for fluid flow
17 call fluidbound! boundary conditions for fluid flow
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18 call densvel ! evaluation of density and velocity
19 call subgrid ! subgrid scale model for turbulent
20 call collision ! collision for fluid flow

21 call coll scal ! collision for scalar field

22 call scalbound ! Boundary conditions for scalar field
23 call streaming ! streaming for scalar field

24 call scalcalcu ! evaluation of scalar variable

25 call result ! printing results

26 call change ! updating of cell information for the free surface
27 check the time criteria

28 END DO

29 ! end of the main computational loop

30 stop

31 end

For the subroutine collision, we must consider the external force (Eq.(355)) induced by a
scalar field, for instance, it is a buoyance force in a fluid flow because of the relation between
density and temperature. Furthermore, a treatment for the moving boundary condition, i.e. the
interface between liquid (water) and solid phase (ice), for the fluid flow must be implemented
using either the probabilistic boundary condition or the immersed boundary method explained
in Section 5.6.2 and 5.7, respectively. The treatment of boundary condition, Code 11, can follow
the collision step directly, if the probabilistic bounce-back condition is used.

Code 11: Addition to the collision subroutine to account liquid-solid interaction

probabilistic boundary condition after collision, Hq.358
do i=0,n
do j=0,m
amda=1.0-1f (i, 7)

do k=1,8
op=opp (k)
f(k,1i,J)=£f(k,1i,7)+amda* (f (op,it+tcx(k),j+tcy(k))-f(k,1i,3))
end do

end do

end do

O W 00 J o U b W N

[

Generally, after the streaming-collision fashion for fluid flow, the collision-streaming fashion
for a scalar field, which can be the streaming-collision fashion just like a fluid flow counterpart,
takes a place. The collision step for the scalar field is much easier than that of the fluid flow
module. However, the evolution of the distribution function requires the liquid fraction values
at current and old time steps to account the latent heat source.

Code 12: Subroutine of the collision step for the evolution of temperature distribution function

1 subroutine coll scal

2 include 'paramc.h'

3

4 do i=0,n

5 do j=0,m

6 if(flag(i,Jj) .eq.l.0r.flag(i,]) .eq.2) then
7 define thermal properties for the cell
8 using Eq.348 and Eq.285

9 do k=0,8
10 geq(k,i,7)= use Eq.283
11 g(k,i,7)= use Eq.347
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12 end do

13 endif
14 end do

15 end do

16

17 return

18 end

The boundary conditions for the scalar field must be separately treated as given in Code 13.

Code 13: Subroutine for the boundary conditions for heat transfer and phase transition

1 subroutine scalbound
2 include 'paramc.h'
3 ! adiabaric condition on solid surface
4 do i=0,n
5 do j=0,m
6 if(flag(i,j) .eq.F and IF cell) then
7 do k=1,8
8 if(flag(itcx(k),Jj+cy(k)) .eq.S cell) then
9 g (opp (k) , 1,3) =g (opp (k) , i-cx (k) ,j-cy(k)) !Eq.309
10 end if
11 end do
12 end if
13 end do
14 end do
15 ! Constant temperature boundary condition at inlet.
16 do j=0,m !Dirichlet Boundary - 2
17 if(flag(0,7) .eq.F and IF cell) then
18 g(1,0,79)=twh* (w(1)+w(3))-9(3,0,7)
19 g(5,0,7)=twh* (w(5)+w(7))-9(7,0,7)
20 g(8,0,7)=twh* (w(8)+w(6))-g(6,0,7)
21 end if
22 end do
23 ! East boundary condition, outlet
24 do 9=0,m !Eq.265
25 if(flag(n,j) .eq.F and IF cell) then
26 g(3,n,3)=9(3,n-1,7)
217 g(6,n,J)=g(6,n-1,7)
28 g(7,n,3)=9(7,n-1,7)
29 end if
30 end do
31 ! boundary condition on the free surface
32 do i=0,n
33 do j=0,m
34 if(flag(i,J) .eq.IF cell) then
35 give boundary condition depending on the problem
36 endif
37 end do
38 end do
39
40 return
41 end

After the boundary conditions, recovering the missed parts during the streaming, the scalar
field and phase-transition are defined as shown in Code 14. A phase-transition is defined by the
interface between water and ice having a value of 0.0 < l¢(x) < 1.0. In turns, the liquid fraction
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value is used to impose the boundary condition in the col1ision subroutine at the moving
interface, i.e. the melting front.

Code 14: Subroutine to calculate the temperature and to account the phase transition

1 subroutine scalcalcu

2 include 'paramc.h'

3 ! temperature calculation

4 do 7=0,m

5 do i=0,n

6 do k=0,8

7 th(i,j)= use the second equation in Eq.351
8 end do

9 end do

10 end do

11 ! liquid fraction value update

12 do i=0,n

13 do 7=0,m

14 if(flag(i,j) .eq.F and IF cell) then
15 compute En(i,j) with Eq353
16 compute 1f(i,Jj) with Eq.354
17 end if

18 end do

19 end do
20 return
21 end

Now it is almost at the end of implementation for the direct time integration. To finish the
initialization of the scalar related variables, more importantly the thermal distribution functions
need to be reinitialized in change subroutine as like

g:i(x,t) = g;°1(6%,u®), (368)

where 0% and u®’ are the average macroscopic variables of surrounding non-G cells in respect
with the current cell.

6.2.2 Sub-cycling integration

The interaction between the free surface flow module and the heat transport with the phase
change module is such that the temperature difference produces a buoyance force in the flow
field, and the flow field affected by the buoyance force forms a temperature field in the domain.
Although the buoyance force is negligible in a turbulent flow, it must be included in a
computation. The lattice viscosity is related to the lattice thermal diffusivity of a fluid as

awater

=v/Pr, where Pr is the Prandtl number, so that the relation between the computational
modules is maintained. However, depending on the choice of grid spacing and time step, the
modules can be integrated in two different time scales, which results the sub-cycling in time

integration, as follows:

n, = [An +1, (369)
N
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where [+] is the floor operator to convert a real number to an integer, 4ty, is the time step of the
heat transport module, and 4t; is the time step of the fluid flow module. Since the grid spacing is

defined by the selected grid number, the time steps can be determined from the following

relations:
gr = gA—x and a¥¢ = ai“A—xz (370)
K At? R At?’

where the subscript R indicates the real physical value of the acceleration of gravity or the
thermal diffusivity of ice. The ratio af®/a%te" = ai®/aWaT is used to find the dimensionless
thermal diffusivity for ice in the second relation of Eq.(370). A sub-cycling in the time
integration improves the numerical stability of the computation because the relaxation times in
the modules can be adjusted. In the implementation, Eq.(369) need to be embedded into the

main program in Code 10.

6.3 Scaling and parameterization

A Lattice Boltzmann world is a dimensionless world. A physical world is scaled to the lattice
Boltzmann world. Vice versa, the results obtained by the LBM must be scaled to the physical
results. It is caused that the continuous Boltzmann equation is nondimensionlized (see Section
5.2.1) to derive the LBE. Additionally, the velocity space in mesoscopic scale is discretized into
unit discrete velocities.

Parameterization is a work to define the LB control variables and scaling factors. The
determination of the LB dimensionless control parameters such as a characteristic velocity U,
characteristic length L; 5, lattice viscosity v and relaxation time 7, is related to the numerical
stability and accuracy. The most of the parameters have physical counterparts with the unit. The
connection between the LBM and the physical parameters can be given by applying the scaling
factors such as grid spacing Ax, a time step At and density scaling Ap:

Ax Ax?

UR=ULBE' LR=LLBAx! VR:EV' TRzAtT, (371)

where R subscript indicates the physical variable, initial of the word “Real”. The grid spacing can
be calculated with the selected number of grids for the characteristic physical length. A difficult
task is to define the time step that ensures the numerical stability in a computation.

Generally, the dimensionless number characterizing the problem is used to define some of
the lattice parameters. For example, using the Reynolds number similarity between the physical
and lattice world, one can define either the lattice velocity or real viscosity:

U,pL
ReR = ReLB - ReR = LBV L5 . (372)

For the open channel flow, the Froude number can be used to define the lattice gravity, g,5,
Urp

V8iaLlip .

FTR = FTLB - FT‘R = (373)
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For the heat transfer, the Rayleigh number and the Prandtl number can be used for the
determination of the product of lattice gravity and a volume expansion coefficient of fluid, gg,
and the relation between thermal diffusivity and viscosity, respectively:
_ 8B (Onot — ecold)L%B

v
RaR = RaLB = Vo 5 PTR = PT‘LB = E . (374)

We use following paths to define the parameters. If the Reynolds number and the
characteristic velocity and length are known, Eq.(372) gives the lattice viscosity, which further
defines the relaxation time as

v=c2(1-0.5). (375)
Then selecting the grid spacing and the lattice velocity considering the low Mach number
condition, usually U;p < 0.1, the time step can be defined as

_ ULBAX

At
Ur

(376)
Another common way is to choose the relaxation time and then defining the viscosity and the

time step after finding the velocity from the Reynolds number. If the gravity is presented as an
external force, one can select the lattice gravity g; 5 < 10*. With the lattice gravity, the time step

can be defined as (Nils, 2007)
Ax g1pAx
=— - At = ’ , 377
8r A2 8B x| (377)

which is derived from Eq.(373) using the first two relations in Eq.(373). If the Froude number is

known, the lattice gravity is computed from Eq.(373), directly. But the time step derived from
2
the Eq.(376) or Eq.(377) will not satisfy the relation vp = %v. If the computation is unstable

with the defined time step, the gravity or the characteristic velocity can be reduced till the
stable simulation performs.

The results from the LBM can be scaled through the following equations (Dupuis, 2002):

Density: pr = Appis, (378)
) Ax

Velocity: ug = u; 5 —, (379)
At

Accelerati = Ax 380

cceleration: ap = a;p A (380)

Ax?
Pressure/Stress: P = PLBApF , (381)
Ax?
Force: Fp = FLBApE , (382)

where the density scaling can be Ap = 1000 [kg m-3] for water.
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6.4 Immersed boundary modification

The immersed boundary method described in Section 5.7 is only contributed into the
collision step. Three more variables, parameter S, equilibrium distribution function for moving
solid surface f; %1 (p,u,) and additional collision term £/, are implemented as shown in Code
15 that is the modified version of Code 8.

Code 15: A collision subroutine for the immersed boundary modified collision step

subroutine collision

1

2 include 'paramc.h'

3 bb=0. ! B parameter in IB

4 feqib=0. ! initialization for temporal Dfs for solid
5 omef=0. ! initialization for additional term
¢ ! force on fluid

7 do i=0,n

8 do j=0,m

9 if(flag(i,Jj) .eq.l.0r.flag(i,J) .eq.2) then
10 compute force
11 do k=0,8
12 compute feq(k,i,J)
13 compute feqgib (k,i,73) with Eq.193
14 end do
15 end if
16 end do
17 end do

18 ! collision step

19 do i=0,n
20 do j=0,m
21 if(flag(i,j) .eq.l.0r.flag(i,]) .eq.2) then
22 compute bb with Eq.362
23 do k=0,8
24 compute omef (k,i,3) with Eq.361
25 perform collision f(k,1i,7J) with Eq.365
26 end do
27 end if
28
29 end do

30 end do

31

32 return

33 end

The motion of the moving surface, i.e. it is a melting front in a liquid-solid phase transition
problem, does not require extra implementation in the code. However, a body immersed in the
fluid is moving through a fluid flow, different case from the liquid-solid phase transition of
passively fixed ice, one must implement the equation of motion for the moving immersed body.

6.5 Moving body simulation algorithm

The motion of an immersed body can be resolved by the equation of motion given in
Eq.(364). The implementation of the equation of motion can be done in either dimensional or
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dimensionless form. If the motion of the body is tracked by dimensional world, the LB variables
must be scaled into the physical variables using Eqs.(378-382). Otherwise, in a dimensionless
form, results after a calculation of the dimensionless equation of motion are scaled into physical
results. As applications of the immersed boundary motion by the IB-LBM founds in the many
literatures (Feng & Michaelides, 2004) (Strack & Cook, 2007) (Feng, et al.,, 2007) (Fukumoto,
2015), the implementation of the IB-LBM is simple and straightforward. We use the following
finite difference equations for the time advance of the velocity and position in dimensional
form:

ultl = u + AtFr +1 +1
R = Up n+l _ N 4 Al
att, and {Xffﬂ v (383)
W}éH-l — W}él + I R 9R = BR + AtWR
where
1 -1
Fp = E(F]{ +FR ). (384)

In addition, the solid flagging for the immersed boundary should be used to capture the
successive motion of the immersed body. If a body is allowed to be floating, the calculation of
the submerged part will take a place to get correct the hydrodynamic forces.
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7 NUMERICAL EXAMPLES AND VALIDATIONS

Here we show validations for the LBM using simple, widely solved problems.

7.1 Fluid flow simulations

7.1.1 Flow past a square cylinder

To demonstrate simple fluid flow interacting with solid surfaces, we solved a flow past a
square obstacle placed in a channel. The numerical simulations have been carried out in a
domain that corresponding to (Ochoa & Fueyo, 2004) and shown in Figure 64. This domain was
tested by several authors in turbulence flows with the LES, DNS and even experiments. In the
current study, an obstacle with side length of D=20 nodes is chosen and the simulations were
performed in the dimensionless form. The Reynolds and Strouhal number can be defined as;
3u,D _fD

Re = , St ,
¢ T—05 U,

(385)

where u, and f are an inflow velocity and the vortex shedding frequency, respectively. For bluff
bodies, important parameters are the drag, lift and pressure coefficients. They are estimated
with the rms and mean values:

C. = 2|Fx| C. = 2Fy zz(p_po)
T puZd’ T puzD’ P pul

: (386)

where p(= g) and F are the pressure and forces acting on the obstacle surface, p, is the

reference pressure. The forces on a single node can be calculated by momentum exchange with
the surrounding all possible fluid nodes as follow (Ladd, 1994);

F(x,t) = ci[fi(x,t) — fi(x + c;At, )], (387)

where T is the opposite direction of i. If one uses the immersed boundary method, the force will
be defined by using Eq.(363), but we don't.

20.5D |
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%W T Square
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=
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r,_/
]
k
l

4.5D D

Figure 64. Schematic illustration of a computational domain and a lattice: (a) domain dimensions and a
position of an obstacle, (b) the pressure measurement around the obstacle, (c) a lattice arrangement.
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First, we run a simulation at the Re=100 and the results were compared (see Figure 65) to
the other numerical results in (Breuer, et al., 2000). The results did not agree exactly with the
other studies, because the boundary conditions used in the simulation were different. But a
general characteristic of the velocity profiles was the same as the results, seen in Figure 65. In
(Breuer, et al., 2000), the drag coefficient and the Strouhal number were estimated as 1.35 and
0.14, while in our simulation, they were 1.27 and 0.15, respectively. These similar results show
that our numerical code properly works in laminar flows. In Figure 66, a comparison between
the vorticity fields and velocity fields are given. The detailed discussion can found in (Ayurzana,
2016).

Horizontal component of velocity Vertical component of velocity
1-2 I I I 1 I 1 I I I I I
Present study -------- FVM (Breuer et al. 2000) ————
_ 1 o 08 F LBM (Breueret al. 2000) ——— |
= c 06} ¥ 2
By 0P =y
2 06 2
(0] (o]
o 04 o
Z 3
é 0.2 é
0
-0.2 :
-10 -5 0 5 10 15 20 -0 -5 0 5 10 15 20
Relative length of channel (x/D) Relative length of channel (x/D)

Figure 65. Profiles of horizontal and vertical velocity component in the streamwise direction obtained by
the extended LBM are compared with the results in (Breuer, et al,, 2000).

Figure 66. On the left, the vorticity around the square obstacle at Re=100. The lower one is the result of
(Breuer, et al., 2000). In the right, the velocity vector is plotted.

Next study of interest was a high Reynolds number flow simulation with the turbulent model
explained in Section 5.4.3. For a flow past bluff bodies, flows with the Reynolds numbers higher
than 300 are considered in turbulent. It is very interesting to check the effect of the turbulence
model on the result by the standard LBM. In order to explore the effect of the turbulent model,
the standard LBM (StLBM) and the extended LBM (EXLBM) in the same condition is applied for
flows past a square obstacle at Re=300. It is conceptually expected that the flow predictions by
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StLBM and ExLBM must be the same at a certain time. However, the results show that the
velocity field was the difference at the same time. Then we found the similar velocity profiles to
check the time difference due to the turbulence model in the LBM. Figure 67 and Figure 68
shows the velocity profiles at time T=24000 for the StLBM and at T=23780 for the ExLBM. The
time difference induced by the turbulent model was 220 time steps. In other words, the ExXLBM
was delayed by some time compared to the StLBM. It is because that the total relaxation time is
locally increased by the turbulent eddy viscosity, as given in Eq.(322).

u-velocity in streamwise v-velocity in streamwise
1-2 I I I I g 0-15 I I I I
1 3 g
—_ i - 5 . E i 4
g mr.:a% g ol 5, B
2 08 4 : 1 2 oost AT
= . [ G . i ] L i
= V o] @ H oI
E 06 | e 1 = Pl
= E:! { 5 | § 0
S 04f L LA { £ [ = 7
2 ': ﬁ% & r _
2 o WP SWBM x4 & g
_0.2 1 % 1 EXI_I‘Bhd = E 1 1
-5 0 5 10 15 20 10 15 20
Relative length of channel (x/L) Relative length of channel (x/L)

Figure 67. Comparison of velocity profiles in the streamwise direction computed by the StLBM and the
ExLBM.
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Figure 68. Comparison of velocity profiles in the cross-stream direction computed by the StLBM and the
ExLBM.

It should be noted that the flow pattern and its magnitude were almost the same in the
results by the StLBM and the ExLBM at different times that means the LBM can produce better
result with the sub-grid scale turbulent model.

To validate our code properly in turbulent regimes, we run next simulations with Re = 22000
and compared the pressure coefficient to the result of (Liu, et al.,, 2008) shown in Figure 69. In
our simulations, the pressure coefficient grows up more than the result of (Liu, et al., 2008) at
the back face of the obstacle. Except this overestimates, the values of the other points were
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agreeing with the results of (Liu, et al., 2008). The streamlines around the obstacle is compared
with the result of (Liu, et al., 2008) and that was also in good agreement. The drag, lift
coefficients and the Strouhal numbers were determined as C;™ = 3.06, C]™° = 2.28 x 1072,
and St = 0.126 in the current study while these parameters in (Liu, et al., 2008) were C;™° = 2.1
and St=0.134, respectively. The recirculation of eddies observed in upper and lower part of the
obstacle reported in (Liu, et al., 2008) can also be resolved with the use of finer grid in our

simulation.

Surface pressure coefficient distribution e

2k o ki T
LBM (Liu, et al.2008) —+—

Pressure coefficient Cp

DVM (Taylor, et al.1999) --------
3k Experiment (Lee, 1975) ----%---- -
Experiment (Beaman, et al.1982) -—&---
4 F Present study ---@--- |
4 1 1 1 I 1 L 1
0 05 1 15 2 25 3 35 4
Surface lenght/D

Figure 69. Figure on the left shows the pressure coefficients on the obstacle surface from different
studies [10] and a starting point of measurement is O shown in Figure 64. Figure on the right shows the
streamlines comparison, the upper one is the current study while the lower one is the result of (Liu, et al,,
2008) at Re=22000

As used the same concept, we measured the vertical velocity as a time function at the control
point after the obstacle (see Figure 64) and the results are compared with the results obtained
from conventional methods (Liu, et al., 2008) incorporated in the Smagorinsky model in Figure
70.

Normalized vertical velocity at the control point (130,140) at Re=21400

0.4
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Figure 70. Time series of the vertical velocity on the observation point behind the obstacle by the
different models at Re=21400.
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In (Ochoa & Fueyo, 2004), the conventional high order computational framework, called
PHEONICS, was used to solve 2D&3D simulations with the different models of turbulent, e.g. LES
and Smagorinsky model. The code was also applied for that flow of Re = 21400 and the results
are compared in Figure 70. From the comparison in Figure 70, the results by the present LBM
and (Ochoa & Fueyo, 2004) are in good agreement while the result by the LES (Ochoa & Fueyo,
2004) has higher amplitudes for the vertical velocity profile. It reveals that the results are
hugely dependent from the model used in the turbulent. With the high Reynolds number flow,
two cases have been compared and the good agreement found. One of the growing aspects in
the research tendency among the LBM is the turbulence. We had reached the flow past a square
obstacle of up to Re = 3.82x105 where we observed the some oscillation in the vicinity of the
obstacle edge. It is notable that a combination of chosen values for viscosity and inlet velocity
effects for the results and numerical oscillations.

7.1.2 Doubly periodic shear flow

Here, we discuss the comparison between the standard and entropic LBM (ELBM), which is
described in Section 5.4.4. The results were reported in (Ayurzana, et al, 2017). A doubly
periodic shear layer flow is often considered as a benchmark (Karlin, et al.,, 2014), (Brown,
1995) case of an under-resolved simulation of smooth flows with sharp features. Here, a shear
flow solved by the standard LBM and the entropic LBM in resolutions of N=128, 256, 512, and
1024. Initial conditions for a flow field are given by

(
ugtanh (k (% — 0.25)> , Y <N/2,
u=

A

Luotanh <k (0.75 - %)) y>N/2, (388)

v = du, sin <2n (% + 0.25)),

where k(= 80) is the parameter controlling the width of the shear layer and §(= 0.05) is the

parameter creating small perturbation of velocity in the y-direction, which initiates a Kelvin-
Helmholtz instability. The turning over time of the shear layer is defined as t. = N/u,, where
uy(= 0.04) is the initial velocity defining the Reynolds number for flow as Re = ugN/v. In
numerical test, the Reynolds number was set at 30000. The simulation results of vorticity at t,
by the two methods are shown in Figure 71 in order of grid resolutions. The simulation of the
standard LBM was failed before the convergence of the under-resolution at a low resolution of
domain, for instance, unstable appears at t = 2200 before the vortex roll-ups in the interface of
shear layers, shown in the top figure of Figure 71 (a).
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Figure 71. Doubly periodic shear layer flow simulations on the different grid resolutions. Top figures
were produced by using the standard LBM, while bottom figures were produced by using the entropic
LBM. Vortex roll-ups appears at (a) tc=3200, (b) tc=6400, (c) tc=12800 and (d) tc=25600.

As an increase of grid resolution, the relaxation time of the standard LBM increases and the
computation become rather stable. The computation successfully survived on the further cases
of simulations (except N=128) in the case of standard LBM. However, as shown in the top of
Figure 71 (b), two small additional roll-ups created at linear parts of the vortex field, which are
the source of unstable solutions. As expected shapes of the vortex, the ELBM produces the flow
field at the even smaller resolution of the grids and the additional roll-ups, emerging from
unstable of the numerical solution does not appear in any case of simulations. This stable
simulation can be performed at very small kinematic viscosity due to the coarse grid and high
Reynolds number. The stabilizer in the ELBM is a self-adaptive local parameter and impacts on
the resolving of the flow fields. The distribution of the stabilizer and its value range do not
depends on the Reynolds number, as shown in Figure 72.
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Figure 72. Snapshot of the temporal and spatial distribution of the stabilizer, y*.

For the cost of computations, the ELBM code was 2 to 4 times slower than the StLBM code.
However, the ELBM can produce unconditionally stable simulations for various flow regimes, in
particular, for turbulent flows. The good agreement between results by the two LBM methods
with fine grids shows good validations for the methods.

W Ph.D. dissertation 148



o, &= B B 2 K

MNagaoka University of Technology

7.2 Heat transfer simulations

To validate the LBM code extended to the scalar field evaluation, the natural convection flow
due to a heat transfer in a square enclosure is considered as a benchmark problem. A
configuration of the problem is simple, often appears in natural convection flows among
literatures, and consists of a square enclosure with a hot wall at the left, a cold wall at the right
and heat insulated walls at the top and bottom, as shown in Figure 73. For a fluid flow, all walls
were modeled as no slip walls. For heat transfer, the Dirichlet boundary condition-2 was used
on the heated wall while the anti-bounce-back boundary condition was imposed on the cold
wall. The insulated walls were modeled by the adiabatic boundary condition. All prescribed
boundary conditions for heat transfer is given in Section 5.3.2.
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Figure 73. Schematic of the flow configuration for natural convection of water.

The natural convection problem can be characterized by the Rayleigh, Prandtl and the
Nusselt numbers,

-
u—k.

(389)
Here, h is the convective heat transfer coefficient and k is the thermal conductivity of a fluid. For
this simulation, Rayleigh numbers of Ra = 103~107 had been considered and the Prantdl
number was fixed at Pr = 11.58. The temperature difference between two side walls (hot and
cold) was fixed at 8°C for all runs. From the Ra number in Eq.(356), one can find a term gf for a
an estimation of the force term in Eq.(204) and the determination of grid spacing and time step
to obtain the real physical values from the LBM results at each time step. We also used following
dimensionless variables for coordinates and velocities as X =x/L,Y =y/H,U =u/(a/
L V(Ra Pr)). The dimensionless temperature was calculated by Eq.(352) and the dimensionless
temperature difference were A8 = 0. A main part of this section is reproduced from one of our
work in (Ayurzana & Hosoyamada, 2016). The temperature field and the stream functions for
five different Rayleigh number flows are plotted in Figure 74.
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Figure 74. Evolution of the temperature field (in the left) and the stream function (in the right) for
AT = 8°C
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As the characteristic of the natural convection flow, a flow field is separated by the density
inversion plane like two rolling regions. But it is not the character of the flow with the Ra = 107,
where the density inversion plane is placed in the diagonal of the domain. It should be noted
that we could not find the comparative data of the natural convection flow of water with the Ra
= 107 in order to evaluate our results at the same Ra number. The temperature field and the
stream function for another case of the Ra were in good agreement with the result reported in
(Tong & Koster, 1993). In addition, the Nusselt numbers had been compared with those taken
from (Tong & Koster, 1993), plotted in Figure 75 and the comparison in values has been
reported in Table 5.
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Right average
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Figure 75. Comparison of the Nusselt numbers
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Table 5. Summary of the numerical results at the various Ra and comparison with the results from
(Tong & Koster, 1993), which are underlined.

Ra | AT (°C) Nu Wax (x103) Wpin (x103) Unax
103 8.0 |1.005 1.001 1.138 1.136 1.152 1.206 | 0.008 0.008
10+ 8.0 |1.071 1.066 3.913 3.451 3.715 3.749 |  0.034 0.025
105 8.0 |2.005 2.005 4.881 4.909 4371 5364 | 0.049 0.040
106 8.0 |4.119 4120 6.115 5.601 6.135 5.645 | 0.057 0.057
107 8.0 |9.1981 7.612 8.110 0.145

Our simulations provided the expected behavior of the flow field and the results were in
good order of accuracy. From the comparison, it can be noticed that the numerical code has
been validated successfully and can be applied for heat transfer problems with the presence of
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various flow regimes. The limitation of application to the LBM for a heat transfer problem can
be related to the numerical instability emerged from whether the BGK approximation and the
fixed Prantdl number. The instability can be alleviated using a stabilization method, such as the
MRT, TRT or adaptive time-step. Since the relaxation time of scalar field increases with the
decrease of Prantdl number, the stability condition can be improved using the varied Prantdl
number with temperature. Also, a wide range of temperature could lead to instability because of
the small set of velocities. The range of the temperature will be discussed in Chapter 8.

7.3 Phase change simulations in enclosure

For phase changes in this section, we only consider water and ice, their liquid-solid changes in a
domain.

7.3.1 Phase change induced by heat conduction: the Stefan problem

Here we consider the Stefan problem, melting of a slab of ice with a length of 0.1 m, to
validate the proposed LBM for the liquid-solid phase changes in free surface flows. The
analytical solution (Alexiades, 1992) of this problem is given as

X(t) =2y /a}’{at"t and (390)

erf (x/2\/ a;’{atert)
erf(x)

T(x,t) = Tnax — Tmax—Tmeir) (391)

with the transcendence function for y,

xeX erf(x) = (392)

St
N
to find positions of liquid-solid interface and temperature distributions in liquid region at times,
respectively. Initially, the temperature of the ice slab was at the melting temperature of
Timet=0°C. One side of the ice is insulated, while the other is abruptly set at the T ,,,,=25°C at t=0
and it is maintained for all times t > 0 in the simulation. We set imaginary thermocouples in the
slab at lengths of 0.01, 0.03, 0.05, and 0.09 m and measures the temperature in time evolution.
Simply, we chose N=100 grid for the length of the slab in both the analytical and numerical
solution. For the numerical solution, we use D1Q3 lattice arrangement (A.A.Mohamad, 2011) for
Eq.(347) and the relaxation time is obtained from the relation

T = 3awat6rﬂ + 0.5 (393)
h R Ax? o

where Aty is the time step, which is set as At,=1.0 s and Ax (=0.001 m) is the grid spacing. The
constant temperature boundary condition (Alamyane & Mohamad, 2010) in Section 5.3.2 is
applied to the heated side of the slab, while the second order extrapolation boundary condition
(A.A.Mohamad, 2011) for scalar field is imposed on the other side. The temperature is
calculated by Eq.(352) using the dimensionless temperature computed by the LBM, and then the
melting front, the liquid-solid interface, is defined by the liquid fraction value using Eq.(354).
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The total melting time was defined as 34.01 hours by the analytic and the present LBM (1).
The comparisons of the results by the analytical and numerical methods are given in Figure 76
and Figure 77. The color map of Figure 76 is the temperature distribution estimated by the
analytical solution. The result of the present LBM (1) uses the relaxation time defined by
Eq.(393), whereas the LBM (2) uses the adjusted relaxation time. The best fit of the melting
fronts found for the analytical solution and the LBM (2). However the total melting time with
the LBM (2) was lasted for 34.72 hours. The numerically defined melting fronts in Figure 76, as
well as temperature profiles at different times and measurement positions in Figure 77, shows
the discrepancy in the middle of the simulation time. The good agreement has ben observed
before 8.5 hours and after 30 hours in the experiment, as shown in Figure 76 and Figure 77.
The temperature profiles at specific times, which are the times the melting front reaches the
imaginary thermocouples, with the analytical solution show the linear in space while the
profiles defined by the LBM show the deviating in space. The maximum errors of the LBM
compared to the analytical solution are reported in Table 6. The Stefan problem gives the
validation for the phase transition of ice in tiny volume ignoring the fluid flow, as well as the
free-surface condition.

Table 6. Maximum errors of the LBM compared to the analytical solution

Cases Relaxation Maximum error (%)
time, 7, of  melting | of temperature profiles | of temperature profile
front at times at positions

LB model (1) 1.727 4.04 5.59 5.00

LB model (2) 1.755 1.32 7.80 4.53

- - 25

oh8 Analytical solution -
Present LBM (1) ===

Present LBM (2) - 20
25.51 ' —~
@]
@ pa
‘é 15 §
<17.01 S
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= 10 §
B~

8.50
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0.0 0.02 0.04 0.06 0.08
Length (m)

Figure 76. Time history of the temperature distribution and the melting front locations by the analytical
and numerical methods.
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Figure 77. Temperature profiles at different times and at different positions: blue lines for the
temperature distributions for times and red lines for the temperature distributions for positions.

7.3.2 Ice melting by convective flow

We applied the method to an ice melting simulation in a rectangular enclosure, which had
been studied experimentally and numerically in (Virag, et al., 2006) and (Arid, et al.,, 2012). The
problem configuration is given in Figure 78 (a). The results of this study were reported in

(Ayurzana & Hosoyamada, 2016) and it is a combination problem of Section 7.2 and
Section.7.3.1.

Insulated Insulated
(a) it W i Ard LA AP ke (b) (atd SHS L sl 2 Wi
P L N Y A N
m ice Wate
e v A o Water A
- o _D\./\ N g 'DV\
g AT | K 2 3 3
Nﬁ —*= E£|5  Melting B Ug‘/\ B AT Freezing ém
P l == direction 3 # g direction
Y g =) LY e s T
L L
~ w—N e N
4 ’ e 7’

g . ik oy P Fa
Insulated Insulated

Figure 78. Computational domains for the ice melting (a) and water freezing problem (b).

In the phase change problems, the Stefan number St = ¢(Ty,: — T, ) /Ly is used to control the
simulation and the Fourier number Fo = ta/L? is used to analyze the results by means of the
time dependent heat transfer. Except the numerical model described in Section 5.6, there is very

simple approach to evaluate the liquid fraction value. For that method, the liquid fraction is
computed (Semma, et al., 2008) as

1 for 0 > 0o + €
_ 0 for0 < O — €
Lr=10-0,+e) (394)

e for Qmelt +e<0< Qmelt + ¢
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and we call it as the method without an enthalpy update. We had simulated melting front by two
different ways; without an enthalpy update (Eq.(394)) and with an enthalpy update (Eq.(354)),
respectively. They had shown slightly distinct melting fronts, shown in the first plot of Figure
79. The closer results with the results of (Arid, et al., 2012) have provided from the way with
the enthalpy updates and the melting fronts have been compared with (Arid, et al., 2012) and
(Virag, et al, 2006) in the second plot of Figure 79. For melting front profiles, notable
discrepancies with (Arid, et al,, 2012) have been observed on the first four profiles in the second
plot of Figure 79. However, at the same Fourier numbers during the simulation, the average
melting front positions and shapes have the same positions and tendencies. Melting processes
take place more intensively at the bottom of the enclosure rather than at the top.

Insulated wall

1 -
! LR,
0.9 - S 'I:.
081 0.8 |-
0.7 o
o o
0.6 - g 0.6+ %
B g
< 05| = .
s}
04+ 5 04 3
with Enth. at A line —e— - =
0.3 with Enth. at B line —e— Present study |
with Enth. at C line —e— N ) .
0.2 without Enth. at A line —s— | 0.2 Exp in [Virag, et al., 2006]
0.1 without Enth. at B line —=— | Num n [Vlra!g, et al., 2006]
without Enth. at C line —s— 0 Num in [Arid, et al., 2012]
O L L 1 e
0 0.02 004 006 0.08 0.1 0.12 0 0.5 1 1.5 2
Fo X and Insulated wall

Figure 79. The first plot represents the melting front measurements at three horizontal lines: Y=0.75 (A),
0.5 (B), 0.25 (C line) by different evaluation of phase change explained above. In the latter plot,
comparison of melting front evolutions at the different Fourier numbers; Fo=0.0089, 0.017, 0.023, 0.032,
0.044, 0.053, 0.065, 0.074, 0.086, 0.098, 0.11, 0.119 etc, are represented.

Fo=0.053

F

st ‘{‘T‘{)

L et P\

Figure 80. Velocity vector and temperature field at three different Fo number.

The melting front reached the right wall at Fo=0.065. It took Fo=0.12 to finish the melting
process of ice. The temperature profiles and velocity vector are given in Figure 80 at the
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selected Fo numbers. Overall predictions with the LBM were qualitatively correct with respect
to other numerical results. Note that the results are non-dimensional.

7.3.3 Water freezing in a rectangular enclosure

We simulated a freezing process on the same configuration (see Figure 78 (b)) with the
preceding melting simulation in order to examine the performance of the LBM for a freezing
phenomenon and to find the spent time to complete a phase change in half of the enclosure. It is
obvious that freezing and melting are opposite phenomena, which means that they do not take
the same time nor shows same interface shape between the liquid and solid state. Initially, the
water in domain was at the temperature T = 8°C. After the simulation started, the temperature
at the right wall abruptly maintained with temperature T,,;; = 0°C and kept thereafter. It is
observed that the freezing takes place intensively after the convection flow damped down
substantially in the enclosure. At the beginning, the high Nusselt number in Figure 81 (a) shows
the convection dominated heat transfer at the left wall. The great decrease of the Nusselt
number is evidence of the convection flow disappearing. The convection flow was very weak
after Fo=0.4, because there was a small amount of temperature difference in domain, as shown
in Figure 81 (b). The conduction rate of heat transfer is dominated after Fo=0.3 rather than the
convection rate of heat transfer, which can be seen in Figure 82. Two ways to treat the phase
change, with the enthalpy update and without the enthalpy update, have shown special distinct
at Fo=0.56 and Fo0=0.93 in Figure 82 (b) and it might depend on the enthalpy updates with
previous liquid fraction values. In this simulation, the freezing processes are about 12 times
slower than the melting processes to complete the task that the half region of enclosure must
melt or froze.

18 T T T T
Fo=0.18 with En. update —e—
164 Fo=0.18 without En. —a— - §
Fo=0.37 with En. update —#&— ©
14 Fo=0.37 without En. —o— - ol
Fo=0.56 with En. update —v— 5
12rF Fo=0.56 without En. —v— | | 3,
& ok Fo=0.93 with En. update —¢— | %
E Fo=0.93 without En. —e— o
S o8- &
J
z £
6 F [a}
4 - 0 0.2 0.4 0.6 0.8 1
2 ' =4 Horizontal axis, x/L
v ¥ ¥ v v T Y Y Y Fo=0.18 with Ent. —e— Fo=0.18 without Ent. —v—
0 Fo=0.37 with Ent. Fo=0.37 without Ent.
0 0.2 04 0.6 0.8 1 Fo=0.56 with Ent. —s— Fo=0.56 without Ent. —a—
x/L Fo0=0.93 with Ent. —o— Fo=0.93 without Ent. —a—

Figure 81. Results at the different Fo number by two different approaches in the LBM: (Left) The Nusselt
number at left wall and (Right) the temperature profiles through the line A.
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Figure 82. The first plot shows the freezing front measurements at the different Fo number at the same
lines of earlier melting simulation. The second plot shows the freezing fronts by two different phase
change treatment and the velocity vector of the case of the enthalpy updated treatment at Fo=0.934.

Based on the above melting and freezing problems solved by the LBM, the phase transition
treatment with the enthalpy update scheme might be more stable and accurate than without the
enthalpy update scheme.

7.3.4 Ice melting from the bottom

Here we solved other numerical simulation of ice melting in a square enclosure which 0.2 m
in the each side. Initially, the enclosure was filled with ice in a ready-to-melt case, i.e. the
temperature of ice was tmer = 0°C and the latent heat was removed. In the bottom side, the
constant heat is maintained while the walls in right/left were assumed to be insulated from heat.
The top wall is maintained with tmeir. Heat transferred by conduction in the initial stage of a
simulation. After the creating sufficient space for the convection flow by the conduction
dominated melting, the convection flow has started by the density difference in the melted zone.
A density influence by the temperature is calculated by a force term expressed by the non-
Boussinesq approximation in the numerical procedure. Depending on the Rayleigh number (Ra),
the number of fingering and its height was different. Each finger has shown the flow circulation
in it. In Figure 83 (a), the melting interfaces of Ra=107 were shown with the velocity vector at
the time 11.91 minutes. The convection flow created several fingering and they joined to the
two big circulation flows immediately. Those two big circulations dominated for further heat
transport and melted ice until the top boundary. If the Rayleigh number is low, the conduction
heat transfer is dominated and took long time to start the convection heat transport. The
maximum velocity induced by heat was around 0.01 m/s, while the maximum Nusselt number
at the bottom wall was around Nu=40, shown in Figure 83 (b). After the ice melted until the top
boundary, the temperature field in the middle area of the enclosure was almost constantly
distributed, as shown in Figure 84. The numerical results were what we expected and the same
as the results of researcher in the same field, which has not yet officially been published
elsewhere (Esfahani, et al., 2016).
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Figure 83. (a) Melting fronts of the ice melting from the below and (b) the measured Nusselt number at
the bottom wall at the different melting times.
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Figure 84. The temperature profiles at the different melting time.

7.4 Free surface flow simulations

Here, the model described in Sections 5.5 and 6.1 is applied to free surface flows to demonstrate
the application of the LBM. The results are reported in (Ayurzana, et al., 2016).

7.4.1 Dam break analysis

First, we applied the Free-surface LBM on a dam break benchmark problem to validate the
performance of the algorithm. The simulated results compared against the experimental results
conducted on the same geometrical configuration shown in Figure 85. For the wall, a slip
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boundary condition was imposed. To validate numerical simulation, we measured a
dimensionless waterfront position X* at a dimensionless time T* as,

X
T =t ng/L,X*=z (395)

and the time evolution of water depth at specific points (A and B) depicted in Figure 85. In
Eq.(395),n = (H/L) is the aspect ratio of a water column, H and L are the initial height and
width of the water column, x is the waterfront displacement at time t. We conducted two
numerical simulations on grids of 200x400 and 300x600 to investigate the grid resolution
independence. The time steps At,o9 = 0.00007 s and Atgoq = 0.00006 s were used, respectively.
The parameters used in the simulations are determined through the parameterization formulas
explained in Section 6.3.
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Figure 85. Schematic sketch of a dam break problem with a wet bottom. A lattice on the grid is depicted
on the upper right corner of the scheme. Only dimensions of the height m and width n for the numerical
tests had been attached to the scheme.
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Figure 86. Comparison of the melting front displacement and time evolutions of water level at the control
point A and B in the experimental and numerical tests.

It seemed that the grid resolution has a slight influence on the numerical results since the
curve of the case of 300x600 has been plotted very nearly with the experimental one the first
plot in Figure 86. In the numerical experiment, a plate gate, separating the water column from
the wet bottom in the tank, had not yet been included. The effect of the gate removing in the lab
experiment appears with water depth evolution on the point A at time 0.2 s to 0.4 s on the
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second plot in Figure 86, where experiment's time had been delayed. Except some offsets, the
time evolution of water depths has the same tendency with experimental one in Figure 86 (b).
Some discrepancies are considered as some deficiencies of data extracted from the video frame
in the experiment. Because a normal video camera had been used to capture the phenomena in
the laboratory experiment, the image has some perspective representation, which can be seen
in Figure 87 (a). For the sake of convenience to printed document, we used edge detecting
effect on the each frame of the image and black lines to express ideal water surfaces avoiding
doubt with perspective surfaces in Figure 87 (a). The free surface shapes for three cases are in
good similarity except flying water droplets and splashes on the wall, as compared in Figure 87.
The water splash on the wall and flying droplets are difficult to be captured in a small scale LBM
simulation since the interface between water and air phase is expressed by a continuous single
layer of IF cells. Based on the validation process, it can be claimed that the single phase
simulation of LBM for free surface problem has a substantial capability.

time=0.2sec - time=0.4sec time=0.6sec time=0.8sec time=1.13sec.
i G ¢ r

ke

e

200x400
i

300x600

Figure 87. Time sequence image comparison of experimental (a-upper) and numerical dam break tests
(b-middle and c-lower) with the wet bed.

7.4.2 Flow over a weir

Weirs are well studied structures theoretically and experimentally, but less effort has been
made by numerical studies because of perfection and priority. Matured weirs measure flow
discharge very precisely, if a best fit discharge coefficient curve has determined accurately.
Among with the advances in the numerical simulation, there exist many opportunities to
develop brand-new weir or flume. In this study, we simulated flows over a sharp-crested
rectangular weir in the two dimensional space to determine the discharge coefficient and flow
pattern over the weir. Weirs and spillways have the same hydraulics manner for an inflow and
outflow in terms of boundary conditions. We impose the Zou/He boundary condition at the inlet
and the zero gradient open boundary condition (described in Section 5.2.3) at the outlet. The
geometry for simulations is given in Figure 88 (a).
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Figure 88. Dimension for flows over a sharp-crested weir and comparison of the discharge coefficient
defined by the LBM, CFD tool and experiment for the different ratio of h,,/t,,.

The discharge equation for a sharp-crested weir (Henderson, 1996) in unit width, assumed
here as unit discharge, can be simplified as,

2

q= 3th3/2 29, (396)

where C; and h,, are the discharge coefficient and the static head over the crest. Practically, the
discharge coefficient depends on many parameters such as a flow characteristic, channel
geometry and the ratio of crest height to static head. Ignoring the channel geometry effect on
the discharge, we examined the discharge coefficients of several discharge cases and compared
to the results given in (Arvanaghi & Navid, 2013), where the study had conducted a physical
experiment and a simulation by the commercial CFD tool, Fluent. Since this section is devoted to
demonstrate the free surface LBM in open channel hydraulics, we only perform several
numerical simulations on the configuration with crest heightt, = 0.15m, and the defined
discharge coefficients are plotted with the results taken from (Arvanaghi & Navid, 2013) in
Figure 88 (b). We had used the following parameters for time step and grid spacing,
At = 0.000074 s and Ay = 0.0025 m. In our simulation, it is observed that the ratio of the crest
height to the static head on the crest was a main parameter to indicate flow characteristics of
sharp-crested weir. If it exceeds over a unit, depending on the downstream situation, a
submerged flow condition can be observed. A closed flow circulation was created between weir
and nappe when case of h,,/t,, > 0.8, because the outlet boundary was the first order zero
gradient boundary condition. When the ratio become h,,/t,, < 0.2, the nappe flow had totally

E,-‘

adhered to the weir surface.
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Figure 89. The results of the flow over a sharp-crested weir: the flow discharge is ¢ = 0.044 m?/s.

7.4.3 Spillway example

Spillways are important structures for dam safety and a designing and operation of this
structure is quite difficult. A water flow with high energy acting through the spillway surface
causes damage for a structure like erosion and corrosion. Furthermore, the water flow with
undissipated energy erode the river bed at downstream of such structures. Spillways or
significant hydraulic structures are mainly designed by the physical model, which has the scale
effect and requires a cost and time. Here, we model small scale stepped spillways to
demonstrate the free surface LBM to use in the investigation of the important hydraulic

structures.

performances, i.e. big-stepped and small-stepped spillway as depicted in Figure 90.

Two different step configurations are considered to evaluate hydraulic

1.5m (150)

Big stepped spillway

Initial state

(1=0.15 m, k=0.1 m)
Small stepped spillway

:-'3 (water) (1=3.0 m, k=0.2 m)
g =
S 3 =
S k. 1.0m
a f
o i
- k
f f f
Ll 6.0 m (600)

Figure 90. Two cases of stepped spillway simulation. Spillway heights are 1.0 m and a stilling basin is
included to dissipate energy in the simulation.
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This study did not intend to dive into the detailed investigation of stepped spillway.
Therefore, we measured the water surface and average velocity through the stream-wise
direction to expose the energy dissipation. Depending on an approaching energy, it is appeared
that the first step, usually designed smaller than the other steps, has a big void in backward in
the both simulation cases, which means that the step height must meet with the design
procedure for this step. For the spillway with big steps, the nappe flow started from the first
step and continued until the last step with a quick appear of skimming flow in the middle,
shown in Figure 91. Whereas, the stepped spillway with small steps shows a good performance
on reducing energy (see Figure 92), where the skimming flow condition were dominated.

200 |-

Free surface approximation with velocity vector Free surface approximation with velocity vector

- [Votume Waction of water (LI T LT T [ .
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UV: 02040608 1 12141618 2 22242628 3 323438

Figure 91. The first column of figures shows the results of the big stepped spillway (0.2 m in height and
0.3 m in length of a step), while the second column of figure shows the result for the small-stepped

spillway (0.1 m in height and 0.2 m in length).
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Figure 92. Energy head over the spillway at two simulation cases. The energy is defined as the addition of

the static head and the velocity head.
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Figure 93. Stream functions for two cases: big-stepped spillway and small-stepped spillway.

The flow regimes on the steps for the two cases are roughly determined in Figure 93. The
skimming and nappe flows were chained one after another for the big-stepped spillway, as seen
in Figure 93 (a). The nappe flow is considered as the cause of the cavitation on a spillway
surface. Thus, the big-stepped spillway is not adequate in terms of hydraulic performance. The
best flow regime is skimming flow (Rajaratnam, 1990), which can be seen in small stepped
spillway as shown in Figure 93 (b).

7.5 Liquid-solid phase transitions in free surface flows

7.5.1 Melting of an ice cube in ambient temperature

In order to validate the proposed numerical procedure in the free-surface condition, we
carried out a brief laboratory experiment. The melting of an ice cube prepared in a freezer was
compared with the results of the LB simulation. We used a commercially available infrared
thermal imaging camera to measure the temperature distribution in a captured frame. An ice
cube having sides of 4.5 cm was placed on a smooth wooden surface having lower thermal
diffusivity and lower reflection of heat. In the heat transport module of the numerical model, the
wooden surface was modeled as an adiabatic wall and the constant-temperature boundary
condition was imposed on the water/ice surface interacting with the surrounding air. The
temperature was maintained as a constant like the room temperature on the boundary, as in the
experiment. In the fluid flow module, the wooden surface under the ice cube was assumed to be
a no-slip wall, whereas the free-surface boundary condition (Eq. (346)) without surface tension
was assumed for the water/ice surface interacting with the air. We used 60 grids for one side of

the ice cube, the grid spacing was Ax = 7.5x10-+ m, and the time steps were At;= 6.91x10 s and

At, = 7.603x10% s according to Eq.(370). These time steps provided sub-cycling at ng = 12 with
Eq.(369), so that the heat transport module is performed once every twelve steps of the fluid
flow module. The time sequence of the thermal image is shown in Figure 94 (a), followed by the
corresponding numerical results in (b) and (c) of Figure 94.
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Figure 94. Time sequences of the experimental and numerical results for an ice cube melting in ambient
air. (a) Infrared images of the ice cube and ambient condition; (b) numerically determined temperature
field; (c) numerically determined ice and water phases.

Ice melts from the bottom at a low rate in the experiment, although no melting occurs in
numerical simulation because of the given boundary condition. As shown in Figure 94, the
difference in height of the melting ice cube after 62 min was 3.56 mm, whereas the numerical
value was higher. The top of the ice cube became rounded in the numerical simulation, whereas,
in the experimental test, the top remained approximately flat. The reason for this difference in
shape might be related to the velocity of flowing water on the surface of the ice cube. The water
thickness flowing on the ice surface in the numerical test, indicated as If = 0 in Figure 94 (c),
was observed to be much thicker than that in the experiment. Since we used a coarse grid for
discretization, the numerical model requires at least two double-layer grids to simulate the
surface of the water covering the ice. The average water surface temperature on the ice, as
determined by the thermal camera, was approximately 2.2°C in the experiment, as shown in Fig.
Figure 94 (a), which agreed with the result of the numerical simulation for the ice-water
interface.
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Figure 95. Experimentally and numerically determined remaining ice area.

For the sake of generality, we show the remaining ice percentage with respect to melting
time in Figure 95, which shows the accuracy of the numerical model. The melting rate of ice
was nearly linear, and the numerical results were in good agreement with the experimental
results, with the exception of the initial oscillation in the numerical results. Similar studies were
conducted by (Faizal & Septiawan, 2014) for an ice cube in still water and by (Tan, 2014) for an
ice cube melting in ambient air. Both of these studies used particle-based methods, and their
results were less continuous and exhibited a step-like tendency over time.

7.5.2 Ice melting by pouring water

An ice melting by pouring water is more realistic and dynamic experiment and the results
were reported in (Ayurzana & Hosoyamada, 2017). In the evaluation, we melted an ice cube by
pouring water on it using the 2D numerical simulation. The results were compared with a 3D
laboratory experiment carried out using the same configuration so as to verify the numerical
model. A glass with an ice cube was placed on a plate and water was poured in the center of the
top surface of the ice. The ice cube size was 4.5x4.5x4.5 cm. The temperature of the poured
water was 30°C, while the initial ice temperature was -30°C. The air temperature was taken as
25°C and a constant temperature boundary condition was applied at the inlet boundary and the
free surface. In terms of heat transport, the walls and bottom surface were assumed to be
adiabatic in the simulation. The bounce forward boundary condition, which reflects the
distribution function at the wall like a mirror, described in Section 5.2.3, was used to impose a
slip boundary at the glass wall. Since it is difficult to capture the temperature distribution inside
the ice experimentally, the evolution of the ice melting front against time was used as a metric
to compare the numerical results. Because of the high temperature difference between the ice
and the poured water, the ice melting process took over 1 minute. The temporal change in the
melting front and the remaining ice area were monitored by processing the images recorded
using a camera during the experiment.
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Figure 96. Temporal states of liquid-solid phases (a) and temperature fields during the ice melting by
pouring water (b)

In Figure 96 (a), the variation in experimental and numerical melting front with free
surfaces and velocity vectors is shown at different time sequences. Experimental and numerical
melting fronts are almost the same, as seen in Figure 96 (a). In the experiment, the water
overflowed from the glass in all directions. However, in the simulation, the water overflowing
from the left side is modeled as being attached to the side, while the water overflowing from the
right side is computed as a weir flow as shown in Figure 96 (a). The melting front on the right
side is more active than that on the left side in the simulation; this is also the case in the
experiment. The heat transport on the left side was lower than that on the right side, as shown
in Figure 96 (b).
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Figure 97. Experimentally and numerically determined remaining ice percentage

The ratio of the remaining ice area to the initial ice area for each of the cases is defined and
compared in Figure 97. The melting rate of the experiment and the simulation was nearly linear
in comparison with the best-fit lines. The melting rate in the simulation was higher than that
obtained from the experiment. The slight difference in the melting front evolution and the
overflowing of water from the glass can be attributed to the dimensional difference. The
temporal changes in the melting front and the flow of water over the side of the glass show the
asymmetric properties in the simulation. The asymmetric melting front obviously leads to
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asymmetric water overflow. Another reason for the asymmetric flow might be that the surface
tension of the water is not considered in the free surface boundary condition. It seems that the
surface tension affects the water overflow in the lab experiment. The asymmetry of the melting
front also can be related to the free surface boundary condition. However, the overall
predictions of the numerical model were in reasonable agreement with the experiment.
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8 THE LBM TO APPLICATIONS

So far, we have discussed the model, its implementation and validations. This chapter is devoted
to particular problems in practice.

8.1 Ice bed melting

8.1.1 Short range of temperatures

In the literature, forced convections with turbulent flows for liquid-solid phase change
problems are solved rarely. We aimed to simulate a phase change problem in turbulent regime
and it was achieved with the ice melting process by a flow over sharp-crested weir. The free-
surface LBM method has been used to simulate flow over a weir and those results are given in
Section 7.4.2. Here, we extended the weir flow simulation to the phase change treatment with
heat transfer neglecting the latent heat. The geometry of the simulation is given in Figure 98 (a).

(a) (b) Nusselt number at time t=1.71 sec
9.5

T T T T
Nu number near melting front —e—
Average Nu number along m.front —v—

air (Tenv)

0.6 m (180)
7 0.2m (60)
0.5 m (depth &
velocity measure)
1.0 m (depth &
velocity measure)

MNU PUmber
~J
(9]

water (T,

‘In\et boundary with T,

Qutlet boundary

i ice (T

1.2 m (360)

Figure 98. Ice bed melting by weir flow. Temporal and average value of the Nusselt number on the
melting front.

Ice with thickness of 0.06 m and temperature of 0°Cis located in downstream of a 0.2 m
height weir. Water (flow q=44 1/s) with temperature of 10°C is released from upstream of the
weir to downstream. The surrounding air temperature set to be 1.5°C. The latent heat was
ignored for this short ranged temperature consideration. After the melting of t=6.83 s, the
downstream ice had been completely melted in our simulation. It can be inferred that melting
intensity is proportional to velocity magnitude, in turn the turbulent intensity (Ettema, et al.,
1982), since the nappe flow provides the main contribution to transfer heat, shown in Figure
99.
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Figure 99. Free surface and ice-water interface at top and temperature field at the bottom have been
shown at selected times within the simulation. The initial state is illustrated as a straight grey line.

We measured the Nusselt number on the melting front at t=1.71 s, as given in Figure 98 (b).
The average Nu was 6.59, while the maximum Nu was 9.5, which observed where the nappe jet
hits on the ice surface. This simulation was simulated by employing the direct integration
approach for the fluid flow and heat transfer with phase change modules. The extension of
temperature range with the direct integration approach leads the instability for the simulation.
So that, we were advised to use the sub-cycling integration, when the temperature range is wide
and the latent heat is present.

[=] e [u]

r

[=]

8.1.2 Extended range of temperatures

Previously, ice bed melting by the flow over weir was simulated for ice that was ready to
melt, i.e., the ice temperature was set to 0°C, and the latent heat was ignored. In this section, we
included a latent heat source term in heat transport and extended the temperature range. The
initial and boundary condition is indicated by the problem geometry, as shown in Figure 100
(a). Initially, temperatures of -30°C, 20°C, and 30°C were set for ice, air, and water, respectively.
The inlet and outlet boundary of the flow field was imposed with a velocity boundary condition,
whereas the wall and the surface of the weir were modeled as slip walls. Water at a temperature
of 30°C was supplied to the inlet, where the thermal boundary was given by the Dirichlet
boundary condition, explained in Section 5.3.2. The second-order extrapolation boundary
condition was imposed on the outlet boundary for the heat transport module. The other walls
and the surface of the weir were assumed to be adiabatic. The weir flow by the free surface LBM
was carefully investigated and validated in Section 7.4.2, and we herein used the weir flow with
the Froude number of Fr = 0.13. In order to examine grid independence, we considered two grid
resolutions, namely, h = 60 and h = 80, where h is the grid number used for the weir height, as
shown in Figure 100.
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Figure 100. Numerical domains for the (a) ice bed and (b) ice cover melting by the flow over the weir.

The relaxation times for the grid resolutions for the flow field were chosen as t,= 0.526 and
0.534, respectively, which is adjusted to 1., by the sub-grid scale model (Section 5.4.3). The
relaxation times for the heat transfer module was determined by the similar relation as
Eq.(393) using the thermal diffusivity of water, which can be connected to the lattice viscosity
by the Prandtl number. The ratio of the remaining ice area to the initial ice area was measured
and is shown with respect to melting time in Figure 101.
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Figure 101. Percentage of remaining ice area for different grid sizes and parameters as determined
through numerical simulation.

Depending on the parameters, both grid resolution and the selected relaxation times, the
total times of melting differed by approximately 0.6 min, and in case of h = 60, the ice lasted 3.8
min. Based on these considerations, choosing appropriate parameters grounded in their
physical relations is more important than grid resolutions. The melting rates for these two cases
have similar melting rate tendencies, as shown in Figure 101, but after approximately 3.3 min
melting rates are changed due to the low melting rate of the ice located directly behind the weir.
Between the nappe entrance and the weir, where the flow is partially circulated, the convective
heat transfer between the water and the ice was small due to the low velocity in this region.

Heat transfer between water and ice can clearly be explained in terms of the Nusselt number.
The local Nusselt number at a point on the melting front is defined as (Mohamad & Kuzmin,
2010):

Nuy = , (397)

y=interface

09|
dy
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and the average Nusselt number along the ice-water interface was calculated as

1 k=H
Nug, =7 Z Nu, M, (398)
k=1

where H is the grid number for the length of the ice, and M is the grid number for the depth of
the water above the ice. The local Nusselt number and ice depth are plotted with respect to the

elapsed time in Figure 102.
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Figure 102. Time series of ice depth and local Nusselt number measurement.

The local Nusselt number at 0.7 m fluctuates with a higher frequency and amplitude than
that at 1.0 m, and the tendency in both cases is to increase with time until decreasing suddenly
at the location at which the ice depth decreases. Generally, this tendency is due to the fact that
heat increases in ice and water near the interface, and the sudden drop is due to the
disappearance of the ice. As the frequency increases, ice at approximately 0.7 m from the origin
quickly melted because the convective heat transport at this position is high. The heat transfer
coefficient expressed in terms of Nu,, in Figure 103 was approximately A, = Nug,ki¢/L,, ~

1,090.8 WK-1m-2, where L,, is the characteristic depth of water on the ice. The temperature field

and ice/water phase with a free surface at three different times are plotted in Figure 104,
where the interaction of the flow structure and the thermal behavior of phases are shown
clearly. The total melting time of the ice bed was about 3.25 minute and the melting rate of ice
mass was around 42.46 kg/min.
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Figure 103. Local and average Nusselt numbers near the interface between ice and water
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Figure 104. Temperature and vector fields at three different times obtained through simulation of ice

bed melting.
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8.2 Characteristic of melting of an immersed ice sheet

The motion of ice in the model will be studied in Section 8.4, where we analyzed floating ice
on the water surface (Ayurzana & Hosoyamada, 2018). However, in this section, the ice does not
break up and move freely. An ice sheet melting simulation was conducted in order to determine
the applicability of the numerical model to real field problems, in which ice in a river or a
reservoir is mixed with free surface flows. In this case, the fixed position of the ice will help in
the visualization of the freezing of water. As shown in Figure 100 (b), the condition and
geometry of the ice sheet are such that heat is absorbed by the bottom of the ice and the water is
expected to freeze downward due to water being trapped under the ice sheet, where a natural
convection flow may dominate. Excluding the outlet velocity condition, all of the parameters and
given conditions were the same as in the ice bed melting simulation.
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Figure 105. Percentage of remaining ice area for different grid sizes and parameters as determined
through numerical simulation.

Figure 105 shows the melting rate of ice for the two simulation cases, h = 60 and 80, and a
discrepancy between the time courses appears at around 1.0 min into the simulation. However,
a comparison between those two cases of the general melting shape of ice sheet revealed no
significant differences.
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Figure 106. Temporal change of temperature and flow vector field distributions at three different times
obtained through simulation of ice sheet melting.

Figure 106 shows the general melting process of the ice sheet in the simulation. The ice
sheet absorbs heat from water flowing over it, and the cold water flows out of the outlet
boundary. At the same time, beneath the ice sheet, heat can only be transported by conduction,
as shown in Figure 106 (a), until a natural convection flow form in the water region beneath
the ice sheet, because the water in this region is trapped by the circulating water flow near the
outlet boundary, as shown in Figure 106 (d). The circulation flow near the outlet boundary
transports heat and momentum into the closed region beneath the ice sheet. Another circulation
flow was observed where the water flows over the weir. This circulation carries heat to the ice
behind the weir. As water flows over the ice sheet, melting occurs and the ice is gradually
eroded by overtopping flow (Figure 106 (b)). The melting rate of the upper surface of the ice
sheet was higher than in other parts of the melting ice. This situation continues until a natural
convection flow form in the water region beneath the ice sheet. As expected, freezing occurred
on the bottom surface of the ice sheet due to convection. However, an opening eventually
formed near the back face of the weir through which water could flow into the region of water
trapped by the circulation flow, as shown in Figure 106 (e). The water flow then surrounds the
ice sheet and melts the ice from all sides. The outlet circulation flow was an active heat
transporter and melted and sharpened the tail of the ice sheet, as shown in Figure 106 (a) and
(e).- Due to erosion, the ice sheet was split into two pieces by the overtopping flow after
approximately 1.6 min, which is indicated by the recurved shape of the lines in Figure 105. The
piece near the outlet boundary quickly melted because it was surrounded by an active flow field.
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The small piece of ice remaining can be seen in Figure 106 (f), and its effect on the temperature
field can be seen in Figure 106 (c). The piece of ice near the weir eventual extended downward
to the bottom boundary, as shown in Figure 106 (f). Figure 107 shows the temperature and
velocity profiles at 0.7 m and 1.0 m at various times. Figure 107 shows that the velocity and
temperature profiles have the same tendency because massive amounts of heat are transported
by convection in turbulent flows. The vertical temperature gradient can be high where the flow
velocity is high, as indicated near the upper surface of the ice sheet in Figure 107 (a) and (b).
Unrealistic velocity and temperature decreases in the middle of the profiles appear at 1.0 m in
Figure 107 (c) because of the piece of ice remaining in the flow, which cannot move with the
water flow. As such, this piece of ice influenced the velocity field as an obstacle, resulting in a
cooler temperature distribution.
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Figure 107. Vertical profiles of temporal velocity and temperature at three different times: (a) t = 0.67

min, (b) t=1.35 min, and (c) t = 2.03 min.

8.3 Open water forming mechanism in downstream of

hydropower plant

8.3.1 Ice problems of small hydropower plants in cold region

Let us discuss about the ice problem in small hydropower plants in Mongolia as
representative of cold region. Off-the-grid small hydropower plants (SHPPs) have been
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promoted as an efficient source to fulfill the electricity demands in the rural areas of Mongolia
(Infrastructure, 2002). A total of 11 SHPPs has been commissioned since 1986 (Boldbaatar,
2013) and a number of plants have been planned for future construction. However, except for
two of the plants, the others can be operated only for a short duration. The rest are unable to
operate during the winter, from the time the river ice freezes until the ice breaks. In this section,
we consider one of the SHPPs, namely the Tosontsengel hydropower plant, seen in Figure 108.
This is located in the village of Tosontsengel, which is one of the coldest places in Mongolia.

90°E 100°E 110°E 120°E
T I

j 1 Russia
DAL _

_(Tosontsengel

T

1‘ mean temperature]

Figure 108. Location of the Tosontsengel hydropower plant

The SHPP operates on the Ider River, which has a flow under the ice cover during the winter
(forum, 2013). At this time, the plant faces a serious ice problem in the downstream area, as

seen in Figure 109, where the ice ridge and jam is created in downstream.

Figure 109. Downstream ice conditions: (a) from the power house to the bridge in downstream and (b)
near the bridge, March 16, 2017.

Also, the ice problem in the outlet channel of the turbine not only reduces energy production,
but also decreases the cross-sectional area of the waterway, which causes bed erosion in the
unlined channel.

In general, studies on the ice problem and the possible countermeasures (Gebre, et al., 2013)
are based on on-site measurements. There are very few studies that consider the prediction or
modeling of the ice problem. In physical terms, the behavior of ice in the outlet of a hydropower
plant in a cold region can be modeled as an interaction between ice and the free surface flow.
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This involves liquid-solid phase changes since warm water is released from the turbine to the
outflow channel changing the ice condition.

8.3.2 Problem statement

In the winter of 2007, a year after its commissioning, the Tosontsengel hydropower plant
experienced ice jam and ice ridge formation in the downstream area between the outlet
structure and a bridge that is located around 130 m downstream of the plant, shown in Figure
109. An engineer working in the plant recalls, “Power production did not meet the expected
operational plan and the efficiency was lower. In addition, ice heavily affected the bridge pier as
an excess load. That year, workers in the plant suspected that fluctuations in the water
discharge and the low speed of water in the outlet created the downstream ice problem.” The
next year, they experimented by passing water downstream through the turbine without
operating it. In other words, the water discharge through the turbine was the same as the river
flow rate. Consequently, the ice jam reduced greatly, but small ice ridges were still observed
downstream. Since then, the plant authorities decided to use this mechanism in the winter.
When passing water through a stationary turbine, the water surface is not enclosed by ice for a
distance of 4 to 5 m from the outlet. This is termed open water, and it exists during the winter.
Forming of open water at specific rivers (Ettema & Zabilansky, 2001), (Prowse & Beltaos, 2002)
has been well documented rather than open water forming in the downstream channel of
hydropower plant. Open water in downstream might be the key factor for the condition of ice in
downstream. Understanding of the open water forming mechanism provides important
knowledge for the controlling ice condition in downstream.

No research has been conducted for a way to deal with the ice and to operate the plant
during the winter. However, workers are still seeking a way to produce power in the winter. In
this study, we simulate the process of open water formation (see Figure 110) in the
downstream. This occurs due to the release of warm water from the upstream through the
turbine. It provides the possibility of applying the proposed numerical model to the ice
phenomena in hydropower plants. Absence of field data and computational limitations make it

difficult to model the ice problem on a large scale.

Figure 110. The Tosontsengel hydropower plant, March 24, 2014.
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8.3.3 Numerical results

Figure 111 shows a longitudinal cross-section of the Tosontsengel hydropower plant,
including the computational domain. The computational domain does not include the upstream
and the spiral case of the turbine. Hence, the inlet boundary of the computational domain is at
the beginning of the turbine tailrace. The domain extends to 32 m downstream. We use a grid
spacing Ax=0.04 m and a time step At=4.11x10-* s in direct numerical integration (see the
Section 6.2.1). We assume that the downstream of the plant is fully covered with ice of thickness
0.3 m and the wicket gates of the turbine are closed initially. The temperature of the ice cover is
taken to be -10°C in all simulations. The simulation starts with the opening of the wicket gates.
At the inlet boundary, velocity and constant temperature conditions are imposed for the fluid
flow and heat transport modules, respectively. Velocities at the inlet boundary are
approximated from the capacity of the small turbine because of lack of winter flow data. At the
outlet boundary, the second order extrapolation boundary condition was applied to the fluid
flow and the heat transport modules. A typical bounce back boundary condition is used for the
concrete wall and channel bed as a no-slip boundary condition.
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Figure 111. Longitudinal cross-section of the Tosontsengel hydropower plant and the computational
domain with boundary conditions.

As observed in the field, there is a continuous ice cover through the downstream area. Hence,
the ice cover is assumed to be stationary and there are no crushing phenomena in the
simulation. In order to understand the formation of open water in the ice covered downstream,
three different water temperatures, 2°C, 4°C, and 8°C, are considered as cases for the low
discharge water in the simulations. As ice set at a low water level, the first task was to find the
discharge that maintains the low water level in downstream. Because at this time, no winter
flow discharge data were available. The first run was carried out with the small turbine capacity.
The discharge was apparently high and the maximum velocity reached at 8 m s-1, as shown in
Figure 112 (a). The discharge was then reduced until the lowest water level is obtained. We
found the discharge of 0.87 m3s-! (Figure 112 (b)) and this was used in three cases of run with
the ice cover.
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Figure 112. Temporal situations with the high (a-top) and low discharge (b-bottom) of the outlet channel
of the Tosontsengel hydropower plant.

As shown in Figure 113, in case 1, the ice area evolution was stable except for an initial drop
that could have been caused by initial pulses of inflow. Melting should have started near the end
of the tailrace, where the velocity is the highest. However, open water was not formed during
more than 10 minutes of simulation, as seen in Figure 114 (a), and eventually the system went
into equilibrium. This is because of the low heat transfer rate between ice and water at the
bottom of the ice cover. Melting or freezing of the ice cover happens in the other two cases. As
the temperature is lower, the melting rate was lower for case 2 in comparison with case 3 in
Figure 113. With the same hydraulic conditions, open water was created at different times; this
is seen as a transition of the remaining ice area in Figure 113. After the open water is formed,
freezing occurs in case 2, because of the water overflow and the low discharge of water under
the ice cover. In case 3, the ice area gradually decreases because the temperature of water is
sufficient to melt ice on and under the ice cover. This is shown in Figure 113 and Figure 114
(c)- The air temperature is shown in Figure 114 (b) and is the same for all cases. As shown in
Figure 114, the length of the open water was 0.18 m for case 2 and 0.4 m for case 3. The open
water in case 3 was further extended to 2.08 m in length at 13 minutes and 4.0 m at 23 minutes.
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Figure 113. Numerically determined remaining ice area of the three temperature cases.
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Figure 114. Numerically defined temperature field and flow field at different times and cases: (a) case 1,
(b) case 2 and (c) case 3.

Hydraulically, the water flowing at the end of the tailrace tends to flow in a direction upward
to the free surface. It then flows toward the downstream channel. The flow at the end of the
tailrace, as pointed on Figure 114 (a), is intensified when the downstream is covered with the
ice and open water exists in the head of the downstream channel. In other words, the ice
covered channel acts against the water coming from the turbine, like the flow through a conduit
under pressurized conditions. This pressurized condition also initiates the ice cover cracks. The
open water is under lower pressure and interacts with the air; hence, water can easily flow in an
upward direction after leaving the tailrace, as seen in Figure 114 (b) and (c). Therefore open
water is maintained during winter.
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The fact is that when the temperature is lower than 2°C and the discharge of the released
water is approximately the maximum capacity of the turbine, the downstream ice cover does
not melt. This implies that when water at a temperature near 2°C is flowing through the
downstream channel and there exists open water in the downstream, ice will not melt nor
extend if there is no overflow above the ice cover from the open water. Based on the flow
characteristics obtained from the above simulation, if the flow direction to the head of the
downstream channel is adjusted through the channel, it is possible to control downstream ice
phenomena for different discharge conditions. One possible mechanical solution can be a
controllable foil at the end of the tailrace, as shown in Figure 115. The foil length should be
around 1.5 m to change successfully the upward directed streamflow into the stream wise
direction and two ends must be sharpened. The foil should be controllable to change its attack
angle to incoming flow depending on the flow rate. The adjusted flow will widen the cross
section of the channel by melting ice cover from its bottom. Once the equilibrium state is
reached under the ice cover in terms of thermodynamics, the ice condition will be stable and
controllable in the outlet section of the power house. The detailed investigation of the foil and
its material should be provided in order to evaluate its feasibility.
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Figure 115. A foil installation in the turbine tailrace to adjust flow direction toward under ice cover.

8.3.4 Interpretation of open water forming mechanism

The end of the tailrace is a special region, where the temperature of water is almost the same
as that of the inlet boundary. This is where the heat exchange between water and ice starts. The
flow is also intensive and is directed at the ice cover. The hydraulic and thermal conditions that
exist in this region form the basic elements for the formation of open water. The open water
formation mechanism can be described by the following process, as shown in Figure 116, with
an assumption of ice covered channel, initially and no crack for ice cover.

Initially, ice warming and melting processes take place (1) at the end of the tailrace. This one
sided melting process ends at the initial opening (2) of the ice cover. The initial opening can
appear adjacent to or near to the concrete wall, depending on the geometry of the tailrace.
Generally, the process observed in the outlet of the turbine is exactly the same in an open
channel flow, e.g. in natural rivers. Melting at more than two sides can occur for the ice cover, if
water flows out through the initial opening and flows over the ice surface. The melting rate
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depends on the water temperature and the discharge. If the discharge and temperature are
sufficient to melt ice, the open water will be extended. This extension process (3a) takes place
until the equilibrium state of the open water is reached. In the other case of temperature and
discharge, ice cover will be extended (3b) in depth and eventually the downstream (channel)
will be covered by ice again. In this extension process, aufeis (naled ice) (Schohl & Ettema,
1986) forms in the downstream channel of the hydropower plant and critical condition become
worse for the bridge in downstream. Fortunately, the low variance of winter discharge of the
Ider River provides calm forming of aufeis. These extending processes directly lead consequent
equilibrium processes after an uncertain time. If the discharge and water temperature are
sufficient to compare with thermal conditions of ice and the environment, open water will
persist for long time in terms of its equilibrium state (4a) maintaining its opening. The
significant fluctuation of discharge and temperature, in addition an environmental condition,
leads the new ice cover at the upper or lower level of initial ice cover instead of open water.
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Figure 116. Open water forming mechanism in open channel flow based on the numerical investigation.

It is practically proved by the photo in Figure 117 that the low discharge and low
temperature lead open water enclosed by the ice again at lower levels in the Tosontsengel HPP.

The formation of open water in the downstream channel of the hydropower plant is
successfully simulated to demonstrate the performance of the proposed LBM. The results
indicate that the proposed model can be used for studying measures to control downstream ice
in hydropower plants. It can also be applied to study the ice phenomena in open channel flows.
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Figure 117. Open water next to the Tosontsengel HPP was enclosed by the ice, Feb 27, 2017.

8.4 Freely floating ice

The floating of ice bodies is an important part of a simulation of ice in a free surface flow. For
simplicity, a simulation of an ice cylinder floating on the free surface is performed and
compared with an experimental result in order to demonstrate the proposed algorithm for the
floating body simulation. The ice cylinder with diameter D = 3 cm, initially positioned above the
free surface at a distance h = D + D/2, falls into stagnant water and then floats on the water
surface. The initial temperature of ice was -25°C, whereas the water temperature was 30°C. We
tried to provide the same condition for the experiment and simulation. A grid spacing Ax =
1.0x10-3 m and a time step At = 4.57x10-5 s are used for the simulation. The simulation time was
shorter than the melting of the ice cylinder.

In Figure 118 (a), we compare the coordinate of the center of the ice cylinder measured as a
function of time in the simulation and laboratory experiment. Overestimates of position can be
observed at the turnings of the ice cylinder position, which might be caused by the
underestimates of the hydrodynamic force in simulation. By contrast, an initial flow field might
be affected on the ice cylinder movement in the experiment. Another source of the
overestimates might be the choice of the Rayleigh number. Figure 118 shows the numerical
results at Ra = 104 When the Ra is greater than Ra = 104, the convective flow becomes active
than the inertial flow induced by the movement of the ice body.
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The temperature and velocity field shows symmetries except the splash during the ice
cylinder plunging into the water in Figure 118 (b). The shape of the cylinder at the end of the
simulation was the same as the initial shape of the cylinder and the mass of the system was
conserved during the simulation.
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Figure 118. Falling and floating ice: (a) the comparison of the displacement of the ice cylinder measured
in the simulation and lab experiment, (b) the computed temperature field (top) and flow field (bottom) at
specific times.

Conclusively, the numerical results confirm that the proposed algorithm for the floating body
satisfies the mass conservation, which has been difficult to be handled, and computes the
involved free surface and heat transfer with reasonable accuracy. Nevertheless, shape changes
of the floating body over time due to phase changes should be considered in further research.
Finally, it can be said that the proposed model is not only capable of simulating ice dynamics in
a free surface flow, but also capable of simulating dissolving related problems.
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9 AN ATTEMPT TO THE LATTICE BOLTZMANN PARALLEL
SIMULATION

The LBM is popular by it's inherit property of naturally suitable for a parallel simulation. We
have made our attempt to the parallel simulation with the standard and Entropic LBM.

9.1 Parallel implementation of the Entropic LBM

In this study, the standard and entropic LBM are implemented in parallel way using the
Fortran 90 programming language. A stable computation of the ELBM is gained by paying time
and memory as the computational cost, which will be explained in Section 9.1.2. At the other
point, engineering problems are often characterized as a large scale or long term phenomena in
space and time. The LB solutions for these problems in central processing unit (CPU) based
simulation ended up at difficult challenges because of the computational cost. The
implementation of the ELBM on the graphics processing units (GPU) can solve the two
important difficulties of computation: instability and high computational cost.

Nagaoka University of Technology (NUT) has a GPGPU system, which is available for students

and staffs for their research activities (Figure 119).
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Figure 119. General purposes graphics processing unit system at the NUT, Japan.

The GPGPU system is powered by 16 NVIDIA Tesla M2050 graphic processing units, which has
the ability to perform 562 GFLOPs with double precision. Also CUDA Fortran version 11.3 has
been installed on the GPGPU system. Grasping this technical potential and numerical method,
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we have made an attempt to implement an efficient parallel code for fluid flows on the GPGPU.
In the CUDA programming, a code has to be devoted to two particular sections named a host
code and a device code (Ruetsch & Fatica, 2011), as shown in Figure 120. A host code refers
that the code executes on the host CPU machine, whereas a device code refers that the code
executes in the GPU machine. The codes use memories on dedicated machines, i.e., variables
used in the device code must use a GPU memory.

HOST CODE (CPU) DEVICE CODE (GPU)

Variables declaration on Host memory MAIN COMPUTATION KERNELS
” | Device memory )| |- Equilibrium DFs
Initial and boundary conditions - Population parts (330) and
(Initialization for variables) Local memory Stabilizer (328)
L Device Memory|| |- Collision (332)
LAUNCH KERNELS - Streaming (two variables)
(Entropic Lattice Boltzmann wrmiew | |- BOundary conditions

method) : e l

I G R Blocks (domain) ‘
Threads (blocks) ‘

Output/Result (Shared and local memories)

Figure 120. General architectural scheme of the implemented parallel code on the GPGPU system.

As the main program in the CUDA FORTRAN code is executed on the host, all variables in
both host and device codes need to be declared specific memories of their use in the host code.
Macroscopic variables, distribution functions and population parts are declared on the global
memory (device memory) and could only be used in the device code. As the purpose of the
ELBM code, initial conditions and loading geometric data are implemented on the host code, in
which the device and host codes need to exchange data. So called kernels, subroutines in the
Fortran language, implemented in the device code are launched from the host code. On the right
hand side of Figure 120, the host code composing the kernels with used equations in numbers,
which is performed on the predetermined blocks and threads in GPU architecture. An entropic
part of the numerical algorithm tested as separate kernels, for instance a kernel for population
part and a kernel for stabilizer. The separated kernels use low memory in consumption;
however, the total computation time of two kernels was higher than their unified version in one
kernel. The defining population parts and stabilizer is optimized to use low memory on the local
memory of the GPU in one kernel, since the declaration of array in the kernel uses a lot of
registrations, which might be caused the abortion of the kernels. Besides the streaming step, all
required equations and formulae in the ELBM as well as the StLBM are easily implemented in a
parallel way. To perform the streaming in an efficient way, two parallel distribution functions
are used and they synchronize in the host code after the calculation of one time step. To
improve performance of the parallel code, some optimization of array declaration as f(x,y, i)
for the distribution function instead of the regular array structure of the distribution
function f (i, x,y) is applied. Storing the constant parameters used in both codes in their
memory save a small amount of the computational time. A single lattice is assumed to be a
thread and a computational domain has divided as blocks horizontally.
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9.1.1 Parallel performance of the ELBM code

The parallel code for the ELBM was implemented by the way that uses low memory and
efficient computation, as explained above. We have solved flow past a cylinder in the laminar
regime (Re = 200) to evaluate performance of the parallel code, since the StLBM can’t survive at
a high Reynolds number. The simulation domain formed as 300 grids in length and 100 grids in
width. The simple bounce back boundary condition was imposed for the top wall, a bottom wall
and a circular obstacle. The Zou/He boundary condition was applied with a characteristic
velocity of uy=0.1 for the inlet and the zero gradient boundary condition is used for the outlet
boundary. The PGI Fortran compiler on the GPGPU system is used to perform parallel and serial
computations to evaluate parallel performances. Time criteria to stop simulations was set at t =
50000 in all simulations.
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Figure 121. (a) Percent of elapsed times used by the kernels in single computational time of the ELBM in
double precision. (b) Speedup ratio and parallel efficiency of the ELBM code with regards to the number
of threads.

As investigating deeply the performance of the parallel ELBM code, an Entropic part (labeled
“Ent” in Figure 121 (a)), computing stabilizer and population parts, consumes around 41% of
the all required time to perform kernels, shown in Figure 121 (a). The second largest consumer
was the defining macroscopic variables and synchronization of two groups of distribution
functions (labeled “Macr” in Figure 121 (a)), since the streaming process done by using the two
groups of distribution functions.

The computational domain was divided as blocks in horizontally and threads in a block. A
number of blocks can be chosen. Figure 121 (b) shows speedup ratios and parallel efficiencies
of the parallel computations on the GPGPU with respect to the number of threads used in the
simulations. The parallel efficiency is determined as the ratio between the speedup ratios to the
warp sizes of the GPU. The parallel code can speed up until 10 times faster than its serial version
on the same machine. The highest speedup ratio was found in the 64 threads in a block. The
computational efficiency would be convenient where the number of threads is lower than the
maximum grid number of the domain. In other words, the number of threads should be smaller
than the maximum number of grid in the horizontal or vertical direction.

Further, we examined the computational throughput and memory bandwidth for four cases
of grid resolutions, shown in Figure 122 (a). The number of thread was 512 in the simulations.
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The computational throughput and memory bandwidth have a linear relation with the grid
resolutions. Comparing to the maximum performance of the GPU, our code performs at the
middle rate. Actually, a memory bandwidth was inefficient, uses a small amount of the possible
memory bandwidth for the data transfer and management. Therefore, effective usage of the
memory bandwidth in the parallel ELBM code needs to be explored. Elapsed time against the
increase of grid resolutions plotted in Figure 122 (b) shows the performances of the code on
the different grid resolutions. Hence, the increase of the computational time has parabolic
relation with the increases of grid resolution. Steepness of the parabola can be decreased if we
increase the effective memory bandwidth in the code. To improve effectiveness of the code,
possible kernels can be merged in such a way that uses low memory in the local memory of the
device. Interestingly, the LBM index (Bailey, et al., 2009), which is an index to show the parallel
performance of the LBM in the way that how much lattice is updated per second (LUPs),
increased as the grid resolution increases in Figure 122 (b).
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Figure 122. (a) Computational throughput and memory bandwidth against the grid resolutions. (b) The
elapsed time and efficiency of ELBM computation against the grid resolutions.

9.1.2 High Reynolds number flow with the ELBM: flow past a circular
cylinder

Flow past a bluff body has been widely studied both numerically and experimentally (Ong &
Wallace, 1996) at high Reynolds numbers (Mittal & Balachandar, 1995) (Karabelas, 2010)
(Rahman, et al,, 2007) (Rajani, et al., 2016). The enhanced version of LBM using sub-grid scale
(Hou, et al., 1996), (Liu, et al., 2008) and the direct numerical simulation like entropic
approaches (Karlin, et al,, 2014), (Ansumali, et al., 2004) are the main contributions to these
studies. We have used a domain used in (Liu, et al., 2008) for our simulation. The boundary
conditions are the same explained in Section 7.1.1. Preliminary test simulations were performed
for the Re=1000 and Re=3900 in order to test the accuracy. We defined the Strouhal numbers
and compared with the other studies conducted in the same condition using different
techniques in Table 7.
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Table 7. Strouhal numbers of flow around circular cylinder at different Reynolds number

Sources/methods of the results Strouhal number
Re = 1000 - Present study 0.217
Extended LBM (using Smagorinsky sub-grid scale model) [12] 0.208
Experiment [13] 0.212
Standard k-epsilon model [5] 0.148
Re = 3900 - Present study 0.211
Extended LBM (using Smagorinsky sub-grid scale model) [12] 0.215
Experiment [13] 0.215
Standard k-epsilon model [5] 0.171
Re = 140000 - Present study 0.228
Extended LBM (using Smagorinsky sub-grid scale model) [12] 0.209

The Strouhal numbers defined by the ELBM were in good agreement with the results of
experiments and other simulation methods. In Figure 123, the vorticity field of fully developed
2D turbulent flow at simulation time t = 10000 at Re = 140000 performed by the parallel ELBM
is visualized.

125

100

75

50 100 150 200 250

Figure 123. Vorticity field of flow past cylinder at Re=140000 on coarse grid.

A performance of the ELBM can clearly describe the Reynolds number effect on the cylinder.
The flow field can be captured exactly comparing to the performance of the LBM extended by
the Smagorinsky model. It was revealed that the Smagorinsky model for the LBM seems to
overestimate the eddy viscosity (Ayurzana, 2016) at higher Reynolds number and it leads
underestimates of velocity fields. Unlike it, the ELBM does not modify viscosity in the simulation
and corrects velocity field by the maximum entropic condition. For coarse grid, the ELBM can
resolve flow field and generate a vortex in the sub-grid. Figure 124 shows the pressure
coefficient distribution and the velocity magnitude in lattice form around the cylinder defined at
Re = 140000. Based on the results obtained by the ELBM, the flow field can be computed with
reasonable accuracy and stability at very high Reynolds numbers using the ELBM. It should be
noted that the bounce back boundary condition might be affected on the accuracy in some case
(Karlin, et al., 2014). In that case, proper boundary condition based on the kinetic theory must
be used (Chikatamarla & Karlin, 2013).
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Figure 124. Pressure coefficient distribution and absolute velocity value at Re=140000

In summary, we have implemented an Entropic Lattice Boltzmann method in parallel
operation using CUDA Fortran programming language on the NUT’s GPGPU system. The
entropic LBM is used to perform unconditionally stable simulations, while parallel computation
is used to speed up simulations and improve efficiency of the code for the future large scale
engineering simulations. The parallel code is aimed to be used for a large scale and long term
simulation in engineering field in complicated geometry at high Reynolds number fluid flows.
Further, we solved flow past a cylinder at Re=140000 to show the performance of the ELBM
parallel code. To evaluate accuracy, the Strouhal number at Re=1000, 3900 are defined and
compared with experiment and other numerical simulation results. The results were in good
agreement. The parallel code of the ELBM is implemented in the combination of low memory
usage and fast computation. Using the GPGPU for the ELBM, the computation can be performed
10 times faster than the serial code. Based on the stable and accurate computation of the ELBM,
the parallel computation will be a very efficient method for CFD.

SUMMARY FOR PART 2

In this part, the mesoscopic numerical modeling called the LB models was extensively discussed
with their applications. The numerical models aimed to solve ice problems in open channel
flows which cover free surfaces, heat transfer, phase transitions and liquid-solid interactions.
The numerical models were organized as the mesoscopic numerical framework as just like
getting done in Part 1 for the macroscopic models.

The lattice Boltzmann model for the fluid and scalar transports were followed by the other
models such as a free surface model and liquid-solid phase transition model. In the numerical
implementation, the pseudo-potential codes for each model were described in great details.
Numerical examples for each particular model were purposed to validate the model. The
coupled models for, such as a natural convection, melting and freezing of water were also
verified by the simple problems and experimental studies. The successfully validated numerical
framework for the liquid-solid phase transition in free surface flows was applied to the open
channel problems. The important application was the open water forming mechanism in an
outlet channel of the small hydropower in Mongolia. Based on the numerical results, an idea of
the mechanical solution to control ice in downstream of the hydropower plant is proposed.

The melting and freezing of ice in open channel flows was studied and shows the
applicability of the proposed model for a short period of time. The application of the open water
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forming mechanism was resulted the explanation of the process of open water forming not only
in the outlet of hydropower plant but also in natural rivers.

In the last, an attempt to the parallel computation with the LBM was investigated for single
phase flows by the both standard and ELBM. The numerical procedure of the LBM best fit for
the requirement of the parallel computation. With the parallel computation, we can get the 10 to
20 times faster simulations compared to the serial version of it. It is particularly crucial step for
the application of the LBM to the real engineering problems.

The solution with the LB models of complex physics, ice in free surface flow, nominates the
confidence that the LBM is applicable for various physical phenomena. We have a follow-up
concept for particular problems described in the objectives of this research: sediment and ice.
The concept is “all in one LBM” as depicted in Figure 125.

Figure 125. All in one LBM concept, where free surface flow pours into loose boundary with ice cover.
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10 CONCLUSION AND FURTHER RESEARCH

contains overall connections, conclusions to two parts of the research work and further
considerations related to the subjects.

10.1 Conclusions

As specific objectives, we had learned to apply macro and mesoscopic models for particular
problems that were sediment and ice in two parts, respectively. Each part has several
contributions to the recent knowledge in research. For instance, in Part 1, the particle tracking
method, which has superior to the traditional advection-diffusion based solution for sediment
transport, is introduced. The particle tracking method treats each particle individual and
describes local and global behavior of sediment transport based on the size of sediments. With
respect to it, the settling velocity affected by the flocculation effect is also introduced to the
particle tracking method as a simple model parameterized by an experiment. The flocculation
model is applicable for an estuary where sediment discharged from river water to seawater. As
a problem studied, the sediment transport in the estuary of the Ohkouzu diversion channel is
investigated in the 2D and 3D space. In results, the characteristic of the spatial distribution of
the sediment at different settling velocities and sizes was obtained. Concerns about the
macroscopic models will be discussed with that of mesoscopic modeling in Chapter 10.3 as
future works.

For Part 2, highlights are imbedded in the developed numerical model for a liquid-solid
phase transition in a free surface flow, where many models are coupled to each other in first-
time. For instance, the immersed boundary method is coupled with a free surface model and
liquid-solid phase change treatment for water. The liquid-solid phase transition in a free surface
flow considering the water itself is relatively new research work among the published articles. It
is one certain contribution to the river ice research and unlocks the ice dynamics and
thermodynamics. The free surface-immersed boundary LBM is applicable to the freely floating
object in a free surface flow. Moreover, with the benefit of the scalar transport solution for
liquid-solid phase changes, it is applicable for more complicated rarely studied subjects like a
time-dependent arbitrary shaped floating object.

The sediment and ice modeling separately is achieved at certain degrees of satisfaction in
this thesis. As the main objective, the research for both problems leaves the strong confidence
that both modeling scales are possible for two problems can be solved simultaneously. Precisely,
the lattice Boltzmann method is adequate for the small to mid-scale problems, while the
macroscopic model is convenient for the mid to large scale problems like a river or lake. The
lattice Boltzmann modeling can bring simple solutions for the sediment and ice as a generalized
model. The particle tracking method proposed in the macroscopic modeling is combinational
with the lattice Boltzmann modeling for the purpose of modeling particulate nature. Whether
using the macro and mesoscopic modeling to the long-time, large-scale problem, one will
naturally regard to high performance computing in an academic research.
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10.2 Highlights and applications

The studies in two parts have highlighting points and the possible applications for different

type of engineering problems. After listing highlights for two parts, we will commend

applications of the models based on the concepts and methodology of models.

The macroscopic modeling of sediment transport in part 1

demonstrates a new convenient benchmark problem for sediment and density
currents, the lock-exchange with sediment. The benchmark problem has unique
features to show interactions between currents induced by density or salt
concentrations while showing the sediment transport and is suitable for the
validation of new models.

formulates a new particle tracking method (PTM), that treats each sediment particle
individually in order to maintain the particle having independent and own velocity in
fluid flows. The PTM is superior to the ADE in terms of the presentation of local and
global dynamics of sediment and distribution analysis of sediment sizes.

introduces a simple flocculation model, including the salting-out process that is well
suited for the PTM and have an implicit effect on the settling rates of sediment
particles. The flocculation model and its parameters were assured by the settling
experiment.

describes the conventional scheme for the sediment problem. This statement is made
because employing the two different descriptive models for the same purpose at the
same time gives interactive manipulations for modeling. For instance, the framework
used in Part 1 (see Figure 16) has two sediment models and the results can be
mutually assessed and compared each other that is rather trustful to use the single
model for tricky problems.

The mesoscopic modeling of ice problems in part 2

formulates the thermal-free surface-immersed boundary-lattice Boltzmann model
from scratch. The model/method can be abbreviated as the T-FS-IB-LBM and it is a
two-phase model.

brings the novelties to the research field such as the LB solution for a liquid-solid
phase transition in free surface flow, extended application of the IB formulation to
phase transitions and floating body simulations etc.

provides validation problems for a liquid-solid phase transition problems. With this
statement, the author believes that the problems provided for validation can be the
tests for new models designed for a liquid-solid phase transition.

demonstrates a simple solution for the complex physics.

introduces the LB solution to small to mesoscale hydraulics and ice problems. For
instance, the T-FS-IB-LBM is partially applicable to the problems of fluid - solid
interactions, free surface flows, porous media flows with free surfaces, scalar
transports in free surface flows and combination of the above.

Possible applications of the PTM can be:

sediment transport in river, reservoir and lakes
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e wastewater treatment (flocculation or aggregation processes)
e salting-out process modeling of particulate matter
e and non-cohesive particle transport (sand and snow).

The model concept or its formulation of the T-FS-IB-LBM can be applied in

o metallurgy (metal modeling and foaming processes (Ammer, et al., 2014))
e ice problems inlocal and global (Esfahani, et al., 2016)

e volcanoes and lava flows

e solventand solute

¢ and sediment and erosion/deposition.

10.3 Future recommendations

Two parts of research intersect on the two aspects: problem and coupling of modeling. As the
problem, knowledges gained by separate studies for particular problems provide basic paths of
modeling the problems together. In general, the sediment and ice considered at the same time in
the same system are important and challenging subject. Background researches based on
experiments and observations and their reviews have been provided extensively in (Ettema, et
al,, 2000), (Lau, et al.,, 1985), (Ettema & Daly, 2004), (Turcotte & Morse, 2013) and other articles.
The mutual effects of ice and sediment (Ettema, 2002) should be studied and modelled by either
macro or mesoscopic numerical modeling. One direct method for the problems is coupling of
contributions of this dissertation. In other words, the flow and ice are modeled by the T-FS-IB-
LB, while the PTM can take care of the sediments. Otherwise, the one can exploit the capability
of the LB models for the problems obeying our proposed concept (see Figure 125).

As having the same aim, the two types of models, macro and mesoscopic modeling can be
coupled with each other in different patterns. While using the macroscopic model for a
transport phenomenon, the mesoscopic model can be used to solve a fluid flow (Hlushkou, et al.,
2004). Also, existing knowledge from the FDM is usually applicable for the LBM (Junk, 2001).
From the differences of underlying theory and procedure, macro and mesoscopic modeling
carry irreplaceable properties with them. For instance, the LBM is suitable for complex shaped
geometry, while the FDM may be comfortable for large scale computation. With this respect, the
methods can serve their duty for their effective parts of a domain (Albuquerque, et al., 2004).

Herein we enumerate the bottlenecks in two parts as future works. In part 1, the PTM should
receive more improvements in aspects of hindered settling, sediment particle-particle
interactions, particle-fluid interactions and de-flocculation effects. Also the quantitative
variables, e.g., deposition volume, bed and suspended loads are expected in the PTM. The poor
connections to concentrate based evaluation should be explored if it is necessary. Even the
particle is a representative particle in the model, the crowd of the particle effects for the fluid
viscosity. So the relation between viscosity and particle density in the numerical framework
should be expounded. To overcome the main disadvantage of the PTM, one can parallelize the
model in the implementation (Mooney, 1951).

For the liquid-solid phase transition in free surface flows in Part 2, ice mechanical modeling
such as cracking and crushing (Beltaos, 1990) must be included to be a more accurate modeling
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tool to be applied in the river ice dynamics. By virtue of the immersed boundary modification,
the proposed model for the liquid-solid phase transition can be superior than the concentration
based modeling of ice. The solution algorithm for the arbitrary shaped floating body should be
more elaborated for general purpose and be extended to the multi-body interactions. The
models are straightforward to the 3D formulation and computation. The algorithm for the ice
melting shares the idea that can be used for the local erosion and scour (Ettema, 1980). Also, the
LB model for the sediment transport (Masselot, 1998) needs to get new pace into the
application.

As mentioned, the parallel implementations of the models are crucial to be effective and
modern.
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APPENDIXES

contains the connection between the lattice Boltzmann equation and the macroscopic governing

equation such as the continuity equation, the NSE and the advection-diffusion equation.

A1 Derivation of the Navier-Stokes equation

We can simply check that the discrete Boltzmann equation can produce the macroscopic
continuity and momentum equation using the moments of the distribution function. However,
now, we will deal with the method by which the macroscopic equations can be reduced from the
lattice Boltzmann equation. The method is celebrated as the Chapman-Enskog (Guo & Shu,
2013) (A.A.Mohamad, 2011) approximation that analysis the equation in multiple scales.

The distribution function can be approximated as an infinite series constructed by its
perturbations with the small parameter e:

fixt) =P 0 +effPxt) + 2P x )+, (4.1)

where the small parameter is interpreted as (a) the small parameter, || < 1, expanding the
function in a series, which can be assumed to be a Knudsen number, Kn, in case of Chapman-
Enskog expansion and (b) the magnitude classifier for the perturbations, which can be a unit,
€ =1, to be cancelled after the result derived (Wolf-Gladrow, 2000). In this expansion, the
following properties are valid:

2 Pt =0, Z cf P, ) =0, and (4.20)

L L

2P =0, Y afPwn=o, (4.2b)

L 2

which means that the perturbations cannot contribute to the mass and momentum conservation.
The lattice Boltzmann equation with a force term can be rewritten from Eq.(187) as follow

_ T\, p€ ¥
fi(x+6x,t+6t)—fi(x,t)+Tv(fi fi) + Fe £ (A.3)

The left hand side and the force term in Eq.(A.3) can be expanded into a Taylor series up to
terms of second order of §x = c;ét:

fix+c;ot, t + 6t) = fi(x,t) + 6t%+ otc; %
L L ) L ) at 1104 axa
(66)2 [02f; 0°f; 0°f;
— 2 20—+ € Cip—— 3 A4
t77 ot Harax, T i gy o, |t OLGD (4.4)

and

c—u o C 0
Fog R = 2 i Fe®, Do expana
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(8)? ciq

0F,
"2 RT

C; JF,
= 5t ﬁfi(mﬁx f(O) + Cia 5 ’*] + 0[(66)3], (A.5)
where we have used that the peculiar velocity is equivalent with the discrete velocity at an

equilibrium state. Substituting the expansions in Eq.(A.3) gives
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Now, introducing two time scales and one spatial scale with the following scales,

0 0,0 0 9 s
— s — - .
ot~ o T 5@ M ax, T D A7)

and the expansion in Eq.(A.1) to Eq.(A.6) and limiting up to order of €2 yields
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Sorting in order of € and grouping the terms in G gives

0= eG{ + €26} + 0[(6)°] + O[€’] (4.9)
with groups:
f(O) f(O) Cia
0 — 1 (0)
Gp = at(l) Y 9% 5tf( ) — Tfi F, and (A.10a)
V
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Jt dt dx, 2 9t Y 9ty 2 axﬁ 9x
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+6tf 2 RT ot 2 RTf Cip axg) ( )

First, we analyze the first term in Eq.(A.9). The zeroth and first order discrete velocity moments
of G can be estimated as
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where

P2s = pugug + pRTSap (4.120)

We have used Eqgs.(210), (211),(A.2) and (178) for Eq.(A.11a) and Egs.(211), (A.12c), (A.2) and
the second term of (A.12c) for Eq.(A.11b). The first term in Eq.(A.9) readily gives the continuity
equation with the zeroth order moment

dp . d(puy)
NI RPN
14

=0 (A.13)

and gives the Euler equation with the first order moment

d(puy) ~ 0(pugug) dp
Torm T @ T
g g

RT3 — €pFy =0, (A.14)

which is the Navier-Stokes equation without the viscosity term.

Second, we analyze the second term in Eq.(A.9). The zeroth order discrete velocity moments
of G} can be computed as
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where
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Substituting (a), (b) and (c) in Eq.(A.15) yields

dp
1 _
E Gl == (A.16)

L
which ensures that there is no mass diffusion and mass is conserved. Before proceeding with
the first order momentum, let us define fl.(l) from Eq.(A.10a) with a condition of G? = 0,
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The first order discrete velocity moment of G} is computed as
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where

d
(a) » mz ciof @ = 0 according to Eq. (A. 2)
i
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In above, the second and third order moments of £ (%) has been denoted by asterisk. Summation
of (*)-terms in (c) and (e) gives

—a —5t —a f(O) + St —02 f(O)
— CinC; CiaCi
D w gr L, ‘b (1)2 iaCiy
axﬁ w dt - at(l)axy i

(o5 ) s D@ =(oe-5) ey (4190
= o - —F .19a
c’)t(l)ax(l) Faip [p9 at(l)ax(l)
ap

Summation of the (**)-terms in (c) and (f) results in
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where
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The (j) and (k) terms in Eq.(A.19c) gives
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By adding up Eq.(A.14) and Eq.(A.16) (the zeroth order moments), one finally obtains
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and descaling by Eq.(A.7) gives the continuity equation
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Besides, adding up Eq.(A.14) and Eq.(A.21) (the first order moments), one can derive
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Introducing the scales in Eq.(A.7) yields the Navier-Stokes equation
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We have derived the Navier-Stokes equation from the Boltzmann equation in the way,
presented above. The energy equation is also derived from the Boltzmann equation and the
derivation can be found in (Viggen, 2014), (Gilberto, 2010), (Carlo, 1988), (Wolf-Gladrow, 2000)
and (Alexander, 2008).

A2 Derivation of the Advection-Diffusion equation

We have briefly discussed the lattice Boltzmann method to solve diffusion and advection-
diffusion problem in Section 2.3.1 and 5.3.1. Now we shall see the derivation of the macroscopic
advection-diffusion equation from the lattice Boltzmann equation using the Chapman-Enskog
expansion.

As the procedure elaborated in A1, the distribution function for scalar variable can be
expanded into its perturbation terms using a small parameter e:

gix ) =g t) +egPx 0) + 2gP x,t) + . (A.25)

Summation of this leads
N N
> a0 =) [90x0 +egP® 0 +e2gP 0+ -], (4.26)
i=0 i=0

where the left side is Eq.(395), the first term in right hand gi(o) is the equilibrium part of the

distribution function, gie 9. Therefore, other terms should be zero, i.e.

N
Z gl-(l)(x, t) = 0and (A.27)
i=0

N

Z dPx ) =0. (4.28)
i=0

Now, the updated distribution function in Eq.(282), the first term in left hand, is expanded using
Taylor series,

ag;(x,t dg;(x,t
gi(x+ 8x,t + 6t) = g;(x, t) + 9i( )ci6t+ 9i( )6t
0x Jat
1 0%g;(x,t) 0%g,(x,t) 0%g;(x,t)
=6t |———c?+2———"¢ — 0(5t)% . A.29
2 x2S T2 o ST g | TO0Y (4.29)
. a ] ) a a . N
Introducing scales, space prindi e and time Frind + €2 FTg into Eq.(A.29) and substituting
the result into the lattice Boltzmann equation in Eq.(282) yields:
8t g 99; 99; d9;
(g% = g.) = e ¢S5t — 6t +e%2—5t
T (9" - g:) = e o+ €5ttt gy,
1 d%g; d%g; d%g;
=6t%e? |=—=c?+2——; -| + 0(6t)% + 0(e)® A.30
+2 € |5,z ¢ + axatlcl-l_ T +0(8t)° + 0(e)°, ( )
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where we simplified g;(x,t) into g;. Substituting expansion in Eq.(A.25) into the above
equation gives

2 (eq® 4 24®@ gl 299i 9i gi 9gi
(egl €°9; ) I ——¢C t+e€ ox c;te at, + €2 at, + €2 at,
St 82g(0) aZg(O) 629(0)
—€?|——5—¢f “—c; : 5t)3 3. (A31
+ 5 € | 5,2 © axat, C; 22 + 0(6t)°> + 0(¢) ( )

For further simplification of Eq.(A.31), we collect the terms of order of € and €2 from both sides
of the equation and emphasize the results.

The terms of order of € are

(1 (0 (0
_ 9 _9g; d9;
= ; . A.32
T ax ST oty ( )

The distribution function gi(l) can be differentiated with respect to t; and x as follows

1 ag(l) azg(O) azg(O)
i i
1, 9t 0t,0x € ot?

and (A.33)

1 ag(l) azgl(o) azgl(o)

= : , A.34
1, Ox ax2 ot 0x ( )
Multiply Eq.(A.34) by c; , add it to Eq.(A.33) and summate the equations,
€y €y 2 ,(0) 2 ,(0) 2 ,(0)
0 0 0 0 0
(% + Ji ¢ |= Ji +2 9i c + 9i CiCi, (A.35)
oty dx ot? 0t,0x dx?

which will be used later.

The summation over lattice direction for Eq.(A.32) gives

L _ Z ©¢, Z (0) 4
Zg =520 a5 ) 0 (4.36)

where the first term is zero according to Eq.(A.27), the second term is

© -9
ang _a((ﬁu)i

and the third term is

N
iz g =2
ot Lu7t oty

L

Thus, Eq.(A.36) reformulated as,

d(puw) L 00

0= o’

(A.37)

which is the advection equation.

© Ayurzana Badarch 205



RERMAFRZ

Nagaoka University of Technology

Return to Eq.(A.31), gather the terms of order of €2

gl(z) ag(l) . ag(l) ag(o) gez aZgL(O)C'2 6291(0)0 azgl(o) (A 38)
Tg ox ' 0t at, 2 oxz dxat, ot |’ '

where the summation in bracket is the same as Eq.(A.35). Considering Eq.(A.35), after the
simple arrangements, Eq.(A.38) becomes

St F (€Y) F (€Y) F (0)
2@ _(1_2t\ (% 9i . g
gl (1 275>( o, ax 9T o (4.39)

Summing Eq.(A.39) over lattice directions gives

)
@ _ Z & E gi' . E (0) A.40
Zg ( 2rs> at, * at Yi - (4.40)

[Eq.A34
Introducing Eq.(A.34) to the term in Eq.(A.40) yields
N oo @) 2 2
ag; 6 g 6 g
Z a; C; = —Ts atléx — T . axlz C; C; . (A 41)
L (@) L ()

The term (a) become zero due to the cancelling of discrete velocities and the term (b) gives

N aZg(O) a ¢

—T  Tox ———C ¢ = ‘L'SRTa 5 (4.42)
L

where the second order moments of the distribution function for the advection-diffusion

problem is used. So substituting findings into Eq.(A.40) yields

0= RT (1 6t)02¢+ 0¢ A.43
ts ax2 " oty (4.43)
or
ot %¢p 0¢

0 =RT (? )6 > +6t2 (A.44)

Finally, adding Eq.(A.37) and Eq.(A.44) in Eq.(A.31) yields

ap  ,0¢ a(qbu) 2 <6t )62¢
=e— — RT | —=—— . A.4

0=t o, T ax 2 "5 ) o2 (4.45)

Removing the space and time scales with the small parameter from Eq.(A.45) gives the
advection-diffusion equation

do 6¢ 5t\ 0%¢
— =RT — A4
ot "ox ( ) 9%’ (4.46)
with the diffusion coefficient of
ot
D =RT (TS - ?) . (A.47)
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