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ABSTRACT 

Sediment and ice, solid substances, can be found in rivers in cold regions. In some case, they 

are a problem together as considered often problems separately. As approaching to the ultimate 

purpose of modeling the interactions between sediment and ice, this thesis properly aimed to 

study sediment and ice problems separately in two different modeling scales, respectively. 

Numerical studies of sediments and ices have been done in order to understand their physics in 

fluid flows and to find whether the approach to accomplish the ultimate purpose found in 

different modeling scales. Herein the studies are organized in two parts. 

The sediment problem in an estuary of the Ohkouzu diversion channel of the Shinano River 

studied by macroscopic models is discussed in Part 1. The macroscopic models include the 

Navier-Stokes equations simplified by the Boussinesq approximation for estuarine flows and 

the advection-diffusion equation and a novel sediment particle tracking method for the 

sediment transports. The particle tracking method is featured by a simple model accounting a 

flocculation effect for sediments and provides quantitative results involving sediment local and 

spatial characteristics in transport and interactions with estuarine hydrodynamics.  

For the ice problem, as mesoscopic modeling, the lattice Boltzmann methods are proposed as 

a numerical framework in Part 2. Lattice Boltzmann models for free surface flows, heat 

transports with liquid-solid phase transitions and fluid-solid interactions are discussed and 

validated. The results of validation and testing applications for the proposed numerical 

framework indicated the potential of the method to be applied to real field problems. 

Applications for the open water forming mechanism in ice covered-outlet channel of a small 

hydropower plant results the detailed interpretation of the open water forming process in open 

channel flows.  

Consequently, the modeling of the sediment and ice provides confidence for the ultimate 

purpose that can be modeled whether in macro and mesoscopic modeling. Particularly, the 

lattice Boltzmann method has advantages to bring a simple solution for the complex physics 

such like the sediment and ice.  

Key words: 

Sediment transport modeling, Sediment particle tracking method, Ice-free surface flow 

modeling, Thermal-free surface-immersed boundary-lattice Boltzmann method 
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Abstract in Japanese and Mongolian 

本論文では、土砂と氷を含んだ水理学における諸問題について焦点を当てた研究を取

り扱っている。土砂と氷の水理学的問題は流れにおいて固体が浮遊しているという点にお

いて共通点を有している。これらの現象を数値モデルによって表現する手法はマクロスコ

ピックおよびメソスコピックという観点に分けられる。 

具体的には河口における土砂の輸送に対しては海水によるフロック過程を考慮した粒子

追跡モデルをマクロスコピックモデル、氷の輸送に対しては固液二相の相変化と自由水面の

変動に対応した格子ボルツマン法をメソスコピックモデルとしてそれぞれ開発し、複雑な流

れ場に対応できるモデルとした。開発した数値計算モデルは信濃川河口やモンゴルにおける

水力発電施設に適用され、計算結果と計測結果には良好な一致が見られた。 

Энэхүү докторын судалгааны ажил нь шингэний урсгал дахь хагшаас болон мөсний 

үзэгдлийг тоон загварчлалын аргаар судалсан тухай өгүүлнэ. Шингэний урсгал дахь 

хагшаас болон мөс нь хатуу биет гэдэг ерөнхий ойлголтоор хоорондоо холбогдоно. Гэвч 

шингэний урсгалыг тайлбарлах цар хүрээнээс хамаарч эдгээр үзэгдлийг тус тусд нь 

макро болон мезо-орчны загваруудыг ашиглан судалсан юм. 

Тухайлбал голын адаг дахь хагшаасны зөөгдөх хөдөлгөөнд зориулсан макро-орчны 

загваруудыг хагшаасны бөөгнөрөх үзэгдлийг илэрхийлэхүйц хагшаасны мөхлөгийг 

мөшгөн тодорхойлох нэн шинэ аргын хамт боловсруулсан юм. Харин чөлөөт гадаргуутай 

шингэний урсгалд байх мөсний үзэгдэлд зориулан шингэн ба хатуу төлөвийн 

шилжилтийг тооцох сүлжээний Больцманы арга дээр үндэслэсэн тооцон бодох нэгдэл 

бүхий аргачлалыг мезо-орчны загварчлал гэсэн нэрийн дор шинээр үйлдсэн юм. Дээрхи 

макро ба мезо-орчны загварчлалуудыг Шинано голын (Япон) адаг дахь хагшаасны 

хөдөлгөөн болон Тосонцэнгэл усан цахилгаан станцын (Монгол) ус зайлуулах сувгийн 

мөсний үзэгдэлд тус тус ашиглаж зохих үр дүнгүүдийг гарган авч шинжилсэн болно. 

Тоон загварчлалын үр дүнгүүд дээрх газруудад хийсэн ажиглалтын үр дүнтэй нийцэж 

байсан гэдгийг дурьдах нь зүйтэй юм.  
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1 INTRODUCTION 

1.1 Research objectives and scopes 

The main objective of this thesis is to model fluid flows with solid substances by using 

numerical approaches. In general, the fluid flows in hydraulics are considered. The word solid 

substance stands for a solid matter in a fluid flow. More precisely, the sediment and ice are the 

main interest of solid substances rather than the other solid object that founds in a flow or 

bounds a fluid. Sediments and ices are different but share common things such as both exist in a 

natural river in cold regions and are engineering problems (Ettema, 2008) in general. These 

particular interests are explained in motivation section. The general questions for the main 

objective are (1) how many possible approaches to model are exist, (2) how to model the 

problems and (3) can we provide a general model that valid for the purpose or for every flow 

with any solid substances. The question (1) leads the different descriptions of fluid flows. 

Furthermore, the different descriptions have many existing models that can be applied to the 

problem. The specific models should be selected and studied for the problem. The question (2) 

provides research works based on the answers from the question (1). And during the research 

work for the model development, the question (3) is evaluated and clarified.  

There are three different description scales for fluid flows (Guo & Shu, 2013) described in 

Section 1.3. Theoretically, we have an opportunity to get involved with two approaches namely 

macro and mesoscopic modeling. With these approaches, we conducted studies investigating 

the existing numerical models and developing novel extensions to the models considering the 

specific objectives and motivations. Thus, this thesis focuses on the macro and mesoscopic 

numerical models of the sediment and ice in different flow regions. The scopes of this thesis are 

the finite difference method for sediment transport in an estuary and the lattice Boltzmann 

modeling of ice melting or water freezing in open channel flows. The latter one can be stated as 

a liquid-solid phase transition in free surface flow (Ayurzana & Hosoyamada, 2017).  

As a macroscopic modeling for a fluid flow with solid substances, the Navier-Stokes 

equations (NSE) formulated in the Boussinesq approximation governs a fluid flow, whereas the 

traditional advection-diffusion equation (ADE) and a novel particle tracking method (PTM) 

models the sediment transport. The fluid governing equations are solved by the solution 

algorithm (SOLA) (Hirt, et al., 1975) with the finite difference approximations for sediment 

transport models. One particular highlight of the PTM is an introduction of a practical 

flocculation model in an estuary. From the mesoscopic models, the lattice Boltzmann methods 

(LBM) are emerging numerical tools (Chen & D.Doolen, 1998) in computational fluid dynamics 

(CFD). Herein lattice Boltzmann (LB) solutions for fluid flows, scalar transports, free surface 

flows and fluid-solid interactions are studied with the implementation techniques. Firstly, the 

existing models for these are combined with each other for the liquid-solid phase transition in 

free surface flows as a main contribution. Among with the several attractive new solutions, an 

immersed boundary method is applied to the phase transition as well as a freely moving body in 

free surface flows. I hope this thesis will share useful knowledge for readers who are interested 

in the above methods and problems.  
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1.2 Motivations 

Fluids are always interacting with solids. Fluid flows are bounded by solids and transport solids 

with a fluid (G. K. Batchelor, 1967). However, the most of researches have devoted to 

understanding effects of the solid that bounds a fluid and this is termed as a fluid-structure 

interaction (Belytschko, 1980). In cold nature, a common fluid, the water, interacts with two 

major solid substances named sediment and ice (Ettema, 2002), (Prowse, 1993). Those are not 

boundaries, but substances transporting with water flows. Fluid flows with such substances are 

motivations for this study. For example, hydropower plants in cold region face problems caused 

by sediments and ices (Tuthill, 1998). During a flood event, a large amount of sediments 

transports through a river and traps by hydraulic structures at upstream side as sedimentation 

(Morris & Fan, 1998). The sedimentation reduces capacity of a reservoir and it causes the 

reduction of the power production. Meanwhile, the ice makes a huge problem during winter 

time (Gebre, et al., 2013). Ice and sediments can be a problem at the same time during the 

spring, since a large amount of broken ice as an ice jam prompts the sediments from the bottom 

and bank of a river (Ettema, 2002). However, in this thesis, we do not intend to model these 

problems together. Rather that we explore and develop the numerical models for these 

problems separately as research parts in this thesis. Generally, our implicit aim is remained to 

lay the foundation for the models to solve these problems simultaneously.  

For the sediment problem, we devoted our study to the sediment transport in an estuary. 

Estuaries are unique places where sediment and fluid flows interact in complicated dynamics 

(細山田得三, et al., 2001). The density current reasons interesting transport phenomena for 

sediments while sea water activates the flocculation process for cohesive sediments (Einstein & 

Krone, 1961). These were the specific motivations to study and develop numerical models in 

Part 1. On the other hand, the LBM had been expecting many extensions from the researcher to 

every field of fluid dynamics (Guo & Shu, 2013). The LBM was also starting to be applied to 

hydraulic problems (Karpiński, et al., 2013). Free surface flows and phase change processes 

were rarely connected in the LBM. More elaborations for the phase change have to be done. 

Especially, the immersed boundary method has been shown potentials for fluid-structure 

interactions (Mittal & Iaccarino, 2005). These were the motivations for the numerical works 

reported in Part 2. 

Besides, I had internal motivations to complete my Ph.D. course with these studies with 

respect to build my skills. My numerical career starts with my Ph.D. course and is aged 3 years 

now. Before starting my Ph.D. course in the NUT, I have many wishes to do numerical works 

related to fluid dynamics. But that time, I did not know how to get started and even did not 

know how numerical studies get done. There was nobody to mentor me in my environment. My 

motivations were too specific and a few, namely to learn numerical methods, coding the 

numerical models and to solve common problems in hydraulics. I found a seemingly impossible 

plan when I was a first-year Ph.D. student that if I have a time, I would study one of the above 

problems: the sediment or ice. Attractive features of the computational fluid dynamics with the 

other great factors surrounds brought me here with the accomplishment of a most percent of 

my wishes. With the motivations, the research questions in Section 1.1 are herein answered 

along with the outcomes of the numerical studies during this Ph.D. course.  
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1.3 Descriptions of fluid flow in different scales 

Let us discuss about different descriptions of fluid flow in fluid dynamics. Consider a proper 

heavy ball falls into stagnant water from a certain position above the free surface of water in 

confined domain. Humans with rare eyes only can see the splash of water due to falling ball and 

then can see the free surface of water sloshing above the sinking ball into the water. 

Interestingly, humans with special interest, say explorer, can see spatial distribution of physical 

variables of splashing water, sloshing waves and trajectory of the ball with experimental tools. 

Even advanced one with special sight, say engineer or physicist, can predict the spatial 

distribution of physical variables without falling ball into water in reality with modern tools and 

can show variables with easily readable colorful images and graphs, as shown in Figure 1 (a). In 

this case, some researchers take the assumption that the fluid is a continuum and it is regardless 

that the fluid is made of molecules and atoms.  This is generally a macroscopic scale of fluid 

flow. In the different point, with knowledge of the science about the matter, one wants to 

explore the fluid flow at the molecular level to understand the molecular interaction between 

solid and liquid states, maybe. This can be said microscopic scale of fluid flow and illustration 

shown in Figure 1 (c). At the molecular level, fluid molecules are traveling at a high speed and 

are doing multiple collisions with other molecules and bombarding the bounding solid 

molecules. If one groups molecules at a proper range as an ensemble of molecules and can 

observe the behavior of the group molecules. The proper range in length should exist between 

the macroscopic scale and microscopic scale in order to be said mesoscopic scale. As seen in 

Figure 1 (b), the connection between micro- and macroscopic scale must be interpreted in the 

mesoscopic scale.  

 

Figure 1. Illustration for different scales of fluid flows. 

 

1.3.1 Macroscopic scale 

In the macroscopic scale, physical variables of a continuous flow field such as density, velocity, 

pressure and temperature are considered. Fluids are considered continuum fields and fluid 

flows are described by continuum models. More precisely, a macroscopic continuum model is 

valid, if the Knudsen number is near or lower than one (Laurendeau, 2005).  The Knudsen 

number (Kn) is defined as the ratio of a mean free path (λ) of molecules to a characteristic 
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length (L) of a fluid flow. In the continuum model, the spatial distribution of physical variables 

with regards to others under the physical laws such as mass and momentum conservation, and 

expressed by a set of partial differential equations (Pope, 2001), respectively: 

𝜕𝜌

𝜕𝑡
+ ∇ ∙ (𝜌𝐮) = 0 ,                                                                       (1) 

𝜕(𝜌𝐮)

𝜕𝑡
+ ∇ ∙ (𝜌𝐮𝐮) = −∇𝑝 + ∇ ∙ 𝜏 ,                                                          (2) 

where ρ is the density [kg m-3], u is the velocity vector [m s-1], p is the pressure term [pa] and τ 

is the deviatoric stress tensor including the viscosity. The continuity equation (Eq.(1)) and 

Navier-Stokes equations (Eq.(2)) contain ρ, u and p as unknown, dependent variables, and one 

further scalar equation is needed to make it possible the determination of fluid flows (G. K. 

Batchelor, 1967). This additional relation can be provided by the equation of state (EOS) for the 

fluid, which may be generally written as 

𝑓(𝑝, 𝜌, 𝑇) = 0 ,                                                                       (3) 

where T is the temperature. For many fluids, the viscosity μ significantly depends on the 

temperature. If the temperature difference in the fluid domain is small enough for the variation 

of μ, it is taken as uniform over the fluid. In that case, the flow system is called isothermal 

system. When the appropriate temperature difference exists in the flow domain it is necessary 

to regard μ as a function of position and the complexity of the deviatoric stress tensor is 

increased. In this case, the temperature in the system is not constant, the system is known as 

non-isothermal system and one needs to consider the energy conservation equation (Guo & Shu, 

2013) 

𝜕(𝜌𝑒)

𝜕𝑡
+ ∇ ∙ (𝜌𝐮𝑒) = −∇ ∙ 𝐪 − 𝑝∇ ∙ 𝐮 + 𝜏 ∶ ∇𝐮                                         (4) 

where e is the internal energy, q is the heat flux, which is usually related to the temperature 

gradient following the Fourier’s law.  

A solution of these differential equations for a fluid flow is difficult to be found by an analytic 

way due to many reasons such as nonlinearity and complex boundary of the flow domain, etc. 

To solve the equations numerically, the flow domain should be discretized into finite sets of 

elements as grids or meshes. With these elements, the above differential equations need to be 

approximated into linear algebraic equations using a numerical discretization method such as 

the finite difference (FDM) and finite volume method (FVM).  The simple algebraic versions of 

the differential equations compute the time evolution of physical variables with the initial and 

boundary conditions in iterations. Part 1 of this thesis discusses the macroscopic solution for a 

fluid flow in case of sediment transportations in a river mouth.  

 

1.3.2 Microscopic scale 

In a smaller scale, the medium can be considered as space containing particles like the 

substance made of molecules. A particle in the space can be indexed by i to be distinguished 

with other particles in an account. The particle has a mass mi, a velocity ξi, at a position xi=(xi, yi, 
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zi) and a time moment t. The motion of that particle is described by the Newton’s equation of 

motion 

𝑚𝑖𝐱�̈� = 𝐅𝑖 ,                                                                             (5) 

where Fi is the total force experienced by the particle. Another description of particle motion is 

the Hamiltonian mechanics about N-body system, where more generalized coordinates that are 

particle positions and momenta are considered. 

As the nature of molecules motion, particles collide with other particles in a system and the 

collision results interaction forces between the particles, usually termed as interatomic 

potential. The total force term, including interaction force between the particles can be written 

as 

𝐅𝑖 = ∑ −𝜙(|𝐫𝑖,𝑗|)

𝑁

𝑗=1,𝑗≠𝑖

+ 𝐆𝑖 ,                                                            (6) 

where 𝜙 is the interaction potential between colliding pairs i and j (Rapaport, 2003), 𝐫𝑖,𝑗 is the 

distance vector between two particles, N is a number of particles in the system and 𝐆𝑖 can be an 

external force field involving the gravity. Solution of Eq.(5) gives only position and velocity of 

each particle at every time and procedure to solve particle motion is referred as molecular 

dynamic simulation. Molecular dynamic simulation is expensive in terms of time and memory of 

a computer, thus a simulation domain is often limited in a very small space. The governing 

equations are integrated using a numerical integration scheme with boundary conditions 

controlling pressure and temperature condition. Usually, during the integration, molecular 

dynamics simulation suffers with accumulation of errors. To reduce the cumulative error for the 

simulation, higher order numerical methods such as the predictor-corrector scheme, Verlet and 

Runge-Kutta schemes, are often employed. Numerical methods from the macroscopic scale are 

often applicable for the molecular dynamics. 

It is difficult to determine macroscopic fluid flow characteristic with the information of 

particles defined by the molecular dynamic simulation in a direct way. In addition, physical 

parameters, such as viscosity and thermal diffusivity of fluid, are meaningless in microscale 

description and they are the result of the molecules interaction and transitions in a much bigger 

scale. However, it is possible to get approximated quantities for the macroscopic scale from the 

information on the microscopic scale by taking the ensemble average. For instance, temperature 

and pressure can be described by the ensemble averages of the kinetic energies of the particles 

and frequencies of the particle bombardments on the boundaries, respectively. Physical 

properties of fluid can be also measured according to the linear response theory (Guo & Shu, 

2013). Thus, this scale of fluids is excluded from the study of interest.  

 

1.3.3 Mesoscopic scale 

This is well studied scale in terms of the description of gas flow. Generally, knowledge about a 

mesoscopic view of fluid flow fills the gap between the microscopic and macroscopic scales. 

Also, it has been discovered to explain fluid phenomena at a range where the theory of the both 

scales is invalid. The main assumption is that the behavior of the single particle in microscopic 
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scale can’t describe macroscopic phenomena of fluids; however, a characteristic of a group of 

particles might be important in the macroscopic scale. In the simplest way, the fluid density can 

be defined by the sum of the particle mass in a very small volume (Viggen, 2014) as 

𝜌(𝐱, 𝑡) = lim
𝑉→0

(
1

𝑉
∑ 𝑚𝑖

𝑁

𝑥𝑖∈𝑉

) .                                                          (7) 

In the selected volume, the average motion of particles can be expressed by the momentum as 

𝜌𝐮(𝐱, 𝑡) = lim
𝑉→0

(
1

𝑉
∑ 𝑚𝑖

𝑁

𝑥𝑖∈𝑉

𝛏𝑖) ,                                                    (8) 

and temperature can be found by assuming the EOS of gas at a critical condition and the kinetic 

energy of particles as 

𝑇(𝐱, 𝑡) =
1

3𝑘
lim
𝑉→0

(
1

𝑉
∑ 𝑚𝑖

𝑁

𝑥𝑖∈𝑉

|𝛏𝑖|
2),                                                 (9) 

where k is the Boltzmann constant. Considering many particles in the system, calculation 

approaches to appreciate a macroscopic scale, but it leads complexity for the calculation. From 

the particle motion, gas pressure can be easily expressed by the kinetic energy of particles 

𝑝 =
2𝑁

3𝑉
(
𝑚𝑢𝑝

2

2
) =

2𝑛

3
𝐾𝐸 ,                                                     (10) 

where N is the number of molecules in unit volume, KE is a gas kinetic energy and up is the 

average velocity of molecules in the system. When introducing the gas pressure into the EOS, a 

relation of temperature and velocity can be found 

𝑇 =
2

3
𝑘 (
1

2
𝑚𝑢𝑝

2) ,                                                                (11) 

where m is the molecule mass (particle mass). This relation is known as the kinetic temperature 

and is the background of Eq.(9). For the purpose of defining gas pressure and temperature, the 

velocity in Eq.(10) and Eq.(11) can be defined by Eq.(8). However, as so far mentioned, it is a 

difficult way to define the averaged velocity if the total number of particles is enormous. To see 

the correlation of the particle velocity, we can rewrite Eq.(11) as a function of temperature 

𝑢𝑝 = √
3𝑘𝑇

𝑚
 .                                                                     (12) 

From Eq.(12), it is obvious that average velocity of particles proportional to temperature. In 

other words, the particle velocity can be expressed in function of temperature and 

molecular/particle mass. It is also true that all particles can’t move at similar velocity in the 

system.  The velocity of a particle is delayed or sped up depending on its collision pattern with 

other particles. The collision is measureless and it happens with probability. Hence it is possible 

to define particle velocity based on the probability at a certain temperature. This was the idea of 

Maxwell and later Boltzmann to define particle velocity distribution function, ignoring the 

characteristic of each particle: a position and velocity of each particle is not important. The 
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velocity probability of particles in the system can be described by the Maxwell speed 

distribution function as 

𝑓(𝑐) = 4𝜋 (
𝑚

2𝜋𝑘𝑇
)

3
2
𝑐2𝑒−

𝑚𝑐2

2𝑘𝑡  ,                                                (13) 

where c is the probable speed of the particle and f(c) is the fraction of the molecules in the 

system at a range between velocity c and c+dc. With Eq.(13), we can define several 

characteristic velocity values of particles as shown in Figure 2, where speed distributions of 

dioxygen (O2) is presented as an example. 

 

Figure 2. Probability and cumulative distribution function of dioxygen at two different temperatures.  

The speed distribution function gives several characteristic speeds of particles in the system. 

For instance, the root-mean-average speed of the distribution function is the same as a velocity 

defined in Eq.(12). As temperature increases, speed distribution becomes smooth and the peak 

of the distribution moves in the right direction. Integration of the speed distribution function is 

a unit by its definition that any one particle can be found in the curve of the speed distribution 

function. One can derive the Boltzmann distribution function integrating the Maxwell speed 

distribution in velocity field. The Maxwell distribution function shows the distribution of 

particles by its kinetic energy, while the Boltzmann distribution function shows the distribution 

of particles by its potential energy. Equation (13) was detailed by Ludwig Boltzmann in 1872 to 

considering the total energy in the system and formulated as  

𝑓(𝐸) = 𝐴𝑒−
𝐸
𝑘𝑇 .                                                                  (14) 

The Maxwell and Boltzmann distributions are covered in Eq.(14) and it is known as the 

Maxwell-Boltzmann distribution function. This distribution is the cornerstone of the gas kinetic 

theory and thermodynamics. It is also used in the mesoscopic numerical model for fluid flows in 

part 2.  
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1.4 Outline of this thesis 

This thesis is organized in two main parts to maintain the objectives of the thesis. Part 1 discuss 

about fluid flow and sediment transport simulations with macroscopic numerical models. Part 2 

explores about the mesoscopic approach to flow simulations in particular hydraulic applications. 

The thesis outline is given in Figure 3. The thesis is written in simple and very detailed manners 

so that the new beginners for these models will get comprehensive understandings. 

 

Figure 3. Dissertation outline. Light blue numbers at the front are Chapter numbers in the thesis. Black 
solid lines show direct flows, while the dotted line shows a potential of applications.  

In part 1, the NSE with the approximation of Boussinesq and shallow water precedes the ADE 

and novel sediment PTM. For a particular application, the Smagorinsky sub-grid scale model is 

presented for the fluid governing equations. Then the numerical techniques for the models are 

discussed in great details. Before the application, a simple numerical validation, the lock-

exchange problem, for the sediment transport numerical models are given. As a problem, the 

sediment transport in the estuary of the Ohkouzu diversion channel in the Japan Sea is 

investigated by the 2 and 3D numerical models.  

In Part 2, the lattice Boltzmann (LB) models for fluid flows including free surfaces, scalar 

transports, phase changes and fluid-structure interactions. Then, the numerical 

implementations of these LB models are discussed in detail. After that, validations for fluid 

flows, liquid-solid phase changes and combination of above problems are given. The LBM is 

applied to the ice melting problems for the 2D open channel hydraulics in the latter. And finally 

an attempt to the parallel computation with the LBM is given in concise. The LB models base on 

the LBM with the BGK collision, including the Smagorinsky turbulent model, double distribution 

functions approach for scalar transport, enthalpy-based method for phase change, immersed 

boundary method, and the Entropic lattice Boltzmann method (ELBM).  

Conclusions and future works summarize the studies in two parts and suggest possible 

studies in the future. QR codes through this dissertation direct to the animated results. Note that 

the symbol notations may coincide for some terms in two parts.   
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PART 1: MACROSCOPIC MODELING 

FOR SEDIMENT TRANSPORTS 
 

 

includes the descriptions and results of research work using the macroscopic models for fluid 

flow with sediment transport.  

 

2 GOVERNING EQUATIONS 

The macroscopic fluid governing equations designed for particular applications are presented 

here. 

 

2.1 Navier-Stokes equations (NSE) 

As briefly discussed in Section 1.3.1, fluid flows qualified as 𝐾𝑛 ≡ 𝜆 𝑙⁄ ≪ 1 are considered as 

continuum fields (Pope, 2001). In the continuum field, common physical quantities averaged 

over a volume of size 𝑉 = 𝑙∗3, where 𝑙∗ is the intermediate length scale (𝜆 ≪ 𝑙∗ ≪ 𝑙), are the 

density, velocity, pressure and external forces. With the statistic description of molecular 

interactions and transports (Kerson, 1987), the viscosity, the physical quantities are related to 

each other in terms of space and time conserving the momentum. The relations of the physical 

quantities and properties are called the Navier-Stokes equations that govern the continuum 

fluid flow (Pope, 2001), (G. K. Batchelor, 1967), (Болд, et al., 2013) in macroscopic scale. For the 

incompressible fluid flow, the mass and momentum conservation equations in Eq.(1) and (2) 

can be rewritten as 

∇ ∙ 𝑢 = 0 The continuity equation
𝜕𝑢𝑥
𝜕𝑡

+ 𝑢𝑥
𝜕𝑢𝑥
𝜕𝑥

+ 𝑢𝑦
𝜕𝑢𝑥
𝜕𝑦

+ 𝑢𝑧
𝜕𝑢𝑥
𝜕𝑧

= 𝐹𝑚𝑥 −
1

𝜌

𝜕𝑝

𝜕𝑥
+ 𝜈∇2𝑢𝑥

𝜕𝑢𝑦

𝜕𝑡
+ 𝑢𝑥

𝜕𝑢𝑦

𝜕𝑥
+ 𝑢𝑦

𝜕𝑢𝑦

𝜕𝑦
+ 𝑢𝑧

𝜕𝑢𝑦

𝜕𝑧
= 𝐹𝑚𝑦 −

1

𝜌

𝜕𝑝

𝜕𝑦
+ 𝜈∇2𝑢𝑦

𝜕𝑢𝑧
𝜕𝑡

+ 𝑢𝑥
𝜕𝑢𝑧
𝜕𝑥

+ 𝑢𝑦
𝜕𝑢𝑧
𝜕𝑦

+ 𝑢𝑧
𝜕𝑢𝑧
𝜕𝑧

= 𝐹𝑚𝑧 −
1

𝜌

𝜕𝑝

𝜕𝑧
+ 𝜈∇2𝑢𝑧 }

  
 

  
 

The Navier − Stokes equation,
 

where u is the fluid velocity of coordinates of x, y, and z, 𝐹 is the external forces, p is the 

pressure, 𝜌 is the fluid density and 𝜈 is the viscosity of a fluid. Assuming the fluid is only 

accelerated by the gravitational field, the governing equations become as follows in summation 

convention 

𝜕𝑢𝑖
𝜕𝑥𝑖

= 0 ,                                                                            (15) 
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𝜕𝑢𝑖
𝜕𝑡

+ 𝑢𝑚
𝜕𝑢𝑖
𝜕𝑥𝑚

= −g𝑖𝛿𝑖3 −
1

𝜌

𝜕𝑝

𝜕𝑥𝑖
+ 𝜈∇2𝑢𝑖 ,                                            (16) 

where g𝑖 is the gravitational acceleration, i is the component index, m is the conventional 

notation and 𝛿 is the Kronecker delta function. Among the unknown variables in Eq.(15) and 

(16), the pressure can be satisfied the Poisson equation, 

∇2𝑝 = −𝜌
𝑑𝑢𝑚
𝑑𝑥𝑛

𝜕𝑢𝑛
𝜕𝑥𝑚

 ,                                                              (17) 

that is, in turn, a necessary and sufficient condition for the continuity equation (Pope, 2001). 

Also, the pressure for the incompressible flow is no longer connected to the density as the 

equation of state (EOS). However, the density variations due to physical and chemical additions 

in the fluid must be considered for the pressure, as well for the external force. For instance, 

either the salt dissolved in water or the sediment immersed in water or heat given to water 

(non-isothermal fluid flow) results the significant density and viscosity variations in system, 

which then leads to the onset of fluid flows. 

The modeling water body on earth under the atmospheric pressure brings very good 

simplifications for the NSE. In the following we review two important approximations for the 

NSE to be convenient for numerical solution methods. 

 

2.1.1 Boussinesq approximation 

As a problem, an estuary is where the river and sea water meets. In consequence, the density 

current happens due to the density difference between river and seawater. A simple method to 

account the density difference for the governing equations is the Boussinesq approximation. In 

general discussion, one of the conditions the Boussinesq approximation to be effective (Tritton, 

1988) is 

𝜌′

𝜌𝑜
≪ 1 ,                                                                           (18) 

where 𝜌𝑜 is the reference density and 𝜌′ is the density variation. We can anticipate that the 

density of the fluid is 

𝜌 = 𝜌𝑜 + 𝜌
′ .                                                                       (19) 

Multiplying Eq.(16) by 𝜌 and then inserting Eq.(19) into 𝜌 yields 

(𝜌𝑜 + 𝜌
′) (
𝜕𝑢𝑖
𝜕𝑡

+ 𝑢𝑚
𝜕𝑢𝑖
𝜕𝑥𝑚

) = −g𝑖𝛿𝑖3(𝜌𝑜 + 𝜌
′) −

𝜕𝑝

𝜕𝑥𝑖
+ (𝜌𝑜 + 𝜌

′)𝜈∇2𝑢𝑖 .               (20) 

For flows satisfying the general condition (Eq.(18)) with certain conditions depending on the 

problems, Boussinesq in 1903 suggested that the density variations in the fluid can be neglected 

except in the gravity term (Kundu & Cohen, 2004).  Applying this approximation to Eq.(20) and 

dividing the result by 𝜌𝑜 gives 

𝜕𝑢𝑖
𝜕𝑡

+ 𝑢𝑚
𝜕𝑢𝑖
𝜕𝑥𝑚

= −g𝑖𝛿𝑖3 (1 +
𝜌′

𝜌𝑜
) −

1

𝜌𝑜

𝜕𝑝

𝜕𝑥𝑖
+ 𝜈∇2𝑢𝑖 .                               (21) 
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This is the conservation of momentum with the Boussinesq approximation. The Boussinesq 

approximation for the conservation of mass (Eq.(1)) gives the incompressible continuity 

equation given in Eq.(15). It should be noted that some physical or thermal properties such as 

the viscosity, diffusivity, and heat capacity are treated as constant in the Boussinesq 

approximation.  

 

2.1.2 Shallow water approximation 

Solving the pressure term in the NSE has been a difficult challenge. The pressure term was 

one of the motivations to develop different methods to solve the NSE. The pressure term also 

brings the simplification to the NSE without loss of generality. For this, the concept of the 

shallow water equations can be applied to the NSE to simply define the pressure term as a 

hydrostatic pressure. We do not derive the shallow water equations, but we use the concept of it 

for the further simplification to solve the NSE. The condition (Kundu & Cohen, 2004) to use the 

shallow water approximation (SWA) can be 

𝐻

𝜆
≪ 1 →  

𝐻

𝐿
≪ 1 ,                                                               (22) 

where H is the water depth (vertical length scale) and 𝜆 is the wavelength (𝐿 is the horizontal 

length scale). Under this condition, the effect of the vertical velocity component is negligible 

small in the conservation of mass and momentum. Thus, from the z component of the 

momentum equation, one can derive the following relations by eliminating the advection and 

viscous term: 

0 = −g𝒛 (1 +
𝜌′

𝜌𝑜
) −

1

𝜌𝑜

𝜕𝑝

𝜕𝑧
 .                                                     (23) 

This is the hydrostatic pressure equation derived under the SWA. A vertical integration from the 

bottom (−ℎ) to the water surface (𝜂) of Eq.(23) gives the hydrostatic pressure definition, 

𝑝 = −𝑔(𝜌𝑜 + 𝜌
′)(𝜂 − ℎ) .                                                     (24) 

Along with the simple calculation of the pressure with Eq.(23), the time evolution of the 

velocities can be defined as 

For the x component:
𝜕𝑢𝑥
𝜕𝑡

+ 𝑢𝑥
𝜕𝑢𝑥
𝜕𝑥

+ 𝑢𝑦
𝜕𝑢𝑥
𝜕𝑦

+ 𝑢𝑧
𝜕𝑢𝑥
𝜕𝑧

= −
1

𝜌

𝜕𝑝

𝜕𝑥
+ 𝜈∇2𝑢𝑥

For the y component:
𝜕𝑢𝑦

𝜕𝑡
+ 𝑢𝑥

𝜕𝑢𝑦

𝜕𝑥
+ 𝑢𝑦

𝜕𝑢𝑦

𝜕𝑦
+ 𝑢𝑧

𝜕𝑢𝑦

𝜕𝑧
= −

1

𝜌

𝜕𝑝

𝜕𝑦
+ 𝜈∇2𝑢𝑦

For the z component:
𝜕𝑢𝑧
𝜕𝑧

= −
𝜕𝑢𝑥
𝜕𝑥

−
𝜕𝑢𝑦

𝜕𝑦

 .            (25) 

 

2.1.3 Modeling the density variations 

Using an example of density current in an estuary, we show how to model the effect of the 

density variations for the NSE. The density variation, i.e. concentration field, must be modeled 

by another differential equation involved with the velocity field obtained by the NSE. If the 
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problem is temperature dependent, one should evaluate the temperature field with the 

additional differential equation: the heat equation (Tritton, 1988), so that the density variation 

can be calculated from the designated EOS. The differential equation of convection-diffusion is 

the best adequate equation for scalar type variations, such as temperature and concentration. 

The change of density induced by the salt concentration, which causes a density current flow in 

an ocean, can be written as 

𝜕𝜌

𝜕𝑡
+ 𝑢𝑚

𝜕𝜌

𝜕𝑥𝑚
= 𝐴∇2𝜌 ,                                                             (26) 

where 𝜌 is the density of water, 𝑢𝑚 is the velocity vector transporting the concentration and  𝐴 

is the diffusion coefficient expressing the rate of diffusion of concentration in a medium. In 

order to define the temporal evolution of density variations, we can only trace the density 

deviation instead of total density by substituting Eq.(19) into Eq.(26) 

𝜕𝜌′

𝜕𝑡
+ 𝑢𝑚

𝜕𝜌′

𝜕𝑥𝑚
= 𝐷𝑠∇

2𝜌′ .                                                         (27) 

In the common case, the scalar diffusion coefficient, 𝐷𝑠, can be considered as a turbulent 

viscosity coefficient resulted by the turbulent model.  

 

2.2 Smagorinsky turbulent model 

In nature and engineering field, most flows are turbulent and some characteristics of 

turbulence are randomness, nonlinearity, diffusivity, vorticity, and dissipative (Kundu & Cohen, 

2004). Modeling of turbulence must present the above characteristic for the results. Very 

straight approach to model turbulent flow is the direct numerical simulation (DNS) (Orszag, 

1970), which resolves turbulence based on the sufficient scale of discretization of the NSE 

without using any turbulent model. The DNS is expensive and inapplicable to large scale 

problems. To develop more effective models in terms of validity and computational expense, the 

idea to distinguish vorticities are developed. In turbulent flow, vorticities can be seen as large 

and small scale eddies. When solving the large scale eddies explicitly, because in the large scale 

problem, where the large eddies may be primary, one can model the effect of small scale eddies 

with a help of a model. The small scale eddies can be found in a scale range (an analogy to the 

sub-grid scale (Deardorff, 1970)) that is smaller than the characteristic filter length. To describe 

the large eddies in the NSE, the variables need to be filtered in space and time with filtering 

functions, which has dimensioned by the characteristic filter length. Like that, a simple model of 

the effect of the small scale eddies was introduced by Smagorinsky in 1963 closing the 

momentum equations for the filtered terms by an eddy viscosity term (Smagorinsky, 1963). The 

Smagorinsky turbulent model is a member of the Large Eddy Simulation (LES) modeling of 

turbulent flows. General conceptual ideas of the LES models are the filtering the variables, 

especially the velocity field, modeling the residual stress tensor for modeling the small scale 

eddies, and deriving the filtered NSE with the residual stress tensor (Pope, 2001). Here, we 

briefly review the Smagorinsky model for the NSE with the Boussinesq approximation.  

According to the gas kinetic theory (Kerson, 1987), the diffusive properties of the gas 

molecules, roughly speaking the viscosity, is of the order of the product of root mean square 
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(rms) speed of molecular motion and the mean free path defined as an average distance 

between successive collisions of molecules. By analogy with this hypothesis, using the eddy 

viscosity proposal with the turbulent stress of Boussinesq (Boussinesq, 1877) (Schmitt, 2007) , 

the order of eddy viscosity can be 

𝜈𝑒~𝑢′𝑙𝑚  ,                                                                           (28) 

where 𝑢′ is a typical scale of the fluctuating velocity or a residual (or sub-grid scale) component 

of the velocity and 𝑙𝑚 is the mixing length defined as the cross-stream distance traveled by a 

fluid particle before it gives up its momentum and loses identity (Kundu & Cohen, 2004). More 

precisely, the eddy viscosity can be expressed by 

𝜈𝑒 = 𝑙𝑚
2 |
𝜕〈𝑢〉

𝜕𝑦
| ,                                                                          (29) 

where 〈𝑢〉 is an average velocity. The velocity can be decomposed by the filtering function as 

𝑢(𝐱, 𝑡) = �̅�(𝐱, 𝑡) + 𝑢′(𝐱, 𝑡) ,                                                        (30) 

where �̅� is the filtered velocity. Having the same concept with Eq.(29), Smagorinsky in 1963 

(Smagorinsky, 1963) proposed the eddy viscosity term 

𝜈𝑒 ≅ 𝑙𝑠
2|𝑆̅| = (𝐶𝑠∆)

2√2𝑆�̅�𝑗𝑆�̅�𝑗  ,                                                     (31) 

where 𝑙𝑠 is the Smagorinsky length scale, 𝑆̅ is the characteristic filtered rate of strain (Pope, 

2001), 𝐶𝑠 is the Smagorinsky constant and ∆ is the filter width. With the Smagorinsky model, the 

NSE in Eq.(21) for the filtered velocity fields becomes 

𝜕�̅�𝑖
𝜕𝑡

+ �̅�𝑚
𝜕�̅�𝑖
𝜕𝑥𝑚

= −𝐠𝛿𝑖3 (1 +
𝜌′

𝜌𝑜
) −

1

𝜌𝑜

𝜕𝑝

𝜕𝑥𝑖
+ 𝜈𝑇∇

2�̅�𝑖 ,                        (32) 

where 𝜈𝑇 = (𝜈 + 𝜈𝑒) is the turbulent viscosity, whereas the continuity equation becomes 

𝜕�̅�𝑖
𝜕𝑥𝑖

= 0 .                                                                      (33) 

 

2.2.1 Turbulence in stratified medium 

Stratified medium, such as atmospheric and geophysical medium with the density variations, 

has an effect on the turbulent closures. If the density variations, induced by temperature or 

concentrations, are significant, the use of the Smagorinsky turbulent model may produce the 

unstable solution for the system. Stable and unstable stratified medium can be characterized by 

the Richardson number as 

𝑅𝑖 =
𝑔

𝜌𝑜

∇𝜌

(∇𝑢)2
 > 1 stable (buoyancy driven flow)

𝑅𝑖 < 1 unstable (external force is dominant)

 .                  (34) 

It is claimed that if the flow is stable stratified flow, all turbulence are completely suppressed 

(Tennekes & Lumley, 1972). In other words, the buoyant destruction removes turbulence at a 

rate larger than the rate which it is produced by shear production (Kundu & Cohen, 2004). 
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Accounting the negative buoyancy effect, an anisotropic Smagorinsky model (Ikehata & Honji, 

2000) can be defined for the stratified medium as 

𝜈𝑒 = (𝐶𝑠∆)
2√2𝑆�̅�𝑗𝑆�̅�𝑗 (1 −

𝑅𝑖

𝑃𝑟𝑡
) ,                                                 (35) 

where 𝑃𝑟𝑡 is the turbulent Prandtl number, which defines the relative efficiency of the vertical 

turbulent exchanges of momentum and heat. We can assume that 𝑃𝑟𝑡 ≅ 1. The recommended 

value for the Smagorinsky constant is 𝐶𝑠 = 0.1~0.2, but it should be noted that the Smagorinsky 

constant is a function (Pope, 2001) relevant to a Reynolds number and filter width etc. The filter 

width can be computed as 

∆= (∆𝑥∆𝑦∆𝑧)
1/𝐷
  ,                                                             (36) 

where ∆𝑥 , ∆𝑦, ∆𝑧 are considered as a grid spacing of the geometric discretization and D can be 

a number of dimensions. The Richardson number in Eq.(35) can be defined as 

𝑅𝑖 =
𝑔

𝜌𝑜

𝜕𝜌′
𝜕𝑧

2𝑆�̅�𝑗𝑆�̅�𝑗
 .                                                              (37) 

Computationally, the Smagorinsky turbulent model can be applied for the determination of local 

turbulent viscosity based on the condition in Eq.(34).  

 

2.3 Sediment transport modeling 

Transporting the solid material by fluid flow is widely studied subject in physics. It is still 

leading subject for researchers and scientists to understand its undiscovered corners. As same 

as the other mechanical topics, the sediment transport was explained and modeled by using 

empirical description until the computer were available for computing. As the sediment 

transport in nature was complex, revealed understanding of it was widely applicable not only in 

engineering, but also in industrial processes. From the observation of not equal distribution of 

velocity over the depth of a river due to bed resistance to the knowledge of fluid-particle system, 

the countless number of people contributed their understanding into the sediment transport 

through several centuries in the past (Walter, 1984). 

Speaking in hydraulic research, the phenomenon is well described by the phrase “the loose 

boundary hydraulics” (Bagnold, 1941), which identify a set of problems involving the 

interaction of fluid with the erodible material of its confined boundaries (Raudkivi, 1976). The 

early stage of the modeling was based on the sediment continuity equation accounting the 

entrainment and deposition rates in suspended and bed loads. Then, the modeling of the 

sediment transport adapted to use the advection-diffusion equation (ADE) with source and sink 

terms. Comprehensive review of the widely used sediment transport models are discussed in 

(Papanicolaou, et al., 2008). The importance of cohesive sediment transport and scale of 

consideration confines the modeling in continuous approach. In fact, however, the continuous 

approach of modeling was used to describe the particulate nature of the movement. As long as 

the continuum modeling is realized as inadequate for the non-cohesive sediment transport 
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characteristic, reliable and comprehensive descriptions about the two-phase phenomenon of 

sediment and flow are developed (Drew, 1983). However, two-phase models diverse in 

continuous and discrete modeling, and the scale limitation of models have created the gap in the 

knowledge. To fill that and other gaps in the knowledge of sediment transport research, 

researchers have created the international organizations, such as the International sediment 

initiative (ISI) launched by UNESCO (Spreafico & Bruk, 2004), to support sustainable and 

systematic development of the sediment transport research. 

In this thesis, we discuss two approaches for sediment transport: an ADE based model and a 

particle based model. Purpose to use the ADE system of sediment transport modeling is to 

validate the newly proposed particle based modeling (PTM). All presented results are partially 

reported in (Takeshi, 2016), (Takeshi, et al., 2016a) and (Takeshi, et al., 2016b). 

 

2.3.1 Advection-diffusion equation 

An amount of suspended sediment particles in fluid flow can be assumed as a concentration 

averaged over a control volume. Distributions of suspended sediments in fluid flows are 

commonly modeled by the differential equation of advection-diffusion in terms of conservation 

of mass. Although such a model does not account adequately for all influences, it has been found 

to explain satisfactorily many suspension problems (Walter, 1984). To determine a temporal 

evolution of spatial distributions of sediment concentration, the following ADE can be solved, 

𝜕𝑐

𝜕𝑡
+ 𝐮𝒊

𝜕𝑐

𝜕𝑥𝑖
+ (𝑤 − 𝑤𝑠)

𝜕𝑐

𝜕𝑧
= 𝐷𝑐∇

2𝑐 , 𝑖 = 1,2                                           (38) 

where, 𝑐, 𝐮, 𝑤, 𝑤𝑠 and 𝐷𝑐 are the sediment concentration, the horizontal and vertical velocity 

components, the settling velocity and the turbulent diffusion coefficient for the sediment 

concentration, respectively. For the diffusion coefficient, we assumed the turbulent diffusion 

coefficient, which is determined by a turbulent model described in Section 2.2. So that, the 

sediment concentration in Eq.(38) is seen as a filtered variable to be presented in turbulent 

flows.  

The settling velocity 𝑤𝑠 of sediment is an important rate for a vertical distribution of 

sediments. Proper values of the settling velocity depending on sediment mechanical properties 

are widely studied and recommended in many literatures (伊勢屋ふじこ, 1985), (鶴谷広一, et 

al., 1989). In the conventional studies, the Stokes velocity determined by the balance between 

ascending force (sum of the drag and buoyance forces) and gravity force is used for the settling 

velocity.  However, the Stokes velocity is a final falling rate of particle in water. With a small 

time step in simulation, it is confirmed that the settling velocity takes the value of the Stokes 

velocity immediately in the ADE. Another way to define the settling velocity is to conduct 

experiments with the samples collected from the study area.  

Since the ADE is solved by an Eulerian approach in the fixed grid, the local changes and 

historical properties for sediments does not determined in such an approach. To overcome the 

limits of a conventional approach with the ADE, the Lagrangian approach was proposed and 

solved for the sediment transport in the follow.  
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2.3.2 Sediment particle tracking approach 

In order to capture the particulate nature of sediment transport, we purpose the sediment 

particle tracking method (PTM). In this method, an individual particle will be considered rather 

than a volume representation of sediments. This approach can be seen as a representative 

sediment particle tracking approach, in which the particles deputize the real sediment particles 

in a proper space. Conceptually, it is acceptable to use the representative particle for the model 

in order to represent the dynamics of the real sediment particles, since it is difficult to involve 

all of the sediment particles in the large scale sediment transport simulation. The representative 

sediment particle concept is depicted in Figure 4 and the radius of that particle can expressed 

as, 

𝑟 =
∑ 𝑟𝑖
𝑛
𝑖=1

𝑛
 ,                                                                            (39) 

where 𝑟𝑖 is the radius of real sediment particles in selected region and n is the number of 

particles exist in the region. In computational practice, of course, we do not calculate the radius 

and position of the representative particles. The particles radius and position can be generated 

randomly by considering the problem scale and sediment concentration with respect to the grid 

sizes.  

 

Figure 4. Example of defining representative sediment particles in very fine grid 

 In the PTM, time evolution of all particles will be continuously tracked in the space-time 

through the whole simulation. Advantages of considering individual particles provide some 

opportunities to handle specific behavior of sediment particles such as the flocculation process. 

The flocculation is a phenomenon that cohesive sediment particles aggregate with each other as 

attracting by their electromagnetic forces (Einstein & Krone, 1962).  In consequence of the 

flocculation process, particle volume must be expanded by the circumstances of that process. 

For instance, the flocculation of sediment in the sea water may be thought as a function of time 

such as traveling time of the particles in the sea water. This process for individual particle 

traveling within sea water will be handled easily by storing the memory of the time history of 

particle accounted by the PTM. It also allows the particle to have a different traveling velocity at 

each time step in the simulation.  
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If a particle shape is simplified to be a sphere, the following equation of motion can be solved 

to capture particle position for every computational moment,  

4

3
𝜋𝑟3𝜌𝑠𝑒𝑑

𝑑𝐮𝑝
𝑑𝑡

= 𝐅𝑟 ,                                                                 (40) 

where 𝐮𝑝, 𝑟, 𝜌𝑠𝑒𝑑 , and 𝐅𝑟 are the traveling velocity, the sediment particle radius, the density of a 

sediment particle, and the drag force acting on a particle. As mentioned, the sediment particle 

size and its spatial distribution in the simulation can be given by the generation of the random 

number according to the normal distribution and the uniform distribution function, respectively. 

The right hand side of Eq.(40) is a drag force and can be expressed as,  

𝐅𝑟 =
1

2
𝐴𝜌𝑤𝐶𝐷𝐮𝑟|𝐮𝑟|                                                                 (41) 

where 𝜌𝑤 is the density of water, 𝐶𝐷 is the drag coefficient of a sediment particle, 𝐴 is the cross 

sectional area of a particle and 𝐮𝑟 is the relative velocity between particles (see Figure 5) and a 

fluid flow. Since the drag coefficient is a function of the Reynolds number, we used an 

approximated function extracted from an experimental chart of dependency of 𝐶𝐷 on the 

Reynolds number for an individual particle evaluation in Eq.(41). Consequently, depending on 

the instant situation of individual particle, whether laminar or turbulent regime, the drag 

coefficient can be estimated from such an approximated function. From the balance of forces 

acting on the single particle, it is presumable that sediment particles can take instantly its final 

sedimentation rate (Stokes velocity or settling velocity) from a stationary position when falling 

downward in still water. Therefore, it is reasonable to consider the Stokes velocity in Eq.(40) 

instead of the gravitational acceleration.  

 

Figure 5. Schematic illustration of a particle moving through the computational cell in the particle 
tracking approach. A particle is traveling from initial time 𝑡𝑖𝑛 to time instant 𝑡𝑖𝑛 + 3∆𝑡. 

The relative velocity can be defined as 

𝐮𝑟 = 𝐮𝑓 − 𝐮𝑝 ,                                                                    (42) 

where the fluid velocity, 𝐮𝑓 , is obtained by weighting the velocities in a cell. The sediment 

particle velocity, 𝐮𝑝, is updated by computing Eq.(40) in time advance.  
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2.3.3 Simple model for flocculation 

Sediment transport and sedimentation are clearly dependent on a particle weight and 

cohesion. Cohesion and sediment particle size are solely related. Cohesion describes the 

tendency of fine sediment particles binding together under some circumstances. For instance, 

sediments in fresh water may have no repulsive force, because they are negatively charged, but 

this will no longer exist when sediments enter to salt water. After sediment particles are 

traveling in a certain time in salt water, the repulsive force does not exist between sediment 

particles and adjacent particles make flocs together. According to (Raudkivi, 1976), for the 

suspended particles of 𝐷 ≤ 10 𝜇 not only gravitational forces but also electrochemical forces 

become important. On the other point, a suspension of solid particles, where physicochemical 

forces are dominant because of chemical influence within the environment, made the collision 

with others and the results bring the flocs. In other words, the collisions of particles also make 

flocs. These processes of sediment particles stick to each other make a floc are called the result 

of the flocculation process (Walter, 1984). Studies of flocculation of suspended fine sediment 

are fronted by Kruyt (Kruyt, et al., 1952), Einstein (Einstein & Krone, 1961) and many others 

(Yanagi, 1989) generally in subject of estuary. An aggregation of neighboring particles as a floc 

accelerates the sedimentation rate of cohesive sediments (Walter, 1984). Many studies about 

the flocculation, these are rather descriptive or highly fundamental or even very empirical, have 

been carried out to understand the variation in the number of particles, or the changes in 

concentration (Winterwerp, 1998). However, rather complicated models are currently 

describing the result of flocculation, more significantly, the important variation in floc sizes and 

settling velocity with time. With the ADE system of suspended sediment transport, the relation 

between concentration and floc size are difficult to handle. 

To understand the effect of flocculation for the sediment distribution, we propose a simple, 

practical flocculation model (Takeshi, et al., 2016a). Since the particle tracking approach or PTM 

is the method to track the representative particles, the number of particles in the system is no 

correlation with the flocculation. Simply, the flocculation process becomes only a matter for the 

changes of particle size in respect with time. Taking advantage of the PTM described above, the 

sediment particle size can be changed in the result of flocculation: 

𝑟 = 𝛼(𝑡)𝑟𝑖𝑛 ,                                                                    (43) 

where 𝛼 is the scaling rate in respect with time and 𝑟𝑖𝑛 is the initial radii of the cohesive 

sediment particles. The scaling rate must be determined by the experimental studies and it can 

be expressed according to the sigmoid function of time as 

𝛼 = 𝛼𝑜 +
1

1 + 𝑒−𝑡𝑝
 with 𝑡𝑝 =

12

𝑡𝑐𝑟
𝑡𝑡𝑜𝑢𝑐ℎ − 6 ,                                           (44) 

where 𝛼𝑜 is a base scaling, 𝑡𝑝 is a time parameter, 𝑡𝑡𝑜𝑢𝑐ℎ is a time for particle lapsed in 

flocculation condition and 𝑡𝑐𝑟 is a flocculation time. The base scaling can be assumed to be 

𝛼𝑜 = 𝛼𝑒𝑥 − 1, in which 𝛼𝑒𝑥  is experimentally defined scaling. In case of an estuary, the 

flocculation is caused by the salt concentration in seawater. Thus, the 𝑡𝑡𝑜𝑢𝑐ℎ must be counted 

when the particle enters into seawater. The sigmoid function in the model just provides the 

smooth changes in particle size.  
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3 NUMERICAL TECHNIQUES 

In solutions of fluid dynamic problems, the numbers of methods and algorithms have been used 

to solve the NSE. The methods differ by their concept and geometric configuration, or even 

designed conditions such as compressible or incompressible fluid flows. Widely used 

conventional methods are the finite-family methods, namely the finite difference method (FDM), 

finite element method (FEM) and finite volume method (FVM), based on an Eulerian grid 

discretization. Many of them share the same numerical algorithms in order to solve the NSE in 

preconditioned problems. In chronological orders, the marker and cell method (MAC) (Harlow 

& Welch, 1965), pseudo-compressibility method (or the artificial compressibility method - 

ACM) (Chorin, 1967), projection method (or velocity pressure simultaneous iteration method - 

PM) (Chorin, 1968), simplified MAC (SMAC) (Amsden & Harlow, 1970), semi-implicit method 

for pressure-linked equations (SIMPLE) (Patankar & Spalding, 1972) and highly simplified MAC 

(or the solution algorithm - SOLA) (Hirt & Cook, 1972) are the popular methods for the 

incompressible fluid flows and they are ancestor of the many other numerical algorithms 

(Chung, 2002). In this thesis, the SOLA method will be presented.  

 

3.1 SOLA algorithm for the NSE 

The marker-and-cell method (MAC), precursor of the solution algorithm (SOLA), uses an 

Eulerian finite difference formulation with pressure and velocity as the primary dependent 

variables and originally designed for problems involving free surfaces. As branching from the 

MAC, the SOLA method is simplified by eliminating some complicated refinements of the MAC 

algorithm, especially the marker particles (Hirt, et al., 1975) are removed from the scheme.  

Geometric discretization of a problem is formed in a computational domain of the SOLA, 

which has an extra fictitious single layer of boundary cells surrounding the actual sized problem 

domain, as shown in Figure 6 (a). A fictitious layer of boundary cells prevents unphysical 

oscillation that may emerge from the implementation of some boundary conditions. In other 

words, the boundary cells eliminate the influence of boundary condition for the problem 

domain. The computational domain consists of parallelepiped cells in the 3D space or 

rectangular cells in the 2D space having a grid spacing of ∆𝑥, ∆𝑦, and ∆𝑧, respectively. Fluid 

variables are positioned on the cells as staggered fashion in order to avoid the checkerboard 

type error in pressure-velocity related formulation (Harlow & Welch, 1965). Precisely, we use 

𝑢, 𝑣, 𝑤 for the velocity components with their location indicated as 𝑖, 𝑗, 𝑘. The fluid velocities are 

located on the center of side or face of a cell in a 2D or 3D domain, respectively. Whereas, the 

scalar values of pressure, density or concentration are placed on the center of a cell in the 2D or 

3D cell, as seen in Figure 6 (b) and (c).  
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Figure 6. (a) Computational domain in the SOLA method, (b) a three dimensional cell and (c) a two 
dimensional cell possessing the fluid variables. 

 

3.1.1 Explicit approximations for the governing equations 

The simple Eulerian finite difference discretization of Eq.(32) in the x-direction can be 

written as 

𝑢𝑖,𝑗,𝑘
𝑛+1 = 𝑢𝑖,𝑗,𝑘

𝑛 + ∆𝑡 (−
1

𝜌𝑜

𝜕𝑝

𝜕𝑥𝑖
− g𝑥𝛿𝑖3 (1 +

𝜌′

𝜌𝑜
) − 𝑢𝑚

𝜕𝑢𝑖
𝜕𝑥𝑚

+ 𝜈𝑇∇
2𝑢𝑖) ,             (45) 

where the time dependent part of velocity is differed only. Assigning the notations for the 

differential terms in brackets on the right hand side of Eq.(45) becomes 

𝑢𝑖,𝑗,𝑘
𝑛+1 = 𝑢𝑖,𝑗,𝑘

𝑛 + ∆𝑡(𝑃𝑥
𝑛 − 𝑅𝑥

𝑛 − 𝐹𝑢𝑥
𝑛 − 𝐹𝑢𝑦

𝑛 − 𝐹𝑢𝑧
𝑛 + 𝐹𝑣𝑖𝑠𝑥

𝑛 ) ,                      (46) 

where 𝑃𝑥
𝑛, 𝑅𝑥

𝑛, 𝐹𝑢𝑥
𝑛 , 𝐹𝑢𝑦

𝑛 , 𝐹𝑢𝑧
𝑛  and 𝐹𝑣𝑖𝑠𝑥

𝑛  are the differential terms of the pressure, external forces 

(for the gravity in the x- and y-directional terms are zero), advection terms of velocity in the x-, 

y-, z-directions and viscosity term. Time advance is 𝑡 = (𝑛 + 1)∆𝑡, in which n is the number of 

cycles in a computation. The staggered gird is very convenient for differencing the terms in 

Eq.(46), as we give them later. As like as the difference equation of the x-component of the NSE, 

the other component can be written as 

𝑣𝑖,𝑗,𝑘
𝑛+1 = 𝑣𝑖,𝑗,𝑘

𝑛 + ∆𝑡(𝑃𝑦
𝑛 − 𝑅𝑦

𝑛 − 𝐹𝑣𝑥
𝑛 − 𝐹𝑣𝑦

𝑛 − 𝐹𝑣𝑧
𝑛 + 𝐹𝑣𝑖𝑠𝑦

𝑛 ) for the y − direction

𝑤𝑖,𝑗,𝑘
𝑛+1 = 𝑤𝑖,𝑗,𝑘

𝑛 + ∆𝑡(𝑃𝑧
𝑛 − 𝑅𝑧

𝑛 − 𝐹𝑤𝑥
𝑛 − 𝐹𝑤𝑦

𝑛 − 𝐹𝑤𝑧
𝑛 + 𝐹𝑣𝑖𝑠𝑧

𝑛 ) for the z − direction
 .              (47) 

If one wants to upgrade the first order of explicit systems in Eq.(46) and (47) by the second 

order explicit scheme, the Adams-Bashforth method may be employed as 

𝑢𝑖,𝑗,𝑘
𝑛+1 = 𝑢𝑖,𝑗,𝑘

𝑛 + ∆𝑡(1.5𝑇𝑥
𝑛 − 0.5𝑇𝑥

𝑛−1)

𝑣𝑖,𝑗,𝑘
𝑛+1 = 𝑣𝑖,𝑗,𝑘

𝑛 + ∆𝑡(1.5𝑇𝑦
𝑛 − 0.5𝑇𝑦

𝑛−1)

𝑤𝑖,𝑗,𝑘
𝑛+1 = 𝑤𝑖,𝑗,𝑘

𝑛 + ∆𝑡(1.5𝑇𝑧
𝑛 − 0.5𝑇𝑧

𝑛−1)

  ,                                              (48)  

where 𝑇𝑛 = 𝑃𝑛 − 𝑅𝑛 − 𝐹𝑥
𝑛 − 𝐹𝑦

𝑛 − 𝐹𝑧
𝑛 + 𝐹𝑣𝑖𝑠

𝑛  is the terms in the (n)th time step and 𝑇𝑛−1 is the 

terms in the (n-1)th time step. Note that in the expression of 𝑇𝑛, we removed the notation of 

coordinates.  

While, the continuity equation in Eq.(15) can get the discretization of 

𝑢𝑖,𝑗,𝑘
𝑛+1 − 𝑢𝑖−1,𝑗,𝑘

𝑛+1

Δ𝑥
+
𝑣𝑖,𝑗,𝑘
𝑛+1 − 𝑣𝑖,𝑗−1,𝑘

𝑛+1

Δ𝑥
+
𝑤𝑖,𝑗,𝑘
𝑛+1 −𝑤𝑖,𝑗,𝑘−1

𝑛+1

Δ𝑧
= 0                                (49) 
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and the new velocities defined by the discretized NSE in Eq.(46) and (47) must satisfy the 

continuity equation in Eq.(49). However, in general, the new velocities computed from the NSE 

will not satisfy the continuity equation; moreover, the artificial incompressibility condition 

must be imposed for the scheme. Depending on the value of the divergence in Eq.(49), an 

appropriate adjusting for the pressure, which leads the correction for velocities, must be made. 

In other words, the divergence in a current cell is 

𝐷𝑚 =
𝑢𝑖,𝑗,𝑘
𝑛+1 − 𝑢𝑖−1,𝑗,𝑘

𝑛+1

Δ𝑥
+
𝑣𝑖,𝑗,𝑘
𝑛+1 − 𝑣𝑖,𝑗−1,𝑘

𝑛+1

Δ𝑥
+
𝑤𝑖,𝑗,𝑘
𝑛+1 −𝑤𝑖,𝑗,𝑘−1

𝑛+1

Δ𝑧
 ,                              (50) 

and the resultant pressure change can be defined as 

𝛿𝑝𝑚 = −𝐷𝑚
𝜕𝐷𝑚

𝜕𝑝𝑖,𝑗,𝑘
𝑛,𝑚 = −𝐷𝑚𝛽 = −𝐷𝑚

𝜔

2∆𝑡 (
1
Δ𝑥2

+
1
Δ𝑦2

+
1
Δ𝑧2

)
 ,                   (51) 

where m is the current iteration cycle, 𝛽 is the constant containing the over relaxation 

parameter, 𝜔(= 1.8), and the computational parameters such as a grid spacing and time step. 

The pressure and velocity corrections must be done iteratively, however, because when one cell 

is adjusted to its neighbors are affected. For the each cell of the computational domain, the most 

recent velocities, corrected with previous iteration or updated by new time step, are used to 

compute the divergence and the pressure change in current iteration n. During the iterations, 

the pressure change corrects the pressure in order to make 𝐷𝑚 approaches to zero, as 

𝑝𝑖,𝑗,𝑘
𝑛,𝑚+1 = 𝑝𝑖,𝑗,𝑘

𝑛,𝑚 + 𝛿𝑝𝑚  ,                                                       (52) 

and the cell relevant velocities become 

𝑢𝑖,𝑗,𝑘
𝑛,𝑚+1 = 𝑢𝑖,𝑗,𝑘

𝑛,𝑚 + ∆𝑡
𝛿𝑝𝑚

∆𝑥
, 𝑢𝑖−1,𝑗,𝑘

𝑛,𝑚+1 = 𝑢𝑖−1,𝑗,𝑘
𝑛,𝑚 − ∆𝑡

𝛿𝑝𝑚

∆𝑥

𝑣𝑖,𝑗,𝑘
𝑛,𝑚+1 = 𝑣𝑖,𝑗,𝑘

𝑛,𝑚 + ∆𝑡
𝛿𝑝𝑚

∆𝑥
, 𝑣𝑖,𝑗−1,𝑘

𝑛,𝑚+1 = 𝑣𝑖,𝑗−1,𝑘
𝑛,𝑚 − ∆𝑡

𝛿𝑝𝑚

∆𝑥

𝑤𝑖,𝑗,𝑘
𝑛,𝑚+1 = 𝑤𝑖,𝑗,𝑘

𝑛,𝑚 + ∆𝑡
𝛿𝑝𝑚

∆𝑥
, 𝑤𝑖,𝑗,𝑘−1

𝑛,𝑚+1 = 𝑤𝑖,𝑗,𝑘−1
𝑛,𝑚 − ∆𝑡

𝛿𝑝𝑚

∆𝑥

 .                             (53) 

Convergence of the iteration is achieved when all cells have 𝐷𝑚 values satisfying the inequality 

max𝐷𝑚 < 휀 ,                                                                  (54) 

where 휀 is a typical value order of 10−3 or smaller. 

A constant time step in the numerical method, not only in the SOLA, leads the unstable 

solution for the computation. Once the grid spacing has been chosen to be a constant, the choice 

of the time step necessary for the stability is governed by a stability condition for the solving 

equations. Stability analysis of the numerical scheme is often carried out the von Neumann 

stability analysis (Crank & Phyllis, 1947) and the chosen time step should satisfy the von 

Neumann criteria in general (Vreugdenhil, 2012): 

|𝜎| ≤ 1 , with 𝜎 = 𝑢
Δ𝑡

Δ𝑥
 ,                                                       (55) 

where 𝜎 is the Courant number. Motivated from the Courant-Friedritchs-Lewy (CFL) condition 

in Eq.(55), general conditions of the time step for the stable solutions of the pressure-velocity 

iteration techniques (Bulgarelli, et al., 1984) are formulated as 
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{
 
 

 
 ∆𝑡 ∙ max (

𝑢

Δ𝑥
,
𝑣

Δ𝑦
,
𝑤

Δ𝑧
) ≤

1

3

∆𝑡 ≤ [2𝜇 (
1

Δ𝑥2
+

1

Δ𝑦2
+

1

Δ𝑧2
)]
−1

∙ min(𝜌)

 .                                       (56) 

For the incompressible fluid flow, the criteria to choose a time step could be generalized from 

Eq.(56) as follow: 

{
 
 

 
 ∆𝑡 ≤

1

3 ∙ max (
𝑢𝑚𝑎𝑥
∆𝑥

,
𝑣𝑚𝑎𝑥
∆𝑦

,
𝑤𝑚𝑎𝑥
∆𝑧

)
= 𝑑𝑡1

∆𝑡 ≤
1

[2𝜈 (
1
∆𝑥2

+
1
∆𝑦2

+
1
∆𝑧2

)]
= 𝑑𝑡2

     →→  ∆𝑡 = 𝑎 ∙ min(𝑑𝑡1, 𝑑𝑡2)        (57) 

where 𝑎 is a safety factor which insures the order of time step lower than the minimum grid 

spacing. Depending on the problem, the additional time step criteria can be embedded in the 

condition in Eq.(57). 

 

3.1.2 Approximations for the terms in the governing equations 

Now we give finite difference equations for the terms in Eq.(46) and (47) as follows. The 

pressure terms are 

𝑃𝑥
𝑛 = −

1

𝜌𝑜

(𝑝𝑖+1,𝑗,𝑘
𝑛 − 𝑝𝑖,𝑗,𝑘

𝑛 )

∆𝑥

𝑃𝑦
𝑛 = −

1

𝜌𝑜

(𝑝𝑖,𝑗+1,𝑘
𝑛 − 𝑝𝑖,𝑗,𝑘

𝑛 )

∆𝑦

𝑃𝑧
𝑛 = −

1

𝜌𝑜

(𝑝𝑖,𝑗,𝑘+1
𝑛 − 𝑝𝑖,𝑗,𝑘

𝑛 )

∆𝑧

                                                    (58) 

and the external force terms are 

𝑅𝑥
𝑛 = 𝑎𝑥 (1 +

𝜌′

𝜌𝑜
)

𝑅𝑦
𝑛 = 𝑎𝑦 (1 +

𝜌′

𝜌𝑜
)

𝑅𝑧
𝑛 = 𝑎𝑧 (1 +

𝜌′

𝜌𝑜
)

 ,                                                            (59) 

where 𝐚 = {𝑎𝑥, 𝑎𝑦, 𝑎𝑧} is the force acceleration, for instance, in gravitational field, it is 

𝐚 = {0,0, g}.  

The advection and viscous terms are relatively important terms in the SOLA method in terms 

of accuracy (Wilson, et al., 1988). They are expressing the advection of velocity flux and the 

acceleration of viscous forces in fluid flows. For example, 𝐹𝑢𝑥
𝑛  is the advection flux of u in the x 

direction. These terms are evaluated using old time step values for velocities. For the regular 

grid, the advection flux terms can be approximated as: 

For the x – component 
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𝐹𝑢𝑥
𝑛 =

1

4Δ𝑥
[
(𝑢𝑖,𝑗,𝑘

𝑛 + 𝑢𝑖+1,𝑗,𝑘
𝑛 )(𝑢𝑖,𝑗,𝑘

𝑛 + 𝑢𝑖+1,𝑗,𝑘
𝑛 ) + 𝛼|𝑢𝑖,𝑗,𝑘

𝑛 + 𝑢𝑖+1,𝑗,𝑘
𝑛 |(𝑢𝑖,𝑗,𝑘

𝑛 − 𝑢𝑖+1,𝑗,𝑘
𝑛 ) −

(𝑢𝑖−1,𝑗,𝑘
𝑛 + 𝑢𝑖,𝑗,𝑘

𝑛 )(𝑢𝑖−1,𝑗,𝑘
𝑛 + 𝑢𝑖,𝑗,𝑘

𝑛 ) − 𝛼|𝑢𝑖−1,𝑗,𝑘
𝑛 + 𝑢𝑖,𝑗,𝑘

𝑛 |(𝑢𝑖−1,𝑗,𝑘
𝑛 − 𝑢𝑖,𝑗,𝑘

𝑛 )
]          (60) 

𝐹𝑢𝑦
𝑛 =

1

4Δ𝑦
[

(𝑣𝑖,𝑗,𝑘
𝑛 + 𝑣𝑖+1,𝑗,𝑘

𝑛 )(𝑢𝑖,𝑗,𝑘
𝑛 + 𝑢𝑖,𝑗+1,𝑘

𝑛 ) + 𝛼|𝑣𝑖,𝑗,𝑘
𝑛 + 𝑣𝑖+1,𝑗,𝑘

𝑛 |(𝑢𝑖,𝑗,𝑘
𝑛 − 𝑢𝑖,𝑗+1,𝑘

𝑛 ) −

(𝑣𝑖,𝑗−1,𝑘
𝑛 + 𝑣𝑖+1,𝑗−1,𝑘

𝑛 )(𝑢𝑖,𝑗−1,𝑘
𝑛 + 𝑢𝑖,𝑗,𝑘

𝑛 ) − 𝛼|𝑣𝑖,𝑗−1,𝑘
𝑛 + 𝑣𝑖+1,𝑗−1,𝑘

𝑛 |(𝑢𝑖,𝑗−1,𝑘
𝑛 − 𝑢𝑖,𝑗,𝑘

𝑛 )
]          (61) 

𝐹𝑢𝑧
𝑛 =

1

4Δ𝑧
[

(𝑤𝑖,𝑗,𝑘
𝑛 +𝑤𝑖+1,𝑗,𝑘

𝑛 )(𝑢𝑖,𝑗,𝑘
𝑛 + 𝑢𝑖,𝑗,𝑘+1

𝑛 ) + 𝛼|𝑤𝑖,𝑗,𝑘
𝑛 + 𝑤𝑖+1,𝑗,𝑘

𝑛 |(𝑢𝑖,𝑗,𝑘
𝑛 − 𝑢𝑖,𝑗,𝑘+1

𝑛 ) −

(𝑤𝑖,𝑗,𝑘−1
𝑛 +𝑤𝑖+1,𝑗,𝑘−1

𝑛 )(𝑢𝑖,𝑗,𝑘−1
𝑛 + 𝑢𝑖,𝑗,𝑘

𝑛 ) − 𝛼|𝑤𝑖,𝑗,𝑘−1
𝑛 +𝑤𝑖+1,𝑗,𝑘−1

𝑛 |(𝑢𝑖,𝑗,𝑘−1
𝑛 − 𝑢𝑖,𝑗,𝑘

𝑛 )
]          (62) 

For the y – component 

𝐹𝑣𝑥
𝑛 =

1

4Δ𝑥
[

(𝑢𝑖,𝑗,𝑘
𝑛 + 𝑢𝑖,𝑗+1,𝑘

𝑛 )(𝑣𝑖,𝑗,𝑘
𝑛 + 𝑣𝑖+1,𝑗,𝑘

𝑛 ) + 𝛼|𝑢𝑖,𝑗,𝑘
𝑛 + 𝑢𝑖,𝑗+1,𝑘

𝑛 |(𝑣𝑖,𝑗,𝑘
𝑛 − 𝑣𝑖+1,𝑗,𝑘

𝑛 ) −

(𝑢𝑖−1,𝑗,𝑘
𝑛 + 𝑢𝑖−1,𝑗+1,𝑘

𝑛 )(𝑣𝑖−1,𝑗,𝑘
𝑛 + 𝑣𝑖,𝑗,𝑘

𝑛 ) − 𝛼|𝑢𝑖−1,𝑗,𝑘
𝑛 + 𝑢𝑖−1,𝑗+1,𝑘

𝑛 |(𝑣𝑖−1,𝑗,𝑘
𝑛 − 𝑣𝑖,𝑗,𝑘

𝑛 )
]          (63) 

𝐹𝑣𝑦
𝑛 =

1

4Δ𝑦
[
(𝑣𝑖,𝑗,𝑘

𝑛 + 𝑣𝑖,𝑗+1,𝑘
𝑛 )(𝑣𝑖,𝑗,𝑘

𝑛 + 𝑣𝑖,𝑗+1,𝑘
𝑛 ) + 𝛼|𝑣𝑖,𝑗,𝑘

𝑛 + 𝑣𝑖,𝑗+1,𝑘
𝑛 |(𝑣𝑖,𝑗,𝑘

𝑛 − 𝑣𝑖,𝑗+1,𝑘
𝑛 ) −

(𝑣𝑖,𝑗−1,𝑘
𝑛 + 𝑣𝑖,𝑗,𝑘

𝑛 )(𝑣𝑖,𝑗−1,𝑘
𝑛 + 𝑣𝑖,𝑗,𝑘

𝑛 ) − 𝛼|𝑣𝑖,𝑗−1,𝑘
𝑛 + 𝑣𝑖,𝑗,𝑘

𝑛 |(𝑣𝑖,𝑗−1,𝑘
𝑛 − 𝑣𝑖,𝑗,𝑘

𝑛 )
]          (64) 

𝐹𝑣𝑧
𝑛 =

1

4Δ𝑧
[

(𝑤𝑖,𝑗,𝑘
𝑛 +𝑤𝑖,𝑗+1,𝑘

𝑛 )(𝑣𝑖,𝑗,𝑘
𝑛 + 𝑣𝑖,𝑗,𝑘+1

𝑛 ) + 𝛼|𝑤𝑖,𝑗,𝑘
𝑛 +𝑤𝑖,𝑗+1,𝑘

𝑛 |(𝑣𝑖,𝑗,𝑘
𝑛 − 𝑣𝑖,𝑗,𝑘+1

𝑛 ) −

(𝑤𝑖,𝑗,𝑘−1
𝑛 + 𝑤𝑖,𝑗+1,𝑘−1

𝑛 )(𝑣𝑖,𝑗,𝑘−1
𝑛 + 𝑣𝑖,𝑗,𝑘

𝑛 ) − 𝛼|𝑤𝑖,𝑗,𝑘−1
𝑛 + 𝑤𝑖,𝑗+1,𝑘−1

𝑛 |(𝑣𝑖,𝑗,𝑘−1
𝑛 − 𝑣𝑖,𝑗,𝑘

𝑛 )
]          (65) 

For the z – component  

𝐹𝑤𝑥
𝑛 =

1

4Δ𝑥
[

(𝑢𝑖,𝑗,𝑘
𝑛 + 𝑢𝑖,𝑗,𝑘+1

𝑛 )(𝑤𝑖,𝑗,𝑘
𝑛 + 𝑤𝑖+1,𝑗,𝑘

𝑛 ) + 𝛼|𝑢𝑖,𝑗,𝑘
𝑛 + 𝑢𝑖,𝑗,𝑘+1

𝑛 |(𝑤𝑖,𝑗,𝑘
𝑛 − 𝑤𝑖+1,𝑗,𝑘

𝑛 ) −

(𝑢𝑖−1,𝑗,𝑘
𝑛 + 𝑢𝑖−1,𝑗,𝑘+1

𝑛 )(𝑤𝑖−1,𝑗,𝑘
𝑛 + 𝑤𝑖,𝑗,𝑘

𝑛 ) − 𝛼|𝑢𝑖−1,𝑗,𝑘
𝑛 + 𝑢𝑖−1,𝑗,𝑘+1

𝑛 |(𝑤𝑖−1,𝑗,𝑘
𝑛 − 𝑤𝑖,𝑗,𝑘

𝑛 )
]          (66) 

𝐹𝑤𝑦
𝑛 =

1

4Δ𝑦
[

(𝑣𝑖,𝑗,𝑘
𝑛 + 𝑣𝑖,𝑗,𝑘+1

𝑛 )(𝑤𝑖,𝑗,𝑘
𝑛 + 𝑤𝑖,𝑗+1,𝑘

𝑛 ) + 𝛼|𝑣𝑖,𝑗,𝑘
𝑛 + 𝑣𝑖,𝑗,𝑘+1

𝑛 |(𝑤𝑖,𝑗,𝑘
𝑛 −𝑤𝑖,𝑗+1,𝑘

𝑛 ) −

(𝑣𝑖,𝑗−1,𝑘
𝑛 + 𝑣𝑖,𝑗−1,𝑘+1

𝑛 )(𝑤𝑖,𝑗−1,𝑘
𝑛 + 𝑤𝑖,𝑗,𝑘

𝑛 ) − 𝛼|𝑣𝑖,𝑗−1,𝑘
𝑛 + 𝑢𝑖,𝑗−1,𝑘+1

𝑛 |(𝑤𝑖,𝑗−1,𝑘
𝑛 − 𝑤𝑖,𝑗,𝑘

𝑛 )
]          (67) 

𝐹𝑤𝑧
𝑛 =

1

4Δ𝑧
[
(𝑤𝑖,𝑗,𝑘

𝑛 +𝑤𝑖,𝑗,𝑘+1
𝑛 )(𝑤𝑖,𝑗,𝑘

𝑛 + 𝑤𝑖,𝑗,𝑘+1
𝑛 ) + 𝛼|𝑤𝑖,𝑗,𝑘

𝑛 + 𝑤𝑖,𝑗,𝑘+1
𝑛 |(𝑤𝑖,𝑗,𝑘

𝑛 − 𝑤𝑖,𝑗,𝑘+1
𝑛 ) −

(𝑤𝑖,𝑗,𝑘−1
𝑛 + 𝑤𝑖,𝑗,𝑘

𝑛 )(𝑤𝑖,𝑗,𝑘−1
𝑛 + 𝑤𝑖,𝑗,𝑘

𝑛 ) − 𝛼|𝑤𝑖,𝑗,𝑘−1
𝑛 +𝑤𝑖,𝑗,𝑘

𝑛 |(𝑤𝑖,𝑗,𝑘−1
𝑛 − 𝑤𝑖,𝑗,𝑘

𝑛 )
]          (68) 

The viscous terms for each component are 

𝐹𝑣𝑖𝑠𝑥
𝑛 =

1

Δ𝑥2
[𝜈𝑇𝑖+1,𝑗,𝑘

𝑛 (𝑢𝑖+1,𝑗,𝑘
𝑛 − 𝑢𝑖,𝑗,𝑘

𝑛 ) − 𝜈𝑇𝑖,𝑗,𝑘
𝑛 (𝑢𝑖,𝑗,𝑘

𝑛 − 𝑢𝑖−1,𝑗,𝑘
𝑛 )]

+
1

Δ𝑦2
[𝜈𝑇𝑖,𝑗,𝑘

𝑛 (𝑢𝑖,𝑗+1,𝑘
𝑛 − 𝑢𝑖,𝑗,𝑘

𝑛 ) − 𝜈𝑇𝑖,𝑗−1,𝑘
𝑛 (𝑢𝑖,𝑗,𝑘

𝑛 − 𝑢𝑖,𝑗−1,𝑘
𝑛 )]

+
1

Δ𝑧2
[𝜈𝑇𝑖,𝑗,𝑘

𝑛 (𝑢𝑖,𝑗,𝑘+1
𝑛 − 𝑢𝑖,𝑗,𝑘

𝑛 ) − 𝜈𝑇𝑖,𝑗,𝑘−1
𝑛 (𝑢𝑖,𝑗,𝑘

𝑛 − 𝑢𝑖,𝑗,𝑘−1
𝑛 )]

 ,                (69) 

𝐹𝑣𝑖𝑠𝑦
𝑛 =

1

Δ𝑥2
[𝜈𝑇𝑖,𝑗,𝑘

𝑛 (𝑣𝑖+1,𝑗,𝑘
𝑛 − 𝑣𝑖,𝑗,𝑘

𝑛 ) − 𝜈𝑇𝑖−1,𝑗,𝑘
𝑛 (𝑣𝑖,𝑗,𝑘

𝑛 − 𝑣𝑖−1,𝑗,𝑘
𝑛 )]

+
1

Δ𝑦2
[𝜈𝑇𝑖,𝑗+1,𝑘

𝑛 (𝑣𝑖,𝑗+1,𝑘
𝑛 − 𝑣𝑖,𝑗,𝑘

𝑛 ) − 𝜈𝑇𝑖,𝑗,𝑘
𝑛 (𝑣𝑖,𝑗,𝑘

𝑛 − 𝑣𝑖,𝑗−1,𝑘
𝑛 )]

+
1

Δ𝑧2
[𝜈𝑇𝑖,𝑗,𝑘

𝑛 (𝑣𝑖,𝑗,𝑘+1
𝑛 − 𝑣𝑖,𝑗,𝑘

𝑛 ) − 𝜈𝑇𝑖,𝑗,𝑘−1
𝑛 (𝑣𝑖,𝑗,𝑘

𝑛 − 𝑣𝑖,𝑗,𝑘−1
𝑛 )]

  and          (70) 

𝐹𝑣𝑖𝑠𝑧
𝑛 =

1

Δ𝑥2
[𝜈𝑇𝑖,𝑗,𝑘

𝑛 (𝑤𝑖+1,𝑗,𝑘
𝑛 −𝑤𝑖,𝑗,𝑘

𝑛 ) − 𝜈𝑇𝑖−1,𝑗,𝑘
𝑛 (𝑤𝑖,𝑗,𝑘

𝑛 −𝑤𝑖−1,𝑗,𝑘
𝑛 )]

+
1

Δ𝑦2
[𝜈𝑇𝑖,𝑗,𝑘

𝑛 (𝑤𝑖,𝑗+1,𝑘
𝑛 −𝑤𝑖,𝑗,𝑘

𝑛 ) − 𝜈𝑇𝑖,𝑗−1,𝑘
𝑛 (𝑤𝑖,𝑗,𝑘

𝑛 −𝑤𝑖,𝑗−1,𝑘
𝑛 )]

+
1

Δ𝑧2
[𝜈𝑇𝑖,𝑗,𝑘+1

𝑛 (𝑤𝑖,𝑗,𝑘+1
𝑛 −𝑤𝑖,𝑗,𝑘

𝑛 ) − 𝜈𝑇𝑖,𝑗,𝑘
𝑛 (𝑤𝑖,𝑗,𝑘

𝑛 −𝑤𝑖,𝑗,𝑘−1
𝑛 )]

 .               (71) 
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For the SOLA method, initialization for the pressure can be arbitrary, i.e. hydrostatic pressure 

distribution can be assigned for open channel flows.  

 

3.1.3 SOLA for the shallow water approximation 

In Section 3.1.2, we saw the possibility to use the SWA for the numerical simulation with the 

NSE. In the SWA, the continuity equation is used for the calculation of the vertical component of 

velocity instead of the vertical component of the NSE. For a 3D computation, Eq.(25) can be 

solved. For a 2D computation, the momentum equation of the y direction is removed. Then the 

governing equations can be discretized as 

For the 𝑥 component:
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑤

𝜕𝑢

𝜕𝑧
= −

1

𝜌

𝜕𝑝

𝜕𝑥
+ 𝜈∇2𝑢

For the 𝑧 component:
𝜕𝑤

𝜕𝑧
= −

𝜕𝑢

𝜕𝑥

 → 

→

𝑢𝑖,𝑘
𝑛+1 = 𝑢𝑖,𝑘

𝑛 + ∆𝑡(𝑃𝑥
𝑛 − 𝑅𝑥

𝑛 − 𝐹𝑢𝑥
𝑛 − 𝐹𝑢𝑧

𝑛 + 𝐹𝑣𝑖𝑠𝑥
𝑛 )

𝑤𝑖,𝑘
𝑛+1 =

𝑢𝑖,𝑘
𝑛+1 − 𝑢𝑖−1,𝑘

𝑛+1

∆𝑥
∆𝑧 + 𝑤𝑖,𝑘−1

𝑛
 ,                                  (72) 

where 𝑃𝑥
𝑛, 𝑅𝑥

𝑛, 𝐹𝑢𝑥
𝑛 , 𝐹𝑢𝑧

𝑛   and 𝐹𝑣𝑖𝑠𝑥
𝑛  are the same as the difference equations given in Eq.(58) – (71) 

after removing the variables with presence of the y – axis, i.e. variables with the index of j. For 

each time step with the SWA, the pressure is calculated by the finite difference approximation of 

Eq.(23) 

𝑝𝑖,𝑘
𝑛 = 𝑝𝑖,𝑘+1

𝑛 + (𝜌𝑜 + 𝜌
′)𝑔𝑧∆𝑧 .                                                       (73) 

This hydrostatic pressure approximation also is valid for a 3D numerical simulation.  

 

3.1.4 Finite difference scheme for the density variations 

Since the Boussinesq approximation is considered for the problem, the convection-diffusion 

equation (CDE) for the density derivation must be solved with the NSE. The CDE in Eq.(27) can 

be approximated as 

𝜌′𝑖,𝑗,𝑘
𝑛+1 = 𝜌′𝑖,𝑗,𝑘

𝑛+1 + ∆𝑡[−𝑓𝑟𝑥
𝑛 − 𝑓𝑟𝑦

𝑛 − 𝑓𝑟𝑧
𝑛 + 𝑓𝑟𝑥𝑥

𝑛 + 𝑓𝑟𝑦𝑦
𝑛 + 𝑓𝑟𝑧𝑧

𝑛 ] ,                            (74) 

where the convection/advection and diffusion terms exist in square bracket. The convection 

terms are expressed by using the upwind differences as follows: 

𝑓𝑟𝑥
𝑛 =

{
 

 𝑢𝑐
𝑛
𝜌′𝑖+1,𝑗,𝑘
𝑛 − 𝜌′𝑖,𝑗,𝑘

𝑛

∆𝑥
if 𝑢𝑐

𝑛 ≤ 0

𝑢𝑐
𝑛
𝜌′𝑖,𝑗,𝑘
𝑛 − 𝜌′𝑖−1,𝑗,𝑘

𝑛

∆𝑥
if 𝑢𝑐

𝑛 ≥ 0

 ,                                           (75) 

𝑓𝑟𝑦
𝑛 =

{
 
 

 
 𝑣𝑐

𝑛
𝜌′𝑖,𝑗+1,𝑘
𝑛 − 𝜌′𝑖,𝑗,𝑘

𝑛

∆𝑦
if 𝑣𝑐

𝑛 ≤ 0

𝑣𝑐
𝑛
𝜌′𝑖,𝑗,𝑘
𝑛 − 𝜌′𝑖,𝑗−1,𝑘

𝑛

∆𝑦
if 𝑣𝑐

𝑛 ≥ 0

 ,                                           (76) 
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𝑓𝑟𝑧
𝑛 =

{
 

 𝑤𝑐
𝑛
𝜌′𝑖,𝑗,𝑘+1
𝑛 − 𝜌′𝑖,𝑗,𝑘

𝑛

∆𝑧
if 𝑤𝑐

𝑛 ≤ 0

𝑤𝑐
𝑛
𝜌′𝑖,𝑗,𝑘
𝑛 − 𝜌′𝑖,𝑗,𝑘−1

𝑛

∆𝑧
if 𝑤𝑐

𝑛 ≥ 0

 ,                                           (77) 

where 𝑢𝑐
𝑛, 𝑣𝑐

𝑛 and 𝑤𝑐
𝑛 are the average velocities for a cell. The velocities are averaged as 

𝑢𝑐
𝑛 =

𝑢𝑖,𝑗,𝑘
𝑛 + 𝑢𝑖−1,𝑗,𝑘

𝑛

2
 , 𝑣𝑐

𝑛 =
𝑣𝑖,𝑗,𝑘
𝑛 + 𝑣𝑖,𝑗−1,𝑘

𝑛

2
  and  𝑤𝑐

𝑛 =
𝑤𝑖,𝑗,𝑘
𝑛 +𝑤𝑖,𝑗,𝑘−1

𝑛

2
 ,               (78) 

with the velocities obtained from the NSE.  

The diffusion terms in Eq.(74) are differenced by the central difference scheme as 

𝑓𝑟𝑥𝑥
𝑛 =

𝐷𝑠𝑖,𝑗,𝑘
𝑛 (𝜌′𝑖+1,𝑗,𝑘

𝑛
− 𝜌′𝑖,𝑗,𝑘

𝑛
) − 𝐷𝑠𝑖−1,𝑗,𝑘

𝑛 (𝜌′𝑖,𝑗,𝑘
𝑛

− 𝜌′𝑖−1,𝑗,𝑘
𝑛 )

∆𝑥2
 ,                      (79) 

𝑓𝑟𝑦𝑦
𝑛 =

𝐷𝑠𝑖,𝑗,𝑘
𝑛 (𝜌′𝑖,𝑗+1,𝑘

𝑛
− 𝜌′𝑖,𝑗,𝑘

𝑛
) − 𝐷𝑠𝑖,𝑗−1,𝑘

𝑛 (𝜌′𝑖,𝑗,𝑘
𝑛

− 𝜌′𝑖,𝑗−1,𝑘
𝑛 )

∆𝑦2
 ,                      (80) 

𝑓𝑟𝑧𝑧
𝑛 =

𝐷𝑠𝑖,𝑗,𝑘
𝑛 (𝜌′𝑖,𝑗,𝑘+1

𝑛
− 𝜌′𝑖,𝑗,𝑘

𝑛
) − 𝐷𝑠𝑖,𝑗,𝑘−1

𝑛 (𝜌′𝑖,𝑗,𝑘
𝑛

− 𝜌′𝑖,𝑗,𝑘−1
𝑛 )

∆𝑧2
 ,                      (81) 

where the diffusion coefficients, 𝐷𝑠, are written as a function of space-time, because the 

turbulent viscosity can be used instead the diffusion coefficient: 𝜈𝑇𝑖,𝑗,𝑘
𝑛 = 𝐷𝑠𝑖,𝑗,𝑘

𝑛 .  

 

3.2 Implementation for sediment transport modeling 

3.2.1 The finite difference advection-diffusion equation 

The approximation of the ADE is the same as the previous CDE. The finite difference form of the 

ADE in Eq.(38) for the suspended sediment concentration can be written as 

𝑐𝑖,𝑗,𝑘
𝑛+1 = 𝑐𝑖,𝑗,𝑘

𝑛 + Δ𝑡[−𝑓𝑐𝑥
𝑛 − 𝑓𝑐𝑦

𝑛 − 𝑓𝑐𝑧
𝑛 + 𝑓𝑐𝑥𝑥

𝑛 + 𝑓𝑐𝑦𝑦
𝑛 + 𝑓𝑐𝑧𝑧

𝑛 ] .                               (82) 

Using the upwind difference scheme, the advection terms in Eq.(82) can be differenced as 

𝑓𝑐𝑥
𝑛 =

{
 

 𝑢𝑐
𝑛
𝑐𝑖+1,𝑗,𝑘
𝑛 − 𝑐𝑖,𝑗,𝑘

𝑛

∆𝑥
if 𝑢𝑐

𝑛 ≤ 0

𝑢𝑐
𝑛
𝑐𝑖,𝑗,𝑘
𝑛 − 𝑐𝑖−1,𝑗,𝑘

𝑛

∆𝑥
if 𝑢𝑐

𝑛 ≥ 0

 ,                                           (83) 

𝑓𝑐𝑦
𝑛 =

{
 
 

 
 𝑣𝑐

𝑛
𝑐𝑖,𝑗+1,𝑘
𝑛 − 𝑐𝑖,𝑗,𝑘

𝑛

∆𝑦
if 𝑣𝑐

𝑛 ≤ 0

𝑣𝑐
𝑛
𝑐𝑖,𝑗,𝑘
𝑛 − 𝑐𝑖,𝑗−1,𝑘

𝑛

∆𝑦
if 𝑣𝑐

𝑛 ≥ 0

 ,                                           (84) 

𝑓𝑐𝑧
𝑛 =

{
 

 (𝑤𝑐
𝑛 −𝑤𝑠)

𝑐𝑖,𝑗,𝑘+1
𝑛 − 𝑐𝑖,𝑗,𝑘

𝑛

∆𝑧
if 𝑤𝑐

𝑛 −𝑤𝑠 ≤ 0

(𝑤𝑐
𝑛 −𝑤𝑠)

𝑐𝑖,𝑗,𝑘
𝑛 − 𝑐𝑖,𝑗,𝑘−1

𝑛

∆𝑧
if 𝑤𝑐

𝑛 −𝑤𝑠 ≥ 0

 ,                             (85) 
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where the averaged velocities for a cell are determined with Eq.(78).  

The diffusion terms in Eq.(82) are approximated by the central differencing scheme 

𝑓𝑐𝑥𝑥
𝑛 =

𝐷𝑐𝑖,𝑗,𝑘
𝑛 (𝑐𝑖+1,𝑗,𝑘

𝑛 − 𝑐𝑖,𝑗,𝑘
𝑛 ) − 𝐷𝑐𝑖−1,𝑗,𝑘

𝑛 (𝑐𝑖,𝑗,𝑘
𝑛 − 𝑐𝑖−1,𝑗,𝑘

𝑛 )

∆𝑥2
 ,                      (86) 

𝑓𝑐𝑦𝑦
𝑛 =

𝐷𝑐𝑖,𝑗,𝑘
𝑛 (𝑐𝑖,𝑗+1,𝑘

𝑛 − 𝑐𝑖,𝑗,𝑘
𝑛 ) − 𝐷𝑐𝑖,𝑗−1,𝑘

𝑛 (𝑐𝑖,𝑗,𝑘
𝑛 − 𝑐𝑖,𝑗−1,𝑘

𝑛 )

∆𝑦2
 ,                      (87) 

𝑓𝑐𝑧𝑧
𝑛 =

𝐷𝑐𝑖,𝑗,𝑘
𝑛 (𝑐𝑖,𝑗,𝑘+1

𝑛 − 𝑐𝑖,𝑗,𝑘
𝑛 ) − 𝐷𝑐𝑖,𝑗,𝑘−1

𝑛 (𝑐𝑖,𝑗,𝑘
𝑛 − 𝑐𝑖,𝑗,𝑘−1

𝑛 )

∆𝑧2
 ,                      (88) 

in which the turbulent viscosity can be used instead the concentration diffusion coefficient. To 

improve the accuracy and stability for ADE (the same for the CDE), the Adams-Bashforth 

method applied to Eq.(48) can be employed.  

 

3.2.2 The particle tracking method 

The equation of motion for a sediment particle given in Eq.(40) can be rewritten as 

𝑑𝐮𝑝𝑚
𝑑𝑡

=
𝐅𝑟𝑚
𝑊𝑚

 ,                                                                         (89) 

where m is a numbering of a representative sediment particle, simply a particle, in the system 

and 𝑊𝑚 is the weight of the mth particle: 

𝑊𝑚 =
4

3
𝜋𝑟𝑚

2𝜌𝑠𝑒𝑑𝑚 .                                                                (90) 

The velocities of the mth particle at (𝑛 + 1)Δ𝑡 are computed with the following difference 

equations, 

𝑢𝑝𝑚
𝑛+1 = 𝑢𝑝𝑚

𝑛 +
𝑓𝑝𝑥𝑚

𝑛

𝑊𝑚
𝑛 Δ𝑡 ,                                                          (91) 

𝑣𝑝𝑚
𝑛+1 = 𝑣𝑝𝑚

𝑛 +
𝑓𝑝𝑦𝑚

𝑛

𝑊𝑚
𝑛 Δ𝑡 ,                                                          (92) 

𝑤𝑝𝑚
𝑛+1 = 𝑤𝑝𝑚

𝑛 +
𝑓𝑝𝑧𝑚

𝑛

𝑊𝑚
𝑛 Δ𝑡 ,                                                          (93) 

where 𝑢𝑝, 𝑣𝑝 and 𝑤𝑝 are the particle velocity and 𝑊𝑚
𝑛 terms the temporal weights of particle, if 

the flocculation is present for the sediment particle. The forces for Eqs.(91-93) are the drag 

forces expressed as 

𝑓𝑝𝑥𝑚
𝑛 =

1

2
𝜌𝑜𝐶𝐷𝑢𝑟𝑚

𝑛 𝑈𝑎𝑏𝑠
𝑛 𝐴𝑚

𝑛  ,                                                      (94) 

𝑓𝑝𝑦𝑚
𝑛 =

1

2
𝜌𝑜𝐶𝐷𝑣𝑟𝑚

𝑛 𝑈𝑎𝑏𝑠
𝑛 𝐴𝑚

𝑛  ,                                                      (95) 

𝑓𝑝𝑧𝑚
𝑛 =

1

2
𝜌𝑜𝐶𝐷𝑤𝑟𝑚

𝑛 𝑈𝑎𝑏𝑠
𝑛 𝐴𝑚

𝑛  ,                                                      (96) 
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where 𝜌𝑜 is the water density, the same as the reference density in the NSE, 𝐶𝐷 is the drag 

coefficient with respect to the Reynolds number of the mth particle, 𝑢𝑟𝑚
𝑛 , 𝑣𝑟𝑚

𝑛  and 𝑤𝑟𝑚
𝑛  are the 

relative velocities, 𝑈𝑎𝑏𝑠
𝑛  is the absolute relative velocity and 𝐴𝑚

𝑛  is the cross-sectional area of the 

mth particle: 𝐴𝑚
𝑛 = 𝜋𝑟𝑚

2 . The relative velocities are defined by 

𝑢𝑟𝑚
𝑛 = 𝑢𝑓𝑖,𝑗,𝑘

𝑛 − 𝑢𝑝𝑚
𝑛

𝑣𝑟𝑚
𝑛 = 𝑣𝑓𝑖,𝑗,𝑘

𝑛 − 𝑣𝑝𝑚
𝑛

𝑤𝑟𝑚
𝑛 = 𝑤𝑓𝑖,𝑗,𝑘

𝑛 −𝑤𝑝𝑚
𝑛

 ,                                                        (97) 

where 𝐮𝑓 = (𝑢𝑓 , 𝑣𝑓 , 𝑤𝑓) is the weighted velocity and the absolute value of the relative velocity is 

𝑈𝑎𝑏𝑠
𝑛 = √𝑢𝑟𝑚

2 + 𝑣𝑟𝑚
2 +𝑤𝑟𝑚

2  .                                                  (98) 

Since the particles are traveling through the computational cell with the Lagrangian coordinate 

of 𝐗𝑚 (Figure 5), an appropriate fluid velocity cannot be fit the velocity defined on the side or 

face of the cell. Thus the weighted velocity in proper accuracy can be defined by the volume or 

areal weights for the relevant velocities of control volumes as 

𝐮𝑓 =∑A𝑙𝐮𝑎𝑣
𝑛

𝑁

𝑙=1

 ,                                                              (99) 

where 𝑙 is the numbering of section or fragment divided by the position of the particle, as shown 

in Figure 7, 𝑁 is the total number of section or fragment and A𝑙 is the area of a section or the 

volume of a fragment in percent in the 2D or 3D cell, respectively.  

 

Figure 7. Fragments (a) and sections (b) of a cell divided by the position of particle in the cell. The 
fragments are separated by colored panels in the 3D cell, while the sections are divided by dashed lines in 
the 2D cell.  

Special care must be given to average the velocity, 𝐮𝑎𝑣
𝑛 , as Eq.(78) by their existing control 

volume.  With the updated velocities for a new time step, the particle position is updated by the 

following equations 

𝐗𝑚 = {

𝑥𝑚
𝑛+1 = 𝑢𝑝𝑚

𝑛+1Δ𝑡 + 𝑥𝑚
𝑛

𝑦𝑚
𝑛+1 = 𝑣𝑝𝑚

𝑛+1Δ𝑡 + 𝑦𝑚
𝑛

𝑧𝑚
𝑛+1 = 𝑤𝑝𝑚

𝑛+1Δ𝑡 + 𝑧𝑚
𝑛 −𝑤𝑠𝑝

𝑛+1Δ𝑡

 ,                                    (100)  
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where 𝑤𝑠𝑝
𝑛+1 is the settling velocity of the particle and can be defined by the Stokes equation: 

𝑤𝑠𝑝
𝑛+1 =

2𝑟𝑚
2(𝜌𝑠𝑒𝑑 − 𝜌𝑜)𝑔𝑦

9𝜇
 ,                                                     (101) 

where 𝑟𝑚 is the radii of the sediment particle. For the ADE, it is difficult to use the settling 

velocity as flexible as that used in the PTM given in Eq.(101) and we just choose the settling 

velocity according to the references like (Flemming & Thum, 1978) and (Gibbs, 1974) or 

experiments in Section 4.2.5. 

 

3.2.3 Boundary conditions 

For fluid flow, there are an inlet, outlet, free-surface and solid surface boundaries. As shown 

in Figure 6, the computational domain has an extra layer of cells as a boundary region. Since 

one face or side (3D or 2D space) of a boundary cell belongs to the problem domain, the 

variables on that face/side will be defined by the computational procedure. The variables of 

another 5 faces or 3 sides and center will be defined by the boundary condition. For the bottom 

and the top, slip and non-slip boundary condition can be imposed to model smooth and rough 

surface of the reality, respectively. For instance, at the bottom, fluid flow interacting with the 

sea bed can be modeled as a non-slip surface. Either the solid surface is slip or non-slip, the 

velocity that is perpendicular to the surface must be zero to be impermeable. The velocity that is 

parallel to the solid surface can be 

𝑢𝑖,𝑗−1,𝑘
𝑛 = {

−𝑢𝑖,𝑗,𝑘
𝑛 for a non − slip surface

𝑢𝑖,𝑗,𝑘
𝑛 for a slip surface

 ,                                   (102) 

for the bottom surface.  

At the inlet and outlet boundary, the discharge must be maintained the same. Usually, the 

prescribed inlet velocity will be given to the inlet boundary cells and the inlet discharge is 

estimated by integrating over inlet boundary cells. Then the outlet discharge is equated to the 

inlet discharge. The outlet boundary velocities are estimated from the outlet discharge. 

For the scalar variables, for instance the density deviation and sediment concentration, the 

zero gradient boundary conditions can be assigned at the all boundaries including the inlet, 

outlet and solid surfaces.  
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4 NUMERICAL APPLICATIONS 

In this section, we apply the models described in Section 2 and 3 to solve the sediment problem 

in a lab scale and in a practical scale. The lab scale application is devoted for the model 

validations. 

 

4.1 Lock-exchange problem 

Gravity currents, which result whenever fluid of heavy density flows horizontally into fluid of 

a lighter density, are frequent occurrences in both natural and engineering situation (Huppert & 

Simpson, 1980). There are several types of gravity currents observed in the both situations, e.g. 

turbidity current caused by suspended sediment and density current induced by the salt 

concentration (Benjamin, 1968). To validate the mathematical and numerical model designed 

for the density current flow, a lock-exchange problem is extensively solved and experimented as 

a benchmark problem. In a lock exchange experiment, fluids of different densities initially at 

rest are separated by a vertical gate in a tank. When the gate is removed, differences in the 

hydrostatic pressure cause the denser fluid to flow in one direction along the bottom boundary 

of the tank, while the lighter fluid flows in the opposite direction along the top boundary of the 

tank (Shin, et al., 2004).  

We solved a 2D lock-exchange problem with the presence of the suspended sediment, which 

was originally reported in (Takeshi, et al., 2016a) and (Takeshi, 2016). The density current is 

caused by the salt concentration difference between the fresh and seawater. The main purpose 

of the laboratory scale lock-exchange problem was to validate the sediment PTM against the 

ADE of sediment concentration. The problem geometry is depicted in Figure 8 where the left 

hand side is filled with fresh water having a density of 1.0 g cm-3, while the right hand side is 

filled with seawater having the density of 1.01g cm-3. In addition, the upper half of the domain of 

water has the suspended sediments: the concentration and sediment particles exist 

simultaneously. The density of sediment particles were 2.6 g cm-3 and settling velocity for the 

ADE system was given as 0.01 cm s-1. The density current might be caused by the sediment was 

neglected in the simulations. Two cases of runs, without flocculation and with flocculation, were 

performed in order to understand the effects of flocculation on the sedimentation. The 

flocculation time criteria set as 5 s for simplicity and until that time the particle size becomes 

twice following the sigmoid function in Eq.(44). The total time of the simulations was 20 second. 

In both cases, a flow field was simulated by the SOLA method described in Section 3.1. 



 

𝚿 Ph.D. dissertation                                                                                                                                     30 
 

 

Figure 8. Specification of the lock-exchange problem with the hindered sediments in the upper part.  

The results of the lock-exchange problem with the sediments – concentration field and particles 

– for two cases are shown in Figure 9 and Figure 10. In the figures, red contour lines present 

the sediment concentration while blue contours show the salt concentration predicting the 

interface between fresh water and seawater. The brown points are the sediment particles. The 

figures show the situation of the exchange flow of fresh and seawater with the sediment 

transport at the selected times followed by the velocity magnitudes of the particles for each case. 

Most significant argument on the results shown in Figure 9 is the agreement between the 

results of the PTM and the ADE. The PTM is properly validated against the ADE. We can observe 

that the development of the vortex of Kelvin-Helmholtz instability is appeared at 8 s and after 

due to the strong shear stress at the interface between seawater and fresh water. Because of the 

vorticity generated by shear stress in interface of fresh and sea water, the sediment particles 

and concentration field are also rounded up with the flow. Due to flocculation process, the 

particles traveled during 5 s in the sea water become larger and the sedimentation rate is 

increased. The growth of the sedimentation rate and the sizes of sediment are clearly shown in 

the second column of each case in Figure 9 and Figure 10. Also, it is shown that the 

sedimentation occurred in the left bottom corner of the enclosure at 12 s and afterward in case 

of the flocculation is present, while the situation is different in the case without flocculation.  In 

the case without flocculation, the particles follow the flow field dynamically and resuspension 

due to vertical flow is shown clearly (at 16 s left bottom corner in Figure 9). In the case with 

flocculation process, the resuspension of the sediment particle is lower than that of the other 

case. More precisely, no sediment ascending appears in the left top corner at 20 s in the case 

with flocculation, while the plenty of sediment particles are transported in the same area in the 

case without flocculation. Although it is obvious, the results of the simulations brought the 

concrete conclusion that the effect of flocculation process is important for the sedimentation of 

cohesive sediments.  
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Figure 9. Time sequences snap shots of the lock-exchange without flocculation model. The first column of 
figures shows the concentration of salt and sediment as well sediment particles while the second column 
of figures only shows the absolute velocity of sediment particles.  
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Figure 10. Time sequences snap shots of the lock-exchange with the flocculation model. The 
representations are the same as previous figure.  
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4.2 Sediment problem at an estuary of the Ohkouzu diversion 

channel 

4.2.1 Introduction to the estuary of the Ohkouzu diversion channel. 

The Ohkouzu diversion channel is a shortcut channel of the Shinano River to the Japan Sea 

preventing flood inundation disaster of the downstream area of the Shinano River. The Ohkouzu 

diversion channel was constructed 90 years ago and since then sediments have been discharged 

to an estuary of the channel. Origin of the estuary was formed by rocks. After the completion of 

the Ohkouzu diversion channel, a nearby coast has been gradually formed as sandy and has 

extended to the offshore about several hundred meters (see Figure 11). It is important to 

mention that a sediment contribution of the Shinano River to the Japan Sea has split into two 

estuaries; a mouth of the Ohkouzu diversion channel and a mouth of the Shinano River. An 

amount of sediment contribution in the estuary of the Ohkouzu diversion channel is higher than 

that of the Shinano river mouth, because of the flow regulation on a diversion structure at the 

head of the Ohkouzu diversion channel (Sane, et al., 2005). Sediment phenomena in estuaries of 

the Japan sea are affected by seasonal influences such as wind waves caused by monsoon in 

winter, floods due to snow melting in spring, large scale floods during rainy season and typhoon 

in summer. While the most of the coastlines near the estuaries of the Japan Sea has been eroding, 

the coastline of the estuary of the Ohkouzu diversion channel has been extended. However, the 

erosion is taking place in the river mouth and has been warning the possible damage to the 

control structures in the estuary.   

 

Figure 11. The estuary of Ohkouzu diversion channel, the Japan Sea. Points, A, B, C, D, E, F, and G are the 
observation sites where salinity and turbidity were measured. 
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4.2.2 Observations at the estuary 

The estuary of the Ohkouzu diversion channel has experienced large floods and the most 

recent and substantial flood happened in July 2011. The maximum flow rate was more than 

8310 m3/s. During this flood event, large amount of sediment discharged to the Japan Sea by the 

estuary. In order to assess variation of the estuary terrain change after the flooding, the Shinano 

river authority conducted a narrow multi-beam bathymetric survey in the estuary, as shown in 

Figure 12. Also, researchers (Hideo, et al., 2013) have conducted a survey of the littoral 

sedimentary environment using core sampling of sedimentation layers and have concluded that 

the sediment supplement of the Ohkouzu diversion channel has played an important role in the 

formation of nearshore coastal area. In the survey, they (Hideo, et al., 2013) measured the 

vertical distribution of salinity and turbidity for several sites in onshore and offshore area, 

shown in Figure 11. An ADCP (Acoustic Doppler Current Profiler) flow measurement and 

vibrocore sampling of sedimentation layer were also conducted. In the report, they explained 

that the fine sediments transported by major flood late on July 2011 have created a mud layer in 

offshore sea bed, where samples were collected.  Figure 13 shows vertical distributions of 

salinity and turbidity on the site A to G, whose locations are shown in Figure 11. The 

configuration of the most shore sites, point A, was close to the river mouth site, point B, which 

does not have salinity and has huge account of turbidity. Amount of turbidity tends to be slightly 

increased through the river terrace according to the point A to B. However, turbidity and 

salinity of the point C had become different from the point A and B, because of the influence of 

sea water. On the point C, salinity actively increased up to 2 m below the sea surface and 

remained almost constant to down. In contrast, turbidity decreased rapidly until around 2 m 

below the sea surface and gradually decreased through the bottom of the sea. But in the 

offshore of the estuary, the point C and D, had a high turbidity in the vicinity of the sea bed, 

which might show that the sediment settlement process caused by the flocculation due to sea 

water in that area. From the points C to G, turbidity in near sea surface was still remained. This 

can be explained that the sediments may be re-suspended by the waves or density currents. 

When sediments discharged from the river mouth enter into the sea water, settling processes of 

flocculated sediments are described by turbidity decrease in the latter points. Near the free 

surface of the sea within 2 m depth, turbidity decrease with the increase of salinity shows the 

density current of the sea water. The fine sediments may be suspended in this region. This 

tendency of salinity and turbidity profile had been observed at the offshore measurement sites 

E, F and G. In the point F and G, a disappearance of turbidity showed the sediments eventually 

settled and deposited on the sea bed. Those are an interpretation of the sediment transport 

processes in the estuary of the Ohkouzu diversion channel given a basis of the observation. This 

observation need to be confirmed by the numerical simulation (Takeshi, et al., 2016a).  
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Figure 12. Two- and three-dimensional bathymetry data of the estuary of the Ohkouzu diversion channel.  

 

Figure 13. Measured salinity (PSU-Practical Salinity Unit) and turbidity (FTU-Formazin Turbidity Unit) at 
sampling sites in the estuary of the Ohkouzu diversion channel (Hideo, et al., 2013). 
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4.2.3 Problem statement 

Sediments discharged from a river mouth during a flood are transported long distance away 

due to inertial flow force, even though cohesive sediments bind together when they enter sea 

water and increase their settling rate. Eventually, fine sediments settle down gradually on the 

sea bed as an unconsolidated layer. Unlike, coarse sediment particles settle down in 

sedimentation area, where they will contribute to the further development of a river terrace. 

Nearshore coastal area formation is performed by the transported sediments due to wind 

driven waves. Although, these general processes are the same for the estuary of the Ohkouzu 

diversion channel, more detailed understandings of the sediment transport at the estuary has 

been in demand. 

Coarse sediments discharged from the river with fresh water are ascended by a salt wedge, 

before they enter into sea water. While, fine sediments are not only affected by density current, 

but also affected by the waves. Also, it is possible that sediments are re-suspended from weakly 

formed sand waves at the sea bottom by shear stress driven by the salt wedge. Successfully 

ascended sediment particles from bedload become fully suspended sediment particles until 

settling back in somewhere. All those known phenomena from the observation at the estuary 

need to be confirmed by the numerical simulations. In order to study the process, we have 

developed a numerical model with flocculation effects for sediment transport discharged from a 

river mouth using the models described in Chapter 2 and 3. The model also involves the density 

current, since it is stated that the density currents have significant influences for bedload in the 

vicinity of the salt wedge as well for the suspension of sediments. Density stratification and 

interaction between salt wedge and fresh water flow must be considered in an estuary sediment 

transport modeling (Tokuzo, et al., 2001). The sediment transport was modeled by the PTM and 

the ADE simultaneously. The salinity concentration of intrusion of density current was also 

treated by the CDE. It is worth to mention that the use of Lagrangian particle tracking approach 

for sediment transport provides many opportunities as well as handling the flocculation process 

in sea water. 

The aim of this modeling was to describe the sediment transport process at the estuary of the 

Ohkouzu diversion channel reported by (Hideo, et al., 2013) to verify their observation and to 

get more a clear understanding. In order to fulfill the purpose, numerical modeling, including a 

density current and a flocculation of sediment was carried out in the 2D and 3D space.  

 

4.2.4 Settling velocity and flocculation 

The settling velocity for the sediment transport is the most important parameter in order to 

account the sedimentation. The settling velocity is a function of the sediment concentration. As 

increase of the concentration, the settling velocity of the sediment increase. When the 

concentration becomes about several thousands the interaction between the sediment particles 

decrease the settling rate of the sediment.  This is considered as a hindered settling process. In a 

study of Tsurutani et al. (鶴谷広一, et al., 1989) corresponded with other studies, the maximum 

value of settling velocity of estuary sediments was observed around 0.258 cm/s, which gives the 

particle size of 55 μm when the same velocity applies to the Stokes velocity formula. Simplifying 

the Stokes equation yields the relation between the settling rate and the sediment diameter as 
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𝑤𝑠 = 8711𝑑
2  ,                                                                      (103) 

where 𝑑 is the sediment particle diameter in cm. With the minimum settling velocity observed 

in (鶴谷広一, et al., 1989), the minimum size of the sediment particle can be approximated 

around 10 μm. So the average particle size will be interpolated as 32 μm. With this average 

particle size, we can obtain settling velocity of 0.09 cm/s from Eq.(103).  

We also carried out simple experiments settling sediments in fresh water and seawater. In a 

beaker of 500 cc, fresh and sea water with the suspended sediment of 4000 mg/L was filled and 

stirred for the same time. The seawater of 3 percent was sampled from the estuary. Also the 

sediments used in the experiments were prepared after collected from the bottom of the 

estuary. After the sediments are uniformly distributed in the two cases of water, the 

concentration of the turbidity (suspended solids - SS) was measured for each second with 

equally leveled optical turbidity meters for the beakers. The amount of the suspended solid 

against the experimental times is given in Figure 14. As seen in Figure 14 (a), the decrease of 

the suspended solid in seawater is higher than that of fresh water. In other words, the sediment 

in seawater settles faster than the sediments in freshwater. This can be described by the 

flocculation process in seawater. An enlarged part of the SS against time shown in Figure 14 (b) 

gives more detailed explanations for the settling rate and the flocculation. The SS increased for 

initial 20 s because of the presence of the velocity field by stirring. After the external velocity 

field is suppressed, the sediment particles are only experienced by the gravitational field and 

started to settle. The amount of the SS in two cases is almost the same until a point A, which is 

the starting point for the difference. Actually, the point A is the starting point of the sediment 

flocculation in seawater and is measured at 60 s. The amounts of settling SS in two different 

waters are bifurcated until a point B. From the point B, the rates of decreasing SS were the same 

in the two cases of water.  This implicates that the flocculation of sediments in seawater is faded 

away and started to lose the effect on the sedimentation. From the point B to the end of the 

experiment, the decreases of the SS were the same and curves continued in parallel. 

Using the data of the SS in two cases of water, the settling rates against time in these cases 

can be estimated from Eq.(38) by eliminating the advection term and the diffusion term in the x 

direction. The equation for the inverse problem for the settling rates can be written as 

𝑤𝑠
𝜕𝑐

𝜕𝑧
=
𝜕𝑐

𝜕𝑡
+ 𝐷𝑠𝑒𝑑

𝜕2𝑐

𝜕𝑧2
 ,                                                           (104) 

where 𝑐 takes the value of the SS. The settling rates obtained with Eq.(104) against the 

experimental times are plotted in Figure 15. The fluctuation of the SS yields the fluctuation for 

the settling rate. However, the trend lines for the estimation give the clearest view for the 

changes of the settling rates in time. A ratio of settling rates over whole time shows that the 

settling rate of sediment in seawater almost doubled the settling rate of sediment in freshwater. 

In the flocculation effected range, until the time of 400 s, the settling rate was accelerated 1.71 

times in seawater.  The flocculation results the bigger sediment particles stuck to each other. 

The increase of the particle size accelerates the settling rate. Thus, with these average settling 

rates no matter what is estimated in whole time or initial 400 s, the radius of an sediment 

particle is expressed as  𝑟 ≅ 2𝑟𝑖𝑛  by using Eq.(103). This expression confidently proves the 

simple flocculation model given in Section 2.3.2 can be applied to the study. This experiment 

and the sediment size observation with a microscope gives the base scaling in the flocculation 
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model as 𝛼𝑜 = 1. The critical time for the flocculation is found 300 s from the experiments. The 

average particle sizes are found as 26 ~ 37 μm, which agree with the average approximated 

from (鶴谷広一, et al., 1989).  

Some of the complicated parts to model sediment transport with the traditional and the new 

particle approach have been severally clarified with the preceding discussions and experiments. 

Basically, the settling velocity discussed above is used for the simulation of the ADE for the 

sediment transport. Similarly, the particle sizes in the PTM are given in the sediment size range 

defined above. For each case of simulation, the settling velocity is the velocity for an average 

sized particle considered in the PTM.  

 

Figure 14. Sediment settling experiments: (a) time series of suspended solid in fresh and seawater in full 
experimental time and (b) time series of suspended solid in the enlarged area until 400 s.  

 

Figure 15. Settling rate estimation from the time series of suspended solids: settling rate in (a) seawater 
and (b) fresh water.  

(a) 

 

 

 

 

 

(b) 

 

 

 

 

 

 

 

 

 

 



 

© Ayurzana Badarch                                                                                                                                    39 
 

The sediment concentration at the inflow boundary in the ADE is assumed to be 1.0 and it 

will be distributed further due to river inflow. It is also possible to get higher concentration 

value than 1.0 at the bottom of the sea because of the sedimentation. In other words, the 

amount of sediment concentration 𝑐 = 1.0 means that just for a reference value. Numerically, a 

total amount of sediment has no limitation for the large value. 

 

4.3 2D numerical simulations for the sediment problem 

4.3.1 Model setup 

The results of the lock-exchange problem confirm that the novel particle tracking approach 

can be applied to the real field problem. The numerical scheme composed as Figure 16 was 

applied to the two-dimensional numerical simulation of the estuary of the Ohkouzu diversion 

channel. The numerical scheme consists of two approaches for sediment transport and two 

options for the NSE. The particle tracking approach has coupled with the simple flocculation 

model. For the PTM, the sediment sizes are important parameters, which should be defined in 

the way that corresponds to the settling velocity of the ADE. In general, the settling velocity and 

particle sizes are defined by the experiments and are reconciled with [鶴谷広一, et al., 1989]. 

For the flocculation model, the flocculation time criteria, which is practically valid time for 

particles flocculating with each other gradually, for fine sediments traveling in seawater was 

given as parameter based on the experiments. 

 

Figure 16. A numerical scheme for the sediment transport modeling in an estuary.  

Two dimensional terrain data used in the computations was prepared from the digital 

bathymetry data of the Ohkouzu diversion channel of 2011 shown in Figure 12. A 

computational domain of the field scale simulation was formed with the rectangular grids in an 

area of 2.490 km in length and 29 m in height and the additional layer of the cells are generated 
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for the boundary condition. The computational domain depicting the initial condition for 

sediment and salt stratification is given in Figure 17. For the ocean bed, the no-slip boundary 

condition was imposed. The upper surface of the domain where a free surface would be 

presented is modeled as the slip boundary. For inlet, the inlet velocity of 32 cm s-1 (10 percent of 

design flood discharge) was given in all cases. Whereas the outlet boundary condition is 

imposed in the condition that balances the discharge computed from the inlet velocity.  

 

Figure 17. Schematic description of the computational domain for the sediment transport modeling in 
the estuary of the Ohkouzu diversion channel.  

 

4.3.2 Numerical results 

In the field scale simulation, the SWA was selected instead of the SOLA method for the NSE 

in order to exploit the computational efficiency and comfortability of geometry in the SWA. 

Meanwhile, the sediment transport in the estuary was solved by two methods explained in 

Section 2.3. The cases involved in this research are given in Table 1 with the other important 

parameters in the simulations. 

Table 1. The simulation cases and parameters 

Cases 𝑤𝑠 𝑐 𝐷𝑚𝑎𝑥  𝐷𝑚𝑖𝑛 𝜌𝑠𝑒𝑑  N1 𝜌′ ∆𝑥 ∆𝑦 

1 0.12 1.0 54.4 4.0 2.6 100 0.02 500 35.7 

2 0.09 32.2 

3 0.05 24.4 

4 0.02 12.2 

Units:  cm s-1 - μm μm g cm-3 pieces g cm-3 cm cm 

Notes: Parameters for 

the ADE 

Parameters for the particle tracking 

method 

Density 

current 

Grid spacing 

 Each case has experimental parameters including the particle sizes and settling velocity. 

The time step for the computations was adaptively computed by the stability condition 

described in Section 3.1.1. The computation was totally performed for 16 hours, 6 hours of 

which have spent only for creating the fully developed flow condition like a natural flow in the 

                                                             
1 N is the number of representative sediment particles generated randomly in a single cell within given 

range of the diameter. Totally, 98200 particles were considered for the 2D simulations.  
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estuary and the rest are devoted to the simulation of the sediment transport and the density 

current. Times presented in the following explanation and figures are the count when the 

sediment and the density current simulation started in the simulation. Generally, sediment with 

fresh water is flowing from the left side inflow boundary (river mouth) toward to the right side 

outlet boundary (offshore), see Figure 17. The bathymetry profile shows a river terrace outside 

of the river mouth. 

Based on the solution of the ADE, we measured the vertical distribution of salinity and 

sediment concentration at several points, since the simulation domain has included the 

observation sites B to D (see Figure 11 and Figure 13) approximately. The vertical distribution 

of salinity and sediments are plotted in Figure 18 for the approximated sites, which are close to 

the above observation points and are titled by distances measured from the inlet boundary. In 

Figure 18, the first graph, 50 m from the inlet, shows the guarantee of no salinity near the inlet 

boundary and the last graph at 950 m from the inlet shows the sediment and salinity 

distributions in offshore parts. Despite it, the other graphs are assumed to be equated to the 

corresponding the nearest observation points. Roughly speaking, the salinity is still not detected 

at 50 m and 250 m from the inlet. But the point at 750 m, the sediment concentration decreases 

with the salinity increases, which shows the same properties with the observation point C. The 

point at 850 m from the inlet has less sediment concentration near the sea surface than the 

bottom of the sea and the salinity distribution is kept its previous and next shapes of profiles. At 

the point at a 950 m from the inlet boundary, comparatively large sediment concentration takes 

place near to the sea surface and the sea bed as like as the observation site E. Practically, it is 

obvious that the sediment and salinity distributions by conventional method can be defined 

more accurately on the fine grid, however, it is difficult to evaluate how does the sediment 

particle size effects on the spatial distributions of sediments from the results obtained the 

conventional methods. Moreover, the combined effects of the flocculation and the density 

current on the sediment transport could be a challenge for the conventional method.  

 

Figure 18. Simulated vertical distribution of salinity and sediments by the ADE. From those, the middle 
three plots are approximately nearest points to B, C, and D points in Figure 13, respectively. The profiles 
are measured at 2 hours after the simulation considered. A parameter used in this simulation: 𝑤𝑠=0.09 
cm/s. 



 

𝚿 Ph.D. dissertation                                                                                                                                     42 
 

The numerical results of the sediment transport and density current field in the 2D domain 

are given in Figure 19 and Figure 20 for four cases changing the settling velocity and particles 

sizes. The blue and red contours show salinity and sediment concentration, while the particles 

are expressed by brown points. At the upstream side of the computational domain (see Figure 

17), initially hundred particles are generated and distributed randomly in every single 

computational cell in order to represent the sediment particles. Only a one-time generation of 

the sediment particles for whole simulation time enables to figure out the sediment transport 

clearly in the domain rather than the generating particles in every time step of the computation. 

Lines of contour remark the spatial changes in salinity and sediment concentration in Figure 19 

and Figure 20. It is shown that the river water pushes the seawater toward the offshore 

direction, meanwhile the density current acts opposite direction to the flow. Subsequently, an 

interaction of freshwater and seawater makes the upward flux near an interface between them 

and creates the density current front backward of the river terrace. In front of the density 

current, the flow forms circulation due to strong shear stress between the river flow and the 

density current. When the settling velocity or sediment particles have a bigger value, the 

sediments are totally settled down around the river terrace and the steep side after the terrace 

until 5 hours, shown in Figure 19 (a). Because the flocculation effect on the larger sediment 

particles intensively accelerates the settling process. The flow circulation and the front of a salt 

wedge cannot effect near bed sediment particle transport in case of large sediment particles, 

case 1. In Figure 19 (b), case 2, the sediment particle size and settling velocities are smaller 

than case 1 in Figure 19 (a) and the sediment particles near the front of the salt wedge are 

circulated with the flow and this is still appeared end of the simulation time. It shows that the 

settled or tumbling sediment particles near the front of the salt wedge or the interface between 

the fresh water and the seawater are re-suspended again and again. In Figure 20, the results 

with more fine sediment particles and lower settling velocities are shown. In case 3 with the 

most fine sediment particles, the sediments are transported straightly in the offshore direction 

and large amount of sediment stays suspended for a long time, as seen in Figure 20 (d) during 

the middle of the simulation time. This reveals that the finer sediments such as fine silt and clay 

sediment can be transported for long distance and deposited in the deep ocean bed. This was 

also reported with the observation of sedimentation at the Ohkouzu diversion channel estuary 

in 2011 (Hideo, et al., 2013). Generally, the sediment particles are transported with the inertial 

flow force until a 1 hour and then the sediment particles greatly settle down due to the 

flocculation effect between 1 hour and 5 hours. 
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Figure 19. Time sequencing results of the sediment transport and density current at the estuary of the 
Ohkouzu diversion channel: (a) case 1 with the sediment settling velocity 𝑤𝑠=0.12 cm/s, sediment 
particle sizes D=54.4-4.0 μm, (b) case 2 with 𝑤𝑠=0.09 cm/s, D=32.2-4.0 μm. 
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Figure 20. Time sequencing results for the sediment transport and density current at the estuary of 
Ohkouzu diversion channel: (c) case 3 with 𝑤𝑠=0.05 cm/s, D=24.4-4.0 μm and (d) case 4 with 𝑤𝑠=0.02 
cm/s, D=12.0-4.0 μm. 

The PTM has a drawback related to the treatment of the total amount of sediment deposition 

on the sea bed. Even if a new personal computer has a successful advancement of the 

performance, the total amount of sediment particles is beyond the limit of the computer 

memory and CPU processing speed. However, the distribution of probability of particles yields 

valuable information on the sediment distribution.  
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To investigate more about sediment distribution, we measured the vertical and horizontal 

distributions of sediment particle in four cases and shown in Figure 21 and Figure 22, 

respectively. In case 1 with the coarsest sediments, the vertical distribution is not included in 

Figure 21, since the large number of sediment particles is settled down at around the river 

terrace. But it can be appeared with violet color in Figure 22. In case 2 with the particles of 

D=32.2-4 μm, the distribution of particle distance between 750 m to 950 m is lower than that of 

the succeeding cases (case 3 and 4) with the finer sediments as well as the lower settling rates. 

The sediment particles are settled hugely near 250 m and slightly at 850 m and 950 m, more 

slightly at 750 m and almost no sedimentation at 50 m at 5 hours after the simulation 

considered. The same tendency shown in case 3 with D=24.4-4.0 μm, but the distribution of the 

suspended sediment particle is increased during an 1 hour to 5 hours between distances 750 m 

to 950 m. Case of the most fine sediment particles, case 4, shows a huge amount of distribution 

stayed as suspended after 750 m, but it shows no sedimentation after 5 hours at the points of 

750 m, 850 m and 950 m. In all cases, there are no suspended sediment particles transporting at 

50 m and 250 m after the 1 hour, but a plentiful settled sediment particles. There are no settled 

sediment particles at 50 m and less settled particles at 250 m after 3 hours, which means that 

the sediments are re-suspended and transported in the offshore direction as seen clearly in 

Figure 22. 
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Figure 21. Vertical distributions of sediment particles at the specific times: (a) case 2 (b) case 3 (c) case 4. 
In single cell, hundred particles are randomly distributed and it can be assumed to be the amount of total 
particles ntot. 
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With the measurement of more small time instants, the vertical distribution of sediment 

particle at arbitrary places can be seen more precisely; however the distribution of settling 

sediment particles on the bed and horizontal circumstances are not shown clearly. In order to 

show the horizontal distribution of sediment particles along the longitudinal section of the 

terrain, the particle distributions are measured at 3 hours, 5 hours and 7 hours in all simulation 

cases and are plotted in Figure 22. At 3 hours after the simulation considered, the sediment 

transport occupies a range from 150 m to the end of the domain (2490 m) in case 4 (a red 

histogram in Figure 22 (a)), while the sediment transport only takes place between 150 m to 

1000 m in case 1 (a violet histogram in Figure 22 (a)). The distributions and settlements of the 

sediments in cases with D=32.2-4 μm and D=24.4-4.0 μm are situated in between (a blue and a 

green histogram in Figure 22, respectively). For the further simulation times, the beginning of 

the distribution range is addressed to the offshore direction up to around of the river terrace 

and the large number of coarse sediment particles settled down there, as seen in Figure 22 (c). 

Whereas, the finer sediment particles are tended to settle down in the offshore part, as shown in 

Figure 22 (b) and (c).  
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Figure 22. Longitudinal distributions of the sediment particles in the all simulation cases. The results 
were obtained at the time (a) t=3 hrs, (b) t=5 hrs, and (c) t=7 hrs. In those figures, the total amount of 
particles ntot is the amount of all particles exists in the simulation domain. 

 

4.4 3D numerical simulations for the sediment problem 

4.4.1 Model setup 

Less than a three dimensional modeling is sufficient excluding the specific directions of three 

dimensions that show no physical variations in the problem. An estuary, where a number of 

factors, including a uniqueness of the environment effects on the hydrodynamics, must be 

considered as a three-dimensional problem. The sediment transport in two-dimensional space, 
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ignoring the third direction based on an assumption that may be the transports in shoreline 

direction would be less than that of the vertical direction. Thus the offshore direction of the 

sediment transport is discussed in the receding sections (the x-z plane model) ignoring the 

transport in the y directions, more clearly. We saw that the two-dimensional modeling can 

provide significant results on the sediment transport and spatial distributions in considering 

directions of x and z. But for the sediment problems relevant for the shoreline, one needs to 

consider the x-y plane for the modeling.  Of course the number of substantial results will be 

found when one uses the three-dimensional model. 

Here, we discuss the results of 3D numerical modeling of the sediment transport at the 

estuary of the Ohkouzu diversion channel, which were reported in (Takeshi, et al., 2016b) and 

extensively discussed in (Takeshi, 2016). For the simulations, we used the SOLA method to 

compute the flow field. The same cases given in Table 1 were adapted in the 3D simulations, but 

some of the parameters are different because of the dimension and memory consumptions. A 

number of sediment particles generated in a cell at initial time has reduced to 10 particles and 

grids spacing are chosen as ∆𝑥 = 1000, ∆𝑦 = 1000 and ∆𝑧 = 50 cm. The boundary conditions 

were the same as the condition applied in the 2D simulations. The bathymetry data for the 3D 

simulations, given in Figure 23, were interpolated to be a digital elevation model (DEM) from 

the raw point data shown in Figure 12. The discharge was constant for all simulations and was 

the same as the 2D simulations.  

 

Figure 23. DEM model of the geometric data for the bathymetry of the estuary. 

The computational time was 16 hours, 6 hours of which are devoted only for the calculation 

of the flow field. The rest of hours, total 10 hours were used to simulate the sediment transport 

and density currents. So that the times used for the results are counted since the subroutines of 

sediment and density current are active in the simulations. The flocculation model and its 

parameter were the same.  
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4.4.2 Numerical results 

The reason choosing the SOLA method instead of the SWA is a three-dimensional behavior of 

the estuary flow. As applying the SWA for the NSE, the vertical velocity is roughly calculated and 

would be different from the velocity that could be calculated with the SOLA method. This 

difference might have an influence on the transporting mechanism in a spatial distribution of 

sediments. We run four cases with the same flow condition in order to study the influence of the 

settling velocity and sediment sizes. For simplicity, the axes in figures are named as shoreline 

direction for the y-direction, cross-shore direction in the x-direction and elevation for the z-

direction. The flow field and salt concentration at the upper surface of the domain is given in 

Figure 24 showing the absolute velocity and the intrusion of a salt wedge into the river mouth, 

respectively.  

 

Figure 24. Plan views of the velocity magnitude and density deviation of the upper surface of domain at 
10 hours after the simulation started in the estuary.  

 

Figure 25. Slice views of the velocity vector and a salt wedge through the river channel at 10 hours after 
the simulation started in the estuary.  
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The given discharge, which is about 300 m3 s-1 and the 10 percent of the design flood 

discharge, was moderate for the estuary. As that, the density current pushed river water up to 

the river mouth as the salt wedge, shown in Figure 24 (b) and Figure 25. Similarly, the fewest 

amount of river water flows to the offshore direction as the exchange of the salt intrusion, as 

seen in Figure 24 (a) and Figure 25. With the discharge more than 15 percent of the design 

flood discharge, the river flow could push the density current forward over the river terrace and 

other figures of the sediment transport resulted are discussed in (Takeshi, et al., 2016b).  

The conventional solution for the sediment transport, the ADE, gives the general 

characteristic of the suspended sediment transport without the flocculation. Three-dimensional 

distributions of the suspended sediments and salt concentrations for four cases at 10 hours are 

given in Figure 26.  

 

Figure 26. Suspended sediments of four cases changing the settling velocity transport to the offshore 
direction against the density current. 

Sediments distributed in large area found in case 1 and in small area found in case 4. In other 

words, the results show that the settling velocities are key factors in the distribution of 

suspended sediments for each case when the transport happens in the same flow field. It is 

explained by the adjustments of the sediment advection by the settling velocity. It is not meant 

to be the sediment particles having higher value of settling velocity, which, in turn, gives the 

bigger particle size, can travel such a long distance.  

In time development, the density current pushed the river flow back to the river terrace for 

an initial 30 minutes when the moderate discharge is given. Then the salt concentration in the 

estuary becomes steady state after that, as shown in Figure 27 and Figure 28, and only the 

small interchanges took place. Whereas the time advances of the sediment transports were 

different for cases. At 0.5 hours after the transport considered, the distribution of the sediments 

was little different and case 4 shows the leading transport to the offshore direction. Like the salt 

concentration evolution, the sediment transports for an initial 30 minutes were active and the 

sediment front reaches 1000 m immediately, as seen in (a) of Figure 27 and Figure 28. It is 
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because that the sediment had transported with the inertial moments of the river flow. Soon 

after mixing sediments with the seawater, the advection rates of the sediment transport are 

reduced and slow but offshore directed transport took place for further hours, as seen in (b-e) 

of Figure 27 and Figure 28. After 3 hours of transporting, the leading front of the sediment had 

been dispersed by the local flow field in case 1 and 2. Some of dispersion to the shoreline 

direction appeared on the cheek of the sediment mass, shown in Figure 27 (c) and (d). As time 

advances, the sediment transport of case 1 lasted with the highest concentration at the upper 

part and with two bifurcations near the outlet part of the domain, as seen in Figure 27 (e). 

Dispersed parts from the main body of the sediment mass in case 1 and 2 looked transporting to 

the shoreline in Figure 27 (d) and (e).  If the surface wave is present in the simulation, the 

sediment concentration at the upper part of the domain would definitely be transported into the 

shoreline. 

In case 3 and 4, more interesting figures come up. Thanks to the less settling velocity, most of 

the sediment particles transported as suspended, so that the front of the sediment mass 

completely reached the outlet boundary after 3 hours, shown in Figure 28 (c). The advection 

rate of the sediment reduces more slowly as the settling rate reduces. Like previous cases with 

higher settling velocity, the dispersion appeared at the leading front in Figure 28 (d) and this 

dispersion transported to the shoreline more actively. Interestingly, the left cheek dispersion for 

all cases was constantly reduced as settling velocity reduces and completely disappeared in case 

4. Additionally, the dispersion originated from the leading front was quantitatively increased to 

the right side of the sediment mass in case 4, as shown in Figure 28 (e). Generally, the sediment 

concentrations higher than 0.5 in cases were stayed within the range of the 500 m from the 

river mouth, which is the inside of the river terrace. 

Figure 27. Time sequences of the suspended sediment and salt concentration at the estuary. The first 
column is results of case 1 and the second is of case 2 (see next page).  
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Figure 28. Time sequences of the suspended sediment and salt concentration at the estuary. The first 
column is results of case 3 and the second is of case 4 (see previous page). 

 

Another figure that cannot be disclosed by the ADE of the sediment transport could be 

explained by the PTM. For the sediment transport modeling with the PTM, a total of 16,640 

representative particles was tracked for all cases. The particle number for the simulation was 

limited by the memory of the running computer. In Figure 29, the three-dimensional 

distribution of sediment particles at 10 hours after the sediment transport considered is plotted 

for the four cases. We cannot see the large distribution area of the sediment particles having the 

higher settling velocity. It is not controversial for the results of the ADE, where the sediment 

distributed in the biggest area in case 1 which has a higher settling velocity or is representing 

the bigger particle size. If we discharge the sediment particles at every time step of the 

simulation, we could get the large area of sediment distribution with case 1 in the PTM. The 

bigger particles have a tendency to have a higher settling rate than the coarse particles. It makes 

sense that the bigger particles settled down immediately and hugely in the river mouth. Only 

the small number of coarse particles is transported in the offshore direction passing the river 

terrace in case 1 in Figure 29 (a). The large area of distribution is seen in case 4 in Figure 29 

(d). The distribution of sediment particles is increased in case 1 to case 4, while the settling rate 

is increased, vice versa.   

 

Figure 29. Spatial distribution of the sediment particles released from the river mouth at 10 hours for the 
four cases: (a) case 1, (b) case 2, (c) case 3 and (d) case 4.  

The large particles tend to settle at the estuary terrace, while the fine sediments are transported 

to the offshore directions in all cases and it can be seen in the time sequences of results given in 

Figure 30 and Figure 31, where the color of the particle indicates the sizes of particles. The 

general tendency of the particle transport was the same as the results of ADE. For the first 30 

min of the simulation, the sediment particles immediately reached at 1000 m with the inertia of 

the river flow and large particles settled around. Case 4 shows the most active transport to the 
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offshore direction and it kept for all times, as seen in Figure 31 (a-e). In Figure 30, almost all 

particles in case 1 are settled down within 1 hour and almost no particle motion observed after 

3 hours except the couple of particles. These particles are the representative of the possible 

coarse particles transported in the offshore direction. In all cases, where a salt wedge invaded 

the river mouth and passed the river terrace, the sediment particles make flocs very quickly. 

This results the traveling distance short for the particles bigger than 30 μm. Like the seawater is 

important for the flocculation, the discharge is very dominant factor in the sediment transport. 

In that sense, the two types of the discharge with different cases of sediment particles were 

discussed in (Takeshi, et al., 2016b) and (Takeshi, 2016). In later cases, the front of the sediment 

particles reached the outflow boundary of the domain at 1 hour, which was 2 hours prior to the 

ADE results. This is one of the advances of the PTM over the ADE. The particle motion of 

independent from the others is likely in the PTM, but the concentration separated from the 

concentration mass might be recognized as error or instability. Unlike the ADE, the dispersion at 

the cheek of the sediment mass was not observed in case 1-3 in the PTM. However the sediment 

particles transporting to the shoreline were observed for all cases and the particle number was 

increased as the particle size decreased. In other words, the large amount of sediment particles, 

particularly in case 4, from the outlet part of the domain was transported to the shoreline at the 

left side of the sediment mass, as shown in Figure 31 (e). Generally, the fine sediment particles 

lead the sediment mass in the transport. In the results of the PTM for sediment transport at the 

estuary of the Ohkouzu diversion channel, the sediment particles having sizes of less than 20 μm 

have a potential to be transported in the offshore direction over 1500 m from the river mouth. 

From the results, the right side of the shoreline is likely to receive more sediment particles than 

the left side. The horizontal distribution, more precisely the distribution in the shoreline 

direction (the y-direction), seems to be hugely dependent on the ocean surface dynamics as well 

as the interaction of the river flow and density current.  

 

4.4.3 Advantages and disadventages of the new PTM 

Based on the numerical experiments, I would like to stress some advantages and dis-

advantages of the newly purposed PTM in a comparison with the ADE. The settling velocity is no 

longer an issue for the PTM because it depends on a sediment particle size and weight. 

Initialization in the PTM becomes more realistic than that of the ADE, which leads reliable 

results. The PTM can present a particulate nature of sediment transport and provides an error-

free analysis of the sediment distribution. In general, the PTM is applicable for the cohesive and 

non-cohesive sediment transports. More importantly, the PTM brings simplicity for handling the 

individual characteristic of sediment particles like the flocculation and de-flocculation processes.  

The main disadvantage is the computational cost, including memory and time consumptions. 

With respect to this, the increase of problem scale decreases the performance of the PTM. An 

inherent bottleneck of the PTM is the poor connectivity to the concentration based evaluation.  

Figure 30. Distribution of the sediment particles released from the river mouth at once in case 1 and 2 
(see next page).  
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Figure 31. Distribution of the sediment particles released from the river mouth at once in case 3 and 4 
(see previous page). 

 

SUMMARY FOR PART 1 

In this part, we discussed the macroscopic modeling of the sediment transport problem in the 

estuary. The descriptions of models and methods were focused on the problem to be solved and 

the problem, sediment transports at the estuary of the Ohkouzu diversion channel, was studied 

by the 2D and 3D numerical models.  

The numerical models are organized as the numerical framework. The fluid flow can be 

optionally solved by two different numerical techniques featured by the solution algorithm 

(SOLA), namely the pressure-velocity iteration and shallow water approximation, depending on 

requirements and problem condition. The two techniques implement the Navier-Stokes 

equation with the Boussinesq approximation. In addition, the Smagorinsky turbulent model was 

introduced to the fluid flow in a form for the stratified medium. The sediment transports were 

solved by another two models, but simultaneously. The first was the traditional solution: the 

advection-diffusion equation. The second was the sediment particle tracking method which is 

newly introduced in the external articles. The particle tracking method brought two important 

features that could be difficult or impossible in some aspect to be involved with the ADE. These 

are the local transport behavior and the flocculation process of the sediment particles. The 

solutions came with the simple flocculation model verified by the simple experiments of settling 

sediment particles in the fresh and seawater.  

The numerical models for the sediment transport were validated with each other in the 

laboratory scale lock-exchange problem. Then the numerical framework was applied to the 

problem in the estuary of the Ohkouzu diversion channel. Four cases, changing the velocity and 

particle sizes, which originated from the experiment, were considered in the both 2D and 3D 

studies. The difference between 2D and 3D studies were not only the computational parameters, 

but also the solving technique for the flow governing equations. However, the two different 

dimensional studies provide the qualitative results which confirmed the observations made in 

the estuary of the Ohkouzu diversion channel. The comprehensive description of the sediment 

transport at the estuary was found in the 2D and 3D studies. The numerical framework with the 

results of the application to the estuary of the Ohkouzu diversion channel shows its potential to 

be applied for the sediment transport modeling in a large river estuary.  
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PART 2: MESOSCOPIC MODELING FOR 

ICE PROBLEMS 
 

contains the description of lattice Boltzmann (LB) models, their implementation techniques and 

applications to problems.  

 

5 LATTICE BOLTZMANN MODELS 

The family of LB models is getting large. In this chapter, we will explore an origin of the LB 

models and will present developed models for fluid flows, scalar transports and other 

substantial problems in hydraulics. 

 

5.1 Basic theory of the lattice Boltzmann method 

In this section, we will briefly discuss the basic theory of the LBM and its originality.  

 

5.1.1 Origin of the lattice Boltzmann model 

The history of the LBM starts from the method in gas kinetics, so called lattice gas automata 

(LGA). Very first LGA was the HPP2 model proposed by Hardy, Pomeau and Pazzis in 1973 

(Hardy, et al., 1973).  The HPP model describes a fluid flow using simple rules for motion of 

particles residing on the lattice nodes. Those simple rules conserve mass, moment and energy, 

and handle the steaming and collision of the particles on the lattice nodes. The main variable of 

the HPP model is the Boolean number, ni, defining particle existence, ni = 1, or absence, ni = 0, on 

the lattice node. The motion of the particle containing the streaming and collision can be 

described by the following discrete kinetic equation (Guo & Shu, 2013), 

𝑛𝑖(𝑥 + 𝑐𝑖𝛿𝑡, 𝑡 + 𝛿𝑡) = 𝑛𝑖(𝑥, 𝑡) + 𝐶𝑖(𝑛(𝑥, 𝑡))                                        (105) 

and the Boolean variable is used to define macroscopic variables, 

𝜌 =∑𝑚𝑛𝑖
𝑖

, 𝜌𝑢 =∑𝑚𝑐𝑖𝑛𝑖
𝑖

,       𝜌𝑒 =∑
𝑚

2
(𝑐𝑖 − 𝑢𝑖)

2𝑛𝑖
𝑖

 ,                     (106) 

where i is the lattice direction (see Figure 32 (a)), ci is the discrete velocity for each lattice 

direction and Ci is the collision term. The discrete velocity set in the HPP model is given by 

𝑐𝑖 = 𝑠𝑙𝑐𝑖 with 𝑐1 = (1, 0), 𝑐2 = (0, 1), 𝑐3 = (−1, 0), and 𝑐4 = (0,−1), and 𝑠𝑙 = 𝛿𝑥/𝛿𝑡 is the lattice 

speed where 𝛿𝑥 is the lattice spacing and 𝛿𝑡 is the lattice time step, as seen in Figure 32 (a). 

However, the HPP model satisfies the basic physical laws; consequently derived macroscopic 

variables do not manifest hydrodynamic continuum properties of the fluid flow. Reasons are 

                                                             
2 HPP is the initials of the authors’ names. 
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that the HPP model was devoted for microfluidic dynamics rather than macroscopic fluid flows 

and the square lattice used for a discretization has insufficient symmetric properties etc. 

Nevertheless, the HPP model had introduced very basic components of the modern LBM in its 

diligent period. 

 

Figure 32. Two dimensional lattices for the Lattice Gas Automata: (a) Square lattice for HPP model, (b) 
Equilateral triangular lattice for FHP model 

After over a decade, in 1986, Frisch group (Frisch, et al., 1986) and Wolfram (Wolfram, 1986) 

simultaneously revealed that the lattices used in the LGA must have symmetric properties. The 

model proposed by Frisch group has named the FHP model after the authors. The FHP model 

uses the equilateral triangular lattice (see Figure 32 (b)) for the simulation and altered to have 

more collision rules than the previous HPP model. A big contribution of the FHP model is not 

limited by the symmetry properties of the lattice and the model also brings an equilibrium state 

for the collision term in Eq.(105). This revolution contribution was enabled the FHP model can 

recover the incompressible NSE in low Mach number. However, still in some case, the Galilean 

invariance was violated in the FHP model. Thanks to the equilibrium distribution in the collision 

term, several lattice terms and properties, such as the lattice speed of sound and the lattice EOS, 

are introduced to activate further development of the LGA. Still in the FHP model, the main 

variable is the Boolean number. Although the Boolean variable brings unconditional stability for 

the simulation, it leads whether a particle crowd in some place and a particle devastation in 

other place. This crowd and devastation are not described by the kinetic equation implemented 

on the lattice. The physically uneven distribution of the Boolean variable results a discordant 

macroscopic flow field and it was termed as a statistic noise. Further LGA models were 

successfully explored and applied to multiphase and porous media flows. However, these 

models were still suffering by the statistic noise caused by the Boolean variables, the violation of 

Galilean invariance and the velocity dependence on pressure. Those are said the key driver for 

the LGA to be altered into the LBM.  

Historically, beginning of the LBM was initiated by Frisch group in 1987 improving the 

existing LGA based on the evaluation of the hydrodynamic properties and introducing the lattice 

Boltzmann equation (LBE) into the LGA (Frisch, et al., 1987). But they did not proclaim that 

their improved scheme was the new computational technique out of the LGA. Soon after, the 

LBE was formulated to solve fluid flow with the elimination of the statistic noise of the LGA as a 

new numerical method by McNamara and Zanetti in 1988 (McNamara & Gianluigi, 1988). The 

model uses the evolution of the mean values of one-particle distribution functions to eliminate a 

basic affliction of the LGA, the noise, instead of the Boolean variables on the lattice. The model 
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named NZ model after the authors and Eq.(105) can be rewritten as the basic equation of the NZ 

model: 

𝑓𝑖(𝑥 + 𝑐𝑖𝛿𝑡, 𝑡 + 𝛿𝑡) = 𝑓𝑖(𝑥, 𝑡) + Ω𝑖(𝑓(𝑥, 𝑡))                                         (107) 

where Ω𝑖  is the microscopic collision operator that was still the Boolean algebra expression that 

corresponds to the chosen set of collision rules (McNamara & Gianluigi, 1988) of the LGA. 

Further research works were mainly focusing on the simplification of the collision operator. 

However, the collision operator was still remained to be dependent from the LGA knowledge. 

Later, around in 1991, the collision operator was simplified as a linear term (Chen, et al., 1991), 

(Koelman, 1991) including the collision frequency and the equilibrium distribution function 𝑓𝑖
𝑒𝑞

, 

which was the same as the Bhatnagar-Gross-Krook collision operator (Bhatnagar, et al., 1954) in 

the gas kinetic theory constructed back in 1953. Consequently, a simple LBE can correctly 

describe the hydrodynamics of a macroscopic flow and can derive the correct version of the 

incompressible NSE in isothermal condition at low Mach number. The simple collision operator 

is referred among the literature whether the Bhatnagar-Gross-Krook (BGK) operator or the 

single relaxation time operator (SRT). The equilibrium distribution function in the BGK operator 

is now fully independent from the LGA and made the LBE path straighten to the LBM. In 

isothermal flow, the equilibrium distribution function must satisfy the mass and moment 

conservation, 

𝜌 =∑𝑓𝑖
𝑖

=∑𝑓𝑖
𝑒𝑞

𝑖

 and 𝜌𝐮 =∑𝐜𝑖𝑓𝑖
𝑖

=∑𝐜𝑖𝑓𝑖
𝑒𝑞

𝑖

,                               (108) 

and the BGK collision operator is inserted into Eq.(105) as 

𝑓𝑖(𝐱 + 𝐜𝑖𝛿𝑡, 𝑡 + 𝛿𝑡) = 𝑓𝑖(𝐱, 𝑡) −
𝑓𝑖(𝐱, 𝑡) − 𝑓𝑖

𝑒𝑞(𝐱, 𝑡)

𝜏𝑣
 ,                             (109) 

where 𝜏𝑣 is the relaxation time. Principally, the variations of approximation for the collision 

operator leads many versions of the LBM. In this thesis, we will mainly focus on the BGK 

collision operator exploiting its simplicity and capability.  

 

5.1.2 The Boltzmann equation 

We shall derive the Boltzmann transport equation in two ways to simply revisit underlying 

microscopic models and assumptions.  Then we discuss about collision terms in the Boltzmann 

equation to lay the cornerstones of the LBM considered here.  

 

The Boltzmann equation from the BBGKY hierarchy 

Normally, let us consider an infinite volume V contains an N number of molecules. Please 

note that the molecule and particle are the interchangeable terms in this thesis. The function 

defining their state can be 𝑓𝑁 and let it name the N particle distribution function. Thus, the 

distribution function 𝑓𝑁 is the function in a phase space depending on a position (𝐱𝛼) and 

velocity coordinates (�̇�𝛼) of a generic molecule α in volume V with α = 1, 2, …., N. A state of the N 

molecules can be defined as 
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𝑓𝑁(𝐱𝛼, �̇�𝛼)𝑑𝐱𝛼𝑑�̇�𝛼  , 

where 𝛼 = 1, 2, … ,𝑁. 

Above expression gives the probability to find N molecules in the position vector between 𝐱𝛼 

and 𝐱𝛼 + 𝑑𝐱𝛼 and velocity vector between  �̇�𝛼 and �̇�𝛼 + 𝑑�̇�𝛼 at time t. The normalization of the 

distribution function over all time, t, gives the property 

∫𝑓𝑁 (𝐱𝛼 , �̇�𝛼 , 𝑡)𝑑𝐱𝛼𝑑�̇�𝛼 = 1 .                                                  (110) 

The time evolution of the N particle distribution function follows the Liouville’s equation 

(Guo & Shu, 2013) (Michael & Daneal T, 2006), i.e., 

𝜕𝑓𝑁

𝜕𝑡
+∑(�̇�𝑖

𝛼 𝜕𝑓
𝑁

𝜕𝑥𝑖
𝛼 + �̈�𝑖

𝛼 𝜕𝑓
𝑁

𝜕�̇�𝑖
𝛼)

𝑁

𝛼=1

= 0                                            (111) 

Solving Eq.(111) is much more difficult than solving the equation of motion for N particles. Only 

a way to simplify Eq.(111) is to derive a time evolution equation for a lower particle distribution 

function. To reduce the complexity of the distribution function, we can derive another lower 

particle distribution function 𝑓𝑛 from the distribution function 𝑓𝑁 such that 

𝑓𝑛(𝐱𝑛, �̇�𝑛, 𝑡)𝑑𝐱𝑛, 𝑑�̇�𝑛 

= [∫𝑓𝑁(𝐱𝛼, �̇�𝛼, 𝑡)𝑑𝐱𝑛+1, … , 𝑑𝐱𝑁𝑑�̇�𝑛+1, … , 𝑑�̇�𝑁] 𝑑𝐱𝑛, … , 𝑑𝐱𝑁𝑑�̇�𝑛, … , 𝑑�̇�𝑁           (112) 

gives the probability to find n molecules in a certain interval of a position and velocity vector at 

time t. To derive the time evolution for the distribution function 𝑓𝑛 (n<N), we can multiply 

Eq.(111) by 𝑑𝐱𝑛+1, … , 𝑑𝐱𝑁𝑑�̇�𝑛+1, … , 𝑑�̇�𝑁 and it yields, 

∫[
𝜕𝑓𝑁

𝜕𝑡
+∑(�̇�𝑖

𝛼 𝜕𝑓
𝑁

𝜕𝑥𝑖
𝛼 + �̈�𝑖

𝛼 𝜕𝑓
𝑁

𝜕�̇�𝑖
𝛼)

𝑁

𝛼=1

] 𝑑𝐱𝑛+1, … , 𝑑𝐱𝑁𝑑�̇�𝑛+1, … , 𝑑�̇�𝑁 = 0 .              (113) 

The first integral of Eq.(113) can be changed to the order of the time derivative of 𝑓𝑛 according 

to Eq.(112): 

∫
𝜕𝑓𝑁

𝜕𝑡
𝑑𝐱𝑛+1, … , 𝑑𝐱𝑁𝑑�̇�𝑛+1, … , 𝑑�̇�𝑁 =

𝜕𝑓𝑛

𝜕𝑡
 .                                     (114) 

Moreover, the second and third terms in left hand side of Eq.(113) alters with some conditions 

and the subsequent form of Eq.(113) becomes 

𝜕𝑓𝑛

𝜕𝑡
+∑ [�̇�𝑖

𝛼 𝜕𝑓
𝑛

𝜕𝑥𝑖
𝛼 + (𝐹𝑖

𝛼 +∑𝑋𝑖
𝛼𝛽

𝑛

𝛽

)
𝜕𝑓𝑛

𝜕�̇�𝑖
𝛼]

𝑛

𝛼=1

 

= −∑(𝑁 − 𝑛)
𝜕

𝜕�̇�𝑖
𝛼

𝑛

𝛼=1

∫𝑋𝑖
𝛼,𝑛+1𝑓𝑛+1𝑑𝑥𝑛+1𝑑�̇�𝑛+1 ,                                   (115) 

where 𝐹𝑖
𝛼 is the external force per unit of mass which acts on the molecule α being independent 

of the molecular velocities, 𝑋𝑖
𝛼𝛽

 is the force per unit of mass which acts on the molecule α due to 
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its interaction with the molecule β and the forces can be composed as the acceleration of the α 

molecule as �̈�𝑖
𝛼 = 𝐹𝑖

𝛼 + ∑ 𝑋𝑖
𝛼𝛽𝑛

𝛽=1 . 

As we see, Eq.(115) is the time evolution equation for the distribution function 𝑓𝑛 dependent 

on the distribution function 𝑓𝑛+1. Hence, Eq.(115) represents a hierarchy of coupled equations, 

which is known as BBGKY hierarchy, since it was deduced independently by the researchers 

Bogoliubov; Born and Green; Kirkwood and Yvon (Stewart, 2004). Still, we have complexity to 

solve Eq.(115) if n is enough big as N. The BBGKY hierarchy is equivalent to the original 

Liouville equation and lower order equation of the hierarchy can nearly represent its upper 

order equation of the hierarchy. With some assumptions, we can consider the first order 

equation from the BBGKY hierarchy and it reads 

𝜕𝑓1

𝜕𝑡
+ �̇�𝑖

1 𝜕𝑓
1

𝜕𝑥𝑖
1 + 𝐹𝑖

1 𝜕𝑓
1

𝜕�̇�𝑖
1 = −(𝑁 − 1)

𝜕

𝜕�̇�𝑖
1∫𝑋𝑖

12𝑓2𝑑𝐱2𝑑�̇�2 ,                        (116) 

where 𝑓2 is the two particle distribution function. As there are several ways to derive the 

Boltzmann equation from Eq.(116) in the literature, we shall follow Krikwood’s method 

(Kirkwood, 1947) and shall consider following four hypotheses (Gilberto, 2010) to derive the 

Boltzmann equation. 

Hypothesis 1: Only the interactions between two molecules are considered as a binary 

collision for a rarefied gas.  

Hypothesis 2: The effect of the external force is small in comparison with the effect of 

the interaction force between two molecules.  

Hypothesis 3: Initially, at t=0, molecules with uncorrelated velocities are unevenly 

distributed in space and are far from each other. In other words, a chaos assumption is 

valid for the state of molecules.  

Hypothesis 4: The spatial gradient of the distribution function in comparison with the 

molecular size is small, so that the distribution function is assumed to be continuous.  

The main procedure to derive the Boltzmann equation is to eliminate 𝑓2 from Eq.(116) by 

expressing 𝑓2 in function of 𝑓1 with the hypotheses 1 to 4. Consequently, we can write the time 

evolution equation for the one particle distribution function independent from the two particle 

distribution functions as 

𝜕𝑓1̅̅ ̅

𝜕𝑡
+ �̇�𝑖

1 𝜕𝑓
1̅̅ ̅

𝜕𝑥𝑖
1 + 𝐹𝑖

1 𝜕𝑓
1̅̅ ̅

𝜕�̈�𝑖
1 = Ω(𝑓

1̅̅ ̅(𝐱, �̇�, 𝜏∗, 𝑡)) ,                                        (117) 

where the time average of the distribution function is taken as 

𝑓1̅̅ ̅(𝐱, �̇�, 𝑡) =
1

𝜏∗
∫ 𝑓1(𝑥, 𝑥, 𝑡 + 𝑠)𝑑𝑠
𝜏∗

0

 .                                            (118) 

The time interval in Eq.(117) and (118) is chosen to be 𝜏𝑐 ≪ 𝜏∗ ≪ 𝜏, where 𝜏𝑐  is the mean 

collision time and 𝜏 is the mean free time for a mean free path. For simplicity, changing  𝑓1̅̅ ̅ 

notation with f, the Boltzmann transport equation can be written as 

𝜕𝑓

𝜕𝑡
+ �̇�𝑖

𝜕𝑓

𝜕𝑥𝑖
+ 𝐹𝑖

𝜕𝑓

𝜕�̇�𝑖
= Ω(𝑓(𝐱, �̇�, 𝜏∗, 𝑡)) .                                       (119) 
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The Boltzmann equation from gas kinetics 

Let us discuss another simple way to derive the Boltzmann transport equation. Before that, 

we will take some time to discuss about what is the meaning of the distribution function in the 

kinetic theory. We saw that the distribution function is a main variable in the gas kinetic theory 

with a mention of the Maxwell-Boltzmann distribution in Section 1.3.3 and the many (N or n) 

particle distribution function in the BBGKY hierarchy. Thus, the main aim of the kinetic theory is 

to define the distribution function in a given interaction of the molecules and to find the time 

evolution of the distribution function in the system with the purpose of the realization of 

thermodynamics. The distribution function gives the probability to find a molecule in a position 

between x and x+dx and a momentum between p and p+dp at time t. In other words, the 

distribution function gives the possible number of molecules in a given interval of the position 

and momenta at a time. 

The distribution function is a continues function in phase space, μ, coordinated by a position 

(x = x, y, z) and a momentum (p = px, py, pz). If the molecules in a system are indistinguishable, 

the velocity (�̇� = 𝐩/𝑚) can be considered as a coordinate of the phase space. At any instant of 

time, the state of the entire system of N molecules can be presented by N points in μ space. The 

volume containing N points in μ space is d3𝐱d3𝐩  as an element and the total number of the 

points in infinitesimal volume is 𝑓(𝐱, 𝐩, 𝑡)d3𝐱d3𝐩 by the definition. The μ space is obviously 

constructed by the number of elements and the density of point in each element does not vary 

rapidly from the element to a neighboring element, then the distribution function can be defined 

in entire μ space as 

∑𝑓(𝐱, 𝐩, 𝑡) d3𝐱d3𝐩 ≈ ∫𝑓(𝐱, 𝐩, 𝑡)d3𝐱d3𝐩 .                                       (120) 

Let the volume element notation be d3𝐱d3𝐩 = dμ(t). The number of molecules in the volume 

element at time t is 

𝑛(𝑡) = 𝑓(𝐱, 𝐩, 𝑡)dμ(t) .                                                          (121) 

Assuming the hypothesis 3 for the system, the number of molecules in the volume element 

depends on time. Thus, after the instant of time ∆t, the number of molecules in the volume 

element becomes 

𝑛(𝑡 + ∆𝑡) = 𝑓(𝐱 + ∆𝐱, 𝐩 + ∆𝐩, 𝑡)dμ(t + ∆𝑡) .                                        (122) 

If the time instant ∆t is small as the mean free time τ, the quantities 𝑛(𝑡) and 𝑛(𝑡 + ∆𝑡) become 

equal to each other and the equality shows a free stream of the molecules. Generally, the time 

instant ∆t is considered to be ∆𝑡 ≫  𝜏 and a collision of the molecules needs to be considered in 

the number of molecules existing in the volume element. Further discussion should assume the 

hypothesis 1. An effective rate of a collision can be expressed by the two numbers of molecules 

at time 𝑡 and 𝑡 + ∆𝑡 

∆𝑛 = 𝑛(𝑡 + ∆𝑡) − 𝑛(𝑡) .                                                         (123) 

To show Eq.(105) from Eq.(123), we could change the notation of collision by 𝐶𝑖 and rewrite 

Eq.(123) 

𝑛(𝑡 + ∆𝑡) = 𝑛(𝑡) + 𝐶𝑖 ,                                                         (124) 
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which is the basic kinetic equation used in the LGA. Substituting Eq.(121) and (122) to Eq.(123) 

gives 

∆𝑛 = 𝑓(𝐱 + ∆𝐱, 𝐩 + ∆𝐩, 𝑡)dμ(t + ∆𝑡) − 𝑓(𝐱, 𝐩, 𝑡)dμ(t) .                         (125) 

Note that evolution equation, Eq.(107), of the NZ model can also be seen from Eq.(125). If the 

change of the volume element is negligible, we can rewrite Eq.(125) as 

∆𝑛 = [𝑓(𝐱 + ∆𝐱, 𝐩 + ∆𝐩, 𝑡) − 𝑓(𝐱, 𝐩, 𝑡)]dμ(t) .                                  (126) 

The changes of the position and momentum vectors of the molecules during the time interval ∆t 

are defined by 

∆𝐱 = �̇�∆𝑡,     ∆𝑝 = 𝑚𝐅∆𝑡 ,                                                         (127) 

where 𝐅 denotes a specific external force which acts on the molecules with the hypothesis 2. 

The expansion of 𝑓(𝐱 + ∆𝐱, 𝐩 + ∆𝐩, 𝑡) in around (𝐱, 𝐩, 𝑡) using the first order Taylor series 

(Баасандорж, et al., 1999) gives 

𝑓(𝐱 + ∆𝐱, 𝐩 + ∆𝐩, 𝑡) = 𝑓(𝐱, 𝐩, 𝑡) +
𝜕𝑓

𝜕𝑡
∆𝑡 +

𝜕𝑓

𝜕𝑥𝑖
∆𝐱 +

𝜕𝑓

𝜕𝑝𝑖
∆𝐩 + 𝑂[(∆𝑡)2]           (128) 

Substituting Eq.(128) into Eq.(126) and dividing the both side by ∆𝑡 yields 

∆𝑛

∆𝑡
= [

𝜕𝑓

𝜕𝑡
+
𝜕𝑓

𝜕𝑥𝑖
𝑥�̇� +

𝜕𝑓

𝜕𝑝𝑖
𝑚𝐹𝑖 + 𝑂[(∆𝑡)

2]] dμ(t)                             (129)  

and Eq.(129) can be rewritten in an organized way as, 

𝜕𝑓

𝜕𝑡
+ �̇�𝑖

𝜕𝑓

𝜕𝑥𝑖
+ 𝐹𝑖

𝜕𝑓

𝜕�̇�𝑖
=

∆𝑛

∆𝑡dμ(t)
− 𝑂[(∆𝑡)2]                                   (130) 

or 

𝜕𝑓

𝜕𝑡
+ �̇�

𝜕𝑓

𝜕𝑥𝑖
+ 𝐅

𝜕𝑓

𝜕�̇�𝑖
= Ω(𝑓, 𝑓)                                                (131) 

which is the Boltzmann equation, a nonlinear integro-differential equation for the one particle 

distribution function f. General form of the collision term in the Boltzmann equation is an 

integral equation (A.A.Mohamad, 2011).  

 

1.1.3 The collision term 

Now, we will briefly discuss about the collision term on the right side of Eq.(119) or (131). 

The collision term is only one complexity of solving the Boltzmann equation and contains all 

details about molecular interactions and the irreversibility of the kinetic description (Carlo, 

1988). To approximate the integral form of the collision term, one needs to reduce the number 

of molecules of the interaction. Recalling the hypothesis 1, let us assume that only two elastic 

molecules undergo a collision during time interval τ. Asymptotic pre-collision velocities are 

denoted by v1 and v2 for the two colliding molecules, respectively. Let an origin of the coordinate 

be at the molecule 2 in order to be relative motion with the total momentum is zero. The 

molecule 1 is approaching to the center molecule 2, as shown in Figure 33.  
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Figure 33. Sketch of a binary collision for the collision term and scattering of a molecule (Kerson, 1987). 

The relative motion is characterized by the impact parameter b and by the azimuthal angle ϕ. 

Let their differential be db and dϕ. The pre-collision relative moment, p, of the molecule 1 

become a rotated relative momentum, p’, after the collision with the molecule 2 without 

changing its magnitude. It is that the collision merely rotates the relative energy and momentum, 

the energy conservation, |𝑝| = |𝑝′|, is valid at the elastic collision (Kerson, 1987). The 

probability to find the molecule 1 with velocity v1 is 𝑓1 = 𝑓(𝐱1, 𝐩1, 𝑡) while the probability to 

find the molecule 2 with velocity v2 is 𝑓2 = 𝑓(𝐱2, 𝐩2, 𝑡) at the pre-collision state. If the 

probabilities at the post-collision become 𝑓1
′ and 𝑓2

′, the collision integral reads 

Ω(𝑓, 𝑓) = ∫(𝑓1
′𝑓2
′ − 𝑓1𝑓2)|𝒗1 − 𝒗2|𝑏𝑑𝑏𝑑𝜙𝑑

3𝐩2  .                                   (132) 

The collision integral, given in Eq.(132), is a general form of the collision term and the 

approximation or the model kinetic for the Boltzmann collision operator must hold some basic 

properties (Gilberto, 2010), (Kerson, 1987), (Ansumali, 2004) listed below. 

a. Locality 

The Boltzmann collision operator is local for the physical space and nonlocal for the 

momentum space. In other words, the molecules considered in the Boltzmann kinetic theory are 

points in physical space and the intermolecular forces in a limited range is considered for the 

interactions.  

b. Summation invariants 

Since the collision operator is reduced to the two-body elastic collision, the total mass, 

momentum and energy are conserved. This fact satisfies the following theorem.  

Theorem 1: A continues function 𝜓(�̇�) is a summation invariant if and only if 

𝜓(�̇�) = 𝐴 + 𝐁 ∙ �̇� + 𝐷�̇�2 ,                                                       (133) 

where A and D are two constant scalar functions (might be seen as density and energy) 

and B is a constant vector function (might be seen as momenta), all of them being 

independent of �̇�.  

The collision operator must satisfy the Theorem 1 in its form.  

c. Zero point of the collision 
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Boltzmann describes that the all non-equilibrium system goes to an equilibrium state. In the 

equilibrium state, the collision integral becomes Ω(𝑓, 𝑓) = 0 and its solution gives 

𝑓1𝑓2 = 𝑓1
′𝑓2
′ ,                                                                       (134) 

which is an important balance in the Boltzmann kinetic theory. If this property is valid, a class of 

𝑓0(�̇�) = exp(𝐴 + 𝑩 ∙ �̇� + 𝐷�̇�2)                                                     (135) 

function exist. In other words, a function satisfying the collision term in a collisionless state will 

be an equilibrium case of the distribution function f. In the class of Eq.(135), there is one 

physical rigorous solution, known as the Maxwell speed distribution function given in Eq.(13).  

d. Boltzmann inequality 

In any form of the distribution function f, Boltzmann stated that the property, 

∫ 𝑙𝑜𝑔 𝑓 Ω(𝑓, 𝑓)𝑑3𝐩 ≤ 0 ,                                                          (136) 

holds. It is referred as a Boltzmann inequality and the equality sign applies if, and only if, f is 

given by Eq.(135) (Carlo, 1988). Hence, the collision term can describe the relaxation of the 

distribution function towards the local Maxwell distribution function. The Boltzmann inequality 

is also the implication of the Boltzmann H-theorem, which is the property of the collision term, 

too.  

The model kinetics, alternative collision operators for the Boltzmann collision term, not only 

satisfy above properties and but also retain the average qualitative and quality properties of the 

true collision operator. The widely used model for the kinetic theory and LBM is the Bhatnagar-

Gross-Krook model (BGK) proposed by Bhatnagar’s group (Bhatnagar, et al., 1954) and 

Welander (Welander, 1954), independently. The BKG model assumes that the average effect of 

the collision is to change the distribution function f by an amount proportional to the departure 

of f from an equilibrium distribution function 𝑓𝑒𝑞. Thus, the BGK model is given by 

Ω𝐵𝐺𝐾(𝑓, 𝑓) = 𝑤(𝑓
0 − 𝑓) ,                                                  (137) 

where 𝑤 is a parameter of order of the collision frequency, which can be respected to �̇�. With 

the BGK model, the Boltzmann transport equation (Eq.(119) or (131)) becomes 

𝜕𝑓

𝜕𝑡
+ �̇�

𝜕𝑓

𝜕𝑥𝑖
+ 𝐅

𝜕𝑓

𝜕�̇�𝑖
= 𝑤(𝑓0 − 𝑓),                                          (138) 

And it is the same as Eq.(109) without an external force term, where 𝑤 = 1/𝜏𝑣. 

The BGK model is not a linear operator, because the equilibrium distribution function 𝑓0 

contains the moments of the distribution function f. So before the discussion about the 

equilibrium distribution function, let us consider the moments of the distribution function.  

 

5.1.3 Macroscopic variables 

The Boltzmann equation describes the time evolution of the distribution function, which is 

the main variable in the mesoscopic description of a fluid flow. The main question to be 

answered in this section is that how we can evaluate the macroscopic independent variables 
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(density, velocity, energy, etc.) with the distribution function f. In other words, we shall discuss 

here the relationship between the Boltzmann equation and macroscopic fluid dynamics.  

The distribution function, 𝑓(𝐱, 𝐩, 𝑡), is the function of phase space and the possibly molecule 

number in the system can be defined 𝑁 = ∫𝑓𝑑3𝐱𝑑3𝐩 by its definition. If the molecules in a 

system have the same mass (a fluid is homogeneous), we can rewrite 𝑓(𝐱, 𝐯, 𝑡). Moreover, the 

distribution function behaves as the hypothesis 4, the number of molecules become 

𝑁 = 𝑑3𝐱∫𝑓𝑑3𝐯 .                                                             (139) 

Multiplying the both sides with m gives the total mass in the system: 

𝑚𝑁 = 𝑚𝑑3x∫𝑓𝑑3𝐯 .                                                          (140) 

From here, the density in a physical space can be defined as 

𝜌(𝐱, 𝑡) =
𝑚𝑁

𝑑3𝐱
= 𝑚∫𝑓 𝑑3𝐯  

or, simply changing the space notation 𝑑3 to d and including m into f : 

𝜌(𝐱, 𝑡) = ∫𝑓 𝑑𝐯 .                                                             (141) 

This is called the zeroth order moment of the distribution function and is identical to the 

ensemble average in Eq.(7). 

The macroscopic velocity can be given by the average of the molecular velocity 

𝐮 =
∫𝐯𝑓 𝑑𝐯

∫𝑓 𝑑𝐯
 ,                                                              (142) 

where the integral in the denominator is used to normalizing f to unity.  According to Eq.(141), 

the velocity vector can also be written as 

𝜌𝐮 = ∫𝐯𝑓 𝑑𝐯 .                                                            (143) 

Even if a flow is at rest by the macroscopic observation, in other words u=0, the molecules have 

non zero velocity in the microscopic scale. This means there is the velocity deviation between 

the molecular velocity c and the macroscopic velocity u, which can be written as 

𝐂 = 𝐯 − 𝐮 .                                                                (144) 

The velocity C is called peculiar velocity (Carlo, 1988), (Gilberto, 2010) and is equal to 

molecular velocity v if the flow is macroscopically at rest. We have an important property of the 

peculiar velocity when we write its moment with the distribution function: 

∫𝐂𝑓 𝑑𝐯 = ∫𝐯𝑓 𝑑𝐯 − 𝐮∫𝑓 𝑑𝐯 = 𝜌𝐮 − 𝜌𝐮 = 0 ,                          (145) 

where Eq.(141) and (143) have been used. 

Now it is interesting that how the other physical variables can be interpreted by the 

distribution function. To be simple, we can write the i-th component of velocity as 
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𝜌𝑢𝑖 = ∫𝑣𝑖𝑓 𝑑𝐯 ,                                                               (146) 

which can be said the momentum density in i-th direction. The j-th momentum flow in i-th 

direction can be written as 

∫𝑣𝑖(𝑣𝑗𝑓) 𝑑𝐯 = ∫𝑣𝑖𝑣𝑗𝑓 𝑑𝐯 ,                                                  (147) 

where we use the general fact (Баасандорж, et al., 1999) and Eq.(147) shows that the 

momentum flow is described by a symmetric tensor of the second order. In order to find out the 

macroscopic implication of the term above, we have to change the molecular velocity by its 

peculiar part, 𝐯 = 𝐮 + 𝐂. Equation (147) becomes 

∫𝑣𝑖𝑣𝑗𝑓 𝑑𝐯 = ∫(𝑢𝑖 + 𝐶𝑖)(𝑢𝑗 + 𝐶𝑗) 𝑓𝑑𝐯 

= 𝑢𝑖𝑢𝑗∫𝑓 𝑑𝐯⌈=𝑢𝑖𝑢𝑗𝜌 + 𝑢𝑗∫𝐶𝑖𝑓 𝑑𝐯⌈=0 + 𝑢𝑖∫𝐶𝑗𝑓 𝑑𝐯⌈=0 +∫𝐶𝑖𝐶𝑗𝑓 𝑑𝐯 

= 𝑢𝑖𝑢𝑗𝜌 + ∫𝐶𝑖𝐶𝑗𝑓 𝑑𝐯 .                                                      (148) 

The resultant two terms describe the momentum flow decomposed into two parts, one of which 

can be recognized as the macroscopic momentum flow, while the second part can be related to a 

momentum flow driven by the peculiar velocity. Indeed, this can be addressed to the pressure 

tensor due to the peculiar velocity as 

𝑝𝑖𝑗 = ∫𝐶𝑖𝐶𝑗𝑓 𝑑𝐯 .                                                           (149) 

The expression of Eq.(149) with the minus sign is known as the stress tensor.  

The energy density, 
1

2
∫𝐯2𝑓 𝑑𝐯, can receive the similar analysis to Eq.(148) in order to 

identify the macroscopic appearance of it. The resultant term is 

1

2
∫𝐯2𝑓 𝑑𝐯 =

1

2
𝜌𝐮2 +

1

2
∫𝐂2𝑓 𝑑𝐯 ,                                           (150) 

where 
1

2
𝜌𝐮2 is the macroscopic kinetic energy density and 

1

2
∫𝐂2𝑑 𝑑𝐯 can be ascribed to the 

internal energy of the fluid. If we note the internal energy as e, the second term in Eq.(150) gives 

the internal energy per unit volume as 

𝜌𝑒 =
1

2
∫𝐂2𝑓 𝑑𝐯 .                                                              (151) 

Introducing i=j into Eq.(149) gives the same term with the i-th component of internal energy. 

Hence we can write the relation between the pressure tensor and the internal energy as 

𝑝𝑖𝑖 = ∫𝐂
2𝑓 𝑑𝐯 = 2𝜌𝑒 .                                                         (152) 

Moreover, the hydrostatic pressure of the fluid (gas) can be defined by the trace of the pressure 

tensor as 



 

© Ayurzana Badarch                                                                                                                                    71 
 

𝑝(𝐱, 𝑡) =
1

3
𝑝𝑖𝑖 =

1

3
∫𝐂2𝑓 𝑑𝐯 .                                                 (153) 

The derivation of the internal energy leads us to the relation 

𝑝 =
2

3
𝜌𝑒 ,                                                                    (154) 

with Eqs.(151) and (152). This is the EOS of the gas and shows the possibility to define pressure 

in terms of the internal energy and density. Also, we can see that 𝑝/𝜌 is the constant when flow 

is isothermal. This statement will give us the EOS used in the LBM in the following sections. On 

the other hand, we have the EOS for the perfect gas (Boyle’s law) 

𝑝 = 𝜌𝑅𝑇 ,                                                                    (155) 

where R is the constant and T is the absolute temperature. Equations (154) and (155) give 

𝑒 =
3

2
𝑅𝑇 ,                                                                    (156) 

or Eq.(153) and (155) gives 

𝑇(𝐱, 𝑡) =
𝑝

𝑅𝜌
=

1

3𝜌𝑅
∫𝐂2𝑓 𝑑𝐯 .                                                 (157) 

Let us investigate the energy flow; the total energy flow can be written by  

∫𝑐𝑖 (
1

2
𝐯2𝑓)𝑑𝐜 =

1

2
∫𝑐𝑖𝐯

2𝑓 𝑑𝐯 .                                              (158) 

Introducing Eq.(144) into Eq.(158) and then applying Eq.(141), Eq.(145), Eq.(149), and 

Eq.(151) yields 

1

2
∫ 𝑐𝑖𝐯

2𝑓 𝑑𝐯 = 𝑢𝑖 (
1

2
𝜌𝐮2 − 𝜌𝑒) − 𝑢𝑗𝑝𝑖,𝑗 +

1

2
∫𝐶𝑖𝐂

2𝑓 𝑑𝐯 ,                     (159) 

where the first term is the macroscopic energy flow due to the convection, the second term is 

the energy due to the work done by the pressure tensor per unit time and the third one is to be 

the additional energy called heat flux vector. The heat flux is given as 

𝑞𝑖(𝐱, 𝑡) =
1

2
∫𝐶𝑖𝐂

2𝑓 𝑑𝐯 =
1

2
𝑝𝑗𝑗𝑖  .                                           (160) 

The common macroscopic variables such as Eqs.(141), (143), (151), (153) and (154) will be 

used for the LB modeling in further sections and the others will be mentioned if we need.  

 

5.1.4 Equilibrium distribution function 

If we observe the state of a fluid (gas) with an arbitrary distribution function at time without 

giving an external force to the system, we found that the state goes into an equilibrium situation, 

eventually. The distribution function belonging to the equilibrium state is called the equilibrium 

distribution function. In other words, the equilibrium distribution function of the gas will be the 

limiting form of the any distribution function, if time tends to infinity (Kerson, 1987). As said, let 

us assume that there is no external force. This assumption leads us to write the distribution 

function: 𝑓(𝐩, 𝑡), because the function is no longer dependent from physical space. The 
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equilibrium distribution function, denoted by 𝑓0(𝐩, 𝑡), can be found at 
𝜕𝑓

𝜕𝑡
= 0. Putting this and 

the assumption into Eq.(131) yields 

0 = Ω(𝑓, 𝑓) ,                                                              (161) 

and 𝑓0(𝐩, 𝑡) must satisfy the collision term. To solve Eq.(161), a sufficient condition is Eq.(134) 

and introducing 𝑓0(𝐩, 𝑡) to Eq.(134) become 

𝑓0(𝑝1)𝑓
0(𝑝2) − 𝑓

0(𝑝1
′ )𝑓0(𝑝2

′ ) = 0 .                                      (162) 

To show the sufficiency of Eq.(162), we write the Boltzmann functional 

𝑯(𝑡) = ∫𝑑3�̇�𝑓(𝐩, 𝑡)𝑙𝑜𝑔 𝑓(𝐩, 𝑡) ,                                            (163) 

and the distribution function in Eq.(163) is independent from physical space, but function of 

time, satisfying  

𝜕𝑓(𝐩, 𝑡)

𝜕𝑡
= Ω(𝑓, 𝑓) .                                                     (164) 

If we differentiate the Boltzmann functional with time, we have 

𝜕𝑯(𝑡)

𝜕𝑡
= ∫𝑑3�̇�

𝜕𝑓(𝐩, 𝑡)

𝜕𝑡
(1 + 𝑙𝑛𝑓(𝐩, 𝑡)) .                                (165) 

To Eq.(165), substituting Eq.(164) and recalling Ω(𝑓, 𝑓) = 0, gives  

𝜕𝑯(𝑡)

𝜕𝑡
= 0 .                                                                (166) 

This is the same as the condition in Eq.(162) and is a statement of finding the right form of the 

equilibrium distribution function.  Equation (166) is also one case of the Boltzmann H-theorem.  

Theorem 2: If the distribution function satisfies the Boltzmann transport equation, then 

𝑑𝐻(𝑡)

𝑑𝑡
≤ 0 ,                                                              (167) 

which is called the Boltzmann H-theorem.  

With Boltzmann H-theorem, we saw that the equilibrium distribution function can be found 

from the condition in Eq.(162). Let us take logarithm of both sides of Eq.(162): 

𝑙𝑛𝑓0(𝐩1) + 𝑙𝑛𝑓
0(𝐩2) = 𝑙𝑛𝑓

0(𝐩1
′ ) + 𝑙𝑛𝑓0(𝐩2

′ ) .                            (168) 

Recalling the Theorem 1, the summation invariant is valid for function 𝜓(�̇�) and the solution of 

natural logarithm of 𝑓0 can have a form of the function 𝜓(�̇�) as 

𝑙𝑛𝑓0(𝐩) = 𝜓(�̇�) .                                                               (169) 

Hence, the general solution of Eq.(168) can be written as 

𝑙𝑛𝑓0(𝐩) = 𝜓(�̇�) + 𝑙𝑛𝐶  

or 

𝑓0(𝐩) = 𝐶𝑒𝜓(�̇�) ,                                                               (170) 
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where we would like to introduce a peculiar velocity C instead of a molecular velocity 

(𝐩 = 𝑚𝐯 = m�̇�), since the two velocities are equal in the case of an equilibrium state. The 

summation invariant 𝜓(�̇�) as a polynomial of the �̇� with arbitrary scalar value in Eq.(133) can 

be rewritten in a simple form 

𝜓(�̇�) = 𝐴 + 𝐁 ∙ �̇� + 𝐷�̇�2 = −𝐴(�̇�)2 = −𝐴(𝐂)2 .                                (171) 

Mixing Eq.(170) and (171) gives 

𝑓0(𝐯) = 𝐶𝑒−𝐴(𝐂)
2
 ,                                                         (172) 

where C and A are arbitrary constants and can be found by using the moments of the 

distribution function. Substituting Eq.(172) into Eq.(141), we can define the relation between 

density and the arbitrary constants as follow 

𝜌 = ∫𝑓0 𝑑𝐯 = ∫𝐶𝑒−𝐴(𝐂)
2
𝑑𝐂 = 𝐶 (

𝜋

𝐴
)

3
2
 ,                                      (173) 

where the Gaussian integral rule and three components of C have been considered. Since the 

arbitrary constants are stated as they are independent from velocity according to the Theorem 

1, we do not find any relation from the analysis with Eq.(172) and (143). Now we proceed with 

Eq.(151) to see the connection of the constants with the internal energy: 

𝑒 =
1

2
∫𝐂2𝑓0 𝑑𝐯 =

1

2
∫𝐂2𝐶𝑒−𝐴(𝐂)

2
𝑑𝐂 =

3

4𝐴
 → 𝐴 =

3

4𝑒
 .                       (174) 

We know A constant and substituting A to C in Eq.(173) gives 

𝐶 = 𝜌 (
3

4𝑒𝜋
)

3
2
 .                                                                (175) 

Gathering defined constants A and C and recalling the internal energy term with an absolute 

temperature in Eq.(156) into Eq.(172) yields 

𝑓0(𝐯) = 𝜌 (
1

2𝜋𝑅𝑇
)

3
2
𝑒−

(𝐂)2

2𝑅𝑇  

and then replacing the peculiar velocity C with its definition in Eq.(144) gives 

𝑓0(𝐯) = 𝜌 (
1

2𝜋𝑅𝑇
)

3
2
𝑒𝑥𝑝 [−

(𝐯 − 𝐮)2

2𝑅𝑇
] ,                                             (176) 

which is the Maxwell-Boltzmann distribution function, the probability of finding a molecule 

with velocity c in the gas at the equilibrium condition. To reduce the Maxwell speed distribution 

in Eq.(13), Eq.(176) must be multiplied by the factor 4𝜋𝑣2 (which is the surface area of a sphere 

in the velocity space) and replaced the density by the molecular mass.  

To ensure mass and momentum conservation of the equilibrium distribution function, we 

can write following properties of the equilibrium distribution function with a help of the 

Gaussian integrals and they are: 

∫𝑓0 𝑑𝐯 = ∫𝜌 (
1

2𝜋𝑅𝑇
)

3
2
𝑒𝑥𝑝 [−

(𝐯 − 𝐮)2

2𝑅𝑇
] 𝑑𝐯 = 𝜌 ,                                (177) 
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and  

∫𝐯𝑓0 𝑑𝐯 = 0 .                                                                   (178) 

We will give the higher order moments of the equilibrium distribution function where they are 

used. Derivations of moments are the same. Equations (177) and (178) shows the mass and 

momentum conservation of the equilibrium distribution function.  

So far we have successfully laid down the basic theory of the LBM discussing about the 

Boltzmann transport equation to its relation to the macroscopic scale. At some point of view, the 

LBM is the solving method for the Boltzmann equation. In the following sections, we will 

concentrate on the specific numerical techniques called the LB methods.  

 

5.2 Lattice Boltzmann method for fluid flows 

5.2.1 Discretized Boltzmann equation 

We have derived the Boltzmann transport equation with the BGK collision operator. We have 

found that the equilibrium distribution function can be the Maxwell-Boltzmann distribution 

function. To solve such a differential Boltzmann equation in analytic way can be fulfilled by the 

moment method (Gilberto, 2010) and functional analysis (Carlo, 1988). We are interested to 

solve the Boltzmann equation by a numerical way, which requires the discretization for the 

Boltzmann equation in physical space. A distribution function in the Boltzmann equation is a 

function in phase space and one can replace the molecular velocity with a finite set of discrete 

velocities, which leads 𝑓(𝐱, 𝐯, 𝑡) to be associated with 𝑓𝑖(𝐱, 𝑡). Hence, the Boltzmann equation in 

Eq.(138) becomes a discrete-velocity Boltzmann equation: 

𝜕𝑓𝑖
𝜕𝑡
+ 𝑣𝑖

𝜕𝑓𝑖
𝜕𝑥𝑖

+ 𝐹𝑖
𝜕𝑓𝑖
𝜕𝑣𝑖

=
𝑓𝑖
0 − 𝑓𝑖
𝜏𝑣

 ,                                                   (179) 

where 𝑣𝑖(= 𝑥�̇�) is the finite set of discrete velocities and its set need to be defined by the way 

that the discrete-velocity Boltzmann equation can produce the Navier-Stokes equation correctly. 

To make it suitable for a general analysis, we can remove units of the variables from the discrete 

Boltzmann equation using the following parameters: 

𝑓𝑖 =
𝑓𝑖
𝜌𝑜
, 𝑐𝑖 =

𝑣𝑖
𝑈
, �̂� =

𝑈

𝐿
𝑡, 𝑥𝑖 =

𝑥𝑖
𝐿
, �̂�𝑣 =

𝜏𝑣
𝑡𝑐
, �̂�𝑖 = 𝐹𝑖

𝑈2

𝐿
 ,                                 (180) 

where 𝜌𝑜 is the reference density of a fluid, 𝑈 is the characteristic velocity, 𝐿 is the characteristic 

length, 𝑡𝑐 is the time between particle collisions. The equilibrium distribution function is also 

scaled as the distribution function with the reference density. The nondimensionalization with 

parameters in Eq.(180) for Eq.(179) gives the dimensionless discrete-velocity Boltzmann 

equation: 

𝜕𝑓𝑖
𝜕�̂�
+ 𝑐𝑖

𝜕𝑓𝑖
𝜕𝑥𝑖

+ �̂�𝑖
𝜕𝑓𝑖
𝜕𝑐𝑖

=
𝑓𝑖
0 − 𝑓𝑖
�̂�𝑣

 ,                                                (181) 

The dimensionless discrete Boltzmann equation is not yet discrete in terms of space and time. 

To make the equation fully discrete, we need to discretize Eq.(181) in time and space as 
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𝑓𝑖(𝐱, 𝑡 + 𝛿�̂�) − 𝑓𝑖(𝐱, 𝑡)

𝛿�̂�
+ 𝑐𝑖

𝑓𝑖(𝐱 + 𝛿𝑥, 𝑡 + 𝛿�̂�) − 𝑓𝑖(𝐱, 𝑡 + 𝛿�̂�)

𝛿𝑥
=
𝑓𝑖
0 − 𝑓𝑖
�̂�𝑣

− �̂�𝑖
𝜕𝑓𝑖
𝜕𝑐𝑖

 ,        (182) 

in which, introducing  𝑐𝑖 =
𝛿𝑥

𝛿�̂�
  yields, 

𝑓𝑖(𝑥 + 𝛿𝑥, 𝑡 + 𝛿�̂�) − 𝑓𝑖(𝑥, 𝑡) =
𝛿�̂�

�̂�𝑣
(𝑓𝑖

0 − 𝑓𝑖) − 𝛿�̂��̂�𝑖
𝜕𝑓𝑖
𝜕𝑐𝑖

 .                         (183) 

The external force term in Eq.(183) is not calculated directly because the derivative of the 

distribution function depending on the velocity set is unknown. Assuming that the gradient of 𝑓 

can be approximated by the gradient of its equilibrium part (He, et al., 1998), the force term can 

be expressed as 

�̂�𝑖
𝜕𝑓𝑖
𝜕𝑐𝑖

≈ �̂�𝑖
𝜕𝑓𝑖

0

𝜕𝑐𝑖
= �̂�𝑖

𝜕

𝜕𝑐𝑖
(𝜌(

1

2𝜋𝑅𝑇
)

3
2
𝑒𝑥𝑝 [−

(�̂� − �̂�)2

2𝑅𝑇
]) = −�̂�𝑖

�̂� − �̂�

𝑅𝑇
𝑓𝑖
0 ,             (184) 

where we have substituted Eq.(176). The discrete Boltzmann equation with the approximated 

external force term can be written as 

𝜕𝑓𝑖
𝜕𝑡
+ 𝑣𝑖

𝜕𝑓𝑖
𝜕𝑥𝑖

=
𝑓𝑖
0 − 𝑓𝑖
𝜏𝑣

+ 𝐹𝑖
𝐯 − 𝐮

𝑅𝑇
𝑓𝑖
0 ,                                       (185) 

whereas the discretized Boltzmann equation can be given  

𝑓𝑖(𝐱 + 𝛿𝑥, 𝑡 + 𝛿�̂�) − 𝑓𝑖(𝐱, 𝑡) =
𝛿�̂�

�̂�𝑣
(𝑓𝑖

0 − 𝑓𝑖) + 𝛿�̂��̂�𝑖
�̂� − �̂�

𝑅𝑇
𝑓𝑖
0 .                    (186) 

Main terms in Eq.(186) are dimensionless and the results driven by this equation need to be 

scaled to a physical space. Scaling of results is discussed in Section 6.3. For simplicity, we can 

remove the tilde of variables denoting their dimensionless in Eq.(186).  Hence, the 

dimensionless discretized Boltzmann equation for further discussions is given 

𝑓𝑖(𝐱 + 𝛿𝑥, 𝑡 + 𝛿𝑡) − 𝑓𝑖(𝐱, 𝑡) =
𝛿𝑡

𝜏𝑣
(𝑓𝑖

0 − 𝑓𝑖) + 𝛿𝑡𝐹𝑖
𝐯 − 𝐮

𝑅𝑇
𝑓𝑖
0 .                       (187) 

Note that the velocities in the force term are dimensional. Also the external force term and the 

equilibrium distribution functions are still continuous terms and should be discretized into the 

physical space from the phase space.   

 

Approximated equilibrium distribution function  

The Maxwell-Boltzmann equation in the discretized Boltzmann equation is non-linear and 

implicit still depends on molecular velocity. In order to approximate 𝑓𝑖
0 in a physical space with 

a finite set of velocities, we need to expand it by the Taylor series. Expanding Eq.(176) up to 

𝑂(𝐂2) yields 

𝑓0 ≈ 𝑓𝑒𝑞 = 𝜌
1

(2𝜋𝑅𝑇)
3
2

𝑒𝑥𝑝 (−
𝐯2 − 2𝐮𝐯 + 𝐮2

2𝑅𝑇
) 
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= 𝜌
1

(2𝜋𝑅𝑇)
3
2

𝑒−
𝐯2

2𝑅𝑇 [𝑒−
2𝐮𝐯−𝐮2

2𝑅𝑇 ] 

= 𝜌
1

(2𝜋𝑅𝑇)
3
2

𝑒−
𝐯2

2𝑅𝑇 [1 +
𝐮𝐯

𝑅𝑇
−
𝐮2

2𝑅𝑇
+

𝐮2𝐯2

2(𝑅𝑇)2
−

𝐮3𝐯

2(𝑅𝑇)2
+

𝐮4

8(𝑅𝑇)2
− 𝑂(𝐂3)] 

= 𝜌
1

(2𝜋𝑅𝑇)
3
2

𝑒−
𝐯2

2𝑅𝑇 [1 +
𝐮𝐯

𝑅𝑇
−
𝐮2

2𝑅𝑇
+

𝐮2𝐯2

2(𝑅𝑇)2
− 𝑂(𝐂3)]                       (188) 

Before introducing a discrete velocity set in the equilibrium distribution function, let us write 

𝑓𝑒𝑞 in the following form: 

𝑓𝑒𝑞 = 𝜌
1

(2𝜋𝑅𝑇)
3
2

𝑒−
𝐯2

2𝑅𝑇 [1 +
𝐮𝐯

𝑅𝑇
−
𝐮2

2𝑅𝑇
+

𝐮2𝐯2

2(𝑅𝑇)2
− 𝑂(𝐂3)] =

𝑒−
𝐯2

2𝑅𝑇

(2𝜋𝑅𝑇)
3
2

𝑓𝑒𝑞′ .      (189) 

To discretize  𝑓𝑒𝑞 in a velocity space, we now can use the Gauss-Hermite quadrature for the 

integration of Eq.(189) in a velocity space, which gives 

∫𝑓𝑒𝑞 𝑑𝐂 = ∫
𝑒−

𝐯2

2𝑅𝑇

(2𝜋𝑅𝑇)
3
2

+∞

−∞

𝑓𝑒𝑞′𝑑𝐂 ≈∑𝑤𝑖

𝑛

𝑖=1

𝑓𝑖
𝑒𝑞′
,                                   (190) 

where 𝑤𝑖 are the weights. We can see that 𝑤𝑖𝑓𝑖
𝑒𝑞′

= 𝑓𝑖
𝑒𝑞
≈ 𝑓𝑖

0, which can be written by 

𝑓𝑖
0 ≈ 𝑓𝑖

𝑒𝑞
= 𝑤𝑖𝑓𝑖

𝑒𝑞′
= 𝑤𝑖𝜌 [1 +

𝐮𝐯

𝑅𝑇
−
𝐮2

2𝑅𝑇
+

𝐮2𝐯2

2(𝑅𝑇)2
],                       (191) 

and in which, Eq.(189) has been used. On the other point, Eqs.(177) and (190) indicate the 

following properties of 𝑓𝑖
𝑒𝑞

: 

∑𝑓𝑖
𝑒𝑞

𝑛

𝑖=1

= 𝜌.                                                                 (192) 

Now it is time to nondimensionalize the equilibrium distribution function in terms of velocity 

using 𝐜 = 𝐯/𝐔 and 𝐮 ← �̂� = 𝐮/𝐔 (to have simple notations), Eq.(191) becomes 

𝑓𝑖
𝑒𝑞
= 𝑤𝑖𝜌 [1 +

𝐮𝐜

𝑅𝑇
−
𝐮2

2𝑅𝑇
+

𝐮2𝐜2

2(𝑅𝑇)2
].                                         (193) 

Note that 𝑤𝑖 in Eq.(193) depends on the discrete set of velocities and we will discuss it in 

Section 5.2.2.  

From discussions in above, 𝑓𝑖
0 ≈ 𝑓𝑖

𝑒𝑞
 is an important approximation and those functions are 

interchangeable variables, therefore Eq.(187) can also be given as 

𝑓𝑖(𝐱 + 𝛿𝑥, 𝑡 + 𝛿𝑡) − 𝑓𝑖(𝐱, 𝑡) =
𝛿𝑡

𝜏𝑣
(𝑓𝑖

𝑒𝑞
− 𝑓𝑖) + 𝛿𝑡𝐹𝑖

𝐜 − 𝐮

𝑅𝑇
𝑓𝑖
𝑒𝑞
 ,                  (194) 

where velocities in the force term are nondimensionalized. The equilibrium distribution 

function in Eq.(194) is given by Eq.(193), while the force term still requires the adequate 

approximation. 



 

© Ayurzana Badarch                                                                                                                                    77 
 

Force term in a discretized form 

Discretization applied in Eq.(182) is a simple finite difference approximation for the discrete 

Boltzmann equation in time and space. Another discretizing method is the integration of 

equation between definite time ranges. For simplicity, we can denote the collision and force 

terms in Eq.(181) as 

𝐾𝑖 =
𝑓𝑖
0 − 𝑓𝑖
�̂�𝑣

− �̂�𝑖
𝜕𝑓𝑖
𝜕𝑐𝑖

 ,                                                         (195) 

and its integration from 𝑡 = 0 to 𝑡 = 𝛿𝑡 gives 

∫ 𝐾𝑖(𝐱, 𝑡)

𝛿𝑡

0

=
𝛿𝑡

2
(𝐾𝑖(𝐱 + 𝛿𝑥, 𝑡 + 𝛿𝑡) − 𝐾𝑖(𝐱, 𝑡)) ,                                  (196) 

where the trapezoidal rule has been used. It is possible to replace the right hand side of 

Eq.(187) with Eq.(196) and the discretized Boltzmann equation becomes 

𝑓𝑖(𝐱 + 𝛿𝑥, 𝑡 + 𝛿𝑡) − 𝑓𝑖(𝐱, 𝑡) =
𝛿𝑡

2
Λ𝑖(𝐱, 𝑡) 

where Λ𝑖 = 𝐾𝑖(𝐱 + 𝛿𝑥, 𝑡 + 𝛿𝑡) − 𝐾𝑖(𝐱, 𝑡) and which gives the distribution function as 

𝑓𝑖 = 𝑓𝑖 +
𝛿𝑡

2
Λ𝑖(𝐱, 𝑡) .                                                    (197) 

At this point, the moments of the distribution function in Eqs.(141) and (143) become 

𝜌 = ∫𝑓𝑖 𝑑𝐜 = ∫(𝑓𝑖 +
𝛿𝑡

2
Λ𝑖(𝐱, 𝑡)) 𝑑𝐜 = ∫𝑓𝑖𝑑𝐜 + ∫

𝛿𝑡

2
Λ𝑖(𝐱, 𝑡)𝑑𝐜

⌈=0

= 𝜌 ,        (198) 

𝜌𝑢𝑖 = ∫𝐜𝑖𝑓𝑖 𝑑𝐜 = ∫𝐜𝑖 (𝑓𝑖 +
𝛿𝑡

2
Λ𝑖(𝐱, 𝑡)) 𝑑c𝑖 = ∫𝐜𝑖𝑓𝑖 𝑑𝐜 +

𝛿𝑡

2
�̂�𝑖 .             (199) 

Sums over the finite set of velocities of integrals in Eqs.(198) and (199) are constructed through 

the Gauss-Hermits quadrature as, 

𝜌 =∑𝑓𝑖

𝑛

𝑖

 ,                                                                     (200) 

𝜌𝐮 =∑𝐜𝑖𝑓𝑖

𝑛

𝑖

+
𝛿𝑡

2
𝐹𝑖 ,                                                          (201) 

where �̂�𝑖 , a macroscopic external acceleration of the force, denoted as 𝐹𝑖. Note that the sum of 

the weight, ∑𝑤𝑖, derived from the Gauss-Hermits quadrature is unit, thus it is neglected in 

Eqs.(200) and (201). We saw that above sums are the same as given sums in Eq.(108). The 

additional term in the velocity momentum comes from the force term. We stated that the force 

term in the discretized Boltzmann equation needs the approximation to have a discrete form. 

Introducing the approximated equilibrium distribution function in Eq.(193) into the force term 

yields 
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𝐴𝑖 = 𝐹𝑖
𝐜𝑖 − 𝐮

𝑅𝑇
𝑓𝑖
𝑒𝑞
= 𝑤𝑖𝜌 [

𝐅(𝐜𝑖 − 𝐮)

𝑅𝑇
+
(𝐅 ∙ 𝐮)𝐜𝑖

2

(𝑅𝑇)2
−
3(𝐅 ∙ 𝐜𝑖)𝐮

2

2(𝑅𝑇)2
+ 𝑂(𝐂3)] ,          (202) 

which is called a moment-expansion scheme (Guo & Shu, 2013). The modification of this scheme 

with a relaxation time gives the He-Shan-Doolen force scheme, which is defined by 

𝐴𝑖 = (1 −
1

2𝜏
)𝑤𝑖𝜌 [

𝐜𝑖 ∙ 𝐅

𝑅𝑇
−
𝐮 ∙ 𝐅

𝑅𝑇
+
𝐜𝑖
2(𝐮 ∙ 𝐅)

(𝑅𝑇)2
] ,                           (203) 

where 𝐅 is the acceleration of external force. Now the discretized Boltzmann equation is 

𝑓𝑖(𝐱 + 𝐜𝑖𝛿𝑥, 𝑡 + 𝛿𝑡) − 𝑓𝑖(𝐱, 𝑡) =
𝛿𝑡

𝜏𝑣
(𝑓𝑖

𝑒𝑞
− 𝑓𝑖) + 𝛿𝑡𝐴𝑖 ,                   (204) 

where the viscosity is realized as 

𝜈 = 𝛿𝑡 (
1

𝑤
−
1

2
)𝑅𝑇 = 𝛿𝑡 (𝜏𝜈 −

1

2
) 𝑐𝑠

2.                                        (205) 

After the temporal evolution of Eq.(204), we will compute the macroscopic density and velocity 

with the distribution functions according to Eq.(200) and (201), respectively. There are many 

versions of force terms (Guo & Shu, 2013) embeddable in the discretized Boltzmann equation 

and the simplest one is 

𝐴𝑖 = 𝑤𝑖
𝐜𝑖 ∙ 𝐅

𝑅𝑇
 ,                                                               (206) 

which is originated from the LGA and is constructed based on the minimal force term 

properties: 

∫𝑑𝐯𝐅
𝜕𝑓

𝜕𝐯
=∑𝐴𝑖

𝑛

𝑖

= 0,   and                                                 (207) 

∫𝑑𝐯𝐅
𝜕𝑓

𝜕𝐯
𝐯 =∑𝐴𝑖𝐜𝑖

𝑛

𝑖

= 𝜌𝐅 .                                                    (208) 

If the force scheme in Eq.(206) is considered in a simulation, the macroscopic density and 

velocity are computed by 

𝜌 =∑𝑓𝑖

𝑛

𝑖

 and  𝜌𝐮 =∑𝐜𝑖𝑓𝑖

𝑛

𝑖

 ,                                                 (209) 

respectively. Numerical works in this thesis use the force scheme given in Eq.(203), which also 

satisfies the constraints given in Eqs.(207) and (208).   

A numerical procedure to solve the discretized Boltzmann equation (Eq.(204)) is split into 

two numerical steps called streaming and collision. Those steps are seen from a general pattern 

of the discretized Boltzmann equation and are suitable to handle boundary conditions for a 

complicated geometry. In appendix A, we show how the lattice Boltzmann equation derives the 

NSE. But now we will proceed to show what kind of lattices can be used to the numerical 

simulations in the standard approach. The word standard refers the original LBM without any 

alteration, modification or numerical ingredients.  
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5.2.2 Lattices for discretized Boltzmann equation 

We have found two things, the weights and the finite velocity sets, from the discretization of 

the Boltzmann equation in Section 5.2.1. Now we shall define them for specific cases of, let us 

say, lattices. In a physical space, velocity vectors of a group of particles/molecules direct to 

everywhere. We can approximately sort them to the certain directions depending on the 

dimension, e.g. we can find how many particles with velocity in a given finite space 

approximately direct to the cardinal directions in the two dimensional spaces. Those cardinal 

directions are considered as a selected finite velocity set, as illustrated in Figure 34.  

 

Figure 34. Example of selecting the finite velocity set: Four ordinal directions are selected as finite 
velocities and each of which a certain number of particles belongs to. For an instant, in a given range, 6 
particles velocities are directed to west direction, approximately.  

But, choosing the finite set of velocities is not arbitrary. A selected velocity set must satisfy 

hydrodynamic laws and Galilean invariant, and results with this must be the same as what 

would be obtained from the Boltzmann equation in velocity space. Generally, the finite velocity 

set is referred as a lattice. For the each direction of lattice, we need to define the weights and 

velocities.  

 

Constraints of the lattice weights 

In Section 5.1.4, two moments of equilibrium distribution functions are derived in Eqs.(177) 

and (178), which can be given in discretized forms as follows: 

∑𝑓𝑖
0(𝐱, 𝑡)

𝑖

= 𝜌(𝐱, 𝑡) ,                                                             (210) 

∑𝐜𝑖𝑓𝑖
0(𝐱, 𝑡)

𝑖

= 𝜌(𝐱, 𝑡)𝐮(𝐱, 𝑡) .                                                    (211) 

All moments, including moments up to the third order moments of the equilibrium distribution 

functions, will be used to define the lattice weights. To illustrate a procedure to derive 

constraints on the weights, we will use above the zeroth and first order moments. In order to 

analyze the weights, let us introduce Eq.(193) into Eq.(210): 

𝜌 =∑𝑓𝑖
𝑒𝑞

𝑖

=∑𝜌𝑤𝑖 [1 +
𝐮𝐜

𝑅𝑇
−
𝐮2

2𝑅𝑇
+

𝐮2𝐜2

2(𝑅𝑇)2
]

𝑖
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= 𝜌 [∑𝑤𝑖
𝑖 ⌈=1

+
𝐮

𝑅𝑇
∑𝑤𝑖𝐜𝑖
𝑖 ⌈=0

+
𝐮2

2𝑅𝑇
(
1

𝑅𝑇
∑𝑤𝑖𝐜𝑖

2

𝑖 ⌈=𝑅𝑇

−∑𝑤𝑖
𝑖

)], 

where the counterpart of the square brackets must be 1. Assuming the weights are constant, the 

above moment is true, only if 

∑𝑤𝑖
𝑖

= 1 ,                                                                 (212) 

∑𝑤𝑖𝐜𝑖
𝑖

= 0  and                                                      (213) 

∑𝑤𝑖𝐜𝑖
2

𝑖

= 𝑅𝑇 .                                                          (214) 

Those are the first three of constraints for the lattice weights and finite set of velocity vector. 

From Eq.(211), we can write: 

𝜌𝐮 =∑𝐜𝑖𝑓𝑖
𝑒𝑞

𝑖

=∑𝐜𝑖𝜌𝑤𝑖 [1 +
𝐮𝐜

𝑅𝑇
−
𝐮2

2𝑅𝑇
+

𝐮2𝐜2

2(𝑅𝑇)2
]

𝑖

 

= 𝜌 [∑𝐜𝑖𝑤𝑖
𝑖

(1 −
𝐮2

2𝑅𝑇
)

⌈=0

+
𝐮

𝑅𝑇
∑𝐜𝑖

2𝑤𝑖
𝑖 ⌈=𝑅𝑇

−
𝐮2

2(𝑅𝑇)2
∑𝐜𝑖

2𝐜𝑖𝑤𝑖
𝑖 ⌈=0

] , 

which gives the fourth constraints of 𝑤𝑖 and 𝐜𝑖  as 

∑𝐜𝑖
2𝐜𝑖𝑤𝑖

𝑖

= 0 .                                                            (215) 

In order to write the higher order constraints in a convention form, let us introduce following 

summation conventions: 

𝑢𝛼𝑐𝑖𝛼 =∑𝑢𝛼𝑐𝑖𝛼
𝛼

= 𝑢𝑥𝑐𝑖𝑥 + 𝑢𝑦𝑐𝑖𝑦 + 𝑢𝑧𝑐𝑖𝑧 = 𝐮 ∙ 𝐜𝑖  ,               (216) 

𝛿𝛼𝛽 = {
1 if 𝛼 = 𝛽 and
0 if 𝛼 ≠ 𝛽

 ,                                              (217) 

where 𝛼 and 𝛽 are the indexes indicating components, 𝛿𝛼𝛽 is the Kronecker delta function. All 

constraints of  𝑤𝑖 and 𝐜𝑖  are 

∑𝑤𝑖
𝑖

= 1 ,   (recalled from Eq. (212))                                          (218)  

∑𝑤𝑖𝑐𝑖𝛼
𝑖

= 0 , (recalled from Eq. (213))                                        (219) 

∑𝑤𝑖𝑐𝑖𝛼𝑐𝑖𝛽
𝑖

= 𝑅𝑇𝛿𝛼𝛽 , (recalled from Eq. (214))                        (220) 

∑𝑤𝑖𝑐𝑖𝛼𝑐𝑖𝛽𝑐𝑖𝛾
𝑖

= 0 , (recalled from Eq. (215))                             (221) 
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∑𝑤𝑖𝑐𝑖𝛼𝑐𝑖𝛽𝑐𝑖𝛾𝑐𝑖𝛿
𝑖

= (𝑅𝑇)2(𝛿𝛼𝛽𝛿𝛾𝛿 + 𝛿𝛼𝛾𝛿𝛽𝛿 + 𝛿𝛼𝛿𝛿𝛾𝛽)  and          (222) 

∑𝑤𝑖
𝑖

𝑐𝑖𝛼𝑐𝑖𝛽𝑐𝑖𝛾𝑐𝑖𝛿𝑐𝑖 = 0 .                                                       (223) 

The latter two constraints would be derived from the second and third order moments of the 

equilibrium distribution function (Viggen, 2014). The even moments of 𝑤𝑖 and 𝐜𝑖  are isotropic 

tensors, whereas the odd moments are vanished due to the even symmetry (Wolf-Gladrow, 

2000).  

 

Grid and lattice 

As mentioned above, a finite velocity set discretized from the continuous velocity of a 

particle is considered as a lattice. The geometric domain of the flow problem governed by the 

discrete Boltzmann equation has also gotten to discretized into a grid depending on the 

dimension. As is descended from its ancestor, the standard LBM usually uses a uniform 

structured grid for the discretization. Like other conventional methods, each cell of the grid in 

the LBM has the temporal physical values from macroscopic scale. However, the main variable 

in the LB computation is the distribution function, which has discretized into the finite velocity 

set with a lattice in Section 5.2.1. A spatial address of the distribution function allows us to let 

coincide the lattice on the grid for the LBM. 

 

Figure 35. An example of compounding the computational grid (generally called lattice) for the LBM: 
Cartesian grid with regular lattice. 

The computational grid (lattice) in the LBM is composed from the alignment of the grid and 

lattice, the procedure of which is depicted in Figure 35. Generally, the lattices for the LBM are 

notated as DdQq, where D is an initial of dimension, d is a number of dimensions, Q is an initial 

of qualifiers and q is a number of discrete velocities (Qian, et al., 1992). For instance, the lattice 

depicted in Figure 35 can be D2Q4, however, this arrangement of the lattice is barely used for 

fluid simulations. We shall discuss about representative lattice arrangements for each spatial 

dimension, namely D1Q3, D2Q9 and D3Q19, and shall define the lattice weights and velocity 

sets for them.  

One dimensional lattice: D1Q3 

To solve one dimensional fluid problem by the LBM, we can use many lattices with different 

arrangements, such as D1Q2, D1Q3, and D1Q5. Depending on the number of finite velocities, 
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lattices can be classified as lower and higher order lattices. The most popular one is D1Q3 lattice 

arrangement, which has three velocities, as shown in Figure 36 (a).  

 

Figure 36. Widely used lattice arrangement for LBM in (a) one-, (b) two-, and (c) three dimensional 
spaces. 

All formal lattices used for the LBM have two types of velocities: non-zero velocities and 

zero-velocity. Zero-velocity vector and associated distribution function define particles being at 

rest on the lattice. Non-zero velocities direct and reach up neighboring lattice center. For D1Q3, 

non-zero velocities, 𝐜𝑖≠0, are equal to each other and can be defined as 𝐜1 = 𝐜2 = 𝛿𝑥/𝛿𝑡. 

Similarly, the weights for those velocities can be denoted as 𝑤0 and 𝑤1 = 𝑤2 = 𝑤𝑥, where x is 

horizontal velocities. The constraints, given in Eqs.(218-223), for the weights are: 

∑𝑤𝑖
𝑖

= 𝑤0 + 2𝑤𝑥 = 1 ,   (from Eq. (218)) 

∑𝑤𝑖𝑐𝑖𝛼𝑐𝑖𝛽
𝑖

= 𝑤0𝐜0
2 +𝑤𝑥𝐜1

2 +𝑤𝑥𝐜2
2 = 2𝑤𝑥 (

𝛿𝑥

𝛿𝑡
)
2

= 𝑅𝑇(1)  , (from Eq. (220)) 

and 

∑𝑤𝑖𝑐𝑖𝛼𝑐𝑖𝛽𝑐𝑖𝛾𝑐𝑖𝛿
𝑖

= 𝑤0𝐜0
4 +𝑤𝑥𝐜1

4 +𝑤𝑥𝐜2
4 = 2𝑤𝑥 (

𝛿𝑥

𝛿𝑡
)
4

= (𝑅𝑇)2(3) . (from Eq. (222)) 

We have three unknowns for D1Q3 arrangement, and above expressions give a system of 

equation 

{
 
 

 
 

𝑤0 + 2𝑤𝑥 = 1

2𝑤𝑥 (
𝛿𝑥

𝛿𝑡
)
2

= 𝑅𝑇

2𝑤𝑥 (
𝛿𝑥

𝛿𝑡
)
4

= 3(𝑅𝑇)2

 ,                                                        (224) 

which gives solutions of: 

𝑤0 =
2

3
,𝑤1,2 = 𝑤𝑥 =

1

6
 and 𝑅𝑇 = (

𝛿𝑥

𝛿𝑡
)
2 1

3
 .                                       (225) 

We know that the RT comes from the approximation of the Maxwell-Boltzmann distribution 

function and is the product of the absolute temperature and ideal gas constant. Since the RT is 

defined as a constant parameter, a flow system is enforced to be an isothermal process. Defining 

the RT from the EOS derived in Eq.(155) and introducing the result in Eq.(225) gives 
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𝑅𝑇 =
𝑝

𝜌
≅
𝜕𝑝

𝜕𝜌
= 𝑐𝑠

2 = (
𝛿𝑥

𝛿𝑡
)
2 1

3
  ,                                                  (226) 

where 𝑐𝑠 is the speed of sound by definition and it is called the lattice speed of sound. The 

equilibrium distribution function can be rewritten with the speed of sound as 

𝑓𝑖
𝑒𝑞
= 𝑤𝑖𝜌 [1 +

𝐮𝐜

𝑐𝑠
2
−
𝐮2

2𝑐𝑠
2
+
𝐮2𝐜2

2𝑐𝑠
4
].                                              (227) 

One dimensional numerical example by the LBM with D1Q3 lattice arrangement is given to the 

comparison to the finite difference method in Section 5.2.4.  

 

Two dimensional lattice: D2Q9 

Two dimensional fluid flows often carried out on D2Q9 lattice arrangement, as shown in 

Figure 36 (b), which has 9 velocities including the zero-velocity. Other lower and higher order 

lattices, e.g. D2Q4 and D2Q12, respectively, can be used for the LB computations. However, 

some of them not satisfy the conservation laws in case of fluid flows, while others require high 

computational costs. From the arrangement, there are three types of velocity vectors, let say 

zero-velocity, axis velocity and diagonal velocity. They can be denoted as 𝑤𝑜, 𝑤1 = 𝑤2 = 𝑤3 =

𝑤4 = 𝑤𝑎  and 𝑤5 = 𝑤6 = 𝑤7 = 𝑤8 = 𝑤𝑑, where a means axis and d means diagonal. In addition, 

the RT can be different, thus we need to construct four of equations from the constraints. The 

equations are: 

∑𝑤𝑖
𝑖

= 𝑤0 + 4𝑤𝑎 + 4𝑤𝑑 = 1 , 

∑𝑤𝑖𝑐𝑖𝛼𝑐𝑖𝛽
𝑖

= 2∑𝑤𝑖𝑐𝑖𝑥𝑐𝑖𝑦
𝑖 ⌈=0

+∑𝑤𝑖𝑐𝑖𝑥𝑐𝑖𝑥
𝑖

+∑𝑤𝑖𝑐𝑖𝑦𝑐𝑖𝑦
𝑖

= 𝑅𝑇(2) → 

→ 2(2𝑤𝑎 (
𝛿𝑥

𝛿𝑡
)
2

+ 4𝑤𝑑 (
𝛿𝑥

𝛿𝑡
)
2

) = 2𝑅𝑇 →  (
𝛿𝑥

𝛿𝑡
)
2

(2𝑤𝑎 + 4𝑤𝑑) = 𝑅𝑇 , 

and  

∑𝑤𝑖𝑐𝑖𝛼𝑐𝑖𝛽𝑐𝑖𝛾𝑐𝑖𝛿
𝑖

= 4∑𝑤𝑖𝑐𝑖𝑥
2 𝑐𝑖𝑦

2

𝑖

+ (∑𝑤𝑖𝑐𝑖𝑥
4

𝑖

+∑𝑤𝑖𝑐𝑖𝑦
4

𝑖

) = 4(𝑅𝑇)2 + 6(𝑅𝑇)2, 

which can be extracted as 

∑𝑤𝑖𝑐𝑖𝑥
2 𝑐𝑖𝑦

2

𝑖

= (𝑅𝑇)2 and ∑𝑤𝑖𝑐𝑖𝑥
4

𝑖

+∑𝑤𝑖𝑐𝑖𝑦
4

𝑖

= 6(𝑅𝑇)2. 

Those expressions give 

4𝑤𝑑 (
𝛿𝑥

𝛿𝑡
)
4

= (𝑅𝑇)2  and 

2(2𝑤𝑎 + 4𝑤𝑑) (
𝛿𝑥

𝛿𝑡
)
4

= 6(𝑅𝑇)2 , respectively. 

Gathering derived equations for the weights in the system becomes 



 

𝚿 Ph.D. dissertation                                                                                                                                     84 
 

{
 
 
 

 
 
 

𝑤0 + 4𝑤𝑎 + 4𝑤𝑑 = 1

(
𝛿𝑥

𝛿𝑡
)
2

(2𝑤𝑎 + 4𝑤𝑑) = 𝑅𝑇

4𝑤𝑑 (
𝛿𝑥

𝛿𝑡
)
4

= (𝑅𝑇)2

(2𝑤𝑎 + 4𝑤𝑑) (
𝛿𝑥

𝛿𝑡
)
4

= 3(𝑅𝑇)2

,                                                    (228) 

which yields solution of 

𝑅𝑇 = (
𝛿𝑥

𝛿𝑡
)
2 1

3
 , 𝑤0 =

4

9
,𝑤𝑎 =

1

9
 and 𝑤𝑑 =

1

36
 .                                    (229)  

The speed of sound defined in the 1D space is the same as the speed of sound defined in the 

2D space. Therefore the speed of sound for a regular lattice used in fluid simulations by the LBM 

can be  

𝑐𝑠 =
𝛿𝑥

𝛿𝑡
/√3  .                                                                  (230) 

All computational works in this thesis are performed in the 2D space using D2Q9 lattice 

arrangement. Implementation of the regular LBM is the same for all dimensional cases and is 

discussed in Chapter 6. 

 

Three dimensional lattice: D3Q19 

For three dimensional computations D3Q15, D3Q19 and D2Q27 arrangements are often used. 

More convenient one is D3Q19, which has 19 velocities as shown in Figure 36 (c). Three 

dimensional lattice is composed from several planes of two dimensional lattice. Accordingly, 

there are three unknowns of the weighting: 𝑤0, 𝑤𝑎 = 𝑤1~6 and 𝑤𝑑 = 𝑤7~18, where a and d 

meant to be axis and diagonal. We need to construct a system with four equations using the 

same procedures presented in previous examples and the system results following parameters: 

𝑤0 =
1

3
,𝑤1~6 =

1

18
,𝑤7~18 =

1

36
 and 𝑅𝑇 = (

𝛿𝑥

𝛿𝑡
)
2 1

3
 .                                (231) 

Once the lattice is defined according to isotropic properties, the discretized Boltzmann equation 

on that lattice becomes the so-called lattice Boltzmann equation.  

 

Velocity vectors for lattices 

A discrete velocity set must hold the same constraints of the weights. In a use of regular 

lattice, velocity vectors can be defined from the lattice arrangement. For example, the discrete 

velocities in D2Q9 lattice can be estimated as 

𝐜𝑖 =

{
 
 

 
 

(0, 0) 𝑖 = 0

𝑐𝑥 (𝑐𝑜𝑠 [(𝑖 − 1)
𝜋

2
] , 𝑠𝑖𝑛 [(𝑖 − 1)

𝜋

2
]) 𝑖 = 1~4

√2𝑐𝑥 (𝑐𝑜𝑠 [(𝑖 − 5)
𝜋

2
+
𝜋

4
] , 𝑠𝑖𝑛 [(𝑖 − 5)

𝜋

2
+
𝜋

4
]) 𝑖 = 5~8

,                  (232) 
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where 𝑐𝑥(= 𝛿𝑥/𝛿𝑡) is the lattice speed and 𝛿𝑥 is the grid spacing. In the regular lattice 

arrangement, 𝛿𝑥 = 𝛿𝑦 and the lattice spacing and lattice time step are assumed to be unit. 

Simply, the unity of the lattice space and time step give the unit velocity vectors as shown in 

Table 2.  

Table 2. Velocities for D1Q3, D2Q9 and D3Q19 with 𝛿𝑥 = 1 and 𝛿𝑡 = 1.  

i 𝐜0 𝐜1 𝐜2 𝐜3 𝐜4 𝐜5 𝐜6 𝐜7 𝐜8 𝐜9 𝐜10 𝐜11 𝐜12 𝐜13 𝐜14 𝐜15 𝐜16 𝐜17 𝐜18 

D1Q3 0 1 -1                 

D2Q9 0 

0 

1 

0 

0 

1 

-1 

0 

0 

-1 

1 

1 

-1 

1 

-1 

-1 

1 

-1 

          

D2Q19 0 

0 

0 

1 

0 

0 

0 

1 

0 

-1 

0 

0 

0 

-1 

0 

0 

0 

1 

0 

0 

-1 

1 

1 

0 

-1 

1 

0 

-1 

-1 

0 

1 

-1 

0 

1 

0 

1 

-1 

0 

1 

-1 

0 

-1 

1 

0 

-1 

0 

1 

1 

0 

1 

-1 

0 

-1 

-1 

0 

-1 

1 

Because the lattice Boltzmann equation is a dimensionless equation, its discretization 

parameters, such as lattice spacing and lattice time step, do not have physical unit. In some 

reference, units from lattice assigned for them as 𝛿𝑥 = 1 𝑙𝑢 and 𝛿𝑡 = 1 𝑙𝑡, where lu is lattice unit 

and lt is the lattice time (Michael & Daneal T, 2006).  

 

5.2.3 Boundary conditions 

In a limited space, boundary conditions are used to implicate characteristic of regions that do 

not consider in a computation. Boundary conditions must express the correct phenomena on 

the boundary, which is a surface that created by cutting of a region to select a computational 

domain.  In fluid flows, a common boundary is a solid surface of the container, in which a fluid 

flows. The surface interacting with the fluid flow should be modelled as a boundary condition. In 

conventional method, such as finite difference and finite volume method, a boundary condition 

is given by the expressions having the macroscopic variables. In the LBM, however, boundary 

conditions are usually given in terms of the distribution function. The solid surfaces are 

considered either slip or non-slip surfaces depending on the roughness of the materials.  In the 

LBM, the slip and non-slip boundaries are modeled by using a bounce forward and bounce back 

scheme (Guo & Shu, 2013) (A.A.Mohamad, 2011) (Jansen & Krafczyk, 2011), respectively. If a 

solid surface is moving relatively with a fluid flow, the Galileo’s invariant need to be considered 

for the boundary condition (Alexander, 2008). Among the many boundary conditions with the 

different accuracy in the LBM, we present the widely used boundary conditions herein.  

 

Bounce-back boundary condition 

A bounce-back boundary condition is used to model rough surface, where the tangential 

velocity is zero due to the friction of the wall. Bounce-back boundary conditions are originated 

from the LGA (Wolfram, 1986) (Michael & Daneal T, 2006) and can be used to model both the 

stationary and moving surface. The main concept to fulfill this condition is to bounce back the 

distribution function on the surface to the direction that the distribution function comes from. 

Several versions of bounce back boundary conditions can be found in the literatures. We will 
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review only two of them, namely half-way and full-way bounce back boundary condition, as 

shown in Figure 37. 

 

Figure 37. Bounce-back boundary condition: (a) post collision state, (b) half-way bounce-back scheme 
and (c) full-way bounce-back scheme. 

 After a collision process, the streaming process takes place to transfer the distribution 

functions to their designated directions. For a cell, which adjacent to the wall, as shown in 

Figure 37 (a), some distribution functions, for example 𝑓1, remain unknown during the 

streaming process. The unknown distribution functions of the fluid cell adjacent to the solid cell 

can be defined by the distribution functions that would transfer into the wall as follows 

Half − way: 𝑓𝑖̅(𝐱, 𝑡 + 𝛿𝑡) = 𝑓𝑖
′(𝐱, 𝑡) ,                                                        (233) 

Full − way: 𝑓𝑖̅(𝐱, 𝑡 + 𝛿𝑡) = 𝑓𝑖
′(𝐱 + 𝐜𝑖𝛿𝑡, 𝑡) or 

𝑓𝑖̅(𝐱, 𝑡 + 𝛿𝑡) = 𝑓𝑖(𝐱, 𝑡 + 𝛿𝑡) ,                                                       (234) 

in which, 

𝑓𝑖
′(𝐱, 𝑡) = 𝑓𝑖(𝑥, 𝑡) +

𝛿𝑡

𝜏𝑣
(𝑓𝑖

𝑒𝑞
− 𝑓𝑖) + 𝛿𝑡𝐴𝑖                                             (235) 

is the distribution function after the collision process. Note that  𝑖 ̅is the inverse direction to i. 

The main difference between half-way and full-way scheme is time, as shown in Figure 37 (b) 

and (c). In this thesis, we mainly use the half-way bounce back boundary condition to merit its 

simple implementation. In the literature, the half-way bounce back boundary condition is 

known as the mid-way (A.A.Mohamad, 2011), mid-plane (Michael & Daneal T, 2006) or mid-link 

bounce back scheme.  

 

Bounce-forward boundary condition 

A smooth surface can be modeled by using a bounce forward scheme, which reflects the 

distribution function as a mirror. The bounce forward boundary condition in the LBM is realized 

as a slip boundary condition. In this boundary condition, the tangential velocity of fluid does not 

become zero. Two types of the scheme can be used on a surface, as shown in Figure 38.  
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Figure 38. Bounce forward boundary condition: (a) post collision state, (b) half-way scheme and (c) full-
way scheme. 

The missing distribution functions on the fluid node adjacent to the solid surface are assigned in 

Half − way: 𝑓𝑖̅(𝐱, 𝑡 + 𝛿𝑡) = 𝑓𝑖
′(𝐱 − 𝐜𝑖𝐍𝛿𝑡, 𝑡) ,                                          (236) 

with 𝐍 = {𝐧 = 0, 𝛕 = 1},  

where n and τ are the normal and tangential unit vectors on the surface. While the distribution 

functions on the solid surface can be defined in 

Full − way: 𝑓𝑖̅(𝐱, 𝑡 + 𝛿𝑡) = 𝑓𝑖(𝐱, 𝑡) ,                                                (237) 

where 𝑖 ̅is the mirrored direction to i. The full-way bounce forward condition has streaming and 

collision on the solid surface and collision on the surface performs the process of boundary 

condition.  

 

Neumann boundary condition: The velocity is given 

If the spatial derivation of the velocity on the boundary is prescribed, the velocity boundary 

condition can be assigned on the boundary. This boundary condition is known as the Zou/He 

boundary condition and can be used to model an inflow and outflow boundary. For D2Q9 lattice, 

constraints to construct the velocity boundary condition are the zeroth and first order discrete 

moments of the distribution function (Eq.(209)): 

𝜌 =∑𝑓𝑖

8

𝑖=0

, 𝜌𝐮 =∑𝐜𝑖𝑓𝑖

8

𝑖=0

                                             (238) 

and the bounce-back rule for non-equilibrium part of the distribution function (A.A.Mohamad, 

2011) 

𝑓𝑖̅(𝑥, 𝑡) − 𝑓𝑖̅
𝑒𝑞(𝑥, 𝑡) = 𝑓𝑖(𝑥, 𝑡) − 𝑓𝑖

𝑒𝑞(𝑥, 𝑡) .                                   (239) 

Let the velocity on the boundary be 

𝐮 = {𝑢𝑥, 𝑢𝑦} .                                                           (240) 
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To demonstrate the derivation of the velocity boundary condition, the north surface of the two 

dimensional domain is considered as an inflow boundary, as shown in Figure 39.  

 

Figure 39. Boundary lattice on the north boundary of the computational domain. 

Equations (238) and (239) with the known velocity give a following system of equations 

{
 
 

 
 𝜌𝑖𝑛 = 𝑓0 + 𝑓1 + 𝑓2 + 𝑓3 + 𝑓4 + 𝑓5 + 𝑓6 + 𝑓7 + 𝑓8

𝜌𝑖𝑛𝑢𝑥 = 𝑓1 − 𝑓3 + 𝑓5 − 𝑓6 − 𝑓7 + 𝑓8
𝜌𝑖𝑛𝑢𝑦 = 𝑓2 − 𝑓4 + 𝑓5 + 𝑓6 − 𝑓7 − 𝑓8

𝑓4 = 𝑓2 − 𝑓2
𝑒𝑞
+ 𝑓4

𝑒𝑞

(𝑎)
(𝑏)
(𝑐)
(𝑑)

 ,                             (241) 

where 𝜌𝑖𝑛, 𝑓4, 𝑓7 and 𝑓8 are unknowns after a streaming process, as shown in Figure 39. Finding 

𝑓4 + 𝑓7 + 𝑓8 from (a) and (c), then equating them gives the first unknown, density 

𝜌𝑖𝑛 =
1

1 + 𝑢𝑦
[𝑓0 + 𝑓1 + 𝑓3 + 2(𝑓2 + 𝑓5 + 𝑓6)] .                                 (242) 

In the determination of density, we notice that 𝑓2 + 𝑓5 + 𝑓6 in parenthesis of Eq.(242) is the 

summation of the inverse distribution functions for the unknown distribution functions and 

𝑓0 + 𝑓1 + 𝑓3 is the summation of the distribution functions which are tangential to the boundary. 

Now we can define the second unknown, 𝑓4, from (d) using the equilibrium distribution function 

formulation given in Eq.(193): 

𝑓4 = 𝑓2 −
2

3
𝜌𝑖𝑛𝑢𝑦 ,                                                            (243) 

where  −
2

3
𝜌𝑖𝑛𝑢𝑦 is the only term remained from 𝑓4

𝑒𝑞
− 𝑓2

𝑒𝑞
. Finding 𝑓8 from (b) and substituting 

it with Eq.(243) into (c) yields the third unknown 

𝑓7 = 𝑓5 +
1

2
(𝑓1 − 𝑓3) −

1

6
𝜌𝑖𝑛𝑢𝑦 +

1

2
𝜌𝑖𝑛𝑢𝑥 ,                                     (244) 

where 𝑓5  is the opposite distribution function to the unknown 𝑓7  and,  𝑓1 and 𝑓3  are the 

tangential directed distribution functions on the boundary. Similarly, finding 𝑓7 from (b) and 

substituting it with Eq.(243) into (c) yields the fourth unknown 

𝑓8 = 𝑓6 −
1

2
(𝑓1 − 𝑓3) −

1

6
𝜌𝑖𝑛𝑢𝑦 −

1

2
𝜌𝑖𝑛𝑢𝑥 ,                                    (245) 

where 𝑓6 is the opposite distribution function to unknown 𝑓8 and 𝑓1 − 𝑓3 is the subtraction of the 

tangential directed distribution functions on the boundary. Those are telling us the boundary 

condition formulae have a similarity. We can apply those similarity conditions for the 

determination of the formulae for the velocity boundary conditions on the other boundaries. We 
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give the velocity boundary conditions with their schemes on the boundaries in Figure 40 to 

Figure 42. 

 

Figure 40. Boundary lattice on the south. 

The velocity boundary condition on the southern boundary, Figure 40, can be defined as: 

𝜌𝑖𝑛 =
1

1 − 𝑢𝑦
[𝑓0 + 𝑓1 + 𝑓3 + 2(𝑓4 + 𝑓7 + 𝑓8)]                                   (246) 

𝑓2 = 𝑓4 +
2

3
𝜌𝑖𝑛𝑢𝑦                                                          (247) 

𝑓5 = 𝑓7 −
1

2
(𝑓1 − 𝑓3) +

1

6
𝜌𝑖𝑛𝑢𝑦 +

1

2
𝜌𝑖𝑛𝑢𝑥                                         (248) 

𝑓6 = 𝑓8 +
1

2
(𝑓1 − 𝑓3) +

1

6
𝜌𝑖𝑛𝑢𝑦 −

1

2
𝜌𝑖𝑛𝑢𝑥 .                                       (249) 

 

Figure 41. The boundary lattice on the west. 

The velocity boundary condition on the west boundary, Figure 41, can be defined as 

𝜌𝑖𝑛 =
1

1 − 𝑢𝑥
[𝑓0 + 𝑓2 + 𝑓4 + 2(𝑓3 + 𝑓6 + 𝑓7)]                                  (250) 

𝑓1 = 𝑓3 +
2

3
𝜌𝑖𝑛𝑢𝑥                                                           (251) 

𝑓5 = 𝑓7 −
1

2
(𝑓2 − 𝑓4) +

1

6
𝜌𝑖𝑛𝑢𝑥 +

1

2
𝜌𝑖𝑛𝑢𝑦                                         (252) 

𝑓8 = 𝑓6 +
1

2
(𝑓2 − 𝑓4) +

1

6
𝜌𝑖𝑛𝑢𝑥 −

1

2
𝜌𝑖𝑛𝑢𝑦 .                                       (253) 
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Figure 42. Boundary lattice on the east. Dashed distribution functions are known because the streaming 
process.  

The velocity boundary condition on the east boundary, Figure 42, of the domain can be 

defined as 

𝜌𝑖𝑛 =
1

1 + 𝑢𝑥
[𝑓0 + 𝑓2 + 𝑓4 + 2(𝑓1 + 𝑓5 + 𝑓8)]                                      (254) 

𝑓3 = 𝑓1 +
2

3
𝜌𝑖𝑛𝑢𝑥                                                             (255) 

𝑓7 = 𝑓5 −
1

2
(𝑓2 − 𝑓4) +

1

6
𝜌𝑖𝑛𝑢𝑥 −

1

2
𝜌𝑖𝑛𝑢𝑦                                             (256) 

𝑓6 = 𝑓8 −
1

2
(𝑓2 − 𝑓4) −

1

6
𝜌𝑖𝑛𝑢𝑥 +

1

2
𝜌𝑖𝑛𝑢𝑦 .                                           (257) 

The sign of the terms with velocity, 
1

6
𝜌𝑖𝑛𝑢𝑥 and 

1

2
𝜌𝑖𝑛𝑢𝑦, mimics the direction of the unknown 

distribution function. For instance, in Eq.(257), an unknown is directed in the north-west 

direction and its vertical component has a positive sign while the horizontal component has a 

negative sign.  

 

Dirichlet boundary condition: The pressure is given 

Giving a pressure on the boundary sometimes leads a stable simulation in the LBM. As we see 

in Section 5.1.3, the pressure can be defined by the density through Eq.(155). With the 

prescribed density, we can construct missing distribution functions on the boundary as well as 

the velocity. The pressure boundary condition is usually given at the outlet boundary and we 

will derive it at the north boundary using Figure 43.  
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Figure 43. Boundary lattice on the north as outlet boundary. 

A procedure to derive the pressure boundary condition is the same as that of the velocity 

boundary condition. But the velocity components are unknown and should be computed from 

the density. In addition, we have the three unknown distribution functions and all together we 

have four unknowns. If we assume that the tangential velocity on the boundary is adjusted to 

zero, we can formulate the pressure boundary condition using a system with the four equations. 

In case of non-zero tangential velocity on the boundary, the additional constraint can be given 

by Eq.(239) using the tangential directed distribution functions. The system of equations can be 

{
 
 

 
 
𝜌𝑜𝑢𝑡 = 𝑓0 + 𝑓1 + 𝑓2 + 𝑓3 + 𝑓4 + 𝑓5 + 𝑓6 + 𝑓7 + 𝑓8

𝜌𝑜𝑢𝑡𝑢𝑥 = 𝑓1 − 𝑓3 + 𝑓5 − 𝑓6 − 𝑓7 + 𝑓8
𝜌𝑜𝑢𝑡𝑢𝑦 = 𝑓2 − 𝑓4 + 𝑓5 + 𝑓6 − 𝑓7 − 𝑓8

𝑓4 = 𝑓2 − 𝑓2
𝑒𝑞
+ 𝑓4

𝑒𝑞

𝑓1 − 𝑓1
𝑒𝑞
= 𝑓3 − 𝑓3

𝑒𝑞

(𝑎)
(𝑏)
(𝑐)
(𝑑)
(𝑒)

 .                           (258) 

To define 𝑢𝑦, the first unknown, 𝑓4 + 𝑓7 + 𝑓8 should found from (a) and (b). Equating the results 

of 𝑓4 + 𝑓7 + 𝑓8 gives the vertical component of the velocity vector 

𝑢𝑦 =
𝑓0 + 𝑓1 + 𝑓3 + 2(𝑓2 + 𝑓5 + 𝑓6)

𝜌𝑜𝑢𝑡
− 1 .                                         (259) 

The horizontal component of velocity vector can be computed from (e) as 

𝑢𝑥 = (𝑓3 + 𝑓1)
3

2
 .                                                                (260) 

The third unknown, 𝑓4 , is readily defined from (d) as before 

𝑓4 = 𝑓2 −
2

3
𝜌𝑜𝑢𝑡𝑢𝑦 .                                                               (261) 

Now, we proceed to find 𝑓8 from (b). Substituting the result with Eq.(261) into (c) gives the 

fourth 

𝑓7 = 𝑓5 +
1

2
(𝑓1 − 𝑓3) −

1

6
𝜌𝑜𝑢𝑡𝑢𝑦 −

1

2
𝜌𝑜𝑢𝑡𝑢𝑥 .                                         (262) 

Similarly, defining 𝑓8 from (b) and substituting it with Eq.(261) into (c) gives the last unknown 

as 

𝑓8 = 𝑓6 −
1

2
(𝑓1 − 𝑓3) −

1

6
𝜌𝑜𝑢𝑡𝑢𝑦 +

1

2
𝜌𝑜𝑢𝑡𝑢𝑥 .                                    (263) 

The pressure boundary condition on the other boundaries can be formulated by the symmetry 

properties using the five equations (Eqs.(259)-(263)) above.   
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Outflow boundary conditions 

Beside the pressure boundary condition, more simple boundary conditions can be assigned 

at the outflow boundary. These boundary conditions are adequate for the case that the velocity 

and pressure are unknown. One of them is the second order extrapolation boundary condition 

(the Neumann boundary condition) and it can be written by 

𝑓𝑖(𝐱𝑏 , 𝑡) = 2𝑓𝑖(𝐱𝑏 + 𝐜𝑖𝐍, 𝑡) − 𝑓𝑖(𝐱𝑏 + 2𝐜𝑖𝐍, 𝑡) ,                                     (264) 

where 𝐱𝑏 is a coordinate of the boundary cell and 𝐍 = {𝒏 = 1, 𝝉 = 1} is a unit vector on the 

boundary.  

Another widely used boundary condition is the zero-gradient boundary condition and it can 

be given as 

𝑓𝑖(𝐱𝑏 , 𝑡) = 𝑓𝑖(𝐱𝑏 + 𝐜𝑖𝐍, 𝑡) ,                                                  (265) 

which is the first order accuracy.  

 

Periodic boundary condition 

A periodic boundary condition often used for the modeling infinite characteristic of the 

domain. It means that the periodic boundary condition provides opportunity to simulate flow in 

small domain of the large system.  

 

Figure 44. Periodic boundary condition on the inflow and outflow boundaries.  

For instance, a periodic boundary condition is required on the inflow and outflow boundaries of 

the flow through infinite channel, as shown in Figure 44. The periodic boundary condition on 

the inflow boundary 

𝑓𝑖(𝐱𝑜, 𝑡 + 𝛿𝑡) = 𝑓𝑖(𝐱𝑁 , 𝑡) ,      𝑖 = 1, 5, 8                               (266) 

and on the outflow boundary 

𝑓𝑖(𝐱𝑁 , 𝑡 + 𝛿𝑡) = 𝑓𝑖(𝐱𝑜, 𝑡) ,      𝑖 = 3, 6, 7                               (267) 

where 𝐱𝑜 and 𝐱𝑁 are the coordinates of the inflow and outflow boundaries.  
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5.2.4 Stokes second problem: 1D flow 

Consider that there are two parallel infinite plates that bound a fluid between them and the 

upper plate moves as the sinusoid oscillation as shown in Figure 45. The oscillating plate 

generates a laminar flow between the two infinite plates. The problem is called Stokes second 

problem (G. K. Batchelor, 1967) because the analytical solution of this problem was founded by 

George Gabriel Stokes in 1851. In the literatures, the problem is referred as oscillating Couette 

flow or Rayleigh-Stokes flow. We shall solve the laminar flow between two plates by using the 

FDM and LBM to compare numerical procedures of methods.  

 

Figure 45. Schematic illustration of the Stokes second problem.  

Let us write the NSE (Eq.(16)) in the x-direction 

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
= −

1

𝜌

𝜕𝑃

𝜕𝑥
+ 𝐷 (

𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
+
𝜕2𝑢

𝜕𝑧2
) .                    (268) 

With the characteristic of the flow, depicted in Figure 45, spatial derivatives for the x- and z-

direction can be neglected and only the time and the y-directional derivation remain: 

𝜕𝑢

𝜕𝑡
= −

1

𝜌

𝜕𝑃

𝜕𝑥
+ 𝐷

𝜕2𝑢

𝜕𝑦2
 ,                                                        (269) 

which is the governing equation of the Stokes second problem. The pressure term can be 

neglected or can be assigned as a constant term. The coefficient D can be viscosity for 

momentum or diffusion for heat transfer. Initial and boundary conditions on the plates are 

𝑢(𝑦, 0) = 0  for 𝑦 > 0   and                                                       (270) 

𝑢(𝐿, 𝑡) = 𝑈  for 𝑡 > 0                                                                  (271) 
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respectively. The velocity of the harmonic motion of the upper plane is given as 

𝑈(𝑡) = 𝐴 𝑠𝑖𝑛 (
2𝜋

𝑇
𝑡) ,                                                              (272) 

where 𝐴 (= 1.0 ms-1) is the amplitude of harmonic motion, T (= 5 s) is the wavelength or period 

and t is time.  

 

Simple Euler method 

Taking the Euler approximation for the time derivative and the central difference scheme for 

the second order spatial derivative of Eq.(269) gives the finite difference equation for the 

problem: 

𝑢𝑗
𝑛+1 = 𝑢𝑗

𝑛 + ∆𝑡𝐷
𝑢𝑗+1
𝑛 − 𝑢𝑗−1

𝑛 − 2𝑢𝑗
𝑛

∆𝑦2
+ 𝛼∆𝑡 ,                                     (273) 

where 𝑢𝑗
𝑛+1 is the velocity in time advance 𝑛 + 1 at j cell, ∆𝑡 (=0.001 s) is the time step, ∆𝑦 (=0.2 

m) is a grid spacing, D (=20 m2s-1) is the diffusion coefficient and 𝛼 is the constant pressure term.  

 

Lattice Boltzmann method 

We use well explained D1Q3 model for this problem. There is no discretization of governing 

equation in Eq.(269), instead we shall define the lattice Boltzmann equation with an 

appropriate equilibrium distribution function. The to-be-solved lattice Boltzmann equation is 

𝑓𝑖
𝑛+1(𝑗 + 𝑐𝑦𝑖𝛿𝑡) = (1 − 𝑤𝑣)𝑓𝑖

𝑛(𝑗) + 𝑓𝑖
𝑒𝑞(𝑗)𝑤𝑣  ,                                       (274) 

where 𝑓𝑖
𝑛+1(𝑗) is the distribution function in time advance on j cell, 𝑐𝑦𝑖  is the y-component of 

discrete velocity of lattice, 𝛿𝑡 is the lattice time step,  𝑤𝑣 is the relaxation parameter. Time step 

𝛿𝑡 for the lattice is assumed to be unit to maintain the unit discrete velocity as well as the unit 

lattice spacing. Time step and spacing of the lattice are different from the computational time 

step, ∆𝑡, and grid spacing, ∆𝑦. The equilibrium distribution function, 𝑓𝑖
𝑒𝑞(𝑗), can be given as 

𝑓𝑖
𝑒𝑞(𝑗) = 𝑤𝑖𝑢(𝑗) ,                                                                (275) 

where 𝑤𝑖 is the weights for the lattice.  Please have a look at Figure 36 (a) and refer to Section 

5.2.2 to get the weights and discrete velocities. Equation (274) must be solved by two steps 

called the collision and streaming process, which are presented in the code given in Table 3. 

The relaxation parameter can be calculated from the diffusivity D according to Eq.(205), like 

𝑤𝑣 =
1

𝑐𝑠
2𝐷

∆𝑡
∆𝑦2

+ 0.5
 ,                                                             (276) 

where 𝑐𝑠
2 = 2. The time step ∆𝑡 for the LBM can be defined from a velocity scaling between the 

physical and the LB variables as 

𝑈𝑅 = 𝑈𝐿
∆𝑦

∆𝑡
  ,                                                                     (277) 
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where 𝑈𝐿  is the dimensionless boundary velocity at the upper plate. As seen so far, all variables 

in the LBM must be dimensionless and after the simulation, they must be scaled appropriately 

just like Eq.(277). A velocity for new time step can be computed with the distribution functions 

𝑢𝐿
𝑛+1 =∑𝑓𝑖

𝑛+1(𝑗)

3

𝑖=0

 .                                                         (278) 

Comparisons 

With the same grid spacing, the LBM gives a stable simulation with ∆𝑡 = 0.01, while the FDM 

uses ∆𝑡 = 0.001. It means that the LBM method can be faster than the FDM. The simple Euler 

code was shorter than the LB code, as given in Table 3.  

 

Figure 46. Numerical results for the Stokes second problem by Euler method (color) and LBM (isoline). 

It is because that the LBM uses an additional variable named the distribution function except 

the physical variables of the problem and an additional scaling operation except the obligatory 

computation in numerical procedure.  

As seen in the computer code, the Euler method uses three nodal stencils, while the LBM uses 

two nodal stencils for streaming and single node for other operations. This is an inherent 

advantage of the LBM for parallel computations.  

The computation of the LBM took shorter time than that of the Euler method and the results 

are compared to each other in Figure 46 and Figure 47. Total computational time was 20 s and 

velocity variables for each second are presented in Figure 46, where the color fields for the 

Euler method and the iso-line for the LBM. At specific times, all measured velocity profiles are 

compared in Figure 47, where we can observe some little discrepancies. Reducing time step in 

both methods increases the numerical accuracy.  
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Table 3. The comparison of main parts of the code for the Stokes second problem 

 Simple Euler method (FDM) Lattice Boltzmann method (LBM) 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

! initial conditions 

    do j=1,m 

      u(j) =0. ! zero clear 

      un(i)=0. ! zero clear 

    end do 

 

! main loop 

    do n=1,nt !time starts 

 

      time=n*dt 

 

! boundary condition 

      u(1 )=0.0 

   un(1)=0.0 

      u(m)=amp*sin(2.*pi*time/wp) 

   un(m)=u(m) 

 

    do j=2,m-1 

 

    rh=cc*(u(j+1)+u(j-1)-2.*u(j))+alfa*dt 

    un(j)=rh+u(j)   ! next time 

 

    end do ! j 

 

      u=un  ! for next time 

 

    end do ! time 

 

!initial conditions       

    do j=1,m 

      u(j)=0.0 

      do k=0,2 

        f(k,j)=w(k)*u(j) 

      end do    

    end do 

 

! main loop 

    do i=1,nt !time starts 

! streaming 

    do j=m,1,-1   

      f(1,j)=f(1,j-1) 

      f(2,m-j)=f(2,m-j+1) 

    end do 

! boundary condition 

      ul=amp_L*sin(2.0*pi*i/per_L) 

      f(2,m)=ul*(w(1)+w(2)+w(0))-f(1,m)-f(0,m) 

      f(1,1)=-f(2,1) 

! macroscopic variable    

    do j=1,m  

      u(j)=f(1,j)+f(2,j)+f(0,j) 

! collision 

      f(0,j)=(1.-ome)*f(0,j)+ome*w(0)*u(j) 

      f(1,j)=(1.-ome)*f(1,j)+ome*w(1)*u(j) 

      f(2,j)=(1.-ome)*f(2,j)+ome*w(2)*u(j) 

    end do 

 

    end do ! time 

 

Figure 47. Comparison of the velocity profiles for the Stokes second problem measured at intervals of 
0.1T and predicted by the FDM and LBM.  
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5.3 Lattice Boltzmann method for scalar transports 

In the previous sections, we have discussed how the LBM solves fluid flows based on the 

mesoscopic modelling. Many problems of fluid flow involving transport or diffusion of another 

matter in a fluid encounter in engineering practices, such as heat transfer and sediment 

transport. Such problems are modeled by the scalar transport equation, e.g. Burgers’ equation, 

ADE or CDE, or heat transfer equation, while fluid flow is modeled with the Navier-Stokes 

equation in conventional methods, as discussed in Part 1. This paradigm is used to model such a 

problem in the LB methods. In other words, while aforementioned LBM solves the flow field, 

another set of LB model, which we discuss in this section, needs to take a care for the transport 

phenomena.  

First attempts for the scalar transport in the LBM were based on the LGA, where the 

macroscopic equations can be derived the contribution of the some magic and the LGA, itself, 

had a complexity to model such a problem (Wolf-Gladrow, 2000). Depending on the 

transporting matter, different approaches developed after 1990s. For instance, two types of 

approach, namely a multi-speed approach and a double-distribution function approach, have 

been simultaneously developed for heat transfer in fluid flows.  While, for the convection-

diffusion problem, double-distribution function or the coupled model with the conventional 

method was proposed (Guo & Shu, 2013). A multi-speed lattice Boltzmann was introduced as 

the direct extension of the general lattice Boltzmann method exploiting the higher order 

moments of the distribution function and exploring the thermal possibility of the Boltzmann 

equation. In contrast, a double-distribution function approach uses the second lattice 

Boltzmann equation to model scalar transport process and keeps the isothermal LBM for the 

fluid flow. One of the first double-distribution function models was proposed by Bartoloni et al 

in 1993 (Bartoloni, et al., 1993) to model the Rayleigh-Benard convection. In the model, the 

temperature was solved by the second LBE as a passive scalar and no temperature effect was 

modeled for the fluid flow. Another model of a double-distribution function approach was 

developed by Wolf-Gladrow in 1995 for the diffusion of substances in an arbitrary number of 

dimensions, which was the simplest LBM for diffusion problems (Wolf-Gladrow, 1995). More 

detailed research was done by Elton et al in 1995 (Elton, et al., 1995) exploring consistency, 

convergence, stability and efficiency of the LBM for the macroscopic scalar transport equations. 

The double-distribution function model was further extended by Shan in 1997 (Shan, 1997) to 

model the Rayleigh-Benard convection by considering the Boussinesq approximation on 

convection (generally discussed in Section 5.1.1), which was traced from their previous 

research about multi-component flow modeling with the LBM (Shan & Chen, 1993). Further 

contributions made to widen the application of the model and improve the accuracy, such as a 

double-distribution function method on an irregular lattice (Van der Sman & Ernst, 2000) and 

coupled methods with conventional method. A comprehensive review of the double-distribution 

function model for a passive scalar transport can be found in (Zhou, 2009) and (Huang, et al., 

2011).  

In this section, we will discuss the widely used double-distribution function model for scalar 

transport because of its applicability to the both problems in sediment transport and heat 

transfer, as objectives of this thesis.  The macroscopic diffusion and CDE (ADE) will be derived 

from the LBE through the multi-scale expansion analysis in Appendix 2.  
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5.3.1 Lattice Boltzmann model for scaler transport 

If we put tracing dye to a small river, dye will be transported by flowing water into 

downriver and will spread out to invade all the cross-section of the river flow as diffusion. In the 

nature, instead of dye there are number of transporting substances in rivers like waste, 

sediment and dissolved matter or heat. Physical interaction with flow field and quantity of 

substances in a fluid is governed by the ADE: 

𝜕𝜙

𝜕𝑡
+ 𝑢𝛼

𝜕𝜙

𝜕𝑥𝛼
= 𝐷

𝜕2𝜙

𝜕𝑥𝛼
2  ,                                                       (279) 

where 𝜙 is the dependent variable of a substance and 𝐷 is the diffusion coefficient, which can be 

affected by the molecular diffusion, turbulent mixing, etc. The word advection can be 

interchanged with the convection depending on the use of Eq.(279). This ADE is a combination 

of the simple-wave equation and the diffusion equation, but mathematically it has the 

properties of the latter one (Vreugdenhil, 2012). If we introduce a variable 𝐾 = 𝐷 − 𝑢𝑥 for the 

x-component of Eq.(279), we get the diffusion equation 

𝜕𝜙

𝜕𝑡
− 𝐾

𝜕2𝜙

𝜕𝑥2
= 0 ,                                                           (280) 

which means the diffusion in a frame of reference moving with the mean flow. On the other 

point, if the flow velocity is zero: no motion of fluid is observed in the system, Eq.(279) gives 

diffusion equation, directly 

𝜕𝜙

𝜕𝑡
= 𝐷

𝜕2𝜙

𝜕𝑥𝛼
2  .                                                              (281) 

The dependent variable of the substance can have a unit of concentration for sediment or 

pollutant wastes and temperature in the heat transfer. The advection, diffusion and advection-

diffusion terms are described in Figure 48. 

 

Figure 48. Diffusion, advection (convection) and the advection-diffusion phenomena. 

The LBE for a scalar transport problem is the same as the LBE without the force term used in 

a fluid flow in Eq.(204), 

𝑔𝑖(𝐱 + 𝛿𝑥, 𝑡 + 𝛿𝑡) − 𝑔𝑖(𝐱, 𝑡) =
𝛿𝑡

𝜏𝑠
(𝑔𝑖

𝑒𝑞
− 𝑔𝑖) ,                                (282) 
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where 𝑔𝑖(𝐱, 𝑡) is the distribution function for a scalar variable, 𝜏𝑠 is the dimensionless relaxation 

time regarding with the diffusion coefficient, D.  The distribution function to accommodate the 

advection-diffusion and diffusion effect can be 

𝑔𝑖
𝑒𝑞
= 𝜙𝑤𝑖 [1 +

𝐜𝑖 ∙ 𝐮

𝑐𝑠
2 ]  and 𝑔𝑖

𝑒𝑞
= 𝜙𝑤𝑖,                                         (283) 

respectively, where 𝜃 is the dimensionless quantity for the dependent variable, which can be 

computed by 

𝜙(𝐱, 𝑡) =∑𝑔𝑖(𝐱, 𝑡)

𝑁

𝑖=0

 ,                                                          (284) 

where N is the number of velocities in a lattice. The speed of sound, 𝑐𝑠, takes value of 1/√2 for 

D1Q2, D2Q4 and D3Q6, and 1/√3  for D1Q3, D2Q5, D2Q9 and D3Q15. Based on the symmetry 

properties of the lattice, D2Q4 and D3Q6 models can produce the same results like the use of 

D2Q9 and D3Q15 lattices, respectively. For the simplicity that comes from the shareable 

properties with fluid flow modeling by the LBM, we use D2Q9 for the two-dimensional scalar 

transport problem. For D2Q9 arrangement, the relaxation time can be determined by 

𝐷 = 𝛿𝑡
∆𝑥2

∆𝑡
(𝜏𝑠 −

1

2
) 𝑐𝑠

2 ,                                                        (285) 

which is just the same as Eq.(205). If the diffusion coefficient is dimensionless, then space and 

time steps are removed from the relation in Eq.(285). 

For a non-passive substances transporting with a fluid flow, the effect of the substances on 

the fluid flow must be accounted as a force term for the governing equation of fluid. For instance, 

during the heat transport, the density deviates as temperature changes. The density deviation 

generates the local inertia force for the fluid and it can be approximated by the Boussinesq 

approximation for the LBM, as using the same concept described in Section 2.1.1. The force 

induced by the density variation due to the temperature changes is presented in Section 5.6.2. 

 

5.3.2 Boundary conditions for scaler transport 

Boundary conditions for scalar field evolution in the LBM are essential to get a good result 

from the simulation. From boundary conditions discussed for a flow field in Section 5.2.3, the 

outflow and periodic boundaries can be applied directly, if the boundary requires such 

treatments. We shall discuss some widely used boundary conditions in following contexts.  

 

Dirichlet-type boundary conditions - 1  

We derive a boundary condition when the scalar value on the boundary, which can be a solid 

surface or an inflow/outflow, is known. A schematic illustration of the boundary is given in 

Figure 49 and we will not discuss the derivation or statement of the conditions for other 

boundaries.  



 

𝚿 Ph.D. dissertation                                                                                                                                     100 
 

 

Figure 49. Inflow boundary at the west. Scalar variable at inflow boundary is given.  

It is obvious for the boundary lattice 

∑𝑔𝑖(𝑖, 𝑗)

𝑁=8

𝑖=0

= 𝜙(𝑖, 𝑗) ,                                                      (286) 

where 𝜙(𝑖, 𝑗) is the known scalar variable. From Figure 49, the missing distribution functions 

after the streaming process are 𝑔1, 𝑔5 and 𝑔8, which can be defined with the weights as 

𝑔1 = 𝑤1𝜙𝑟 , 𝑔5 = 𝑤5𝜙𝑟 and 𝑔8 = 𝑤8𝜙𝑟 ,                                       (287) 

where 𝜙𝑟 is the residual value to satisfy Eq.(286) after the evaluation of the boundary condition. 

With Eq.(287), the residual value can be calculated as 

𝜙𝑟 =
𝜙 − (𝑔0 + 𝑔2 + 𝑔3 + 𝑔5 + 𝑔6 + 𝑔7)

𝑤1 +𝑤5 +𝑤8
 .                                (288) 

Using this residual value, we can construct the missing distribution functions with Eq.(287) 

(Michael & Daneal T, 2006).  

 

Dirichlet boundary condition - 2 

When the scalar value of the boundary, the same boundary in Figure 49, is given, we can 

derive the boundary condition based on the detailed flux conservation equation (A.A.Mohamad, 

2011). For the normal to the boundary, the detailed flux conservation is 

𝑔1
𝑒𝑞
− 𝑔1 + 𝑔3

𝑒𝑞
− 𝑔3 = 0 ,                                                     (289) 

which gives the unknown distribution function 𝑔1 as 

𝑔1(𝐱𝑜, 𝑡 + 𝛿𝑡) = 𝑤1𝜙 + 𝑤3𝜙 − 𝑔3 = 𝜙(𝑤1 + 𝑤3) − 𝑔3 ,                           (290) 

where the equilibrium distribution function, 𝑔𝑖
𝑒𝑞
= 𝑤𝑖𝜙, was used. Using the first expression in 

Eq.(283) gives the same result. The other two distribution functions are defined as 

𝑔5(𝐱𝑜, 𝑡 + 𝛿𝑡) = 𝜙(𝑤5 +𝑤7) − 𝑔7 and                                             (291) 

𝑔8(𝐱𝑜, 𝑡 + 𝛿𝑡) = 𝜙(𝑤8 +𝑤6) − 𝑔6 .                                               (292) 
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Dirichlet boundary condition - 3 

Another possible way to derive a Dirichlet boundary condition is to use a bounce-back 

condition for the non-equilibrium part of distribution functions. For the diagonal distribution 

functions, the bounce-back to the non-equilibrium distribution function, using Figure 49, is  

𝑔5 − 𝑔5
𝑒𝑞
= 𝑔7 − 𝑔7

𝑒𝑞
 .                                                          (293) 

The unknown, 𝑔5, is 

𝑔5 = 𝑔7 + 𝑔5
𝑒𝑞
− 𝑔7

𝑒𝑞
 .                                                          (294) 

Substituting the distribution function for the advection-diffusion problem into Eq.(294) yields 

𝑔5 = 𝑔7 + 2𝑤5𝜙
𝐜5𝐮

𝑐𝑠
2   .                                                         (295) 

Similarly, we can state the boundary condition as 

𝑔𝑖̅(𝐱𝑜, 𝑡 + 𝛿𝑡) = 𝑔𝑖(𝐱𝑜, 𝑡) + 2𝑤𝑖̅𝜙
𝐜𝑖̅𝐮

𝑐𝑠
2   .                                          (296) 

 

Dirichlet boundary condition - 4 

A boundary condition based on the Ladd’s boundary condition (Zhang, et al., 2012) is given 

as 

𝑔𝑖̅(𝐱𝑜, 𝑡 + 𝛿𝑡) = −𝑔′𝑖(𝐱𝑜, 𝑡) + 2𝑤𝑖𝜙 ,                                             (297) 

which is a similar boundary condition to the Dirichlet boundary condition – 2, but uses a post-

collision distribution function. 

 

Neumann boundary condition - 1 

We only give the derivation of the boundary condition on Figure 49 and the boundary 

conditions on the other boundaries can be defined by using the symmetry condition. For the 

Neumann boundary conditions, the scalar flux at the boundary is prescribed and given as 

−𝐷
𝜕𝜙

𝜕𝑥
+ 𝑢𝑥𝜙 = 𝑞 ,                                                               (298) 

where the first term is a diffusion flux, the second term is an advection flux and the flux value q 

is given.  

The first Neumann boundary condition can be derived when the advection flux is ignored on 

the boundary. Thus, the finite difference approximation of Eq.(298) without the advection flux is 

−𝐷
𝜙(𝑖 + 1, 𝑗) − 𝜙(𝑖, 𝑗)

𝛥𝑥
= 𝑞 ,                                                    (299) 

Defining (𝑖 + 1, 𝑗) = 𝑔1(𝑖 + 1, 𝑗)/𝑤1 , 𝜙(𝑖, 𝑗) = 𝑔1(𝑖, 𝑗)/𝑤1 and substituting into Eq.(299) yields 

𝑔1(𝑖, 𝑗) = 𝑔𝑖(𝑖 + 1, 𝑗) +
𝑞

𝑤1𝐷
 ,                                                  (300) 
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where the flux and diffusion coefficients is dimensionless and spacing 𝛥𝑥 is omitted. The 

boundary condition can be written as 

𝑔𝑖̅(𝐱𝑜, 𝑡 + 𝛿𝑡) = 𝑔𝑖̅(𝐱𝑜 + 𝐜𝑖̅ ∙ 𝐧, 𝑡) +
𝑞

𝑤𝑖̅𝐷
 .                                         (301) 

 

Neumann boundary condition - 2 

If the diffusion flux is zero, the advection flux is remained to be a flux at the boundary: 

𝑢𝑥𝜙 = 𝑞 .                                                                         (302) 

We can state that the advection flux can be defined by the moments of the distribution functions 

∑𝑔𝑖𝐜𝑖 ∙ 𝐧

𝑁=8

𝑖=0

= 𝑞 .                                                                     (303) 

Reusing Figure 49 and substituting Eq.(287) into Eq.(303) gives 

𝜙𝑟 =
𝑞 + 𝑔3 + 𝑔6 + 𝑔7
𝑤1 +𝑤5 +𝑤8

 ,                                                         (304) 

which can be embedded in Eq.(287) that gives the unknown distribution functions. If we 

prescribe 𝑞 = 0, we will get the zero flux boundary condition.  

 

Neumann boundary condition - 3 

If the diffusion and advection fluxes are considered and an resulting expression after the 

finite difference approximation for Eq.(298) is 

𝜙(𝑖, 𝑗) =
𝑞 − 𝐷𝜙(𝑖 + 1, 𝑗)

𝑢𝑥 − 𝐷
 ,                                                       (305) 

which leads the boundary condition on the west boundary 

𝑔𝑖̅(𝐱𝑜, 𝑡 + 𝛿𝑡) =
𝑞 − 𝐷𝑔𝑖̅(𝐱𝑜 + 𝐜𝑖̅ ∙ 𝐧, 𝑡)

𝑢𝑥(𝐱𝑜, 𝑡) − 𝐷
  , where 𝑖̅ = 1, 5, 8.                         (306) 

 

Adiabatic boundary condition 

If the scalar gradient near the boundary is zero, an adiabatic boundary condition is required. 

The condition, 

𝜕𝜙

𝜕𝑥
= 0 ,                                                                          (307) 

can be approximated using the Euler method: 

𝜙(𝑖 + 1, 𝑗) − 𝜙(𝑖, 𝑗) = 0 .                                                           (308) 

Recalling the zeroth order moment of the distribution function for Eq.(308), the condition 

becomes 
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∑𝑔𝑖(𝐱𝑜, 𝑡 + 𝛿𝑡)

𝑁=8

𝑖=0

= ∑ 𝑔𝑖(𝐱𝑜 + 𝐜𝑖̅ ∙ 𝐧, 𝑡)

𝑁=8

𝑖=0

 ,                                         (309) 

where 𝐧 is the normal vector to the boundary. Simply, an adiabatic boundary condition is 

fulfilled by copying the all distribution functions on the adjacent lattice into the boundary lattice.  

 

Anti-bounce-back boundary condition 

To maintain the zero scalar value on the boundary, an anti-bounce-back boundary condition 

is served as 

𝑔𝑖̅(𝐱𝑜, 𝑡 + 𝛿𝑡) = −𝑔𝑖(𝐱𝑜, 𝑡) ,                                                      (310) 

which is a case of the Dirichlet boundary condition - 2, if the known scalar value is zero on the 

boundary. Note that all boundary conditions presented above is based on Figure 49 and the 

most of them is stated for the west boundary as the inflow/outflow.  

  

5.3.3 Example of scalar transport problem 

Let’s have a simple numerical example for the scalar transport by the LBM. Consider now the 

release of a quantity of salt in a channel, 400 m in length, in which there is a flow defined by a 

sinusoidal wave. With the given condition, let us compute the advection and diffusion of the salt 

concentration through the channel. We will use the simple FDM and LBM with D1Q3 lattice in 

the one dimensional channel.  

 

Finite Difference method 

The one dimensional FDE for the advection-diffusion problem reads 

𝜙𝑖
𝑛+1 = 𝜙𝑖

𝑛 + Δ𝑡𝐷
𝜙𝑖+1
𝑛 − 2𝜙𝑖

𝑛 + 𝜙𝑖
𝑛

Δ𝑥2
− Δ𝑡𝑢𝑥

𝜙𝑖+1
𝑛 − 𝜙𝑖

𝑛

Δ𝑥
 ,                           (311) 

where 𝜙𝑖
𝑛 is the concentration of salt, 𝐷 (=2.0 m2s) is the diffusion coefficient and 𝑢𝑥 is the 

channel velocity computed from Eq.(272). We choose the time step to be Δ𝑡 = 0.01 s to ensure 

the stable simulation and the grid spacing is Δ𝑥 = 4.0 m. The total simulation time is given as 

1000 s, which includes 5 phases of the velocity field. An initial condition for the concentration of 

salt is 

𝜙𝑛=1(𝐱) = {
1 180 m < 𝐱 < 220 m
0 otherwise

 .                                          (312) 

 

Lattice Boltzmann method 

The lattice Boltzmann equation for the scalar field is Eq.(282) and we can write it in 

streaming and collision steps as follows 

Collision: 𝑔′𝑖(𝐱, 𝑡) = 𝑔𝑖(𝐱, 𝑡) +
1

𝜏𝑠
(𝑔𝑖

𝑒𝑞
− 𝑔𝑖) ,                                   (313) 
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Streaming: 𝑔𝑖(𝐱 + 𝛿𝑥, 𝑡 + 𝛿𝑡) = 𝑔′𝑖(𝐱, 𝑡) .                                    (314) 

where 𝜏𝑠 will be defined by using Eq.(276). Using the same spacing for space discretization, we 

find the time step Δ𝑡 = 0.4 s for the LBM. The equilibrium distribution function is given by the 

first expression in Eq.(283). 

 

Comparisons 

The results comparison is given in Figure 50. In the first figure, the horizontal axis shows the 

channel length while the vertical axis shows the time advances, where we have selected 5 

different times and have plotted the concentration of them in the second figure. 

 

Figure 50. Solution of the simple advection-diffusion problem by the FDM and LBM.  

Color gradient shows the result of the FDM and solid lines show the result of the LBM in the first 

plot. Interestingly, the results of the two methods were different until 𝑡 = 400 s as shown in the 

profile of the 𝑡 = 100, 300 in the second plot and after that the results matched each other until 

the end of the simulation. The FDM was overestimated and instability was observed on the left 

edge of the distribution, as seen at 𝑡 = 100. To get a more accurate result, we can reduce time 

step in the FDM. The higher order FDMs are available, but those are supposed to be not 

adequate to be compared with the second order accuracy of LBM. If we use a bigger time step 

for the FDM, e.g. the time step as the same as one used for the LBM, the simulation will be 

unstable. The LBM gives rather stable and faster simulation than the DFM on the same grid 

discretization.  
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5.4 Turbulence and stability 

Here we discuss about a numerical stability of the LBM with turbulent models or extensions of 

the LBM, because the turbulence has been a challenge of stability for the LB computation. 

  

5.4.1 Numerical stability of lattice Boltzmann method 

Numerical stability is a challenging aspect of the LB models. Particularly, the standard LBM, 

which we have discussed so far, is suffering from instability in a simulation at a high Reynolds 

number. Numerical stability is sometimes related to a numerical accuracy, since the standard 

LBM is a second order accurate method and the LB equation can recover the NSE in a limited 

condition of a low Mach number.  The certain two reasons to become instability of LB 

computations can be the discretization and the collision operator. Although, the LBM uses a 

flexible Boltzmann equation with the linear collision operator, the discretization of the 

Boltzmann equation uses a finite difference approximation in space and time. Therefore, the 

computation of LBE has a characteristic of the finite difference scheme and error of the space 

discretization. The second reason is the definition of the relaxation time, which is defined in a 

result of the multi-scale expansion to the macroscopic equations. The relation between the 

relaxation time and molecular viscosity can be written as 

𝜈𝑅 =
Δ𝑥2

Δ𝑡
(𝜏𝜈 −

1

2
) 𝑐𝑠

2 ,                                                           (315) 

where 𝜈𝑅 [m2s-1] is the molecular viscosity of a fluid, Δ𝑡 [s] and Δ𝑥 [m] are the grid spacing and 

time step. To ensure the stability in the first glance, the relaxation time 𝜏𝜈 must be greater than 

0.5. The lower limit of relaxation time, 𝜏𝜈 > 0.5, leads a zero lattice viscosity of fluid, as shown in 

Figure 51.  

 

Figure 51. Relation between relaxation time and lattice viscosity/relaxation parameter.  
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In respect to a relaxation parameter, 𝑤 =
1

𝜏𝜈
, the stability limit is 0 < 𝑤 < 2. A turbulent nature 

of flow is often found in a low viscosity, which leads instability for the numerical scheme 

(Sterling & Shiyi, 1996). Let us see how the stability can be related to the other parameters in 

Eq.(315). Dividing Eq.(315) by 𝑈𝐿, being characteristic velocity and length, respectively,  is 

𝜈𝑅
𝑈𝐿

=
Δ𝑥

Δ𝑡
(𝜏𝜈 −

1

2
)
𝑐𝑠
𝑈

Δ𝑥

𝐿
𝑐𝑠 ,                                                       (316) 

where the left hand side is the Reynolds number, Re, 𝑈/𝑐𝑠 is the Mach number, Ma, 𝐿/∆𝑥 is the 

grid number, N, and ∆𝑥/∆𝑡 is the unit velocity as 𝑈/𝑈𝐿. Assigning the appropriate terms in 

Eq.(316) and writing it in incompressible condition become 

𝑀𝑎 = 𝑅𝑒
𝑈

𝑈𝐿

𝑐𝑠
𝑁
(𝜏𝜈 −

1

2
) < 0.2 ,                                               (317) 

where Re and 𝑐𝑠 are constants and 𝑈 and 𝑈𝐿  are proportional to each other. To ensure the 

incompressible condition in Eq.(317) at a certain Re number, we have options to increase the 

grid number as a decrease of velocity and relaxation time or their combination. However, the 

relaxation time has the lower bound of magnitude. The lattice viscosity can positively be 

conditioned by the lattice Boltzmann equation (Qian, et al., 1992) as 

𝜈 ≥ Max [0, Sup
𝑓𝑜𝑟 𝑓𝑖>𝑓𝑖

𝑒𝑞
(
𝑓𝑖 − 𝑓𝑖

𝑒𝑞

𝑓𝑖
−
1

6
)] .                                       (318) 

Practically, the velocity, 𝑈𝐿 , used in the LBM simulation is suitable to be less than 0.2 

(A.A.Mohamad, 2011). Similarly, another stability condition requires the mean flow velocity in 

computation to be below a maximum stable velocity that is a function of several parameters 

(Chen & D.Doolen, 1998), including sound speed, the relaxation time, and the wave number, 

which defined by the linear von Neumann analysis for the LB equation (Sterling & Shiyi, 1996). 

Based on the same concept, adaptive time step and grid refinement techniques had been 

introduced to perform stable simulations with the LBM (Thürey, et al., 2006). Using a small time 

step or fine grid for a discretization, as well as an adaptation of grid, can be said the direct 

numerical simulation (DNS) with the LBM for turbulent flows.  

There are many other methods to improve stability of the LBM, for instance the use of an 

irregular grid or the higher order finite difference scheme for a discretization (McNamara, et al., 

1995), the use of two relaxation time (TRT) or multiple-relaxation time (MRT) for the collision 

term,  contributions of turbulence models and conditions of Entropy or Boltzmann H-theorem 

and the use of different collision operator based on moments or microscopic modeling, like the 

discrete unified gas-kinetic scheme (Guo, et al., 2013).  

  

5.4.2 Stabilization techniques with relaxation times 

Among the other stabilization techniques, we will briefly discuss the techniques based on the 

relaxation time, which causes the diversity for LBMs. It is stated that two-relaxation time (TRT) 

and multi-relaxation time (MRT) schemes for the collision term brings not only stability, but 

also accuracy and efficiency (Luo, et al., 2011) over the single-relaxation time scheme (SRT), 

which is the BGK model. Please note that the BGK and SRT are the same models in this context.  
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The MRT scheme is developed as the same time as the BGK model introduced and is involved 

by the all possible degrees of freedom to optimize the LBE. Unlike the BGK model, which uses 

the same relaxation rate for a collision, the MRT uses multiple relaxation times and different 

eigenvalue with the collision matrix (Guo & Shu, 2013). Successful application of the MRT 

spreads over the problems which cannot be solved by the SRT (d'Humières, 2002) without the 

improvement.  

The TRT scheme decomposes the BGK collision operator into the solution of the symmetry 

and anti-symmetry components (Ginzburg, 2005). Like the SRT, fluid viscosity, both the bulk 

and molecular viscosity, is related to the symmetry eigenvalue (relaxation parameter), while the 

coefficient of the diffusion tensor is respected with the anti-symmetry eigenvalue. The 

eigenvalues considered in the TRT model are the most important two relaxation rates (Luo, et 

al., 2011). If the symmetry and anti-symmetry eigenvalues are equal to each other, the scheme 

reduces the SRT scheme. If the additional collision freedom is involved for the TRT, one derives 

the MRT scheme (Ginzburg, et al., 2008). None of those models, the TRT and MRT, is elaborated 

in further and is used for the simulations presented herein. 

  

5.4.3 Turbulence modeling with Large Eddy Simulation 

As we stated that solving a turbulent flow with the LBM often leads the lower limit of the 

relaxation time. There are two possible ways to model turbulent flows with the standard LBM 

(Hou, et al., 1996).  The first way might be the revisions into the small scale fluctuation in the 

LGA and the idea to use it in large scale resolved flows by the LBM. Unfortunately, no attempt 

has been made in this way, since it is difficult to connect the small scale and large scale 

dynamics based on the microscale particle nature. The second way is to introduce or adapt the 

traditional turbulence model into the LBM. Based on the similar properties, the sub-grid scale 

models can be easily introduced into the LBM. The basic concept of the sub-grid scale model is 

considered the models, which account the effect of the small scale eddies in resolved large 

scales. Smaller scales in a fluid flow are ignored in the model during the computation to reduce 

the cost with the help of a spatial filtering function for the variables. Among the models, the 

simple Smagorinsky model (Deardorff, 1970), described in Section 2.2, uses a positive eddy 

viscosity to represent the small scale energy damping and is successfully introduced in the 

framework of the standard LBM. From the numerical analysis point of view, the Smagorinsky 

model in LBM (Hou, et al., 1996) brings the stable numerical scheme rather than resolved 

turbulent flow.  

In the some literature, the LBMs incorporated with the LES model or k-epsilon models are 

termed as the extended LBM due to its extension to the high Reynolds number flow (Liu, et al., 

2008), (Chen, et al., 2003). The distribution function and the equilibrium distribution function 

are related to the large scale flow and the resolved solution by the standard LBM is available to 

define the local unresolved small scale effects on the fluid flow, which is represented by the 

effective eddy viscosity. In order to define the eddy viscosity term and to evaluate the effect of 

small scale eddies on the fluid flows, the filtered distribution function is introduced as 

𝑓�̅�(𝐱) = ∫𝑓𝑖(𝐱)𝐺(�̅�, 𝐱
′)𝑑𝑥′  ,                                                  (319) 
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where 𝐺 is the spatial filtering function depending on the filter width in space. It is stated that 

the multi-scale expansion with the filtered distribution function, 𝑓�̅�(𝐱), reduces the NSE with the 

total viscosity, including the eddy viscosity, and the macroscopic variables resulting �̅� = ∑ 𝑓�̅�𝑖  

and 𝜌𝐮̅̅̅̅ = ∑ 𝑓�̅�𝐜𝑖𝑖 . Eventually, it is equivalent to replace the filtered variables with the unfiltered 

variables and again the lattice Boltzmann equation reads 

𝑓𝑖(𝐱 + 𝐜𝑖𝛿𝑡, 𝑡 + 𝛿𝑡) = 𝑓𝑖(𝐱, 𝑡) −
1

𝜏𝑡𝑜𝑡
(𝑓𝑖 − 𝑓𝑖

𝑒𝑞
) + 𝛿𝑡𝐴𝑖  ,                       (320) 

where 𝜏𝑡𝑜𝑡 is the total relaxation time with respect to the addition of the molecular viscosity and 

the eddy viscosity (Hou, et al., 1996). The total viscosity can be found by the Smagorinsky model 

as 

𝜈𝑡𝑜𝑡 = 𝜈 + 𝜈𝑒𝑑 = 𝜈 + 𝐶Δ
2|𝑆̅| ,                                              (321) 

where 𝜈𝑒𝑑  is the eddy viscosity,  𝐶 (= 𝐶𝑠
2 in Eq. (31)) is the Smagorinsky constant, Δ is the 

filtering width, which can be identified as a mesh resolution or a geometric average of grids 

spacing, and |𝑆̅| = √2𝑆�̅�𝑗𝑆�̅�𝑗 is the magnitude of the large scale strain rate tensor. The total 

viscosity gives the total relaxation time as the follow, 

𝜏𝑡𝑜𝑡 =
1

𝑐𝑠
2
(𝜈 + 𝐶Δ2|𝑆̅|) +

1

2
.                                                (322) 

The local magnitude of the strain tensor can be easily defined by the non-equilibrium stress 

tensor and the molecular viscosity as 

|𝑆̅| =
√𝜈2 + 18𝐶Δ2(𝑃𝛼𝛽𝑃𝛼𝛽)

1/2
− 𝜈

6𝐶Δ2
 .                                      (323) 

The second order moments of the non-equilibrium part of the distribution functions is 

𝑃𝛼𝛽 =∑𝑐𝑖𝛼𝑐𝑖𝛽(𝑓𝑖 − 𝑓𝑖
𝑒𝑞
)

𝑖

 .                                            (324) 

In the different form (Liu, et al., 2008), the total relaxation time can be defined as 

𝜏𝑡𝑜𝑡 =
1

2
(√𝜏𝑣

2 +
18

Δ𝑥2𝜌
𝐶Δ2(2𝑃𝛼𝛽𝑃𝛼𝛽)

1/2
+ 𝜏𝑣) ,                           (325) 

where Δ𝑥 is the grid spacing and 𝜏𝑣 is the relaxation time with respect to the molecular viscosity. 

Conceptually, the Smagorinsky constant, 𝐶, can be defined by the resolved Reynolds stress term 

using the test filter width, however, the recommended values for it is often used. In traditional 

methods, for instance in Part 1, the recommended values for the constant is 𝐶 = 0.01~0.04, 

while for the LBM, this values is suggested as 𝐶 = 0.0025~0.0625 in channel with the 

vegetation (Gac, 2014),  𝐶 = 0.0169~0.0289 for the near wall turbulence (Wang, et al., 2014) 

and 𝐶 = 0.006 for the air flow (Fernandino, et al., 2009). Our research with Eq.(322) shows the 

constant likely to be 𝐶 = 0.01 − 0.03 (Ayurzana, 2016) in water flow.  
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5.4.4 Advanced fluid-kinetic model: Entropic LBM 

One of the promising methods in the stabile LB turbulent computation is the entropic LBM 

(ELBM) of Karlin’s group (Gu, et al., 2014), in which, the distribution functions are straightened 

to satisfy the maximum condition of the entropy at the every time step of a simulation. But this 

ELBM is based on the advanced fluid-kinetic theory for the low-dissipative hydrodynamic flow 

(Karlin, et al., 2014), where the Gibbs’ principle with the maximizing the entropy is used to 

derive a lattice kinetic theory for the turbulent flow. There are several versions of the entropic 

LBM reported (Karlin, et al., 2014).  

Based on the Boltzmann H-theorem (Theorem 2 in Section 5.1.4), a simple entropic stabilizer 

was proposed to stabilize a LBM simulation at a high Reynolds number in an incompressible 

flow. The entropy of the LBE in D2Q9 lattice can be written as 

𝑆[𝑓] = −∑𝑓𝑖

8

𝑖=0

𝑙𝑛 (
𝑓𝑖
𝑤𝑖
),                                                                (326) 

where 𝑓𝑖 is the density distribution function, 𝑤𝑖 is the weight and 𝑆[𝑓] is the entropy. Further, 

we write the 𝑓𝑖 as a component of the velocity moments: 

𝑓𝑖 = 𝑘𝑖 + 𝑠𝑖 + ℎ𝑖 ,                                                                   (327) 

where 𝑘𝑖 is the kinematic part of populations, which depends only on the locally conserved 

fields, 𝑠𝑖 is the shear part of populations, which depends on the stress tensor and ℎ𝑖 is the higher 

order moments of populations as a linear combination of the remaining higher order moments. 

Introducing deviations ∆𝑠𝑖 = 𝑠𝑖 − 𝑠𝑖
𝑒𝑞

and ∆ℎ𝑖 = ℎ𝑖 − ℎ𝑖
𝑒𝑞

, the extremum condition of the 𝑆[𝑓] 

take the form: 

∑∆ℎ𝑖

8

𝑖=0

ln (1 +
(1 − 𝛽𝛾)∆ℎ𝑖 − (2𝛽 − 1)∆𝑠𝑖

𝑓𝑖
𝑒𝑞 ) = 0,                                (328) 

where 𝛽 can be defined from the kinematic viscosity as 𝜈 = 𝑐𝑠
2 (

1

2𝛽
−
1

2
) and the maximum of 

stabilizer 𝛾 can be computed as 

𝛾∗ =
1

𝛽
− (2 −

1

𝛽
)
〈∆𝑠|∆ℎ〉

〈∆ℎ|∆ℎ〉
 with 〈𝑋|𝑌〉 =∑

𝑋𝑖𝑌𝑖

𝑓𝑖
𝑒𝑞

8

𝑖=0

.                            (329) 

Non equilibrium part of the distribution function can be written as 

𝑓𝑖 − 𝑓𝑖
𝑒𝑞
= ∆𝑠𝑖 + ∆ℎ𝑖,                                                            (330) 

and it is used for the calculation of higher order moments ∆ℎ𝑖. The deviations of shear part of 

the populations are defined by following velocity moments: 
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{
 
 
 
 

 
 
 
 ∆𝑠0 = 𝜌(4𝑢𝑣П̃𝑥𝑦 − [

𝑢2 − 𝑣2

2
] �̃�) ,

∆𝑠1,3 =
𝜌

2
([
1 + 𝑐𝑖𝑥𝑢 + 𝑢

2 − 𝑣2

2
] �̃� − [2𝑐𝑖𝑥𝑣 + 4𝑢𝑣]П̃𝑥𝑦) ,

∆𝑠2,4 =
𝜌

2
([
−1 − 𝑐𝑖𝑦𝑣 + 𝑢

2 − 𝑣2

2
] �̃� − [2𝑐𝑖𝑦𝑢 + 4𝑢𝑣]П̃𝑥𝑦) ,  and

∆𝑠5,6,7,8 =
𝜌

4
([4𝑢𝑣 + 𝑐𝑖𝑥𝑐𝑖𝑦 + 2𝑐𝑖𝑦𝑢]П̃𝑥𝑦 + [

−𝑢2 + 𝑣2 − 𝑐𝑖𝑥𝑢 + 𝑐𝑖𝑦𝑣

2
] �̃�) ,

       (331) 

where П̃𝑥𝑦 and �̃� are the central moments and 𝑐𝑥𝑖  and 𝑐𝑦𝑖  are the discrete velocities of the 

lattice. The central moments are defined by the natural moments and velocities as 

П̃𝑥,𝑦 =∑𝑓𝑖𝑐𝑖𝑥𝑐𝑖𝑦

8

𝑖=0

− 𝑢𝑣 and �̃� =∑𝑓𝑖𝑐𝑖𝑥
2

8

𝑖=0

−∑𝑓𝑖𝑐𝑖𝑦
2

8

𝑖=0

− (𝑢2 − 𝑣2).                (332) 

After defining the stabilizer with above formulae, the post collision state of the distribution 

function is computed in the form: 

𝑓𝑖
′ = 𝑓𝑖 − 𝛽(2∆𝑠𝑖 + 𝛾

∗∆ℎ𝑖)                                                     (333) 

and the streaming is done by copying the distribution functions to their designated directions as 

usual. The determination of the macroscopic variables, density and velocity, is the same as the 

standard LBM, as well as the equilibrium distribution function.  

  

5.5 Free surface Lattice Boltzmann method 

After the brief review of a free surface flow modeling, we will provide the solution of the LB 

modeling for the free surface flow. The implementation of the described model will be found in 

Section 6.1 with the general numerical algorithm of the LBM.  

 

5.5.1 Review for free surface flow modeling  

One of the primary subjects of this work, as well as hydraulics, is a free surface flow. The 

problem of fluid flow with the presence of the free surface often occurs in the civil engineering 

field, whether in designing and construction stages of hydraulic structures, which interacts with 

fluid flow, or in natural disasters such as flood inundation, storm surges and Tsunamis. In the 

past, many afford of mathematical and numerical models on free surface predictions for a flow 

had been made since the accurate freely moving interface for two immiscible fluids had 

practically needed. The numerical methods can be classified in terms of numerical techniques 

and fluids of interest, as shown in Figure 52 (a) and (b), respectively.  
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Figure 52. Classification of free surface flow models: (a) based on the involving fluids in a model and (b) 
based on the technique used in a solution. 

In terms of fluids involved in the modeling, the method can be single- and multi-phase 

modeling. For single-phase free surface modeling, the primary fluid, e.g. the water is considered 

and the secondary fluid, e.g. the air, is neglected with the existence of the precise boundary 

condition on the interface between the primary and secondary phases. The boundary condition 

is called the free-surface boundary condition. Examples of the single-phase free surface 

methods are the mesh-free methods, such as smoothed particle hydrodynamics (SPH) (Gingold 

& Monaghan, 1977), (Monaghan, 1994) and the element-free Galerkin method (EFG) 

(Belytschko, et al., 1994), and the fixed grid methods, such as the shallow water approximation 

(Sielecki & Wurtele, 1970) and the LBM (Körner, et al., 2005). For the multi-phase flow, two or 

more fluids are considered and interfaces of those flows are determined as a free surface under 

the influences of those fluids on it. Famous representatives of multi-phase models are the 

Volume of Fluid (VoF) (Hirt & Nichols, 1981) in Eulerian approach and multi-phase particle 

methods (Monaghan & A, 1995).  

In the aspect of numerical techniques used in a model, the methods can be grouped into the 

Lagrangian, the Eulerian approaches or the coupled scheme of them. The particle based 

discretization for the NSE in a frame of the Lagrangian approach developed many mesh free 

methods such as the SPH, moving particle semi-implicit method (MPS) (Koshizuka & Oka, 1996), 

(Koshizuka, et al., 1998), finite point method (FPM) (Onate, et al., 1996), the EFG and so on (Li & 

Liu, 2002). In the Lagrangian viewpoint, the free surface is tracked by the particles creating a 

free surface; the motion of those particles can be governed by the following equation (Lin & Liu, 

1999) in general: 

𝐮𝑝 =
𝑑𝐗(𝑡)

𝑑𝑡
 ,                                                               (334) 

where X is a position vector which provides the coordinate of a fluid particle on the free surface 

at time t. The SPH and MPS are more attractive than others and have been shown the ability to 

solve a free surface flow as matured techniques in a wide range of space scale, more precisely 

from the bubble (Das & Das, 2009) in the laboratory scale to the near field Tsunami in the real 

field scale (Debroux, et al., 2001). While the Eulerian approach for a free surface modeling takes 

as much responsible as the Lagrangain approach. Although the very first numerical modeling for 
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a free surface flow introduced by Harlow and Welch (Harlow & Welch, 1965) was the 

Lagrangain-Eulerian coupled technique, the following methods, such as the solution algorithm 

for VoF (SOLA-VoF) (Nichols, et al., 1980), height function method (Hirt & Nichols, 1981), level 

set method (Sussman, et al., 1994) and vortex based method (Baker Gregory, et al., 1982), are 

fully described on the grid which are whether fixed or moving grids. A comprehensive review 

on the Eulerian approach for the free surface flow can be found in (Lin & Liu, 1999) or 

(Scardovelli & Stéphane, 1999). The Eulerian approach for tracking the free surface is to update 

the free surface location based on the following equation: 

𝜕𝜗

𝜕𝑡
+ 𝐮 ∙ ∇𝜗 = 0 ,                                                                   (335) 

where 𝜗 is a scalar quantity carrying the material information. For example, the quantity, 𝜗, in 

the VoF method is the fractional volume of fluid (to simply, the fluid fraction value), 𝜗 = F, and 

the equation conserves the mass for two fluids which are considered. While, the density 

function, 𝜙, is considered as the quantity, 𝜗 = 𝜙, in Eq.(335) for the level set method.  

As shown in Figure 52, the LBM for a free surface flow is a single-phase fixed grid approach 

and is first introduced by Korner and Singer (Körner & Robert F, 2000) to model the metal 

foaming process. Besides that, several approaches for the LBM to handle a free surface flow has 

been made by the single- and multi-phase modeling. Briefly, during the early stage of the LBM 

development, a two-phase immiscible fluid model is introduced in (Gunstensen, et al., 1991) 

based on the discrete immiscible lattice-gas model using the collision rule for two phases, 

colored with red and blue, to obtain surface tension between the two fluids. Further 

developments based on this method are known as color-gradient model for multi-phase flow 

and the model have the possibility to handle the free surface flow. Another popular multiple 

phase LBM was introduced by Shan and Chen (Shan & Hudong, 1993). The model is celebrated 

as the Shan-Chen model and became the origin of other multi-phase and multi-component 

models (Huang, et al., 2015). The basic idea of the Shan-Chen type model is to use distinct 

distribution functions for each fluid and to evaluate the repulsive force on the interface between 

fluids, which leads the phase separation. Other multiple-phase models in the LBM, such as the 

phase-field model (He, et al., 1999) and the free energy model (Swift, et al., 1996), are applicable 

for the free surface flow, when the density ratio is adjusted. Very good review for the multi-

phase LBM can be found in (Li, et al., 2016) and (Huang, et al., 2015). After that, the featured 

LBM for the free surface flow is the single-phase color method modified from the color-gradient 

model by Ginzburg and Steiner (Ginzburg & Konrad, 2003), in which the collision is carried out 

only on the active cells filled fully or partially with fluid and the model maintain a sharp 

interfacial front with the help of an anti-diffusion algorithm for re-coloring scheme. Borrowing 

the idea of earlier marker-and-cell method, the coupled model of the LBM and the front tracking 

method is proposed in (Lallemand, et al., 2007) for the free surface flow including the dynamics 

of gas phase. Recently, based on the same concept, the coupled algorithms of LBM with the VoF 

or Level set technique are proposed in (Janssen & Krafczyk, 2010) and (Rüde & Thürey, 2004). 

The coupled method of Janssen et al, (Janssen & Krafczyk, 2010) uses an additional advection 

equation for the VoF carried out with a classical finite volume method, while the free surface is 

reconstructed by a piecewise linear interface reconstruction. Korner et al (Körner, et al., 2005), 

(Rüde & Thürey, 2004) formulated the VoF or Level set method in terms of mesoscopic way and 

in the model, the free surface is tracked by the flux-based advection scheme. A general 
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discretization of the geometry of the coupled techniques is depicted in Figure 53. In the 

discretization, the interface cells and fluid cells are considered as active cells if the model is 

single-phase. The interface cells define the free-surface. 

 

Figure 53. Geometry discretization of the VoF based LBM methods: (a) reality and (b) discretization. 

In the following sections, we give the detailed explanation of the so-called free surface-lattice 

Boltzmann method of Korner et al (Körner, et al., 2005) and (Thürey, et al., 2006).  

  

5.5.2 Free surface representation 

The free surface algorithm for a use in the LBM was first introduced by Körner and Singer 

(Körner & Robert F, 2000), (Körner, et al., 2005) for the simulation of metal foaming and was 

later corrected for and tested on the two- and three-dimensional free surface flows by Thürey 

(Nils, 2007) and (Thürey, et al., 2006). Since the free surface in the LBM can be described using 

the same concept applied to the VOF method (Hirt & Nichols, 1981), each cell has a volume 

fraction value of a fluid that is expressed as the ratio of the mass to the density of the cell, i.e., 𝜖 = 

m/ρ. Depending on the volume fraction value of the liquid, each cell is marked by flags as an 

indication of the materials in the computational cell, such as F for fluid (water), G for gas (air), 

W for solid, and IF for interface cells, as shown in Figure 54 (b). 

 

Figure 54. General scheme of free surface-lattice Boltzmann method: (a) D2Q9 lattice arrangement on 
the 2D grid and (b) materials in the domain and free surface representation. 

The free surface is represented as chained single-layered interface cells having an arbitrary 

volume fraction value of 0 to 1, and the evolution of the free surface is tracked by mass 

calculations of the interface cells and cells other than solid and gas cells, which have no water 
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fraction content. The scalar quantity for this method is the volume fraction of fluid, which in 

turn, the mass in a cell. Equation (335) in this case becomes 

𝜕𝑚

𝜕𝑡
+ 𝐮 ∙ ∇𝑚 = 0 .                                                         (336) 

In contrast to the VOF method, the mass value of the cell is directly updated by mass exchange 

with neighboring cells at each time step of a computation (Körner, et al., 2005). So that the 

mesoscopic time and space discretization for Eq.(336) yields, 

 𝑚(𝐱, 𝑡 + 𝛿𝑡) = 𝑚(𝐱, 𝑡) +∑∆𝑚𝑖(𝐱, 𝑡 + 𝛿𝑡)

8

𝑖=1

,                                     (337) 

where x is the space vector, t is the current time, 𝛿𝑡 is the time step, and i denotes the lattice 

direction (Figure 54 (a)). Mass exchange ∆mi is allowed for interface cells with neighboring F or 

IF cells, but does not allow for interface cells with neighboring G or W cells, as shown in Figure 

54 (b). Mass exchange between IF and F cells is easily defined by the difference between coming 

and leaving distribution functions before the streaming step, as 

∆𝑚𝑖(𝐱, 𝑡 + 𝛿𝑡) = 𝑠𝑒 = 𝑓𝑖̅(𝐱 + 𝐜𝑖 , 𝑡) − 𝑓𝑖(𝐱) .                                  (338) 

We shall describe the collision and streaming steps for the time evolution of distribution 

functions, as well as their connections with the free surface-LBM in Section 6.1. However, the 

mass exchange between interfaces must have a special contribution by the volume fractions of 

the mass exchanging pairs, as follows: 

∆𝑚𝑖(𝐱, 𝑡 + 𝛿𝑡) = 𝑠𝑒
𝜖(𝐱 + 𝛿𝑡𝐜𝑖, 𝑡) + 𝜖(𝐱, 𝑡)

2
,                                  (339) 

where the difference between distribution functions, the flux exchange 𝑠𝑒 , captures the 

neighboring status of the cell pair. The neighboring status of a cell reveals what types of cells 

exist in the surrounding space, as shown in Figure 55 (b). Except the standard cell, other cell 

status for the interface cell is assumed as invalid cells, which need to be corrected during the 

excess mass distribution.  

 

Figure 55. Flags used in the free surface-lattice Boltzmann method: (a) temporal state of cells as flags and 
(b) neighboring states for interface cells; S – standard cells, NF – no fluid neighbor, NG – no gas neighbor 
and NN – no interface neighbor.  
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Appropriate values of se based on the neighboring status prevent undesired IF cell from being 

filled or emptied (Thürey & Rüd, 2009). The value of 𝑠𝑒 can be defined from Table 4 based on 

the neighboring status.  

Table 4. Substituting se of Eq.199 with the appropriate term given here forces the undesired interface 

cells to fill or empty. In this table 𝐱𝑛𝑏 denotes the position of the neighboring cell: 𝐱𝑛𝑏 = 𝐱 + 𝛿𝑡𝐜𝑖 (Nils, 
2007) 

Neighboring status of 

current and neighboring 

cell 

Standard cell at 𝐱𝑛𝑏 No fluid neighbors at 𝐱𝑛𝑏 No gas neighbors at 𝐱𝑛𝑏 

Standard cell at x 𝑓𝑖̅(𝐱𝑛𝑏 , 𝑡) − 𝑓𝑖(𝒙) 𝑓𝑖̅(𝐱𝑛𝑏 , 𝑡) −𝑓𝑖(𝒙) 

No fluid neighbors at x −𝑓𝑖(𝒙) 𝑓𝑖̅(𝐱𝑛𝑏 , 𝑡) − 𝑓𝑖(𝒙) −𝑓𝑖(𝒙) 

No empty neighbors at x 𝑓𝑖̅(𝐱𝑛𝑏 , 𝑡) 𝑓𝑖̅(𝐱𝑛𝑏 , 𝑡) 𝑓𝑖̅(𝐱𝑛𝑏 , 𝑡) − 𝑓𝑖(𝒙) 

The neighboring status of cells also helps to correct the evolution and the advection of interface 

cell, properly. The free surface is discretized as interface cells, so that the motion of the free 

surface must be represented by the transformation/advection of interface cells.  

 

5.5.3 Interface advection 

After the mass is updated over the entire domain using Eq.(337), the streaming and collision 

steps for the fluid flow (Eq.(204)) are performed in order to obtain new macroscopic variables 

(Eq.(200) and (201)) on the active cells. Since the density of the cell is updated by Eq.(200), the 

interface cell might be transformed into a G or F cell based on the following criteria: 

𝐼𝐹 →  𝐹 when 𝑚(𝐱, 𝑡 + 𝛿𝑡) > (1 + 𝑘)𝜌(𝐱, 𝑡 + 𝛿𝑡) or

𝐼𝐹 →  𝐺 when 𝑚(𝐱, 𝑡 + 𝛿𝑡) < (−𝑘)𝜌(𝐱, 𝑡 + 𝛿𝑡),      
                           (340) 

where k (= 10-3) is the additional offset value for the emptied or filled threshold ignoring a cell, 

which were previously treated. Depending on the filled or emptied status of the IF cell, the flags 

of neighboring G or F cells should be changed and the cells should obtain appropriate mass 

according to the excess mass distribution: 

  𝑚(𝐱 + 𝛿𝑡𝒄𝑖) = 𝑚(𝐱 + 𝛿𝑡𝐜𝑖) + 𝑚
𝑒𝑥 (

𝜂𝑖

𝜂𝑡𝑜𝑡𝑎𝑙
),                                     (341) 

where mex is the positive or negative excess mass of the filled or emptied IF cell, and ηtotal is the 

sum of all weights ηi, each of which is computed by the normal vector n on the free surface as 

follows: 

𝜂𝑖 = {
𝐧 ∙ 𝐜𝑖               if 𝐧 ∙ 𝐜𝑖 > 0
0                 otherwise

     for the filled cells, and

𝜂𝑖 = {
−𝐧 ∙ 𝐜𝑖                𝑖𝑓 𝐧 ∙ 𝐜𝑖 < 0
0                 otherwise

  for the emptied cells.
                          (342) 

Depending on the filled or emptied status of the current cell (IF cell), further changes of the 

neighboring cells flag are determined. Examples of the flag changes are given in Figure 56 (b) 
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and (c). Actually, the flags of the changed cells, i.e., the emptied or filled IF cells and their 

neighboring G or F cells, are not allowed to change their real flags before the excess mass 

distributed. Based on Eq.(340), these cells will have temporal transition flags during the excess 

mass distribution. Moreover, the distribution functions of the newly generated interface cells 

having temporal transition flags, which changed from G to the IF (shown in Figure 56 (b)), can 

be initialized with the equilibrium distribution functions, as follows: 

𝑓𝑖(𝐱, 𝑡) = 𝑓𝑖
  𝑒𝑞(𝜌𝑎𝑣, 𝐮𝑎𝑣) ,                                                        (343) 

where 𝑓𝑖
  𝑒𝑞

 is the equilibrium distribution function for the fluid flow. The average macroscopic 

variables, density 𝜌𝑎𝑣 and velocity vector 𝐮𝑎𝑣, in Eq.(343) are computed using macroscopic 

variables of surrounding non-gas cells and must be assigned as the variables of the newly 

generated cells. Now, truly, the flags of cells are assigned as G, F or IF to interface cells leaving 

the temporal flags. Then the estimation of the mass values takes place for the next time step. 

 

5.5.4 Initial and boundary condition 

Initially, if water (fluid) is at rest and the depth of water is considerable for a computation, 

the hydrostatic pressure condition must be given in the initial condition to balance the force 

field. This initial condition (Bogner, 2009) can be expressed in terms of density derived from the 

barometric formula using 𝜌
0
= 3𝑃0: 

𝜌(𝑧) = 𝜌0𝑒
3𝐠𝑦 ,                                                             (344) 

where y is the depth of water in an initial state and 𝑃0 is the reference pressure at the free 

surface. This initial condition also provides an excellent calculation for the hydrostatic pressure.  

Right after the streaming step in the fluid flow, the free-surface boundary condition must be 

imposed on the interface cells in order to recover the distribution functions that would be 

streamed from cells for which the following condition holds: 

 𝜖(𝐱 + 𝐜𝑖) = 0 or 𝐧 ∙ 𝐜𝑖 > 0,𝑤ℎ𝑒𝑟𝑒 𝐧 =  
1

2
(
𝜖(𝒙𝑘−1,𝑗) − 𝜖(𝒙𝑘+1,𝑗)

𝜖(𝒙𝑘,𝑗−1) − 𝜖(𝒙𝑘,𝑗+1)
).                    (345) 

To derive the free-surface boundary condition, the detailed flux conservation equation can be 

used. In that derivation, the free-surface boundary condition assumes that the fluid has a much 

lower kinematic viscosity than the gas state (Thürey, et al., 2005). Consequently, the free-

surface boundary condition is expressed in terms of the following distribution function: 

𝑓𝑖̅
  ′(𝐱, 𝑡 + 𝛿𝑡) = 𝑓𝑖

  𝑒𝑞(𝜌𝐴, 𝐮) + 𝑓𝑖̅
  𝑒𝑞(𝜌𝐴, 𝐮) − 𝑓𝑖(𝐱, 𝑡),                                  (346) 

where ρA is the gas density implicitly acting as an air pressure onto the free surface and the 

velocity u is defined by using Eq.(201) in the previous time step or by initial condition at first. 

Reconstructing the distribution functions by the free-surface boundary condition is shown in 

Figure 56 (a).  
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Figure 56. Free surface movement: (a) free surface boundary condition, (b) IF cell is being filled and 
neighboring G cells recognized to change into IF cells and (c) IF cell is being emptied and neighboring F 
cells recognized to change into IF cells. 

This is only a boundary condition for the free surface. The bounce back scheme (Eq.(234)) is 

imposed on the motionless wall interacting with IF cells to express the interaction of the free 

surface with the solid surface. 

 

5.6 Liquid-solid phase transitions in free surface flows 

Hereafter, we discuss a particular LB solution for the liquid-solid phase transition in a free 

surface flow as a proposed model. Boundary conditions for the moving solid interface resulted 

by the phase transition will be discussed. The implementation of the proposed LBM is found in 

Section 6.2. 

  

5.6.1 Review of LB phase change modeling  

A phase change (transition) is a physical phenomenon which shows the changes of uniform 

physical properties of a matter. The phase change is often happened with the changes of the 

thermal energy in the system. The thermal energy of the system can be explained by the entropy 

of or simply the temperature field of the system. Among communities, conducting numerical 

studies on phase changes by applying conventional methods, fixed spatial grid and front 

tracking methods are extensively used in the confined domain (Hu & Argyropoulos, 1996), 

(Virag, et al., 2006) without the free-surface condition. Recent models for a use in the 

conventional method are effective, but cumbersome and require several systems of equations to 

solve flows and phase changes, as well as adaptive or moving grids to clearly define 

melting/solidification front and iterative techniques (Danaila, et al., 2014) to solve nonlinear 

equations. However, phase changes in a natural convection flow remain a primary focus of these 

studies. But there exist a plenty of phase change problems in open channels like the ice in the 

rivers. Particle-based methods, which have an inherent ability to represent the free surface, are 

beginning to be applied to melting and solidification problems in free surface flows (Iwasaki, et 

al., 2010). 

Skipping the advances in the continuum thermodynamic modeling, a brief review for the 

application of LBM for the heat transfer is roughly emphasized here. The modeling of the heat 

transfer in the LBM is introduced among with the other development of the standard LBM at 

almost the same time. When Alexander et al., (Alexander, et al., 1993) introducing the first 

multi-speed LBM for the thermodynamics extending the isothermal models explained in Section 
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5.2, Bartoloni et al., (Bartoloni, et al., 1993) introduced the double distribution function 

approach based on the idea of conventional numerical method for the thermodynamics. The 

later one was an appropriate approach to be used for phase transition problems. Soon after, 

Wolf-Gladrow (Wolf-Gladrow, 1995) proved that the lattice Boltzmann modeling of heat 

transfer can be more attractive and advances for the numerical method by deriving the LBE for 

the diffusion equation. Including the advection term to the equilibrium distribution function in 

the LBE for diffusion can lead the advection-diffusion solution in the LBM. This formulation for 

the ADE is modeled as a scalar field in the LBM having the second set of distribution function. 

The double distribution function approach, explained in the Section 5.3, is used to model phase 

transition problem in this thesis. The model adopted in this thesis was firstly introduced by 

Jiaung et al., (Jiaung, et al., 2001) and later demonstrated by Hubert et al., (Huber, et al., 2008).  

As of this writing, the liquid-solid phase change models in the LBM have not yet been applied 

to a free surface water flow in the fields of hydraulics. The free surface LBMs coupled with the 

phase transition in material science in (Attar & Körner, 2011) and (Ammer, et al., 2014) are the 

pioneering works in this particular interest. 

  

5.6.2 Liquid-solid phase change modeling  

A liquid-solid phase change problem is often referred to as a Stefan problem, and basic 

modeling approaches have been presented in (Alexiades, 1992) and a number of other studies. 

When applying the LBM to a phase change problem, the complexities encountered by 

conventional methods are a large extent eliminated. In the framework of the LBM, the problem 

of heat transfer with phase changes can generally be solved by several approaches, such as a 

phase field method or an enthalpy-based method (Chatterjee & Chakraborty, 2006). These 

methods have been successfully tested and improved through application to metal 

melting/solidification problems (Semma, et al., 2008), but have not yet been applied to free 

surface water flows. As stated above, the numerical model uses two distribution functions 

expressed through the lattices on a fixed grid: one for a flow field and the other for heat 

transport, as shown in Figure 63. In the proposed method, the local enthalpy is updated non-

iteratively with a temperature field. 

In the modeling of heat transfer with phase transition, the temperature field is considered to 

be an essential variable and can be calculated by the following thermal lattice Boltzmann 

equation with latent heat of fusion (Jiaung, et al., 2001): 

𝑔𝑖(𝒙 + 𝒄𝑖𝛿𝑡, 𝑡 + 𝛿𝑡) − 𝑔𝑖(𝒙, 𝑡) = −
(𝑔𝑖(𝒙, 𝑡) − 𝑔𝑖

𝑒𝑞(𝒙, 𝑡))

𝜏ℎ
−𝑤𝑖

𝐿ℎ
𝑐𝑝
(𝑙𝑓(𝒙, 𝑡 − 𝛿𝑡) − 𝑙𝑓(𝒙, 𝑡)) , (347) 

where 𝑔𝑖(𝒙, 𝑡) is the distribution function of the temperature field, 𝜏ℎ(= 3𝛼 + 1/2 ) is the 

dimensionless relaxation time with respect to the thermal diffusivity 𝛼, 𝐿ℎ is the dimensionless 

latent heat of fusion, 𝑐𝑝 is the specific heat capacity of water or ice and 𝑙𝑓 is the liquid fraction 

defining liquid-solid region in a domain, shown in Figure 57. The liquid fraction value of 1 

represents the liquid region in a domain, whereas 0 represents the solid region. Between 0 and 

1 shows the interface zone in a single layer of cells. At the interface between a liquid and solid, 

𝑙𝑓(𝐱) takes a value of between 0 and 1, where a “mushy” zone (Voller & Prakash, 1987) may be 
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observed when conduction dominates heat transfer (Ayurzana & Hosoyamada, 2016) and can 

be defined when the solidus and liquidus temperature are distinguished (Jiaung, et al., 2001). 

 

Figure 57. Liquid and solid regions in a computational domain: (a) single phase flow domain, (b) 
multiple-phase flow domain (for instance ice in free surface flow) 

The specific heat capacity and thermal diffusivity must be defined appropriately in the 

computational cell depending on the cell type: 

𝛼 = (1 − 𝑙𝑓(𝐱)) 𝛼
𝑖𝑐𝑒 + 𝑙𝑓(𝐱)𝛼

𝑤𝑎𝑡𝑒𝑟 and

𝑐𝑝 = (1 − 𝑙𝑓(𝐱)) 𝑐𝑝
𝑖𝑐𝑒 + 𝑙𝑓(𝐱)𝑐𝑝

𝑤𝑎𝑡𝑒𝑟 ,
                                          (348) 

where the superscripts ice and water indicate the thermal diffusivities and specific heat 

capacities of ice and water, respectively. The specific heat capacity of water in lattice form can 

be obtained from the Stefan number, 

𝑆𝑡 =
𝑐𝑝
𝑤𝑎𝑡𝑒𝑟∆𝜃

𝐿ℎ
 ,                                                                (349) 

and is related to the specific heat capacity of ice as 

𝑐𝑝
𝑅,𝑖𝑐𝑒

𝑐𝑝
𝑅,𝑤𝑎𝑡𝑒𝑟 =

𝑐𝑝
𝑖𝑐𝑒

𝑐𝑝
𝑤𝑎𝑡𝑒𝑟  .                                                              (350) 

The Stefan number in the simulations of the present study can be defined by Eq.(349) either 

using real values or lattice values. The equilibrium distribution function of the temperature field 

can be given as 

𝑔𝑖
𝑒𝑞
= 𝑤𝑖𝜃 [1 +

𝒄𝑖 ∙ 𝐮

𝑐𝑠
2 ]   with 𝜃 =∑𝑔𝑖

8

𝑖=0

,                                      (351)  

and the macroscopic temperature T can be converted into a dimensionless temperature θ as 

follows: 

 𝑇 =
𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑒𝑙𝑡
𝜃𝑚𝑎𝑥 − 𝜃𝑚𝑒𝑙𝑡

(𝜃 − 𝜃𝑚𝑒𝑙𝑡) + 𝑇𝑚𝑒𝑙𝑡 .                                           (352) 

After the dimensionless temperature evolution, the local enthalpy, obtained by  

𝐸𝑛 =  𝑐𝑝𝜃 + 𝑙𝑓(𝐱, 𝑡 − ∆𝑡)𝐿ℎ  ,                                                      (353) 

can be used to linearly interpolate the liquid fraction, 



 

𝚿 Ph.D. dissertation                                                                                                                                     120 
 

𝑙𝑓(𝒙) =

{
 

 
1    𝑓𝑜𝑟 𝐸𝑛 > 𝐸𝑛𝑠 + 𝐿ℎ = 𝐸𝑛𝑙
0   𝑓𝑜𝑟 𝐸𝑛 < 𝐸𝑛𝑠 = 𝑐𝑝𝜃𝑚𝑒𝑙𝑡  

𝐸𝑛 − 𝐸𝑛𝑠
𝐸𝑛𝑙 − 𝐸𝑛𝑠

 𝑓𝑜𝑟 𝐸𝑛𝑠 ≤ 𝐸𝑛 ≤ 𝐸𝑛𝑠 + 𝐿ℎ

,                                      (354) 

and the liquid fraction defines the liquid (water) and solid (ice) phases in a domain. The model 

does not require iteration for the local enthalpy, since it was reported that the enthalpy update 

without iteration has negligible effects (Huber, et al., 2008). And also the model uses exact 

thermal properties for phases, which are often neglected in existing numerical methods, i.e., the 

thermal properties of the liquid are used for both the solid and liquid phases. 

The force F experienced by the density difference (variation) induced by the temperature 

difference can be defined with the acceleration of gravity according to non-Boussinesq 

approximation (Tong & Koster, 1993) for the buoyance as 

 𝐅 = 𝐠(1 − 𝛼𝑉(𝜃 − 𝜃𝑜)
2 ),                                                    (355) 

where 𝐠 is the dimensionless acceleration due to gravity, 𝛼𝑉 is the thermal volume expansion of 

water, and 𝜃𝑜 is the dimensionless reference temperature at the maximum density of water. The 

value of 𝐠𝛼𝑉 can be defined in terms of the Rayleigh number (Ra) definition as 

𝑅𝑎 =
𝒈𝛽(𝑇ℎ𝑜𝑡 − 𝑇𝑐𝑜𝑙𝑑)𝐻

3

𝜈𝛼
 .                                                    (356) 

For the heat transfer module, Eq.(347) can recover the following dimensionless macroscopic 

equation using the multiscale expansion: 

𝜕𝜃

𝜕𝑡
+ 𝑢𝜶

𝜕𝜃

𝜕𝑥𝛼
= 𝑐𝑠

2 (𝜏ℎ −
∆𝑡

2
)
𝜕2𝜃

𝜕𝑥𝛼
2 −

𝐿ℎ
𝑐𝑝

𝜕𝑙𝑓

𝜕𝑡
                                    (357) 

where the heat source term, 
𝐿ℎ

𝑐𝑝

𝜕𝑙𝑓

𝜕𝑡
, is directly derived from the last term in the right hand side of 

Eq.(347) (Jiaung, et al., 2001). A general procedure to derive the macroscopic equation from the 

LBE is given in Appendix A2.  

 

5.6.3 Models for moving liquid-solid interface 

In order to evaluate a moving melting/solidification front, a liquid fraction value can be used 

to reflect DFs on a surface of a solid zone. The effect of the solid region can be simulated easily 

in the LBM using the probabilistic boundary condition or the immersed boundary condition. 

The probabilistic or partial-bounce back boundary conditions are introduced to model porous 

media flow. The three types of method of the probabilistic boundary conditions, namely 

outgoing bounce-back (Dardis & McCloskey, 1998), post-collision bounce-back (Thorne & Sukop, 

2004), and pre-collision bounce-back (Walsh, et al., 2009) are compared and evaluated in 

(Walsh, et al., 2009). The first two probabilistic boundary conditions do not require additional 

modification for the determination of macroscopic variable, however, in some cases, the mass 

conservation is not ensured as reported in (Walsh, et al., 2009). However the later one, the pre-

collision bounce-back shows better performance in terms of accuracy and efficiency, one need 

to consider the modification for the estimation of the velocity field (Walsh, et al., 2009). Based 
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on porous media flow simulation and the new simulation step (e.g. the outgoing bounce-back 

(Dardis & McCloskey, 1998)) can follow after the normal collision process, 

𝑓𝑖
∗∗(𝐱, 𝑡 + 𝛿𝑡) = 𝑓𝑖

∗(𝐱, 𝑡) +
1

𝜏
(𝑓𝑖

𝑒𝑞(𝐱, 𝑡) − 𝑓𝑖
∗(𝐱, 𝑡)) ,       0 ≤ 𝑖 ≤ 8 

as 

𝑓𝑖(𝐱, 𝑡 + 𝛿𝑡) = 𝑓𝑖
∗∗(𝐱, 𝑡 + 𝛿𝑡) + 𝑛𝑠[𝑓𝑖̅

∗∗(𝐱 + 𝐜𝒊𝛿𝑡) − 𝑓𝑖
∗∗(𝐱, 𝑡)],     1 ≤ 𝑖 ≤ 8,             (358) 

where 𝑛𝑠(= 1 − 𝑙𝑓) is a solid index, 𝑓𝑖
∗(𝒙, 𝑡) is the post streaming DF from the previous time, 

𝑓𝑖
∗∗(𝒙, 𝑡 + δ𝑡) is the post collision DF before the porous step, and 𝑖 ̅subscript is the opposite 

direction to 𝑖. A numerical procedure of the partial-bounce back boundary treatments for the 

both problems, porous media flow and liquid-solid moving boundary, is the same as given above.  

Similarly, the immersed boundary condition also can be used to impose no-slip velocity 

boundary condition on a liquid-solid interface and the first application was carried out in 

(Huang, et al., 2013). More details about the adoption and application of liquid-solid phase 

transition in a free surface flow (Ayurzana & Hosoyamada, 2016), (Ayurzana & Hosoyamada, 

2017) are discussed in Section 6.2 and in Chapter 7 and 8.  

  

5.7 Immersed boundary method 

5.7.1 Immersed Boundary LBM 

A fluid flow is always bounded by solid surface or interacted with the solid body. If a solid is 

moving, a numerical solution, even a mathematical modeling for the effect of a moving boundary 

in a fluid flow becomes complicated. In the early development of the conventional numerical 

method, the treatment of a moving body or surface was required the continuous grid generation 

for each simulation step and additional solution process (Guo & Shu, 2013). As the immersed 

boundary method is introduced, the pre-existing these difficulties in numerical method was 

eliminated. Because the boundary condition on the solid surface, which does not need to be fit 

conform a Cartesian grid, can be imposed as the modification of the fluid governing equation 

(Peskin, 1977). In general a surface of solid does not intersect with the grid node, so some of the 

computational cells will be cut. The effect of cut cells can be treated in several ways, such as a 

continuous forcing approach, a discrete forcing approach and cut-cell methods (Mittal & 

Iaccarino, 2005), (Bandringa, 2010). Early work of the immersed boundary method coupling 

with the LBM had done by Noble and Torczynski (Noble & Torczynski, 1998), who had 

introduced the immersed boundary modification into the discretized LBE without losing the 

generality. The next attempt to adapt the conventional numerical concept for immersed 

boundary into the LBM was done in (Feng & Michaelides, 2004), where the restoring force term 

was estimated and added to the LBE. Inspired by the simplicity of Noble and Torczynski’s 

solution for an immersed boundary method, the further developments on that solution were 

extendedly studied by Strack and Cook (Strack & Cook, 2007) and others. The immersed 

boundary modification is reasonably formulated from the mass and momentum balance 

perspective. With the immersed boundary modification, the discretized Boltzmann equation in 

Eq.(204) is rewritten as 
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𝑓𝑖(𝒙 + 𝒄𝑖𝛿𝑡, 𝑡 + 𝛿𝑡) − 𝑓𝑖(𝒙, 𝑡) = 

 −
𝛿𝑡(1 − 𝛽)

𝜏𝑡𝑜𝑡
(𝑓𝑖(𝒙, 𝑡) − 𝑓𝑖

  𝑒𝑞(𝒙, 𝑡)) + 𝛽𝑓𝑖
  𝑚(𝒙, 𝑡) + 𝛿𝑡𝐴𝑖 ,                             (359) 

where 𝐜𝑖  is the discrete unit velocity in the i direction, 𝜏𝑡𝑜𝑡 is the dimensionless relaxation time 

with respect to the lattice viscosity ν and is adjusted with the sub-grid scale turbulent model  

(Hou, et al., 1996) explained in Section 5.4.3, and 𝛽 is the parameter given by (Strack & Cook, 

2007) 

 𝛽(𝑠𝑓 , 𝜏) =
𝑠𝑓(𝜏 − 0.5)

(1 − 𝑠𝑓) + (𝜏 − 0.5)
,                                                        (360) 

in which 𝑠𝑓(𝐱, 𝑡) is the solid fraction value of the cell, which takes a value between 0 and 1. Solid 

fraction values of 0 and 1 represent the fluid (water) and solid (ice), respectively, as shown in 

Figure 57. In Eq.(360), the total relaxation 𝜏𝑡𝑜𝑡 can be used instead of the relaxation time 𝜏. The 

immersed boundary modification can be used for not only dynamic separation of solid (ice) and 

liquid (water) phases, but also for a moving body (e.g. moving ice) in a fluid flow. An additional 

collision term 𝑓𝑖
𝑚 is for cells partially or fully covered by a solid, i.e., ice cell, is given as 

𝑓𝑖
  𝑚(𝐱, 𝑡) = 𝑓𝑖̅(𝐱, 𝑡) − 𝑓𝑖(𝐱, 𝑡) + 𝑓𝑖

  𝑒𝑞(𝜌, 𝐮𝑠) − 𝑓𝑖̅
  𝑒𝑞(𝜌, 𝐮),                              (361) 

where us is the velocity of the moving solid, which set to 0 for some study, i.e., the ice is fixed. It 

is visible that the additional collision in Eq.(361) is based on the concept of a bounce-back for 

the non-equilibrium part of the distribution function.  

 

Figure 58. Immersed body discretization on Cartesian grid at two subsequent of time: (a) initial position, 
(b) next position. 

5.7.2 Immersed boundary method for phase change 

To apply the immersed boundary modification into a liquid-solid phase transition is straight 

work except the liquid fraction value need to be inserted instead of the solid fraction value. 

Those two variables are contrasted to each other as shown in Figure 58. For liquid-solid phase 

transition problem, the Eq.(360) becomes 

𝛽(𝑙𝑓 , 𝜏) =
(1 − 𝑙𝑓)(𝜏 − 0.5)

𝑙𝑓 + (𝜏 − 0.5)
,                                                        (362) 

in which 𝑙𝑓(𝐱, 𝑡) is the liquid fraction value of the cell, which takes a value between 0 and 1. 

Liquid fraction values of 0 and 1 represent ice (solid phase) and water (liquid phase), 

respectively, as shown in Figure 57.  
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5.7.3 Arbitrary shaped floating body simulation 

A moving solid body in the fluid flow can be effectively simulated with the immersed 

boundary (IB) modification into the discrete Boltzmann equation (see Eq.(359)). Noble and 

Torczynski’s version of the IB method generates the smooth hydrodynamic force for a fluid flow 

and solid motion. We firstly proposed an algorithm to use the immersed boundary LBM to the 

floating object in the single phase free surface LBM (Ayurzana & Hosoyamada, 2018). Floating 

ice in free surface flow is an arbitrary shaped floating body because body shape changes over 

time due to its phase change. In the explanation, we use an ice body in example of floating solid. 

First, the force and the torque acting on an ice covering n cells are simply modified as: 

𝐅𝑓 = 𝑠
Δ𝑥2

Δ𝑡
∑𝛽

𝑛

𝑛

∑ 𝑓
𝑖
𝑚𝐜𝑖

8

𝑖=0

𝐓𝑓 = 𝑠
Δ𝑥2

Δ𝑡
∑(𝐱𝑛 − 𝐱𝑐)

𝑛

× (𝛽∑ 𝑓
𝑖
𝑚𝐜𝑖

8

𝑖=0

)

  ,                                    (363) 

where s is the submerged volumetric percent of the floating ice body (Figure 59 (c)), 𝐱𝑛 is the 

coordinate of the current cell, 𝐱𝑐 is the coordinate of the central cell of the floating body, as 

shown in Figure 59 (b). The hydrodynamic force acting on the submerged part depends on the 

situation of the body position.   

The motion of the ice body is resolved by the equation of motion: 

𝑚
𝑑2𝑥

𝑑𝑡2
= 𝐅𝑓 + 𝐅𝑏

𝐼
𝑑𝑤

𝑑𝑡
= 𝐓𝑓

,                                                          (364) 

where m is the ice mass [kg], I is the moment of inertia of the body [kg m2], w is the angular 

velocity [rad s-1], 𝐅𝑏 = 𝐠(𝜌
𝑖𝑐𝑒
𝐴𝑖𝑐𝑒 − 𝜌𝑤𝑎𝑡𝐴𝑠𝑢𝑏) is the buoyance force in two-dimensional space 

[N], 𝐴𝑠𝑢𝑏 is the area of the submerged part the floating body [m2]. The equation of motion should 

be solved by the FDM explained in Section 3.2.2 and the implementation for the floating body 

can be found in Section 6.5.  

If phase changes of water take place around the interface between ice and water, mass and 

shape of the ice body will be changed over time. The changes of the body will effect on the value 

of every physical variables of the body at each time step. To enable body shape changes over 

time or to simulate arbitrary shaped body, the algorithm must use the body shape of previous 

time step for the computations in the current time step. In addition, the staircase discretization 

of a body may generate an error and the accumulation of the error leads unphysical body shape 

changes for a moving body. To avoid this unphysical body shape change and to reduce error 

accumulation on the body shape, an integer center of mass for the moving body is introduced in 

Eq.(363) and it must be residing on the lattice node in order to discretize ice body into the 

computational domain. The integer center of mass xc should be obtained from the real center of 

mass 𝐱𝑐
𝑟 defined by Eq.(364), see Figure 60 (a). Moreover, the movement of the ice body 

requires a special care for the cell types. When the ice body moves to a new position, previous 
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cells, which are being released from the occupied cells by the ice body, need to be converted into 

appropriate cell types (Figure 60 (b)). 

 

Figure 59. Floating ice on the free surface: (a) a general view, (b) discretization into 2D grid and (c) the 
representation of the submerged part implying displaced water by the floating ice. 

 

Figure 60. Movement of ice body: (a) Released and newly occupied cells and the centers, (b) letter flags 
on the cells show their changes due to the movement of ice body. 

As the ice moves, newly occupied cells by the ice body are correctly initialized with the 

thermal and physical variables of the ice at the current time step. For instance, a temperature 

field of ice must be translated and rotated with the ice body movement to maintain the fields 

inside the ice. The same numerical procedure should be applied for the thermal distribution 

functions, as well as physical and numerical variables unique for the ice cells. This translation 

and rotation of the variables can be done by storing variables into temporal polar coordinate 

fields originated at the integer center of the ice body. Then the variables initialization for the 

cells of a new position of moving ice body uses the stored variables in the polar coordinate after 

the ice movement. This is most critical implementation of the moving body algorithm, since the 

phenomena inside the solid body are a major for the computation.  

If gas cells are newly occupied by the ice body discretization, shown in Figure 60 (a), they 

mainly become IF cells and distribution functions for them need to be reinitialized with 

Eq.(343). The mass of a released IF cell, which are going to be G cell, need to be distributed 

among the neighboring IF cells as Eq.(341) in order to ensure the mass conservation. This 

algorithm for a floating object is also applicable for the fully immersed body simulation, such as 

bed forming and sedimentation. 



 

© Ayurzana Badarch                                                                                                                                    125 
 

6 NUMERICAL IMPLEMENTATION 

So far, we have discussed the theory and methods of different LB models from different interest 

of application. Here we shall give the pseudo codes to explain the implementation of these LBM. 

 

6.1   Free surface flow modeling by the LBM 

Before the implementation of the free surface LBM, the widely applied implementation for 

the discretized Boltzmann equation, the collision and streaming scheme, should take a place. 

 

6.1.1 General implementation of lattice Boltzmann method 

As often addressed, the very attractive feature of the LBM is its simplicity of the 

implementation. The LBM inherited the collision-streaming paradigm from the ancestor the LGA 

(Guo & Shu, 2013) (A.A.Mohamad, 2011) (Alexander, 2008). The collision-streaming paradigm 

is a base for the different implementation versions depending on the computer language in use 

(Latt, 2007). In the collision-streaming paradigm, the discretized lattice Boltzmann equation 

Eq.(204) is divided into two equations, namely 

Collision: 𝑓′𝑖(𝐱, 𝑡) = 𝑓𝑖(𝐱, 𝑡) +
1

𝜏𝑠
(𝑓𝑖

𝑒𝑞
− 𝑓𝑖) + 𝐴𝑖  and                                  (365) 

Streaming: 𝑓𝑖(𝐱 + 𝛿𝑥, 𝑡 + 𝛿𝑡) = 𝑓′𝑖(𝐱, 𝑡) .                                                       (366) 

There are two fashions for the collision-streaming paradigm, depending on which step 

(equation) is solved first in algorithmically, so called collision-streaming fashion and streaming-

collision fashion.  They are conceptually identical, however, they leads different result in some 

cases. For instance, the results depend on the initialization for the distribution functions. 

Generally, the following two initializations can be used for the initial value of distribution 

functions as 

𝑓𝑖|𝑡=0 = 𝑤𝑖𝜌 or 𝑓𝑖|𝑡=0 = 𝑓𝑖
𝑒𝑞
 .                                          (367) 

It is obvious from Eq.(367) that the initial condition for velocity field will define the differences 

in the results. The most studies use the collision-streaming fashion with the second initialization 

of Eq.(367) for the distribution function. In this thesis, we use the streaming-collision fashion 

with the shifted initialization with Eq.(367) depending on the problem. We do not use two 

distribution functions for 𝑓𝑖 and 𝑓′𝑖, since the streaming step is coded to be not overwrite or 

destroy data from the storage. An algorithmic scheme of the general computational procedure 

for the LBM is given in Figure 61 with the inclusion of the free surface algorithm.  
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Figure 61. General computational algorithm for the LBM with inclusions of a free surface algorithm. 

As shown in Figure 61, the LB numerical algorithm including equations is very simple. A 

computation is straightforward and no iteration is required. The macroscopic variables will be 

defined from the distribution functions, which are the main variables in a LB simulation. The 

macroscopic variables are used for the computation of equilibrium distribution function. In 

some case, it is adequate to compute the equilibrium distribution function separately from the 

collision. In the following, we give the implementation of the above algorithm with the 

pseudocode using the Fortran 77 programming language.  

 

6.1.2 Implementation of free surface LBM 

To solve a free surface flow, the general flow of the algorithm with the equations of the LBM 

is not destroyed. Instead the inclusions from the free surface flow modeling is inserted where 

the procedure takes place in, as shown in Figure 61. 
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Figure 62. Explanation of streaming process for D2Q9 lattice arrangement. The distribution function of 0 
direction, 𝑓0, is not shown here because 𝑓0 don’t leave its location. 

Generally, two subroutines, massev and change, are added to the basic algorithm of the LBM, as 

seen in Code  1. The pseudo-code is devoted to explain the basics of the algorithm and is 

possible to extend it to an in-house serial code. Note that the pseudo-code listed in the thesis is 

not advanced or efficient implementation for the free surface-lattice Boltzmann method.  

Code  1: Main program of the free surface lattice Boltzmann simulation 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

      program free_surface 

      include 'paramc.h' 

      open(*,file='****.dat')  ! new files for result printing 

! Initialazation 

      compute dimensionless number 

      compute viscosity or relaxation parameter 

      call initial !where initialize the variables and distribution functions 

                   !as well as flagging for each cell 

! main computational loop 

      DO kk=1,mtotal  ! discrete time step (lattice time step) 

         time=kk*dt  ! dt is physical time step in second 

      call massev    ! mass evaluations on cells 

      call streaming ! streaming for the distribution functions (DFs) 

      call fluidbound! boundary conditions for DFs 

      call densvel   ! evaluation of macroscopic variables 

      call subgrid   ! sub-grid scale model for turbulent 

      call collision ! collision for the DFs   

      call result    ! printing results    

      call change    ! updating of cell information for the free surface 

      check the time criteria 

      END DO 

! end of the main computational loop 

      stop 

      end 

! end of the main program 

Every global variables in the code are declared in the header file, paramc.h, so that 

subroutines don’t need to mention the arguments used in it. The computation of the control 

parameters, such as viscosity or relaxation parameter, is a less complicated issue and will be 
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described in Section 6.3, because it is related to the scaling of the macroscopic variables. For 

simplicity, we describe each subroutine embedded in Code  1 by giving their pseudocodes. 

In the initialization, all variables in the code need to get initial values as well as constants like 

lattice weighting and discrete velocities. This subroutine, Code  2, contains the realization of the 

geometry of a computational domain with the boundaries. The main implementation of a free 

surface model is the marking cells by assigning the flags as material, depicted in Figure 54. 

Flags can be logical, character or integer depending on programming design, since the code does 

not use them for an arithmetical operation. Generally the flagging makes much easier to 

implement operations for the LBM as well as to implement boundary conditions. After 

initializing the macroscopic variables, the initialization of the distribution function takes place 

with Eq.(367). Another important thing for the implementation is to use another set of flagging 

to possess the status about the neighboring information.  

Code  2: Pseudocode for initialization for LB simulation. 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

      subroutine initial 

      include 'paramc.h' 

      integer icc(0:n,0:m) !temporal memory 

    

      open(**,file='gridData.dat') !loading the grid data 

      do j=m,0,-1 

      read(**,*) (icc(i,j),i=0,n) 

      end do 

      ! lattice constants 

      w(:)=(/4./9.,1./9.,1./9.,1./9.,1./9.,1./36.,1./36.,1./36.,1./36./) 

      cx(:)=(/0.0,1.0,0.0,-1.0,0.0,1.0,-1.0,-1.0,1.0/) 

      cy(:)=(/0.0,0.0,1.0,0.0,-1.0,1.0,1.0,-1.0,-1.0/) 

! density. velocity, fluid fraction, mass, flag and DFs are initialized. 

      do i=0,n 

      do j=0,m 

      rho(i,j), p(i,j), tau(i,j)=1./ome ! initial values 

   ! use Fig.25 to mark cells by flag 

      if(icc(i,j).eq.free surface) then 

        flag(i,j), u(i,j), v(i,j), e(i,j), ma(i,j) !for interface cell (IF) 

      else if (icc(i,j).eq.fluid) then 

        flag(i,j), u(i,j), v(i,j), e(i,j), ma(i,j) !for fluid cell (F) 

      else if (icc(i,j).eq.solid) then 

        flag(i,j), u(i,j), v(i,j), e(i,j), ma(i,j) !for solid cell (S) 

      end if 

             ! initialization for the DFs 

             do k=0,8 

             f(k,i,j)=w(k)*rho(i,j) !Eq.(367) 
             enddo 

      end do 

      end do 

! initial neighborhood imformation 

      do i=0,n 

      do j=0,m 

         assign the neigboring information on the cell ! use Figure 55 
      end do 

      end do 

    

      return 



 

© Ayurzana Badarch                                                                                                                                    129 
 

39       end 

After the initialization, the main loop takes place until the convergence or total time meets 

with time criteria. In the main loop, Code  1, totally seven main subroutines are included to 

accomplish the tasks for the free surface flow modeling (massev and change), streaming-

collision fashion for the LBM (streaming, fluidbound, densvel and collision) and turbulent 

modeling (subgrid). 

A subroutine for the mass exchange between the cells is not a trivial thing. It is carried out by 

using the concept explained in Section 5.5.2. Generally, the mass exchanges between the fluid 

cells (F cell) can be ignored, because they have the same values of fraction in terms of free 

surface. An attention must be paid to the interactions between the cells that have unequal 

values of fraction. In other words, interface cells (IF cells) must be a center for the 

implementation. An IF cell exchange mass with F cells and IF cells, which exist in adjacent to the 

current cell. If the current cell is F cell, the mass exchange with the adjacent IF cell is simply 

calculated by Eq.(338). However, if the current cell is IF cell, we need to consider the 

neighboring status for the current cell and the mass exchanging pair using Table 4. Then the 

total mass of cell is updated with Eq.(337) for all IF and F cells.  

Code  3: Subroutine to compute the mass exchanges between cells 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

      subroutine massev 

      include 'paramc.h' 

      real delm(1:8,0:n,0:m) ! mass change in specific direction 

      do i=0,n  !computational domain 

      do j=0,m 

 

      if(flag(i,j).eq.1) then      ! F cell 

      do k=1,8 

             delm(k,i,j)=use Eq.338 
         end do 

        ma(i,j)=ma(i,j)+asum       ! Eq.198 

      else if(flag(i,j).eq.2) then ! IF node 

         do k=1,8 

             delm(k,i,j)=use Eq.339 with Table 4 
         end do 

        ma(i,j)=ma(i,j)+asum       ! Eq.337 
      end if 

    

      end do 

      end do 

 

      return 

      end 

The streaming step is simple for D2Q9 lattice arrangement, as shown in Figure 62. In the result 

of streaming process, some set of distribution functions will be missed at boundaries. Those 

missed distribution functions are reconstructed by the boundary conditions explained in 

Sections 5.2.3 and 5.5.4 for the fluid flow.  

Code  4: Subroutine for the streaming step 

1       subroutine streaming 
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2 

3 

4 

5 

6 

      include 'paramc.h' 

! streaming 

         use Figure 62 
      return 

      end 

In a subroutine for boundary conditions (Code  5), we give a full implementation of few 

boundary conditions which can be used for the two dimensional channel flow: an inlet 

boundary on the left, blocked by solid at the bottom and the top surfaces and an outlet boundary 

on the right. As mentioned above, the single-phase free surface LBM ignores the gas cells for 

every operation. In addition, the gas and solid cells are only used to impose the boundary 

conditions.  

Code  5: Subroutine to impose boundary conditions 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

      subroutine fluidbound 

      include 'paramc.h' 

      nx=0. 

      ny=0. 

 

! bounce-back boundary condition for obstacle Eq.233 
      do i=0,n  

      do j=0,m 

          if(flag(i,j).eq.0) then 

             do k=1,8 

             op=opp(k) 

             if(flag(i+cx(k),j+cy(k)).eq.2 

     &      .or.flag(i+cx(k),j+cy(k)).eq.1) then  

             f(k,i+cx(k),j+cy(k))=f(op,i+cx(k),j+cy(k)) 

             endif 

             enddo 

          endif 

      enddo 

      enddo 

! Velocity boundary condition for inlet Eq.250-253 
      do j=1,m 

      if(flag(0,j).eq.1.or.flag(i,j).eq.2) then 

      uo=known velocity 

      vo=known velocity 

      rhow=f(0,0,j)+f(2,0,j)+f(4,0,j)+2.*(f(3,0,j)+f(6,0,j)+f(7,0,j)) 

      rhow=rhow/(1.-uo) 

      f(1,0,j)=f(3,0,j)+2.*rhow*uo/3. 

      f(5,0,j)=f(7,0,j)+rhow*uo/6.+0.5*rhow*vo 

      f(8,0,j)=f(6,0,j)+rhow*uo/6.-0.5*rhow*vo 

      endif 

      enddo 

! Outflow boundary condition for outlet 

      do j=0,m 

      if(flag(n,j).eq.1.or.flag(n,j).eq.2) then 

      f(3,n,j)=f(3,n-1,j) 

      f(6,n,j)=f(6,n-1,j) 

      f(7,n,j)=f(7,n-1,j) 

      endif 

      enddo 

! free surface boundary for interface 
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42 

43 

44 

45 

46 

47 

48 

49 

50 

      do i=0,n 

      do j=0,m 

      if(flag(i,j).eq.2) then  

         use Eq.346 
      endif 

      enddo 

      enddo 

    

      return 

      end 

After successful treatment of streaming, including boundary conditions, a subroutine (Code  

6) to calculate the macroscopic variables will take place in the code. The density, velocity and 

pressure, if necessary the vorticity, the streamlines and the shear stress, can be calculated in 

this subroutine.  

Code  6: Subroutine to calculate the macroscopic and hydrodynamic variables. 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

      subroutine densvel 

      include 'paramc.h' 

    

      do j=0,m 

      do i=0,n 

      do k=0,8 

         rho(i,j)=use Eq.200 
         if Eq.112 is used 

          u(i,j)=use Eq.201  
          v(i,j)=use Eq.201 
         else if Eq.206 is used 
          u(i,j)=use Eq.209  
          v(i,j)=use Eq.209 
         end if 

      end do 

      p(i,j)=rho(i,j)*RT !Pressure Eq.155 
      end do 

      end do 

    

      return 

      end 

After the calculation of the macroscopic variables, the collision step must be performed in 

terms of numerical procedures. If a flow is a turbulent or unsteady, one should incorporate with 

a turbulent model or a stabilization technique to secure the successful simulation. In our case, 

we use the sub-grid scale turbulent model to adjust relaxation time to locally defined relaxation 

time to capture the turbulent structure, in addition to stable a simulation. The implementation 

of the sub-grid scale model is given in Code  7. 

Code  7: Subroutine for the sub-grid scale turbulent model 

 1 

 2 

 3 

 4 

 5 

 6 

      subroutine subgrid 

      include 'paramc.h' 

      cc=suggested value    ! smagorinsky constant 

    

      do i=0,n 

      do j=0,m 
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 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

   

       if(flag(i,j).eq.1.or.flag(i,j).eq.2) then !only for F and IF 

         do k=0,8 

         compute feq(k,i,j) 

         compute Pab with Eq.324 
         end do 

         compute Sbar with Eq.323 
         cmpute tau(i,j) with Eq.322 or Eq.325 
       end if 

 

      end do 

      end do 

 

      return 

      end 

In the collision step (Code  8), the most of variables in the code are used. For instance the 

density and velocities are used to calculate the equilibrium distribution functions. The 

distribution functions after streaming and boundary conditions are used to derive the post 

collision distribution function for next time step. The local relaxation time defined by the sub-

grid scale turbulent model is also used for the collision operator.   

Code  8: Subroutine for the collision step. 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

      subroutine collision 

      include 'paramc.h' 

    

! force on fluid 

      do i=0,n 

      do j=0,m 

      if(flag(i,j).eq.1.or.flag(i,j).eq.2) then 

         compute force with Eq.203 or Eq.206 
      end if 

      end do 

      end do 

! collision step 

      do i=0,n 

      do j=0,m 

      if(flag(i,j).eq.1.or.flag(i,j).eq.2) then 

         do k=0,8 

         compute feq(k,i,j) with Eq.193 
         perform collision f(k,i,j) with Eq.365 
         end do 

      end if 

 

      end do 

      end do 

 

      return 

      end 

Now it is time to update flags for each cell based on the fluid fraction value which in turns 

relates to the cell mass. A subroutine to do cell updates will be the last unit, where a free surface 

motion is tracked with the movement of IF cells and mass distribution to the new cells are made. 

The mass conservation is ensured here.  



 

© Ayurzana Badarch                                                                                                                                    133 
 

Code  9: Subroutine to perform the free surface movement related cell information update 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

      subroutine change 

      include 'paramc.h' 

      real sumw(0:n,0:m),mex(0:n,0:m) !sum of weight to distribute an excess mass 

      real averh,aveuu,aveuv          !an average density and velocities 

      integer tempflag(0:n,0:m)       !temporal flag 

 

! temporary flag setting on each cell 

      do j=0,m 

      do i=0,n 

       if(flag(i,j).eq.2) then ! only for IF cell 

          use Eq.340 to assign temporal flags 
       end if 

      end do 

      end do 

! changing the neighboring flags 

! bacause of ordering current cell flag change 

      do j=0,m 

      do i=0,n 

         if(tempflag(i,j).eq.IFF) then ! IF to F cell 

           do k=1,8 

             use Figure 56 
             compute averh, aveuu, aveuv ! average variables of 

                                         !surrounding non-gas cells 

          f(k,i+cx(k),j+cy(k))=use Eq.343 
             flag(i+cx(k),j+cy(k))=2 ! newly generated cell 

           end do 

         end if 

      end do 

      end do 

      do j=0,m 

      do i=0,n    

         if(tempflag(i,j).eq.IFG) then ! IF to G cell 

           do k=1,8 

             use Figure 56 
             compute averh, aveuu, aveuv ! average variables of 

                                         !surrounding non-gas cells 

          f(k,i+cx(k),j+cy(k))=use Eq.343 
             flag(i+cx(k),j+cy(k))=2 ! newly generated cell 

           end do 

         end if    

      end do 

      end do 

! excess mass determination and distribution 

      do j=0,m 

      do i=0,n 

         use Eq.341 and 342 
      end do 

      end do 

! volume fraction change 

      do j=0,m 

      do i=0,n 

         compute e(i,j) from ma(i,j) 

      end do 

      end do 
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56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

66 

67 

68 

69 

70 

! temporary flag is changed to major flag 

      do j=0,m  

      do i=0,n  

         flag(i,j) is assigned based on 

         tempflag(i,j) which will be deleted 

      end do 

      end do    

! set neigboring information on IF cell 

      do j=0,m  

      do i=0,n 

         assign the neigboring information on the cell ! use Figure 55 
      end do 

      end do 

 

      return 

      end 

From the subroutines embedded in Code  1, we don’t give the subroutine called result. This 

subroutine will have not only printing the results, but also scaling the macroscopic variables to 

the dimensional variables using the scales.  The scales and the aforementioned control variables 

are tied to the dimensionless numbers. We will discuss about it in Section 6.3.  

 

6.2   Coupled algorithm for free surface and phase change 

modeling 

6.2.1 Direct integration 

As described in Section 5.6, the computational model use two set of distribution functions; 

one for fluid flow, another one for scalar field which is a temperature field in our case, as shown 

Figure 63 (b). When the two modules use the same time step, the modules are integrated as a 

direct integration. Fortunately, the implementation of a coupled algorithm for a free surface 

flow and heat transfer modeling with phase change in direct integration is quite straightforward. 

Additional variables devoted for heat transfer and phase transitions will be inserted to 

subroutines as additions. For instance, the liquid fraction value, 𝑙𝑓 , is assigned to F and IF cells to 

distinguish a cell either water or ice. If a cell is an ice, it should be treated as a solid cell, but 

having the distribution functions to continuously define the macroscopic variables. Just like the 

free surface algorithm, the distribution functions of the scalar field are only calculated on the F 

and IF cells.  
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Figure 63. Schematic description of the coupled numerical model: (a) free surface representation with 
cell types and the possibilities of mass exchange between cells, (b) a description of two sets of 
distribution functions model for fluid flow and temperature field. 

The numerical model for a liquid-solid phase transition in a free surface flow will have totally 

ten subroutines, the seven of which is described in Section 6.1. The rest of three subroutines are 

added to the evolution of temperature field and the estimation of phase transition. The main 

program is given in Code  10 for the numerical model for a liquid-solid phase transition in a free 

surface flow.  

Here, we only give the specific subroutines for the scalar field. We just mention tips or hints 

for the modifications or additions due to a scalar field to the fluid flow modeling subroutines. In 

the initial subroutine, the variables like th(i,j), lf(i,j) and En(i,j), and the 

distribution functions of the scalar field are initialized. In the mass exchanging subroutine 

massev, the mass exchange with an ice IF cell must be disallowed, as shown in Figure 63 (a). It 

is the same for ice F cells. An ice IF cell means that the cell is IF, but having 𝑙𝑓 = 1.0 for its liquid 

fraction value.  The streaming step is the same for a fluid flow and scalar field. Only one 

subroutine streaming can work for two sets of the distribution function, since the lattice 

arrangement for two modules is the same.  

Code  10: Main program for the liquid-solid phase transition in free surface flow modeling 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

      program phase_free_surface 

      include 'paramc.h' 

      open(*,file='****.dat')  ! new files for result printing 

! Initialization 

      compute dimensionless number 

              for fluid flow and scalar field 

      compute viscosity or relaxation parameter 

              for fluid flow and scalar field 

      call initial !where initialize the variables and distribution functions 

                   !as well as flagging for each cell 

      define time cycling !if code uses different time steps 

! main computational loop 

      DO kk=1,mtotal  ! discrete time step (lattice time step) 

         time=kk*dt  ! dt is physical time step in second 

      call massev    ! mass evaluations on cells 

      call streaming ! streaming for fluid flow 

      call fluidbound! boundary conditions for fluid flow 
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18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

      call densvel   ! evaluation of density and velocity 

      call subgrid   ! subgrid scale model for turbulent 

      call collision ! collision for fluid flow 

      call coll_scal ! collision for scalar field 

      call scalbound ! Boundary conditions for scalar field 

      call streaming ! streaming for scalar field 

      call scalcalcu ! evaluation of scalar variable    

      call result    ! printing results    

      call change    ! updating of cell information for the free surface 

      check the time criteria 

      END DO 

! end of the main computational loop 

      stop 

      end 

For the subroutine collision, we must consider the external force (Eq.(355)) induced by a 

scalar field, for instance, it is a buoyance force in a fluid flow because of the relation between 

density and temperature. Furthermore, a treatment for the moving boundary condition, i.e. the 

interface between liquid (water) and solid phase (ice), for the fluid flow must be implemented 

using either the probabilistic boundary condition or the immersed boundary method explained 

in Section 5.6.2 and 5.7, respectively. The treatment of boundary condition, Code  11, can follow 

the collision step directly, if the probabilistic bounce-back condition is used.  

Code  11: Addition to the collision subroutine to account liquid-solid interaction 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

! probabilistic boundary condition after collision, Eq.358 
      do i=0,n 

      do j=0,m 

       amda=1.0-lf(i,j) 

          do k=1,8 

          op=opp(k) 

          f(k,i,j)=f(k,i,j)+amda*(f(op,i+cx(k),j+cy(k))-f(k,i,j)) 

          end do 

      end do 

      end do 

Generally, after the streaming-collision fashion for fluid flow, the collision-streaming fashion 

for a scalar field, which can be the streaming-collision fashion just like a fluid flow counterpart, 

takes a place. The collision step for the scalar field is much easier than that of the fluid flow 

module. However, the evolution of the distribution function requires the liquid fraction values 

at current and old time steps to account the latent heat source.   

Code  12:  Subroutine of the collision step for the evolution of temperature distribution function 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

      subroutine coll_scal 

      include 'paramc.h' 

    

      do i=0,n 

      do j=0,m 

          if(flag(i,j).eq.1.or.flag(i,j).eq.2) then 

          define thermal properties for the cell 

          using Eq.348 and Eq.285 
      do k=0,8 

      geq(k,i,j)= use Eq.283 
        g(k,i,j)= use Eq.347 
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12 

13 

14 

15 

16 

17 

18 

      end do 

          endif 

      end do 

      end do 

    

      return 

      end 

The boundary conditions for the scalar field must be separately treated as given in Code  13.  

Code  13: Subroutine for the boundary conditions for heat transfer and phase transition 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

      subroutine scalbound 

      include 'paramc.h' 

! adiabaric condition on solid surface 

      do i=0,n 

         do j=0,m 

             if(flag(i,j).eq.F and IF cell) then 

                 do k=1,8 

                  if(flag(i+cx(k),j+cy(k)).eq.S cell) then 

             g(opp(k),i,j)=g(opp(k),i-cx(k),j-cy(k)) !Eq.309 
                  end if 

                 end do 

             end if 

         end do 

      end do 

! Constant temperature boundary condition at inlet. 

      do j=0,m   !Dirichlet Boundary - 2 

         if(flag(0,j).eq.F and IF cell) then 

             g(1,0,j)=twh*(w(1)+w(3))-g(3,0,j) 

             g(5,0,j)=twh*(w(5)+w(7))-g(7,0,j) 

             g(8,0,j)=twh*(w(8)+w(6))-g(6,0,j) 

         end if 

      end do 

! East boundary condition, outlet 

      do j=0,m   !Eq.265 
         if(flag(n,j).eq.F and IF cell) then 

      g(3,n,j)=g(3,n-1,j) 

      g(6,n,j)=g(6,n-1,j) 

      g(7,n,j)=g(7,n-1,j) 

         end if  

      end do 

! boundary condition on the free surface 

      do i=0,n 

      do j=0,m 

         if(flag(i,j).eq.IF cell) then 

         give boundary condition depending on the problem 

         endif 

      end do 

      end do 

    

      return 

      end 

After the boundary conditions, recovering the missed parts during the streaming, the scalar 

field and phase-transition are defined as shown in Code  14. A phase-transition is defined by the 

interface between water and ice having a value of 0.0 < 𝑙𝑓(𝒙) < 1.0. In turns, the liquid fraction 
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value is used to impose the boundary condition in the collision subroutine at the moving 

interface, i.e. the melting front.  

Code  14: Subroutine to calculate the temperature and to account the phase transition 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

      subroutine scalcalcu 

      include 'paramc.h' 

! temperature calculation 

      do j=0,m 

      do i=0,n 

          do k=0,8 

          th(i,j)= use the second equation in Eq.351 
          end do 

      end do 

      end do 

! liquid fraction value update 

      do i=0,n 

      do j=0,m 

         if(flag(i,j).eq.F and IF cell) then 

         compute En(i,j) with Eq.353 
         compute lf(i,j) with Eq.354 
         end if 

      end do 

      end do 

      return 

      end 

Now it is almost at the end of implementation for the direct time integration. To finish the 

initialization of the scalar related variables, more importantly the thermal distribution functions 

need to be reinitialized in change subroutine as like 

𝑔𝑖(𝐱, 𝑡) = 𝑔𝑖
  𝑒𝑞(𝜃𝑎𝑣 , 𝐮𝑎𝑣) ,                                                  (368) 

where  𝜃𝑎𝑣 and 𝐮𝑎𝑣 are the average macroscopic variables of surrounding non-G cells in respect 

with the current cell.  

 

6.2.2 Sub-cycling integration 

The interaction between the free surface flow module and the heat transport with the phase 

change module is such that the temperature difference produces a buoyance force in the flow 

field, and the flow field affected by the buoyance force forms a temperature field in the domain. 

Although the buoyance force is negligible in a turbulent flow, it must be included in a 

computation. The lattice viscosity is related to the lattice thermal diffusivity of a fluid as 

αwater = ν/Pr, where Pr is the Prandtl number, so that the relation between the computational 

modules is maintained. However, depending on the choice of grid spacing and time step, the 

modules can be integrated in two different time scales, which results the sub-cycling in time 

integration, as follows: 

𝑛𝑠 = ⌊
𝛥𝑡ℎ
𝛥𝑡𝑓

⌋ + 1,                                                                 (369) 
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where ⌊∙⌋ is the floor operator to convert a real number to an integer, 𝛥𝑡ℎ is the time step of the 

heat transport module, and 𝛥𝑡𝑓 is the time step of the fluid flow module. Since the grid spacing is 

defined by the selected grid number, the time steps can be determined from the following 

relations: 

𝐠𝑅  =  𝐠
∆𝑥

∆𝑡𝑓
2  and 𝛼𝑅

𝑖𝑐𝑒  =  𝛼𝑖𝑐𝑒
∆𝑥2

∆𝑡ℎ
2 ,                                              (370) 

where the subscript R indicates the real physical value of the acceleration of gravity or the 

thermal diffusivity of ice. The ratio 𝛼𝑅
𝑖𝑐𝑒/𝛼𝑅

𝑤𝑎𝑡𝑒𝑟  =  𝛼𝑖𝑐𝑒/𝛼𝑤𝑎𝑡𝑒𝑟 is used to find the dimensionless 

thermal diffusivity for ice in the second relation of Eq.(370). A sub-cycling in the time 

integration improves the numerical stability of the computation because the relaxation times in 

the modules can be adjusted. In the implementation, Eq.(369) need to be embedded into the 

main program in Code  10. 

  

6.3   Scaling and parameterization 

A Lattice Boltzmann world is a dimensionless world. A physical world is scaled to the lattice 

Boltzmann world. Vice versa, the results obtained by the LBM must be scaled to the physical 

results. It is caused that the continuous Boltzmann equation is nondimensionlized (see Section 

5.2.1) to derive the LBE. Additionally, the velocity space in mesoscopic scale is discretized into 

unit discrete velocities.  

Parameterization is a work to define the LB control variables and scaling factors. The 

determination of the LB dimensionless control parameters such as a characteristic velocity 𝑈𝐿𝐵, 

characteristic length 𝐿𝐿𝐵, lattice viscosity 𝜈 and relaxation time 𝜏, is related to the numerical 

stability and accuracy. The most of the parameters have physical counterparts with the unit. The 

connection between the LBM and the physical parameters can be given by applying the scaling 

factors such as grid spacing Δ𝑥, a time step Δ𝑡 and density scaling ∆𝜌: 

𝑈𝑅 = 𝑈𝐿𝐵
Δ𝑥

Δ𝑡
 , 𝐿𝑅 = 𝐿𝐿𝐵∆𝑥 ,   𝜈𝑅 =

Δ𝑥2

Δ𝑡
𝜈 , 𝜏𝑅 = Δ𝑡 𝜏 ,                     (371) 

where R subscript indicates the physical variable, initial of the word “Real”. The grid spacing can 

be calculated with the selected number of grids for the characteristic physical length. A difficult 

task is to define the time step that ensures the numerical stability in a computation. 

Generally, the dimensionless number characterizing the problem is used to define some of 

the lattice parameters. For example, using the Reynolds number similarity between the physical 

and lattice world, one can define either the lattice velocity or real viscosity: 

𝑅𝑒𝑅 = 𝑅𝑒𝐿𝐵 → 𝑅𝑒𝑅 =
U𝐿𝐵𝐿𝐿𝐵
ν

 .                                                    (372) 

For the open channel flow, the Froude number can be used to define the lattice gravity, 𝐠𝐿𝐵 , 

𝐹𝑟𝑅 = 𝐹𝑟𝐿𝐵 → 𝐹𝑟𝑅 =
U𝐿𝐵

√𝐠𝐿𝐵𝐿𝐿𝐵
 .                                                   (373) 
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For the heat transfer, the Rayleigh number and the Prandtl number can be used for the 

determination of the product of lattice gravity and a volume expansion coefficient of fluid, 𝐠𝛽, 

and the relation between thermal diffusivity and viscosity, respectively: 

𝑅𝑎𝑅 = 𝑅𝑎𝐿𝐵 =
𝐠𝛽(𝜃ℎ𝑜𝑡 − 𝜃𝑐𝑜𝑙𝑑)𝐿𝐿𝐵

2

𝜈𝛼
 ;  𝑃𝑟𝑅 = 𝑃𝑟𝐿𝐵 =

𝜈

𝛼
 .                     (374) 

We use following paths to define the parameters. If the Reynolds number and the 

characteristic velocity and length are known, Eq.(372) gives the lattice viscosity, which further 

defines the relaxation time as 

𝜈 = 𝑐𝑠
2(𝜏 − 0.5) .                                                                 (375) 

Then selecting the grid spacing and the lattice velocity considering the low Mach number 

condition, usually 𝑈𝐿𝐵 < 0.1 , the time step can be defined as 

Δ𝑡 =
𝑈𝐿𝐵Δ𝑥

𝑈𝑅
 .                                                                  (376) 

Another common way is to choose the relaxation time and then defining the viscosity and the 

time step after finding the velocity from the Reynolds number. If the gravity is presented as an 

external force, one can select the lattice gravity 𝐠𝐿𝐵 < 104. With the lattice gravity, the time step 

can be defined as (Nils, 2007) 

𝐠𝑅 =
Δ𝑥

Δ𝑡2
𝐠𝐿𝐵  →  ∆𝑡 = √

𝐠𝐿𝐵∆𝑥

|𝐠𝑅|
  ,                                           (377) 

which is derived from Eq.(373) using the first two relations in Eq.(373). If the Froude number is 

known, the lattice gravity is computed from Eq.(373), directly. But the time step derived from 

the Eq.(376) or Eq.(377) will not satisfy the relation 𝜈𝑅 =
Δ𝑥2

Δ𝑡
𝜈. If the computation is unstable 

with the defined time step, the gravity or the characteristic velocity can be reduced till the 

stable simulation performs.  

The results from the LBM can be scaled through the following equations (Dupuis, 2002): 

Density: 𝜌𝑅 = Δ𝜌𝜌𝐿𝐵 ,                                                             (378)  

Velocity: 𝐮𝑅 = 𝐮𝐿𝐵
Δ𝑥

Δ𝑡
 ,                                                           (379) 

Acceleration: 𝐚𝑅 = 𝐚𝐿𝐵
Δ𝑥

Δt2
 ,                                                 (380) 

Pressure/Stress: 𝑃𝑅 = 𝑃𝐿𝐵Δ𝜌
Δ𝑥2

Δ𝑡2
 ,                                    (381) 

Force: 𝐅𝑅 = 𝐅𝐿𝐵Δ𝜌
Δ𝑥2

Δ𝑡
 ,                                                        (382) 

where the density scaling can be Δ𝜌 = 1000 [kg m-3] for water.  
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6.4   Immersed boundary modification 

The immersed boundary method described in Section 5.7 is only contributed into the 

collision step. Three more variables, parameter 𝛽, equilibrium distribution function for moving 

solid surface 𝑓𝑖
  𝑒𝑞(𝜌, 𝐮𝑠) and additional collision term 𝑓𝑖

𝑚, are implemented as shown in Code  

15 that is the modified version of Code  8.  

Code  15: A collision subroutine for the immersed boundary modified collision step 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

      subroutine collision 

      include 'paramc.h' 

      bb=0.     ! B parameter in IB 

      feqib=0.  ! initialization for temporal Dfs for solid 

      omef=0.   ! initialization for additional term 

! force on fluid 

      do i=0,n 

      do j=0,m 

      if(flag(i,j).eq.1.or.flag(i,j).eq.2) then 

         compute force 

           do k=0,8 

             compute feq(k,i,j)  

             compute feqib(k,i,j) with Eq.193 
           end do 

      end if 

      end do 

      end do 

! collision step 

      do i=0,n 

      do j=0,m 

      if(flag(i,j).eq.1.or.flag(i,j).eq.2) then 

         compute bb with Eq.362 
         do k=0,8 

         compute omef(k,i,j) with Eq.361 
         perform collision f(k,i,j) with Eq.365 
         end do 

      end if 

 

      end do 

      end do 

 

      return 

      end 

The motion of the moving surface, i.e. it is a melting front in a liquid-solid phase transition 

problem, does not require extra implementation in the code. However, a body immersed in the 

fluid is moving through a fluid flow, different case from the liquid-solid phase transition of 

passively fixed ice, one must implement the equation of motion for the moving immersed body.  

 

6.5   Moving body simulation algorithm 

The motion of an immersed body can be resolved by the equation of motion given in 

Eq.(364). The implementation of the equation of motion can be done in either dimensional or 
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dimensionless form. If the motion of the body is tracked by dimensional world, the LB variables 

must be scaled into the physical variables using Eqs.(378-382). Otherwise, in a dimensionless 

form, results after a calculation of the dimensionless equation of motion are scaled into physical 

results. As applications of the immersed boundary motion by the IB-LBM founds in the many 

literatures (Feng & Michaelides, 2004) (Strack & Cook, 2007) (Feng, et al., 2007) (Fukumoto, 

2015), the implementation of the IB-LBM is simple and straightforward. We use the following 

finite difference equations for the time advance of the velocity and position in dimensional 

form: 

{
𝐮𝑅
𝑛+1 = 𝐮𝑅

𝑛 +
∆𝑡𝐅𝑅
𝑚

𝑤𝑅
𝑛+1 = 𝑤𝑅

𝑛 +
∆𝑡𝐓𝑅
𝐼

    and   {
𝐱𝑅
𝑛+1 = 𝐱𝑅

𝑛 + ∆𝑡𝐮𝑅
𝑛+1

𝜃𝑅
𝑛+1 = 𝜃𝑅

𝑛 + ∆𝑡w𝑅
𝑛+1  ,                               (383)  

where 

𝐅𝑅 =
1

2
(𝐅𝑅

𝑛 + 𝐅𝑅
𝑛−1) .                                                               (384) 

In addition, the solid flagging for the immersed boundary should be used to capture the 

successive motion of the immersed body. If a body is allowed to be floating, the calculation of 

the submerged part will take a place to get correct the hydrodynamic forces.  
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7 NUMERICAL EXAMPLES AND VALIDATIONS 

Here we show validations for the LBM using simple, widely solved problems. 

 

7.1   Fluid flow simulations 

7.1.1 Flow past a square cylinder 

To demonstrate simple fluid flow interacting with solid surfaces, we solved a flow past a 

square obstacle placed in a channel. The numerical simulations have been carried out in a 

domain that corresponding to (Ochoa & Fueyo, 2004) and shown in Figure 64. This domain was 

tested by several authors in turbulence flows with the LES, DNS and even experiments. In the 

current study, an obstacle with side length of D=20 nodes is chosen and the simulations were 

performed in the dimensionless form. The Reynolds and Strouhal number can be defined as; 

𝑅𝑒 =
3𝑢𝑜𝐷

𝜏 − 0.5
, 𝑆𝑡 =

𝑓𝐷

𝑢𝑜
,                                                        (385) 

where 𝑢𝑜 and 𝑓 are an inflow velocity and the vortex shedding frequency, respectively. For bluff 

bodies, important parameters are the drag, lift and pressure coefficients. They are estimated 

with the rms and mean values: 

𝐶𝑑 =
2|𝐹𝑥|

𝜌𝑢𝑜
2𝐷
,  𝐶𝑖 =

2𝐹𝑦

𝜌𝑢𝑜
2𝐷
,  𝐶𝑝 =

2(𝑝 − 𝑝𝑜)

𝜌𝑢𝑜
2 ,                                            (386) 

where 𝑝(=
𝜌

3
) and 𝐹 are the pressure and forces acting on the obstacle surface, 𝑝𝑜 is the 

reference pressure. The forces on a single node can be calculated by momentum exchange with 

the surrounding all possible fluid nodes as follow (Ladd, 1994); 

𝐹(𝑥, 𝑡) = 𝑐𝑖[𝑓𝑖(𝑥, 𝑡) − 𝑓𝑖̅(𝑥 + 𝑐𝑖∆𝑡, 𝑡)],                                            (387) 

where 𝑖 ̅ is the opposite direction of 𝑖. If one uses the immersed boundary method, the force will 

be defined by using Eq.(363), but we don’t. 

 

Figure 64. Schematic illustration of a computational domain and a lattice: (a) domain dimensions and a 
position of an obstacle, (b) the pressure measurement around the obstacle, (c) a lattice arrangement. 
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First, we run a simulation at the Re=100 and the results were compared (see Figure 65) to 

the other numerical results in (Breuer, et al., 2000). The results did not agree exactly with the 

other studies, because the boundary conditions used in the simulation were different. But a 

general characteristic of the velocity profiles was the same as the results, seen in Figure 65. In 

(Breuer, et al., 2000), the drag coefficient and the Strouhal number were estimated as 1.35 and 

0.14, while in our simulation, they were 1.27 and 0.15, respectively. These similar results show 

that our numerical code properly works in laminar flows.  In Figure 66, a comparison between 

the vorticity fields and velocity fields are given. The detailed discussion can found in (Ayurzana, 

2016). 

 

Figure 65. Profiles of horizontal and vertical velocity component in the streamwise direction obtained by 
the extended LBM are compared with the results in (Breuer, et al., 2000). 

 

  

Figure 66. On the left, the vorticity around the square obstacle at Re=100. The lower one is the result of 
(Breuer, et al., 2000). In the right, the velocity vector is plotted.  

Next study of interest was a high Reynolds number flow simulation with the turbulent model 

explained in Section 5.4.3. For a flow past bluff bodies, flows with the Reynolds numbers higher 

than 300 are considered in turbulent. It is very interesting to check the effect of the turbulence 

model on the result by the standard LBM. In order to explore the effect of the turbulent model, 

the standard LBM (StLBM) and the extended LBM (ExLBM) in the same condition is applied for 

flows past a square obstacle at Re=300. It is conceptually expected that the flow predictions by 
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StLBM and ExLBM must be the same at a certain time. However, the results show that the 

velocity field was the difference at the same time. Then we found the similar velocity profiles to 

check the time difference due to the turbulence model in the LBM.  Figure 67 and Figure 68 

shows the velocity profiles at time T=24000 for the StLBM and at T=23780 for the ExLBM. The 

time difference induced by the turbulent model was 220 time steps. In other words, the ExLBM 

was delayed by some time compared to the StLBM. It is because that the total relaxation time is 

locally increased by the turbulent eddy viscosity, as given in Eq.(322).   

 

Figure 67. Comparison of velocity profiles in the streamwise direction computed by the StLBM and the 
ExLBM. 

 

 

Figure 68. Comparison of velocity profiles in the cross-stream direction computed by the StLBM and the 
ExLBM. 

It should be noted that the flow pattern and its magnitude were almost the same in the 

results by the StLBM and the ExLBM at different times that means the LBM can produce better 

result with the sub-grid scale turbulent model.  

To validate our code properly in turbulent regimes, we run next simulations with Re = 22000 

and compared the pressure coefficient to the result of (Liu, et al., 2008) shown in Figure 69. In 

our simulations, the pressure coefficient grows up more than the result of (Liu, et al., 2008) at 

the back face of the obstacle. Except this overestimates, the values of the other points were 
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agreeing with the results of (Liu, et al., 2008). The streamlines around the obstacle is compared 

with the result of (Liu, et al., 2008) and that was also in good agreement. The drag, lift 

coefficients and the Strouhal numbers were determined as 𝐶𝑑
𝑟𝑚𝑠 = 3.06,  𝐶𝑙

𝑟𝑚𝑠 = 2.28 × 10−2, 

and St = 0.126 in the current study while these parameters in (Liu, et al., 2008) were 𝐶𝑑
𝑟𝑚𝑠 = 2.1 

and St=0.134 , respectively. The recirculation of eddies observed in upper and lower part of the 

obstacle reported in (Liu, et al., 2008) can also be resolved with the use of finer grid in our 

simulation. 

 

Figure 69. Figure on the left shows the pressure coefficients on the obstacle surface from different 
studies [10] and a starting point of measurement is O shown in Figure 64. Figure on the right shows the 
streamlines comparison, the upper one is the current study while the lower one is the result of (Liu, et al., 
2008) at Re=22000 

As used the same concept, we measured the vertical velocity as a time function at the control 

point after the obstacle (see Figure 64) and the results are compared with the results obtained 

from conventional methods (Liu, et al., 2008) incorporated in the Smagorinsky model in Figure 

70. 

 

Figure 70. Time series of the vertical velocity on the observation point behind the obstacle by the 
different models at Re=21400. 
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In (Ochoa & Fueyo, 2004), the conventional high order computational framework, called 

PHEONICS, was used to solve 2D&3D simulations with the different models of turbulent, e.g. LES 

and Smagorinsky model. The code was also applied for that flow of Re = 21400 and the results 

are compared in Figure 70. From the comparison in Figure 70, the results by the present LBM 

and (Ochoa & Fueyo, 2004) are in good agreement while the result by the LES (Ochoa & Fueyo, 

2004) has higher amplitudes for the vertical velocity profile. It reveals that the results are 

hugely dependent from the model used in the turbulent. With the high Reynolds number flow, 

two cases have been compared and the good agreement found. One of the growing aspects in 

the research tendency among the LBM is the turbulence. We had reached the flow past a square 

obstacle of up to Re = 3.82x105 where we observed the some oscillation in the vicinity of the 

obstacle edge. It is notable that a combination of chosen values for viscosity and inlet velocity 

effects for the results and numerical oscillations. 

 

7.1.2 Doubly periodic shear flow 

Here, we discuss the comparison between the standard and entropic LBM (ELBM), which is 

described in Section 5.4.4. The results were reported in (Ayurzana, et al., 2017). A doubly 

periodic shear layer flow is often considered as a benchmark (Karlin, et al., 2014), (Brown, 

1995) case of an under-resolved simulation of smooth flows with sharp features. Here, a shear 

flow solved by the standard LBM and the entropic LBM in resolutions of N=128, 256, 512, and 

1024. Initial conditions for a flow field are given by 

{
 
 
 

 
 
 

𝑢 =

{
 
 

 
 𝑢0𝑡𝑎𝑛ℎ (𝑘 (

𝑦

𝑁
− 0.25)) , 𝑦 ≤ 𝑁/2,

𝑢0𝑡𝑎𝑛ℎ (𝑘 (0.75 −
𝑦

𝑁
)) , 𝑦 > 𝑁/2,

𝑣 = 𝛿𝑢0 sin(2𝜋 (
𝑥

𝑁
+ 0.25)) ,

                                     (388) 

where 𝑘(= 80) is the parameter controlling the width of the shear layer and 𝛿(= 0.05) is the 

parameter creating small perturbation of velocity in the y-direction, which initiates a Kelvin-

Helmholtz instability. The turning over time of the shear layer is defined as 𝑡𝑐 = 𝑁/𝑢0, where 

𝑢0(= 0.04) is the initial velocity defining the Reynolds number for flow as 𝑅𝑒 = 𝑢0𝑁/𝜈. In 

numerical test, the Reynolds number was set at 30000. The simulation results of vorticity at 𝑡𝑐 

by the two methods are shown in Figure 71 in order of grid resolutions. The simulation of the 

standard LBM was failed before the convergence of the under-resolution at a low resolution of 

domain, for instance, unstable appears at t = 2200 before the vortex roll-ups in the interface of 

shear layers, shown in the top figure of Figure 71 (a).  
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Figure 71. Doubly periodic shear layer flow simulations on the different grid resolutions. Top figures 
were produced by using the standard LBM, while bottom figures were produced by using the entropic 
LBM. Vortex roll-ups appears at (a) tc=3200, (b) tc=6400, (c) tc=12800 and (d) tc=25600. 

As an increase of grid resolution, the relaxation time of the standard LBM increases and the 

computation become rather stable. The computation successfully survived on the further cases 

of simulations (except N=128) in the case of standard LBM. However, as shown in the top of 

Figure 71 (b), two small additional roll-ups created at linear parts of the vortex field, which are 

the source of unstable solutions. As expected shapes of the vortex, the ELBM produces the flow 

field at the even smaller resolution of the grids and the additional roll-ups, emerging from 

unstable of the numerical solution does not appear in any case of simulations. This stable 

simulation can be performed at very small kinematic viscosity due to the coarse grid and high 

Reynolds number. The stabilizer in the ELBM is a self-adaptive local parameter and impacts on 

the resolving of the flow fields. The distribution of the stabilizer and its value range do not 

depends on the Reynolds number, as shown in Figure 72.  

 

Figure 72. Snapshot of the temporal and spatial distribution of the stabilizer, 𝛾∗. 

For the cost of computations, the ELBM code was 2 to 4 times slower than the StLBM code. 

However, the ELBM can produce unconditionally stable simulations for various flow regimes, in 

particular, for turbulent flows. The good agreement between results by the two LBM methods 

with fine grids shows good validations for the methods. 
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7.2   Heat transfer simulations 

To validate the LBM code extended to the scalar field evaluation, the natural convection flow 

due to a heat transfer in a square enclosure is considered as a benchmark problem. A 

configuration of the problem is simple, often appears in natural convection flows among 

literatures, and consists of a square enclosure with a hot wall at the left, a cold wall at the right 

and heat insulated walls at the top and bottom, as shown in Figure 73. For a fluid flow, all walls 

were modeled as no slip walls. For heat transfer, the Dirichlet boundary condition-2 was used 

on the heated wall while the anti-bounce-back boundary condition was imposed on the cold 

wall. The insulated walls were modeled by the adiabatic boundary condition. All prescribed 

boundary conditions for heat transfer is given in Section 5.3.2.  

 

Figure 73. Schematic of the flow configuration for natural convection of water. 

The natural convection problem can be characterized by the Rayleigh, Prandtl and the 

Nusselt numbers,  

𝑁𝑢 =
ℎ𝐿

𝑘
.                                                                     (389) 

Here, ℎ is the convective heat transfer coefficient and 𝑘 is the thermal conductivity of a fluid. For 

this simulation, Rayleigh numbers of 𝑅𝑎 = 103~107 had been considered and the Prantdl 

number was fixed at 𝑃𝑟 = 11.58. The temperature difference between two side walls (hot and 

cold) was fixed at 8℃ for all runs. From the Ra number in Eq.(356), one can find a term 𝐠𝛽 for a 

an estimation of the force term in Eq.(204) and the determination of grid spacing and time step 

to obtain the real physical values from the LBM results at each time step. We also used following 

dimensionless variables for coordinates and velocities as 𝑋 = 𝐱/𝐿, 𝑌 = 𝐲/𝐻,𝑈 = 𝐮/(𝛼/

𝐿 √(𝑅𝑎 𝑃𝑟)). The dimensionless temperature was calculated by Eq.(352) and the dimensionless 

temperature difference were ∆𝜃 = 0. A main part of this section is reproduced from one of our 

work in (Ayurzana & Hosoyamada, 2016). The temperature field and the stream functions for 

five different Rayleigh number flows are plotted in Figure 74. 
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Figure 74. Evolution of the temperature field (in the left) and the stream function (in the right) for 
∆𝑇 = 8℃ 
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As the characteristic of the natural convection flow, a flow field is separated by the density 

inversion plane like two rolling regions. But it is not the character of the flow with the Ra = 107, 

where the density inversion plane is placed in the diagonal of the domain. It should be noted 

that we could not find the comparative data of the natural convection flow of water with the Ra 

= 107 in order to evaluate our results at the same Ra number. The temperature field and the 

stream function for another case of the Ra were in good agreement with the result reported in 

(Tong & Koster, 1993). In addition, the Nusselt numbers had been compared with those taken 

from (Tong & Koster, 1993), plotted in Figure 75 and the comparison in values has been 

reported in Table 5. 

 

Figure 75. Comparison of the Nusselt numbers 

 

Table 5. Summary of the numerical results at the various Ra and comparison with the results from 
(Tong & Koster, 1993), which are underlined. 

Ra ∆𝑇 (oC) 𝑁𝑢̅̅ ̅̅  Ψ𝑚𝑎𝑥 (x103) Ψ𝑚𝑖𝑛 (x10-3) Umax 

103 8.0 1.005  1.001 1.138  1.136 1.152  1.206 0.008  0.008 

104 8.0 1.071  1.066 3.913  3.451 3.715  3.749 0.034  0.025 

105 8.0 2.005  2.005 4.881  4.909 4.371  5.364 0.049  0.040 

106 8.0 4.119  4.120 6.115  5.601 6.135  5.645 0.057  0.057 

107 8.0 9.1981 7.612 8.110 0.145 

 

Our simulations provided the expected behavior of the flow field and the results were in 

good order of accuracy. From the comparison, it can be noticed that the numerical code has 

been validated successfully and can be applied for heat transfer problems with the presence of 
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various flow regimes. The limitation of application to the LBM for a heat transfer problem can 

be related to the numerical instability emerged from whether the BGK approximation and the 

fixed Prantdl number. The instability can be alleviated using a stabilization method, such as the 

MRT, TRT or adaptive time-step. Since the relaxation time of scalar field increases with the 

decrease of Prantdl number, the stability condition can be improved using the varied Prantdl 

number with temperature. Also, a wide range of temperature could lead to instability because of 

the small set of velocities. The range of the temperature will be discussed in Chapter 8.  

  

7.3   Phase change simulations in enclosure 

For phase changes in this section, we only consider water and ice, their liquid-solid changes in a 

domain.  

 

7.3.1 Phase change induced by heat conduction: the Stefan problem 

Here we consider the Stefan problem, melting of a slab of ice with a length of 0.1 m, to 

validate the proposed LBM for the liquid-solid phase changes in free surface flows. The 

analytical solution (Alexiades, 1992) of this problem is given as  

 𝑋(𝑡) = 2𝜒√𝛼𝑅
𝑤𝑎𝑡𝑒𝑟𝑡  and                                                     (390) 

 𝑇(𝑥, 𝑡) = 𝑇𝑚𝑎𝑥 − (𝑇𝑚𝑎𝑥−𝑇𝑚𝑒𝑙𝑡)
𝑒𝑟𝑓 (𝑥 2√𝛼𝑅

𝑤𝑎𝑡𝑒𝑟𝑡⁄ )

𝑒𝑟𝑓(𝜒)
                              (391) 

with the transcendence function for 𝜒, 

𝜒𝑒𝜒
2
𝑒𝑟𝑓(𝜒) =

𝑆𝑡

√𝜋
 ,                                                             (392) 

to find positions of liquid-solid interface and temperature distributions in liquid region at times, 

respectively. Initially, the temperature of the ice slab was at the melting temperature of 

Tmelt=0℃. One side of the ice is insulated, while the other is abruptly set at the Tmax=25℃ at t=0 

and it is maintained for all times t > 0 in the simulation. We set imaginary thermocouples in the 

slab at lengths of 0.01, 0.03, 0.05, and 0.09 m and measures the temperature in time evolution. 

Simply, we chose N=100 grid for the length of the slab in both the analytical and numerical 

solution. For the numerical solution, we use D1Q3 lattice arrangement (A.A.Mohamad, 2011) for 

Eq.(347) and the relaxation time is obtained from the relation 

𝜏ℎ = 3𝛼𝑅
𝑤𝑎𝑡𝑒𝑟

𝛥𝑡ℎ
∆𝑥2

+ 0.5 ,                                                    (393) 

where Δth is the time step, which is set as Δth=1.0 s and ∆x (=0.001 m) is the grid spacing. The 

constant temperature boundary condition (Alamyane & Mohamad, 2010) in Section 5.3.2 is 

applied to the heated side of the slab, while the second order extrapolation boundary condition 

(A.A.Mohamad, 2011) for scalar field is imposed on the other side. The temperature is 

calculated by Eq.(352) using the dimensionless temperature computed by the LBM, and then the 

melting front, the liquid-solid interface, is defined by the liquid fraction value using Eq.(354).  
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The total melting time was defined as 34.01 hours by the analytic and the present LBM (1). 

The comparisons of the results by the analytical and numerical methods are given in Figure 76 

and Figure 77. The color map of Figure 76 is the temperature distribution estimated by the 

analytical solution. The result of the present LBM (1) uses the relaxation time defined by 

Eq.(393), whereas the LBM (2) uses the adjusted relaxation time. The best fit of the melting 

fronts found for the analytical solution and the LBM (2). However the total melting time with 

the LBM (2) was lasted for 34.72 hours. The numerically defined melting fronts in Figure 76, as 

well as temperature profiles at different times and measurement positions in Figure 77, shows 

the discrepancy in the middle of the simulation time. The good agreement has ben observed 

before 8.5 hours and after 30 hours in the experiment, as shown in Figure 76 and Figure 77. 

The temperature profiles at specific times, which are the times the melting front reaches the 

imaginary thermocouples, with the analytical solution show the linear in space while the 

profiles defined by the LBM show the deviating in space. The maximum errors of the LBM 

compared to the analytical solution are reported in Table 6. The Stefan problem gives the 

validation for the phase transition of ice in tiny volume ignoring the fluid flow, as well as the 

free-surface condition.  

Table 6. Maximum errors of the LBM compared to the analytical solution 

Cases Relaxation 

time, 𝜏ℎ 

Maximum error (%) 

of melting 

front 

of temperature profiles 

at times 

of temperature profile 

at positions 

LB model (1) 1.727 4.04 5.59 5.00 

LB model (2) 1.755 1.32 7.80 4.53 

 

 

Figure 76. Time history of the temperature distribution and the melting front locations by the analytical 
and numerical methods. 
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Figure 77. Temperature profiles at different times and at different positions: blue lines for the 
temperature distributions for times and red lines for the temperature distributions for positions. 

 

7.3.2 Ice melting by convective flow 

We applied the method to an ice melting simulation in a rectangular enclosure, which had 

been studied experimentally and numerically in (Virag, et al., 2006) and (Arid, et al., 2012). The 

problem configuration is given in Figure 78 (a). The results of this study were reported in 

(Ayurzana & Hosoyamada, 2016) and it is a combination problem of Section 7.2 and 

Section.7.3.1. 

 

Figure 78. Computational domains for the ice melting (a) and water freezing problem (b). 

In the phase change problems, the Stefan number 𝑆𝑡 = 𝑐(𝑇ℎ𝑜𝑡 − 𝑇𝑜)/𝐿𝑓 is used to control the 

simulation and the Fourier number 𝐹𝑜 = 𝑡𝛼/𝐿2 is used to analyze the results by means of the 

time dependent heat transfer. Except the numerical model described in Section 5.6, there is very 

simple approach to evaluate the liquid fraction value. For that method, the liquid fraction is 

computed (Semma, et al., 2008) as 

𝐿𝑓 = {

1               for 𝜃 > 𝜃𝑚𝑒𝑙𝑡 + 휀
0               for 𝜃 < 𝜃𝑚𝑒𝑙𝑡 − 휀

(𝜃 − 𝜃𝑚 + 휀)

2휀
  for 𝜃𝑚𝑒𝑙𝑡 + 휀 ≤ 𝜃 ≤ 𝜃𝑚𝑒𝑙𝑡 + 휀

                                    (394)  
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and we call it as the method without an enthalpy update. We had simulated melting front by two 

different ways; without an enthalpy update (Eq.(394)) and with an enthalpy update (Eq.(354)), 

respectively. They had shown slightly distinct melting fronts, shown in the first plot of Figure 

79. The closer results with the results of (Arid, et al., 2012) have provided from the way with 

the enthalpy updates and the melting fronts have been compared with (Arid, et al., 2012) and 

(Virag, et al., 2006) in the second plot of Figure 79. For melting front profiles, notable 

discrepancies with (Arid, et al., 2012) have been observed on the first four profiles in the second 

plot of Figure 79. However, at the same Fourier numbers during the simulation, the average 

melting front positions and shapes have the same positions and tendencies. Melting processes 

take place more intensively at the bottom of the enclosure rather than at the top.  

 

Figure 79. The first plot represents the melting front measurements at three horizontal lines: Y=0.75 (A), 
0.5 (B), 0.25 (C line) by different evaluation of phase change explained above. In the latter plot, 
comparison of melting front evolutions at the different Fourier numbers; Fo=0.0089, 0.017, 0.023, 0.032, 
0.044, 0.053, 0.065, 0.074, 0.086, 0.098, 0.11, 0.119 etc, are represented. 

 

Figure 80. Velocity vector and temperature field at three different Fo number. 

The melting front reached the right wall at Fo=0.065. It took Fo=0.12 to finish the melting 

process of ice. The temperature profiles and velocity vector are given in Figure 80 at the 
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selected Fo numbers. Overall predictions with the LBM were qualitatively correct with respect 

to other numerical results. Note that the results are non-dimensional.  

 

7.3.3 Water freezing in a rectangular enclosure 

We simulated a freezing process on the same configuration (see Figure 78 (b)) with the 

preceding melting simulation in order to examine the performance of the LBM for a freezing 

phenomenon and to find the spent time to complete a phase change in half of the enclosure. It is 

obvious that freezing and melting are opposite phenomena, which means that they do not take 

the same time nor shows same interface shape between the liquid and solid state. Initially, the 

water in domain was at the temperature 𝑇 = 8℃. After the simulation started, the temperature 

at the right wall abruptly maintained with temperature 𝑇𝑐𝑜𝑙𝑑 = 0℃ and kept thereafter. It is 

observed that the freezing takes place intensively after the convection flow damped down 

substantially in the enclosure. At the beginning, the high Nusselt number in Figure 81 (a) shows 

the convection dominated heat transfer at the left wall. The great decrease of the Nusselt 

number is evidence of the convection flow disappearing. The convection flow was very weak 

after Fo=0.4, because there was a small amount of temperature difference in domain, as shown 

in Figure 81 (b). The conduction rate of heat transfer is dominated after Fo=0.3 rather than the 

convection rate of heat transfer, which can be seen in Figure 82. Two ways to treat the phase 

change, with the enthalpy update and without the enthalpy update, have shown special distinct 

at Fo=0.56 and Fo=0.93 in Figure 82 (b) and it might depend on the enthalpy updates with 

previous liquid fraction values. In this simulation, the freezing processes are about 12 times 

slower than the melting processes to complete the task that the half region of enclosure must 

melt or froze. 

  

Figure 81. Results at the different Fo number by two different approaches in the LBM: (Left) The Nusselt 
number at left wall and (Right) the temperature profiles through the line A.  
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Figure 82. The first plot shows the freezing front measurements at the different Fo number at the same 
lines of earlier melting simulation. The second plot shows the freezing fronts by two different phase 
change treatment and the velocity vector of the case of the enthalpy updated treatment at Fo=0.934. 

Based on the above melting and freezing problems solved by the LBM, the phase transition 

treatment with the enthalpy update scheme might be more stable and accurate than without the 

enthalpy update scheme.  

 

7.3.4 Ice melting from the bottom 

Here we solved other numerical simulation of ice melting in a square enclosure which 0.2 m 

in the each side. Initially, the enclosure was filled with ice in a ready-to-melt case, i.e. the 

temperature of ice was tmelt = 0°C and the latent heat was removed. In the bottom side, the 

constant heat is maintained while the walls in right/left were assumed to be insulated from heat. 

The top wall is maintained with tmelt. Heat transferred by conduction in the initial stage of a 

simulation. After the creating sufficient space for the convection flow by the conduction 

dominated melting, the convection flow has started by the density difference in the melted zone. 

A density influence by the temperature is calculated by a force term expressed by the non-

Boussinesq approximation in the numerical procedure. Depending on the Rayleigh number (Ra), 

the number of fingering and its height was different. Each finger has shown the flow circulation 

in it. In Figure 83 (a), the melting interfaces of Ra=107 were shown with the velocity vector at 

the time 11.91 minutes. The convection flow created several fingering and they joined to the 

two big circulation flows immediately. Those two big circulations dominated for further heat 

transport and melted ice until the top boundary. If the Rayleigh number is low, the conduction 

heat transfer is dominated and took long time to start the convection heat transport. The 

maximum velocity induced by heat was around 0.01 m/s, while the maximum Nusselt number 

at the bottom wall was around Nu=40, shown in Figure 83 (b). After the ice melted until the top 

boundary, the temperature field in the middle area of the enclosure was almost constantly 

distributed, as shown in Figure 84. The numerical results were what we expected and the same 

as the results of researcher in the same field, which has not yet officially been published 

elsewhere (Esfahani, et al., 2016). 
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Figure 83. (a) Melting fronts of the ice melting from the below and (b) the measured Nusselt number at 
the bottom wall at the different melting times. 

 

Figure 84. The temperature profiles at the different melting time. 

 

7.4   Free surface flow simulations 

Here, the model described in Sections 5.5 and 6.1 is applied to free surface flows to demonstrate 

the application of the LBM. The results are reported in (Ayurzana, et al., 2016). 

 

7.4.1 Dam break analysis 

First, we applied the Free-surface LBM on a dam break benchmark problem to validate the 

performance of the algorithm. The simulated results compared against the experimental results 

conducted on the same geometrical configuration shown in Figure 85. For the wall, a slip 
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boundary condition was imposed. To validate numerical simulation, we measured a 

dimensionless waterfront position X* at a dimensionless time T* as,  

𝑇∗ = 𝑡√𝑛𝑔/𝐿 , 𝑋∗ =
𝑥

𝐿
                                                           (395) 

and the time evolution of water depth at specific points (A and B) depicted in Figure 85. In 

Eq.(395), 𝑛 = (𝐻/𝐿) is the aspect ratio of a water column, H and L are the initial height and 

width of the water column, x is the waterfront displacement at time t. We conducted two 

numerical simulations on grids of 200x400 and 300x600 to investigate the grid resolution 

independence. The time steps ∆𝑡400 = 0.00007 s and ∆𝑡600 = 0.00006 s were used, respectively. 

The parameters used in the simulations are determined through the parameterization formulas 

explained in Section 6.3.  

 

Figure 85. Schematic sketch of a dam break problem with a wet bottom. A lattice on the grid is depicted 
on the upper right corner of the scheme. Only dimensions of the height m and width n for the numerical 
tests had been attached to the scheme. 

  

Figure 86. Comparison of the melting front displacement and time evolutions of water level at the control 
point A and B in the experimental and numerical tests. 

It seemed that the grid resolution has a slight influence on the numerical results since the 

curve of the case of 300x600 has been plotted very nearly with the experimental one the first 

plot in Figure 86.  In the numerical experiment, a plate gate, separating the water column from 

the wet bottom in the tank, had not yet been included. The effect of the gate removing in the lab 

experiment appears with water depth evolution on the point A at time 0.2 s to 0.4 s on the 
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second plot in Figure 86, where experiment's time had been delayed. Except some offsets, the 

time evolution of water depths has the same tendency with experimental one in Figure 86 (b). 

Some discrepancies are considered as some deficiencies of data extracted from the video frame 

in the experiment. Because a normal video camera had been used to capture the phenomena in 

the laboratory experiment, the image has some perspective representation, which can be seen 

in Figure 87 (a). For the sake of convenience to printed document, we used edge detecting 

effect on the each frame of the image and black lines to express ideal water surfaces avoiding 

doubt with perspective surfaces in Figure 87 (a). The free surface shapes for three cases are in 

good similarity except flying water droplets and splashes on the wall, as compared in Figure 87. 

The water splash on the wall and flying droplets are difficult to be captured in a small scale LBM 

simulation since the interface between water and air phase is expressed by a continuous single 

layer of IF cells. Based on the validation process, it can be claimed that the single phase 

simulation of LBM for free surface problem has a substantial capability. 

 

Figure 87. Time sequence image comparison of experimental (a-upper) and numerical dam break tests 
(b-middle and c-lower) with the wet bed. 

 

7.4.2 Flow over a weir 

Weirs are well studied structures theoretically and experimentally, but less effort has been 

made by numerical studies because of perfection and priority. Matured weirs measure flow 

discharge very precisely, if a best fit discharge coefficient curve has determined accurately. 

Among with the advances in the numerical simulation, there exist many opportunities to 

develop brand-new weir or flume. In this study, we simulated flows over a sharp-crested 

rectangular weir in the two dimensional space to determine the discharge coefficient and flow 

pattern over the weir. Weirs and spillways have the same hydraulics manner for an inflow and 

outflow in terms of boundary conditions. We impose the Zou/He boundary condition at the inlet 

and the zero gradient open boundary condition (described in Section 5.2.3) at the outlet. The 

geometry for simulations is given in Figure 88 (a). 
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Figure 88. Dimension for flows over a sharp-crested weir and comparison of the discharge coefficient 

defined by the LBM, CFD tool and experiment for the different ratio of ℎ𝑤 𝑡𝑤⁄ . 

The discharge equation for a sharp-crested weir (Henderson, 1996) in unit width, assumed 

here as unit discharge, can be simplified as, 

𝑞 =
2

3
𝐶𝑑ℎ𝑤

3/2
√2𝑔 ,                                                         (396) 

where 𝐶𝑑 and ℎ𝑤 are the discharge coefficient and the static head over the crest. Practically, the 

discharge coefficient depends on many parameters such as a flow characteristic, channel 

geometry and the ratio of crest height to static head. Ignoring the channel geometry effect on 

the discharge, we examined the discharge coefficients of several discharge cases and compared 

to the results given in (Arvanaghi & Navid, 2013), where the study had conducted a physical 

experiment and a simulation by the commercial CFD tool, Fluent. Since this section is devoted to 

demonstrate the free surface LBM in open channel hydraulics, we only perform several 

numerical simulations on the configuration with crest height 𝑡𝑤 = 0.15 m, and the defined 

discharge coefficients are plotted with the results taken from (Arvanaghi & Navid, 2013) in 

Figure 88 (b). We had used the following parameters for time step and grid spacing, 

∆𝑡 = 0.000074 s and ∆𝑦 = 0.0025 m. In our simulation, it is observed that the ratio of the crest 

height to the static head on the crest was a main parameter to indicate flow characteristics of 

sharp-crested weir. If it exceeds over a unit, depending on the downstream situation, a 

submerged flow condition can be observed. A closed flow circulation was created between weir 

and nappe when case of ℎ𝑤 𝑡𝑤⁄ > 0.8, because the outlet boundary was the first order zero 

gradient boundary condition. When the ratio become ℎ𝑤 𝑡𝑤⁄ < 0.2, the nappe flow had totally 

adhered to the weir surface. 
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Figure 89. The results of the flow over a sharp-crested weir: the flow discharge is 𝑞 = 0.044 𝑚2/𝑠. 

 

7.4.3 Spillway example 

Spillways are important structures for dam safety and a designing and operation of this 

structure is quite difficult. A water flow with high energy acting through the spillway surface 

causes damage for a structure like erosion and corrosion. Furthermore, the water flow with 

undissipated energy erode the river bed at downstream of such structures. Spillways or 

significant hydraulic structures are mainly designed by the physical model, which has the scale 

effect and requires a cost and time. Here, we model small scale stepped spillways to 

demonstrate the free surface LBM to use in the investigation of the important hydraulic 

structures. Two different step configurations are considered to evaluate hydraulic 

performances, i.e. big-stepped and small-stepped spillway as depicted in Figure 90.  

 

Figure 90. Two cases of stepped spillway simulation. Spillway heights are 1.0 m and a stilling basin is 
included to dissipate energy in the simulation. 



 

© Ayurzana Badarch                                                                                                                                    163 
 

This study did not intend to dive into the detailed investigation of stepped spillway. 

Therefore, we measured the water surface and average velocity through the stream-wise 

direction to expose the energy dissipation. Depending on an approaching energy, it is appeared 

that the first step, usually designed smaller than the other steps, has a big void in backward in 

the both simulation cases, which means that the step height must meet with the design 

procedure for this step. For the spillway with big steps, the nappe flow started from the first 

step and continued until the last step with a quick appear of skimming flow in the middle, 

shown in Figure 91. Whereas, the stepped spillway with small steps shows a good performance 

on reducing energy (see Figure 92), where the skimming flow condition were dominated. 

 

Figure 91. The first column of figures shows the results of the big stepped spillway (0.2 m in height and 
0.3 m in length of a step), while the second column of figure shows the result for the small-stepped 
spillway (0.1 m in height and 0.2 m in length). 

 

Figure 92. Energy head over the spillway at two simulation cases. The energy is defined as the addition of 
the static head and the velocity head. 
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Figure 93. Stream functions for two cases: big-stepped spillway and small-stepped spillway. 

The flow regimes on the steps for the two cases are roughly determined in Figure 93. The 

skimming and nappe flows were chained one after another for the big-stepped spillway, as seen 

in Figure 93 (a). The nappe flow is considered as the cause of the cavitation on a spillway 

surface. Thus, the big-stepped spillway is not adequate in terms of hydraulic performance. The 

best flow regime is skimming flow (Rajaratnam, 1990), which can be seen in small stepped 

spillway as shown in Figure 93 (b). 

 

7.5   Liquid-solid phase transitions in free surface flows 

7.5.1 Melting of an ice cube in ambient temperature 

In order to validate the proposed numerical procedure in the free-surface condition, we 

carried out a brief laboratory experiment. The melting of an ice cube prepared in a freezer was 

compared with the results of the LB simulation. We used a commercially available infrared 

thermal imaging camera to measure the temperature distribution in a captured frame. An ice 

cube having sides of 4.5 cm was placed on a smooth wooden surface having lower thermal 

diffusivity and lower reflection of heat. In the heat transport module of the numerical model, the 

wooden surface was modeled as an adiabatic wall and the constant-temperature boundary 

condition was imposed on the water/ice surface interacting with the surrounding air. The 

temperature was maintained as a constant like the room temperature on the boundary, as in the 

experiment. In the fluid flow module, the wooden surface under the ice cube was assumed to be 

a no-slip wall, whereas the free-surface boundary condition (Eq. (346)) without surface tension 

was assumed for the water/ice surface interacting with the air. We used 60 grids for one side of 

the ice cube, the grid spacing was ∆x = 7.5×10-4 m, and the time steps were Δtf = 6.91×10-3 s and 

Δth = 7.603×10-2 s according to Eq.(370). These time steps provided sub-cycling at 𝑛𝑠 = 12 with 

Eq.(369), so that the heat transport module is performed once every twelve steps of the fluid 

flow module. The time sequence of the thermal image is shown in Figure 94 (a), followed by the 

corresponding numerical results in (b) and (c) of Figure 94. 
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Figure 94. Time sequences of the experimental and numerical results for an ice cube melting in ambient 
air. (a) Infrared images of the ice cube and ambient condition; (b) numerically determined temperature 
field; (c) numerically determined ice and water phases. 

Ice melts from the bottom at a low rate in the experiment, although no melting occurs in 

numerical simulation because of the given boundary condition. As shown in Figure 94, the 

difference in height of the melting ice cube after 62 min was 3.56 mm, whereas the numerical 

value was higher. The top of the ice cube became rounded in the numerical simulation, whereas, 

in the experimental test, the top remained approximately flat. The reason for this difference in 

shape might be related to the velocity of flowing water on the surface of the ice cube. The water 

thickness flowing on the ice surface in the numerical test, indicated as lf = 0 in Figure 94 (c), 

was observed to be much thicker than that in the experiment. Since we used a coarse grid for 

discretization, the numerical model requires at least two double-layer grids to simulate the 

surface of the water covering the ice. The average water surface temperature on the ice, as 

determined by the thermal camera, was approximately 2.2°C in the experiment, as shown in Fig. 

Figure 94 (a), which agreed with the result of the numerical simulation for the ice-water 

interface. 
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Figure 95. Experimentally and numerically determined remaining ice area. 

For the sake of generality, we show the remaining ice percentage with respect to melting 

time in Figure 95, which shows the accuracy of the numerical model. The melting rate of ice 

was nearly linear, and the numerical results were in good agreement with the experimental 

results, with the exception of the initial oscillation in the numerical results. Similar studies were 

conducted by (Faizal & Septiawan, 2014) for an ice cube in still water and by (Tan, 2014) for an 

ice cube melting in ambient air. Both of these studies used particle-based methods, and their 

results were less continuous and exhibited a step-like tendency over time. 

 

7.5.2 Ice melting by pouring water 

An ice melting by pouring water is more realistic and dynamic experiment and the results 

were reported in (Ayurzana & Hosoyamada, 2017). In the evaluation, we melted an ice cube by 

pouring water on it using the 2D numerical simulation. The results were compared with a 3D 

laboratory experiment carried out using the same configuration so as to verify the numerical 

model. A glass with an ice cube was placed on a plate and water was poured in the center of the 

top surface of the ice. The ice cube size was 4.5×4.5×4.5 cm. The temperature of the poured 

water was 30°C, while the initial ice temperature was -30°C. The air temperature was taken as 

25°C and a constant temperature boundary condition was applied at the inlet boundary and the 

free surface. In terms of heat transport, the walls and bottom surface were assumed to be 

adiabatic in the simulation. The bounce forward boundary condition, which reflects the 

distribution function at the wall like a mirror, described in Section 5.2.3, was used to impose a 

slip boundary at the glass wall. Since it is difficult to capture the temperature distribution inside 

the ice experimentally, the evolution of the ice melting front against time was used as a metric 

to compare the numerical results. Because of the high temperature difference between the ice 

and the poured water, the ice melting process took over 1 minute. The temporal change in the 

melting front and the remaining ice area were monitored by processing the images recorded 

using a camera during the experiment. 
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Figure 96. Temporal states of liquid-solid phases (a) and temperature fields during the ice melting by 
pouring water (b) 

In Figure 96 (a), the variation in experimental and numerical melting front with free 

surfaces and velocity vectors is shown at different time sequences. Experimental and numerical 

melting fronts are almost the same, as seen in Figure 96 (a). In the experiment, the water 

overflowed from the glass in all directions. However, in the simulation, the water overflowing 

from the left side is modeled as being attached to the side, while the water overflowing from the 

right side is computed as a weir flow as shown in Figure 96 (a). The melting front on the right 

side is more active than that on the left side in the simulation; this is also the case in the 

experiment. The heat transport on the left side was lower than that on the right side, as shown 

in Figure 96 (b). 

 

Figure 97. Experimentally and numerically determined remaining ice percentage 

The ratio of the remaining ice area to the initial ice area for each of the cases is defined and 

compared in Figure 97. The melting rate of the experiment and the simulation was nearly linear 

in comparison with the best-fit lines. The melting rate in the simulation was higher than that 

obtained from the experiment. The slight difference in the melting front evolution and the 

overflowing of water from the glass can be attributed to the dimensional difference. The 

temporal changes in the melting front and the flow of water over the side of the glass show the 

asymmetric properties in the simulation. The asymmetric melting front obviously leads to 
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asymmetric water overflow. Another reason for the asymmetric flow might be that the surface 

tension of the water is not considered in the free surface boundary condition. It seems that the 

surface tension affects the water overflow in the lab experiment. The asymmetry of the melting 

front also can be related to the free surface boundary condition. However, the overall 

predictions of the numerical model were in reasonable agreement with the experiment. 
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8 THE LBM TO APPLICATIONS 

So far, we have discussed the model, its implementation and validations. This chapter is devoted 

to particular problems in practice.  

 

8.1   Ice bed melting 

8.1.1 Short range of temperatures 

In the literature, forced convections with turbulent flows for liquid-solid phase change 

problems are solved rarely. We aimed to simulate a phase change problem in turbulent regime 

and it was achieved with the ice melting process by a flow over sharp-crested weir. The free-

surface LBM method has been used to simulate flow over a weir and those results are given in 

Section 7.4.2. Here, we extended the weir flow simulation to the phase change treatment with 

heat transfer neglecting the latent heat. The geometry of the simulation is given in Figure 98 (a). 

 
 

Figure 98. Ice bed melting by weir flow. Temporal and average value of the Nusselt number on the 
melting front. 

Ice with thickness of 0.06 m and temperature of 0℃ is located in downstream of a 0.2 m 

height weir. Water (flow q=44 l/s) with temperature of 10℃ is released from upstream of the 

weir to downstream. The surrounding air temperature set to be 1.5℃. The latent heat was 

ignored for this short ranged temperature consideration. After the melting of t=6.83 s, the 

downstream ice had been completely melted in our simulation. It can be inferred that melting 

intensity is proportional to velocity magnitude, in turn the turbulent intensity (Ettema, et al., 

1982), since the nappe flow provides the main contribution to transfer heat, shown in Figure 

99.  

(a)                                                                                                       (b) 
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Figure 99. Free surface and ice-water interface at top and temperature field at the bottom have been 
shown at selected times within the simulation. The initial state is illustrated as a straight grey line. 

We measured the Nusselt number on the melting front at t=1.71 s, as given in Figure 98 (b). 

The average Nu was 6.59, while the maximum Nu was 9.5, which observed where the nappe jet 

hits on the ice surface. This simulation was simulated by employing the direct integration 

approach for the fluid flow and heat transfer with phase change modules. The extension of 

temperature range with the direct integration approach leads the instability for the simulation. 

So that, we were advised to use the sub-cycling integration, when the temperature range is wide 

and the latent heat is present.  

 

8.1.2 Extended range of temperatures  

Previously, ice bed melting by the flow over weir was simulated for ice that was ready to 

melt, i.e., the ice temperature was set to 0°C, and the latent heat was ignored. In this section, we 

included a latent heat source term in heat transport and extended the temperature range. The 

initial and boundary condition is indicated by the problem geometry, as shown in Figure 100 

(a). Initially, temperatures of -30°C, 20°C, and 30°C were set for ice, air, and water, respectively. 

The inlet and outlet boundary of the flow field was imposed with a velocity boundary condition, 

whereas the wall and the surface of the weir were modeled as slip walls. Water at a temperature 

of 30°C was supplied to the inlet, where the thermal boundary was given by the Dirichlet 

boundary condition, explained in Section 5.3.2. The second-order extrapolation boundary 

condition was imposed on the outlet boundary for the heat transport module. The other walls 

and the surface of the weir were assumed to be adiabatic. The weir flow by the free surface LBM 

was carefully investigated and validated in Section 7.4.2, and we herein used the weir flow with 

the Froude number of Fr = 0.13. In order to examine grid independence, we considered two grid 

resolutions, namely, h = 60 and h = 80, where h is the grid number used for the weir height, as 

shown in Figure 100. 
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Figure 100. Numerical domains for the (a) ice bed and (b) ice cover melting by the flow over the weir. 

The relaxation times for the grid resolutions for the flow field were chosen as τν= 0.526 and 

0.534, respectively, which is adjusted to τtot by the sub-grid scale model (Section 5.4.3). The 

relaxation times for the heat transfer module was determined by the similar relation as 

Eq.(393) using the thermal diffusivity of water, which can be connected to the lattice viscosity 

by the Prandtl number. The ratio of the remaining ice area to the initial ice area was measured 

and is shown with respect to melting time in Figure 101. 

 

Figure 101. Percentage of remaining ice area for different grid sizes and parameters as determined 
through numerical simulation. 

Depending on the parameters, both grid resolution and the selected relaxation times, the 

total times of melting differed by approximately 0.6 min, and in case of h = 60, the ice lasted 3.8 

min. Based on these considerations, choosing appropriate parameters grounded in their 

physical relations is more important than grid resolutions. The melting rates for these two cases 

have similar melting rate tendencies, as shown in Figure 101, but after approximately 3.3 min 

melting rates are changed due to the low melting rate of the ice located directly behind the weir. 

Between the nappe entrance and the weir, where the flow is partially circulated, the convective 

heat transfer between the water and the ice was small due to the low velocity in this region. 

Heat transfer between water and ice can clearly be explained in terms of the Nusselt number. 

The local Nusselt number at a point on the melting front is defined as (Mohamad & Kuzmin, 

2010): 

𝑁𝑢𝐿 = |
𝜕𝜃

𝜕𝑦
|
𝑦=𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒

,                                                     (397) 
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and the average Nusselt number along the ice-water interface was calculated as 

𝑁𝑢𝑎𝑣 =
1

𝐻
∑ 𝑁𝑢𝐿

𝑘=𝐻

𝑘=1

𝑀,                                                            (398) 

where H is the grid number for the length of the ice, and M is the grid number for the depth of 

the water above the ice. The local Nusselt number and ice depth are plotted with respect to the 

elapsed time in Figure 102. 

 

Figure 102. Time series of ice depth and local Nusselt number measurement. 

The local Nusselt number at 0.7 m fluctuates with a higher frequency and amplitude than 

that at 1.0 m, and the tendency in both cases is to increase with time until decreasing suddenly 

at the location at which the ice depth decreases. Generally, this tendency is due to the fact that 

heat increases in ice and water near the interface, and the sudden drop is due to the 

disappearance of the ice. As the frequency increases, ice at approximately 0.7 m from the origin 

quickly melted because the convective heat transport at this position is high. The heat transfer 

coefficient expressed in terms of 𝑁𝑢𝑎𝑣 in Figure 103 was approximately ℎ𝑐 =  𝑁𝑢𝑎𝑣𝑘𝑅
𝑖𝑐𝑒/𝐿𝑚  ≈

 1,090.8 WK-1m-2, where 𝐿𝑚 is the characteristic depth of water on the ice. The temperature field 

and ice/water phase with a free surface at three different times are plotted in Figure 104, 

where the interaction of the flow structure and the thermal behavior of phases are shown 

clearly. The total melting time of the ice bed was about 3.25 minute and the melting rate of ice 

mass was around 42.46 kg/min. 
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Figure 103. Local and average Nusselt numbers near the interface between ice and water 

 

Figure 104. Temperature and vector fields at three different times obtained through simulation of ice 
bed melting.  
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8.2   Characteristic of melting of an immersed ice sheet 

The motion of ice in the model will be studied in Section 8.4, where we analyzed floating ice 

on the water surface (Ayurzana & Hosoyamada, 2018). However, in this section, the ice does not 

break up and move freely. An ice sheet melting simulation was conducted in order to determine 

the applicability of the numerical model to real field problems, in which ice in a river or a 

reservoir is mixed with free surface flows. In this case, the fixed position of the ice will help in 

the visualization of the freezing of water. As shown in Figure 100 (b), the condition and 

geometry of the ice sheet are such that heat is absorbed by the bottom of the ice and the water is 

expected to freeze downward due to water being trapped under the ice sheet, where a natural 

convection flow may dominate. Excluding the outlet velocity condition, all of the parameters and 

given conditions were the same as in the ice bed melting simulation. 

 

Figure 105. Percentage of remaining ice area for different grid sizes and parameters as determined 
through numerical simulation. 

Figure 105 shows the melting rate of ice for the two simulation cases, h = 60 and 80, and a 

discrepancy between the time courses appears at around 1.0 min into the simulation. However, 

a comparison between those two cases of the general melting shape of ice sheet revealed no 

significant differences. 
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Figure 106. Temporal change of temperature and flow vector field distributions at three different times 
obtained through simulation of ice sheet melting. 

Figure 106 shows the general melting process of the ice sheet in the simulation. The ice 

sheet absorbs heat from water flowing over it, and the cold water flows out of the outlet 

boundary. At the same time, beneath the ice sheet, heat can only be transported by conduction, 

as shown in Figure 106 (a), until a natural convection flow form in the water region beneath 

the ice sheet, because the water in this region is trapped by the circulating water flow near the 

outlet boundary, as shown in Figure 106 (d). The circulation flow near the outlet boundary 

transports heat and momentum into the closed region beneath the ice sheet. Another circulation 

flow was observed where the water flows over the weir. This circulation carries heat to the ice 

behind the weir. As water flows over the ice sheet, melting occurs and the ice is gradually 

eroded by overtopping flow (Figure 106 (b)). The melting rate of the upper surface of the ice 

sheet was higher than in other parts of the melting ice. This situation continues until a natural 

convection flow form in the water region beneath the ice sheet. As expected, freezing occurred 

on the bottom surface of the ice sheet due to convection. However, an opening eventually 

formed near the back face of the weir through which water could flow into the region of water 

trapped by the circulation flow, as shown in Figure 106 (e). The water flow then surrounds the 

ice sheet and melts the ice from all sides. The outlet circulation flow was an active heat 

transporter and melted and sharpened the tail of the ice sheet, as shown in Figure 106 (a) and 

(e). Due to erosion, the ice sheet was split into two pieces by the overtopping flow after 

approximately 1.6 min, which is indicated by the recurved shape of the lines in Figure 105. The 

piece near the outlet boundary quickly melted because it was surrounded by an active flow field. 
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The small piece of ice remaining can be seen in Figure 106 (f), and its effect on the temperature 

field can be seen in Figure 106 (c). The piece of ice near the weir eventual extended downward 

to the bottom boundary, as shown in Figure 106 (f). Figure 107 shows the temperature and 

velocity profiles at 0.7 m and 1.0 m at various times. Figure 107 shows that the velocity and 

temperature profiles have the same tendency because massive amounts of heat are transported 

by convection in turbulent flows. The vertical temperature gradient can be high where the flow 

velocity is high, as indicated near the upper surface of the ice sheet in Figure 107 (a) and (b). 

Unrealistic velocity and temperature decreases in the middle of the profiles appear at 1.0 m in 

Figure 107 (c) because of the piece of ice remaining in the flow, which cannot move with the 

water flow. As such, this piece of ice influenced the velocity field as an obstacle, resulting in a 

cooler temperature distribution. 
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Figure 107. Vertical profiles of temporal velocity and temperature at three different times: (a) t = 0.67 
min, (b) t = 1.35 min, and (c) t = 2.03 min. 

 

8.3   Open water forming mechanism in downstream of 

hydropower plant 

8.3.1 Ice problems of small hydropower plants in cold region 

Let us discuss about the ice problem in small hydropower plants in Mongolia as 

representative of cold region. Off-the-grid small hydropower plants (SHPPs) have been 
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promoted as an efficient source to fulfill the electricity demands in the rural areas of Mongolia 

(Infrastructure, 2002). A total of 11 SHPPs has been commissioned since 1986 (Boldbaatar, 

2013) and a number of plants have been planned for future construction. However, except for 

two of the plants, the others can be operated only for a short duration. The rest are unable to 

operate during the winter, from the time the river ice freezes until the ice breaks. In this section, 

we consider one of the SHPPs, namely the Tosontsengel hydropower plant, seen in Figure 108. 

This is located in the village of Tosontsengel, which is one of the coldest places in Mongolia. 

 

Figure 108. Location of the Tosontsengel hydropower plant 

The SHPP operates on the Ider River, which has a flow under the ice cover during the winter 

(forum, 2013). At this time, the plant faces a serious ice problem in the downstream area, as 

seen in Figure 109, where the ice ridge and jam is created in downstream. 

  

Figure 109. Downstream ice conditions: (a) from the power house to the bridge in downstream and (b) 
near the bridge, March 16, 2017.  

Also, the ice problem in the outlet channel of the turbine not only reduces energy production, 

but also decreases the cross-sectional area of the waterway, which causes bed erosion in the 

unlined channel.  

In general, studies on the ice problem and the possible countermeasures (Gebre, et al., 2013) 

are based on on-site measurements. There are very few studies that consider the prediction or 

modeling of the ice problem. In physical terms, the behavior of ice in the outlet of a hydropower 

plant in a cold region can be modeled as an interaction between ice and the free surface flow. 
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This involves liquid-solid phase changes since warm water is released from the turbine to the 

outflow channel changing the ice condition. 

 

8.3.2 Problem statement 

In the winter of 2007, a year after its commissioning, the Tosontsengel hydropower plant 

experienced ice jam and ice ridge formation in the downstream area between the outlet 

structure and a bridge that is located around 130 m downstream of the plant, shown in Figure 

109. An engineer working in the plant recalls, “Power production did not meet the expected 

operational plan and the efficiency was lower. In addition, ice heavily affected the bridge pier as 

an excess load. That year, workers in the plant suspected that fluctuations in the water 

discharge and the low speed of water in the outlet created the downstream ice problem.” The 

next year, they experimented by passing water downstream through the turbine without 

operating it. In other words, the water discharge through the turbine was the same as the river 

flow rate. Consequently, the ice jam reduced greatly, but small ice ridges were still observed 

downstream. Since then, the plant authorities decided to use this mechanism in the winter. 

When passing water through a stationary turbine, the water surface is not enclosed by ice for a 

distance of 4 to 5 m from the outlet. This is termed open water, and it exists during the winter. 

Forming of open water at specific rivers (Ettema & Zabilansky, 2001), (Prowse & Beltaos, 2002) 

has been well documented rather than open water forming in the downstream channel of 

hydropower plant. Open water in downstream might be the key factor for the condition of ice in 

downstream. Understanding of the open water forming mechanism provides important 

knowledge for the controlling ice condition in downstream.  

No research has been conducted for a way to deal with the ice and to operate the plant 

during the winter. However, workers are still seeking a way to produce power in the winter. In 

this study, we simulate the process of open water formation (see Figure 110) in the 

downstream. This occurs due to the release of warm water from the upstream through the 

turbine. It provides the possibility of applying the proposed numerical model to the ice 

phenomena in hydropower plants. Absence of field data and computational limitations make it 

difficult to model the ice problem on a large scale. 

 

Figure 110. The Tosontsengel hydropower plant, March 24, 2014. 

 

Open water 

Ice ridges 
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8.3.3 Numerical results 

Figure 111 shows a longitudinal cross-section of the Tosontsengel hydropower plant, 

including the computational domain. The computational domain does not include the upstream 

and the spiral case of the turbine. Hence, the inlet boundary of the computational domain is at 

the beginning of the turbine tailrace. The domain extends to 32 m downstream. We use a grid 

spacing ∆x=0.04 m and a time step ∆t=4.11×10-4 s in direct numerical integration (see the 

Section 6.2.1). We assume that the downstream of the plant is fully covered with ice of thickness 

0.3 m and the wicket gates of the turbine are closed initially. The temperature of the ice cover is 

taken to be -10°C in all simulations. The simulation starts with the opening of the wicket gates. 

At the inlet boundary, velocity and constant temperature conditions are imposed for the fluid 

flow and heat transport modules, respectively. Velocities at the inlet boundary are 

approximated from the capacity of the small turbine because of lack of winter flow data. At the 

outlet boundary, the second order extrapolation boundary condition was applied to the fluid 

flow and the heat transport modules. A typical bounce back boundary condition is used for the 

concrete wall and channel bed as a no-slip boundary condition. 

 

Figure 111. Longitudinal cross-section of the Tosontsengel hydropower plant and the computational 
domain with boundary conditions. 

As observed in the field, there is a continuous ice cover through the downstream area. Hence, 

the ice cover is assumed to be stationary and there are no crushing phenomena in the 

simulation. In order to understand the formation of open water in the ice covered downstream, 

three different water temperatures, 2°C, 4°C, and 8°C, are considered as cases for the low 

discharge water in the simulations. As ice set at a low water level, the first task was to find the 

discharge that maintains the low water level in downstream. Because at this time, no winter 

flow discharge data were available. The first run was carried out with the small turbine capacity. 

The discharge was apparently high and the maximum velocity reached at 8 m s-1, as shown in 

Figure 112 (a). The discharge was then reduced until the lowest water level is obtained. We 

found the discharge of 0.87 m3s-1 (Figure 112 (b)) and this was used in three cases of run with 

the ice cover.  
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Figure 112. Temporal situations with the high (a-top) and low discharge (b-bottom) of the outlet channel 
of the Tosontsengel hydropower plant. 

As shown in Figure 113, in case 1, the ice area evolution was stable except for an initial drop 

that could have been caused by initial pulses of inflow. Melting should have started near the end 

of the tailrace, where the velocity is the highest. However, open water was not formed during 

more than 10 minutes of simulation, as seen in Figure 114 (a), and eventually the system went 

into equilibrium. This is because of the low heat transfer rate between ice and water at the 

bottom of the ice cover. Melting or freezing of the ice cover happens in the other two cases. As 

the temperature is lower, the melting rate was lower for case 2 in comparison with case 3 in 

Figure 113. With the same hydraulic conditions, open water was created at different times; this 

is seen as a transition of the remaining ice area in Figure 113. After the open water is formed, 

freezing occurs in case 2, because of the water overflow and the low discharge of water under 

the ice cover. In case 3, the ice area gradually decreases because the temperature of water is 

sufficient to melt ice on and under the ice cover. This is shown in Figure 113 and Figure 114 

(c). The air temperature is shown in Figure 114 (b) and is the same for all cases. As shown in 

Figure 114, the length of the open water was 0.18 m for case 2 and 0.4 m for case 3. The open 

water in case 3 was further extended to 2.08 m in length at 13 minutes and 4.0 m at 23 minutes. 
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Figure 113. Numerically determined remaining ice area of the three temperature cases. 

 

Figure 114. Numerically defined temperature field and flow field at different times and cases: (a) case 1, 
(b) case 2 and (c) case 3. 

Hydraulically, the water flowing at the end of the tailrace tends to flow in a direction upward 

to the free surface. It then flows toward the downstream channel. The flow at the end of the 

tailrace, as pointed on Figure 114 (a), is intensified when the downstream is covered with the 

ice and open water exists in the head of the downstream channel. In other words, the ice 

covered channel acts against the water coming from the turbine, like the flow through a conduit 

under pressurized conditions. This pressurized condition also initiates the ice cover cracks. The 

open water is under lower pressure and interacts with the air; hence, water can easily flow in an 

upward direction after leaving the tailrace, as seen in Figure 114 (b) and (c). Therefore open 

water is maintained during winter. 
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The fact is that when the temperature is lower than 2°C and the discharge of the released 

water is approximately the maximum capacity of the turbine, the downstream ice cover does 

not melt. This implies that when water at a temperature near 2°C is flowing through the 

downstream channel and there exists open water in the downstream, ice will not melt nor 

extend if there is no overflow above the ice cover from the open water. Based on the flow 

characteristics obtained from the above simulation, if the flow direction to the head of the 

downstream channel is adjusted through the channel, it is possible to control downstream ice 

phenomena for different discharge conditions. One possible mechanical solution can be a 

controllable foil at the end of the tailrace, as shown in Figure 115. The foil length should be 

around 1.5 m to change successfully the upward directed streamflow into the stream wise 

direction and two ends must be sharpened. The foil should be controllable to change its attack 

angle to incoming flow depending on the flow rate. The adjusted flow will widen the cross 

section of the channel by melting ice cover from its bottom. Once the equilibrium state is 

reached under the ice cover in terms of thermodynamics, the ice condition will be stable and 

controllable in the outlet section of the power house. The detailed investigation of the foil and 

its material should be provided in order to evaluate its feasibility.  

 

Figure 115. A foil installation in the turbine tailrace to adjust flow direction toward under ice cover.  

 

8.3.4 Interpretation of open water forming mechanism 

The end of the tailrace is a special region, where the temperature of water is almost the same 

as that of the inlet boundary. This is where the heat exchange between water and ice starts. The 

flow is also intensive and is directed at the ice cover. The hydraulic and thermal conditions that 

exist in this region form the basic elements for the formation of open water. The open water 

formation mechanism can be described by the following process, as shown in Figure 116, with 

an assumption of ice covered channel, initially and no crack for ice cover. 

Initially, ice warming and melting processes take place (1) at the end of the tailrace. This one 

sided melting process ends at the initial opening (2) of the ice cover. The initial opening can 

appear adjacent to or near to the concrete wall, depending on the geometry of the tailrace. 

Generally, the process observed in the outlet of the turbine is exactly the same in an open 

channel flow, e.g. in natural rivers. Melting at more than two sides can occur for the ice cover, if 

water flows out through the initial opening and flows over the ice surface. The melting rate 
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depends on the water temperature and the discharge. If the discharge and temperature are 

sufficient to melt ice, the open water will be extended. This extension process (3a) takes place 

until the equilibrium state of the open water is reached. In the other case of temperature and 

discharge, ice cover will be extended (3b) in depth and eventually the downstream (channel) 

will be covered by ice again. In this extension process, aufeis (naled ice) (Schohl & Ettema, 

1986) forms in the downstream channel of the hydropower plant and critical condition become 

worse for the bridge in downstream. Fortunately, the low variance of winter discharge of the 

Ider River provides calm forming of aufeis. These extending processes directly lead consequent 

equilibrium processes after an uncertain time. If the discharge and water temperature are 

sufficient to compare with thermal conditions of ice and the environment, open water will 

persist for long time in terms of its equilibrium state (4a) maintaining its opening. The 

significant fluctuation of discharge and temperature, in addition an environmental condition, 

leads the new ice cover at the upper or lower level of initial ice cover instead of open water.  

 

Figure 116. Open water forming mechanism in open channel flow based on the numerical investigation. 

It is practically proved by the photo in Figure 117 that the low discharge and low 

temperature lead open water enclosed by the ice again at lower levels in the Tosontsengel HPP. 

The formation of open water in the downstream channel of the hydropower plant is 

successfully simulated to demonstrate the performance of the proposed LBM. The results 

indicate that the proposed model can be used for studying measures to control downstream ice 

in hydropower plants. It can also be applied to study the ice phenomena in open channel flows. 
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Figure 117. Open water next to the Tosontsengel HPP was enclosed by the ice, Feb 27, 2017. 

 

8.4   Freely floating ice 

The floating of ice bodies is an important part of a simulation of ice in a free surface flow. For 

simplicity, a simulation of an ice cylinder floating on the free surface is performed and 

compared with an experimental result in order to demonstrate the proposed algorithm for the 

floating body simulation. The ice cylinder with diameter D = 3 cm, initially positioned above the 

free surface at a distance h = D + D/2, falls into stagnant water and then floats on the water 

surface. The initial temperature of ice was -25°C, whereas the water temperature was 30°C. We 

tried to provide the same condition for the experiment and simulation. A grid spacing ∆x = 

1.0×10-3 m and a time step ∆t = 4.57×10-5 s are used for the simulation. The simulation time was 

shorter than the melting of the ice cylinder.  

In Figure 118 (a), we compare the coordinate of the center of the ice cylinder measured as a 

function of time in the simulation and laboratory experiment. Overestimates of position can be 

observed at the turnings of the ice cylinder position, which might be caused by the 

underestimates of the hydrodynamic force in simulation. By contrast, an initial flow field might 

be affected on the ice cylinder movement in the experiment. Another source of the 

overestimates might be the choice of the Rayleigh number. Figure 118 shows the numerical 

results at Ra = 104. When the Ra is greater than Ra = 104, the convective flow becomes active 

than the inertial flow induced by the movement of the ice body.  

Range of open water 

New ice cover 
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The temperature and velocity field shows symmetries except the splash during the ice 

cylinder plunging into the water in Figure 118 (b). The shape of the cylinder at the end of the 

simulation was the same as the initial shape of the cylinder and the mass of the system was 

conserved during the simulation. 

 

Figure 118. Falling and floating ice: (a) the comparison of the displacement of the ice cylinder measured 
in the simulation and lab experiment, (b) the computed temperature field (top) and flow field (bottom) at 
specific times. 

Conclusively, the numerical results confirm that the proposed algorithm for the floating body 

satisfies the mass conservation, which has been difficult to be handled, and computes the 

involved free surface and heat transfer with reasonable accuracy. Nevertheless, shape changes 

of the floating body over time due to phase changes should be considered in further research. 

Finally, it can be said that the proposed model is not only capable of simulating ice dynamics in 

a free surface flow, but also capable of simulating dissolving related problems. 
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9 AN ATTEMPT TO THE LATTICE BOLTZMANN PARALLEL 

SIMULATION 

The LBM is popular by it’s inherit property of naturally suitable for a parallel simulation. We 

have made our attempt to the parallel simulation with the standard and Entropic LBM.  

 

9.1 Parallel implementation of the Entropic LBM 

In this study, the standard and entropic LBM are implemented in parallel way using the 

Fortran 90 programming language. A stable computation of the ELBM is gained by paying time 

and memory as the computational cost, which will be explained in Section 9.1.2. At the other 

point, engineering problems are often characterized as a large scale or long term phenomena in 

space and time. The LB solutions for these problems in central processing unit (CPU) based 

simulation ended up at difficult challenges because of the computational cost. The 

implementation of the ELBM on the graphics processing units (GPU) can solve the two 

important difficulties of computation: instability and high computational cost. 

Nagaoka University of Technology (NUT) has a GPGPU system, which is available for students 

and staffs for their research activities (Figure 119). 

 

Figure 119. General purposes graphics processing unit system at the NUT, Japan. 

The GPGPU system is powered by 16 NVIDIA Tesla M2050 graphic processing units, which has 

the ability to perform 562 GFLOPs with double precision. Also CUDA Fortran version 11.3 has 

been installed on the GPGPU system. Grasping this technical potential and numerical method, 
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we have made an attempt to implement an efficient parallel code for fluid flows on the GPGPU. 

In the CUDA programming, a code has to be devoted to two particular sections named a host 

code and a device code (Ruetsch & Fatica, 2011), as shown in Figure 120. A host code refers 

that the code executes on the host CPU machine, whereas a device code refers that the code 

executes in the GPU machine. The codes use memories on dedicated machines, i.e., variables 

used in the device code must use a GPU memory.  

 

Figure 120. General architectural scheme of the implemented parallel code on the GPGPU system. 

As the main program in the CUDA FORTRAN code is executed on the host, all variables in 

both host and device codes need to be declared specific memories of their use in the host code. 

Macroscopic variables, distribution functions and population parts are declared on the global 

memory (device memory) and could only be used in the device code. As the purpose of the 

ELBM code, initial conditions and loading geometric data are implemented on the host code, in 

which the device and host codes need to exchange data. So called kernels, subroutines in the 

Fortran language, implemented in the device code are launched from the host code. On the right 

hand side of Figure 120, the host code composing the kernels with used equations in numbers, 

which is performed on the predetermined blocks and threads in GPU architecture. An entropic 

part of the numerical algorithm tested as separate kernels, for instance a kernel for population 

part and a kernel for stabilizer. The separated kernels use low memory in consumption; 

however, the total computation time of two kernels was higher than their unified version in one 

kernel. The defining population parts and stabilizer is optimized to use low memory on the local 

memory of the GPU in one kernel, since the declaration of array in the kernel uses a lot of 

registrations, which might be caused the abortion of the kernels. Besides the streaming step, all 

required equations and formulae in the ELBM as well as the StLBM are easily implemented in a 

parallel way. To perform the streaming in an efficient way, two parallel distribution functions 

are used and they synchronize in the host code after the calculation of one time step. To 

improve performance of the parallel code, some optimization of array declaration as 𝑓(𝑥, 𝑦, 𝑖) 

for the distribution function instead of the regular array structure of the distribution 

function 𝑓(𝑖, 𝑥, 𝑦) is applied. Storing the constant parameters used in both codes in their 

memory save a small amount of the computational time. A single lattice is assumed to be a 

thread and a computational domain has divided as blocks horizontally.  
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9.1.1 Parallel performance of the ELBM code 

The parallel code for the ELBM was implemented by the way that uses low memory and 

efficient computation, as explained above. We have solved flow past a cylinder in the laminar 

regime (Re = 200) to evaluate performance of the parallel code, since the StLBM can’t survive at 

a high Reynolds number. The simulation domain formed as 300 grids in length and 100 grids in 

width. The simple bounce back boundary condition was imposed for the top wall, a bottom wall 

and a circular obstacle. The Zou/He boundary condition was applied with a characteristic 

velocity of 𝑢0=0.1 for the inlet and the zero gradient boundary condition is used for the outlet 

boundary. The PGI Fortran compiler on the GPGPU system is used to perform parallel and serial 

computations to evaluate parallel performances. Time criteria to stop simulations was set at t = 

50000 in all simulations. 

  

Figure 121. (a) Percent of elapsed times used by the kernels in single computational time of the ELBM in 
double precision. (b) Speedup ratio and parallel efficiency of the ELBM code with regards to the number 
of threads. 

As investigating deeply the performance of the parallel ELBM code, an Entropic part (labeled 

“Ent” in Figure 121 (a)), computing stabilizer and population parts, consumes around 41% of 

the all required time to perform kernels, shown in Figure 121 (a). The second largest consumer 

was the defining macroscopic variables and synchronization of two groups of distribution 

functions (labeled “Macr” in Figure 121 (a)), since the streaming process done by using the two 

groups of distribution functions. 

The computational domain was divided as blocks in horizontally and threads in a block. A 

number of blocks can be chosen. Figure 121 (b) shows speedup ratios and parallel efficiencies 

of the parallel computations on the GPGPU with respect to the number of threads used in the 

simulations. The parallel efficiency is determined as the ratio between the speedup ratios to the 

warp sizes of the GPU. The parallel code can speed up until 10 times faster than its serial version 

on the same machine. The highest speedup ratio was found in the 64 threads in a block. The 

computational efficiency would be convenient where the number of threads is lower than the 

maximum grid number of the domain. In other words, the number of threads should be smaller 

than the maximum number of grid in the horizontal or vertical direction.   

Further, we examined the computational throughput and memory bandwidth for four cases 

of grid resolutions, shown in Figure 122 (a). The number of thread was 512 in the simulations. 
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The computational throughput and memory bandwidth have a linear relation with the grid 

resolutions. Comparing to the maximum performance of the GPU, our code performs at the 

middle rate. Actually, a memory bandwidth was inefficient, uses a small amount of the possible 

memory bandwidth for the data transfer and management. Therefore, effective usage of the 

memory bandwidth in the parallel ELBM code needs to be explored. Elapsed time against the 

increase of grid resolutions plotted in Figure 122 (b) shows the performances of the code on 

the different grid resolutions. Hence, the increase of the computational time has parabolic 

relation with the increases of grid resolution. Steepness of the parabola can be decreased if we 

increase the effective memory bandwidth in the code. To improve effectiveness of the code, 

possible kernels can be merged in such a way that uses low memory in the local memory of the 

device. Interestingly, the LBM index (Bailey, et al., 2009), which is an index to show the parallel 

performance of the LBM in the way that how much lattice is updated per second (LUPs), 

increased as the grid resolution increases in Figure 122 (b).  

  

Figure 122. (a) Computational throughput and memory bandwidth against the grid resolutions. (b) The 
elapsed time and efficiency of ELBM computation against the grid resolutions. 

 

9.1.2 High Reynolds number flow with the ELBM: flow past a circular 

cylinder 

Flow past a bluff body has been widely studied both numerically and experimentally (Ong & 

Wallace, 1996) at high Reynolds numbers (Mittal & Balachandar, 1995) (Karabelas, 2010) 

(Rahman, et al., 2007) (Rajani, et al., 2016). The enhanced version of LBM using sub-grid scale 

(Hou, et al., 1996), (Liu, et al., 2008) and the direct numerical simulation like entropic 

approaches (Karlin, et al., 2014), (Ansumali, et al., 2004) are the main contributions to these 

studies. We have used a domain used in (Liu, et al., 2008) for our simulation. The boundary 

conditions are the same explained in Section 7.1.1. Preliminary test simulations were performed 

for the Re=1000 and Re=3900 in order to test the accuracy. We defined the Strouhal numbers 

and compared with the other studies conducted in the same condition using different 

techniques in Table 7. 
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Table 7. Strouhal numbers of flow around circular cylinder at different Reynolds number 

Sources/methods of the results Strouhal number 

Re = 1000 – Present study 

Extended LBM (using Smagorinsky sub-grid scale model) [12] 

Experiment [13] 

Standard k-epsilon model [5] 

0.217 

0.208 

0.212 

0.148 

Re = 3900 – Present study 

Extended LBM (using Smagorinsky sub-grid scale model) [12] 

Experiment [13] 

Standard k-epsilon model [5] 

0.211 

0.215 

0.215 

0.171 

Re = 140000 – Present study 

Extended LBM (using Smagorinsky sub-grid scale model) [12] 

0.228 

0.209 

The Strouhal numbers defined by the ELBM were in good agreement with the results of 

experiments and other simulation methods. In Figure 123, the vorticity field of fully developed 

2D turbulent flow at simulation time t = 10000 at Re = 140000 performed by the parallel ELBM 

is visualized.  

 

Figure 123. Vorticity field of flow past cylinder at Re=140000 on coarse grid. 

A performance of the ELBM can clearly describe the Reynolds number effect on the cylinder. 

The flow field can be captured exactly comparing to the performance of the LBM extended by 

the Smagorinsky model. It was revealed that the Smagorinsky model for the LBM seems to 

overestimate the eddy viscosity (Ayurzana, 2016) at higher Reynolds number and it leads 

underestimates of velocity fields. Unlike it, the ELBM does not modify viscosity in the simulation 

and corrects velocity field by the maximum entropic condition. For coarse grid, the ELBM can 

resolve flow field and generate a vortex in the sub-grid. Figure 124 shows the pressure 

coefficient distribution and the velocity magnitude in lattice form around the cylinder defined at 

Re = 140000. Based on the results obtained by the ELBM, the flow field can be computed with 

reasonable accuracy and stability at very high Reynolds numbers using the ELBM. It should be 

noted that the bounce back boundary condition might be affected on the accuracy in some case 

(Karlin, et al., 2014). In that case, proper boundary condition based on the kinetic theory must 

be used (Chikatamarla & Karlin, 2013).  
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Figure 124. Pressure coefficient distribution and absolute velocity value at Re=140000 

In summary, we have implemented an Entropic Lattice Boltzmann method in parallel 

operation using CUDA Fortran programming language on the NUT’s GPGPU system. The 

entropic LBM is used to perform unconditionally stable simulations, while parallel computation 

is used to speed up simulations and improve efficiency of the code for the future large scale 

engineering simulations. The parallel code is aimed to be used for a large scale and long term 

simulation in engineering field in complicated geometry at high Reynolds number fluid flows. 

Further, we solved flow past a cylinder at Re=140000 to show the performance of the ELBM 

parallel code. To evaluate accuracy, the Strouhal number at Re=1000, 3900 are defined and 

compared with experiment and other numerical simulation results. The results were in good 

agreement. The parallel code of the ELBM is implemented in the combination of low memory 

usage and fast computation. Using the GPGPU for the ELBM, the computation can be performed 

10 times faster than the serial code. Based on the stable and accurate computation of the ELBM, 

the parallel computation will be a very efficient method for CFD. 

 

SUMMARY FOR PART 2 

In this part, the mesoscopic numerical modeling called the LB models was extensively discussed 

with their applications. The numerical models aimed to solve ice problems in open channel 

flows which cover free surfaces, heat transfer, phase transitions and liquid-solid interactions. 

The numerical models were organized as the mesoscopic numerical framework as just like 

getting done in Part 1 for the macroscopic models.  

The lattice Boltzmann model for the fluid and scalar transports were followed by the other 

models such as a free surface model and liquid-solid phase transition model. In the numerical 

implementation, the pseudo-potential codes for each model were described in great details. 

Numerical examples for each particular model were purposed to validate the model. The 

coupled models for, such as a natural convection, melting and freezing of water were also 

verified by the simple problems and experimental studies. The successfully validated numerical 

framework for the liquid-solid phase transition in free surface flows was applied to the open 

channel problems. The important application was the open water forming mechanism in an 

outlet channel of the small hydropower in Mongolia. Based on the numerical results, an idea of 

the mechanical solution to control ice in downstream of the hydropower plant is proposed. 

The melting and freezing of ice in open channel flows was studied and shows the 

applicability of the proposed model for a short period of time. The application of the open water 
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forming mechanism was resulted the explanation of the process of open water forming not only 

in the outlet of hydropower plant but also in natural rivers.  

In the last, an attempt to the parallel computation with the LBM was investigated for single 

phase flows by the both standard and ELBM. The numerical procedure of the LBM best fit for 

the requirement of the parallel computation. With the parallel computation, we can get the 10 to 

20 times faster simulations compared to the serial version of it. It is particularly crucial step for 

the application of the LBM to the real engineering problems.  

The solution with the LB models of complex physics, ice in free surface flow, nominates the 

confidence that the LBM is applicable for various physical phenomena. We have a follow-up 

concept for particular problems described in the objectives of this research: sediment and ice. 

The concept is “all in one LBM” as depicted in Figure 125.  

 

Figure 125. All in one LBM concept, where free surface flow pours into loose boundary with ice cover. 
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10 CONCLUSION AND FURTHER RESEARCH 

contains overall connections, conclusions to two parts of the research work and further 

considerations related to the subjects.  

 

10.1 Conclusions 

As specific objectives, we had learned to apply macro and mesoscopic models for particular 

problems that were sediment and ice in two parts, respectively. Each part has several 

contributions to the recent knowledge in research. For instance, in Part 1, the particle tracking 

method, which has superior to the traditional advection-diffusion based solution for sediment 

transport, is introduced. The particle tracking method treats each particle individual and 

describes local and global behavior of sediment transport based on the size of sediments. With 

respect to it, the settling velocity affected by the flocculation effect is also introduced to the 

particle tracking method as a simple model parameterized by an experiment. The flocculation 

model is applicable for an estuary where sediment discharged from river water to seawater. As 

a problem studied, the sediment transport in the estuary of the Ohkouzu diversion channel is 

investigated in the 2D and 3D space. In results, the characteristic of the spatial distribution of 

the sediment at different settling velocities and sizes was obtained. Concerns about the 

macroscopic models will be discussed with that of mesoscopic modeling in Chapter 10.3 as 

future works. 

For Part 2, highlights are imbedded in the developed numerical model for a liquid-solid 

phase transition in a free surface flow, where many models are coupled to each other in first-

time. For instance, the immersed boundary method is coupled with a free surface model and 

liquid-solid phase change treatment for water. The liquid-solid phase transition in a free surface 

flow considering the water itself is relatively new research work among the published articles. It 

is one certain contribution to the river ice research and unlocks the ice dynamics and 

thermodynamics. The free surface-immersed boundary LBM is applicable to the freely floating 

object in a free surface flow. Moreover, with the benefit of the scalar transport solution for 

liquid-solid phase changes, it is applicable for more complicated rarely studied subjects like a 

time-dependent arbitrary shaped floating object.  

The sediment and ice modeling separately is achieved at certain degrees of satisfaction in 

this thesis. As the main objective, the research for both problems leaves the strong confidence 

that both modeling scales are possible for two problems can be solved simultaneously. Precisely, 

the lattice Boltzmann method is adequate for the small to mid-scale problems, while the 

macroscopic model is convenient for the mid to large scale problems like a river or lake. The 

lattice Boltzmann modeling can bring simple solutions for the sediment and ice as a generalized 

model. The particle tracking method proposed in the macroscopic modeling is combinational 

with the lattice Boltzmann modeling for the purpose of modeling particulate nature. Whether 

using the macro and mesoscopic modeling to the long-time, large-scale problem, one will 

naturally regard to high performance computing in an academic research.  
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10.2 Highlights and applications 

The studies in two parts have highlighting points and the possible applications for different 

type of engineering problems. After listing highlights for two parts, we will commend 

applications of the models based on the concepts and methodology of models. 

The macroscopic modeling of sediment transport in part 1 

 demonstrates a new convenient benchmark problem for sediment and density 

currents, the lock-exchange with sediment. The benchmark problem has unique 

features to show interactions between currents induced by density or salt 

concentrations while showing the sediment transport and is suitable for the 

validation of new models. 

 formulates a new particle tracking method (PTM), that treats each sediment particle 

individually in order to maintain the particle having independent and own velocity in 

fluid flows.  The PTM is superior to the ADE in terms of the presentation of local and 

global dynamics of sediment and distribution analysis of sediment sizes.   

 introduces a simple flocculation model, including the salting-out process that is well 

suited for the PTM and have an implicit effect on the settling rates of sediment 

particles. The flocculation model and its parameters were assured by the settling 

experiment. 

 describes the conventional scheme for the sediment problem. This statement is made 

because employing the two different descriptive models for the same purpose at the 

same time gives interactive manipulations for modeling. For instance, the framework 

used in Part 1 (see Figure 16) has two sediment models and the results can be 

mutually assessed and compared each other that is rather trustful to use the single 

model for tricky problems.  

The mesoscopic modeling of ice problems in part 2 

 formulates the thermal-free surface-immersed boundary-lattice Boltzmann model 

from scratch. The model/method can be abbreviated as the T-FS-IB-LBM and it is a 

two-phase model. 

 brings the novelties to the research field such as the LB solution for a liquid-solid 

phase transition in free surface flow, extended application of the IB formulation to 

phase transitions and floating body simulations etc.  

 provides validation problems for a liquid-solid phase transition problems. With this 

statement, the author believes that the problems provided for validation can be the 

tests for new models designed for a liquid-solid phase transition.  

 demonstrates a simple solution for the complex physics. 

 introduces the LB solution to small to mesoscale hydraulics and ice problems. For 

instance, the T-FS-IB-LBM is partially applicable to the problems of fluid – solid 

interactions, free surface flows, porous media flows with free surfaces, scalar 

transports in free surface flows and combination of the above.  

Possible applications of the PTM can be: 

 sediment transport in river, reservoir and lakes 
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 wastewater treatment (flocculation or aggregation processes) 

 salting-out process modeling of particulate matter 

 and non-cohesive particle transport (sand and snow). 

The model concept or its formulation of the T-FS-IB-LBM can be applied in 

 metallurgy (metal modeling and foaming processes (Ammer, et al., 2014)) 

 ice problems in local and global (Esfahani, et al., 2016) 

 volcanoes and lava flows  

 solvent and solute 

 and sediment and erosion/deposition.  

 

10.3 Future recommendations 

Two parts of research intersect on the two aspects: problem and coupling of modeling. As the 

problem, knowledges gained by separate studies for particular problems provide basic paths of 

modeling the problems together. In general, the sediment and ice considered at the same time in 

the same system are important and challenging subject. Background researches based on 

experiments and observations and their reviews have been provided extensively in (Ettema, et 

al., 2000), (Lau, et al., 1985), (Ettema & Daly, 2004), (Turcotte & Morse, 2013) and other articles. 

The mutual effects of ice and sediment (Ettema, 2002) should be studied and modelled by either 

macro or mesoscopic numerical modeling. One direct method for the problems is coupling of 

contributions of this dissertation. In other words, the flow and ice are modeled by the T-FS-IB-

LB, while the PTM can take care of the sediments. Otherwise, the one can exploit the capability 

of the LB models for the problems obeying our proposed concept (see Figure 125). 

As having the same aim, the two types of models, macro and mesoscopic modeling can be 

coupled with each other in different patterns. While using the macroscopic model for a 

transport phenomenon, the mesoscopic model can be used to solve a fluid flow (Hlushkou, et al., 

2004). Also, existing knowledge from the FDM is usually applicable for the LBM (Junk, 2001). 

From the differences of underlying theory and procedure, macro and mesoscopic modeling 

carry irreplaceable properties with them. For instance, the LBM is suitable for complex shaped 

geometry, while the FDM may be comfortable for large scale computation. With this respect, the 

methods can serve their duty for their effective parts of a domain (Albuquerque, et al., 2004).  

Herein we enumerate the bottlenecks in two parts as future works. In part 1, the PTM should 

receive more improvements in aspects of hindered settling, sediment particle-particle 

interactions, particle-fluid interactions and de-flocculation effects. Also the quantitative 

variables, e.g., deposition volume, bed and suspended loads are expected in the PTM. The poor 

connections to concentrate based evaluation should be explored if it is necessary. Even the 

particle is a representative particle in the model, the crowd of the particle effects for the fluid 

viscosity. So the relation between viscosity and particle density in the numerical framework 

should be expounded. To overcome the main disadvantage of the PTM, one can parallelize the 

model in the implementation (Mooney, 1951).  

For the liquid-solid phase transition in free surface flows in Part 2, ice mechanical modeling 

such as cracking and crushing (Beltaos, 1990) must be included to be a more accurate modeling 



 

© Ayurzana Badarch                                                                                                                                    197 
 

tool to be applied in the river ice dynamics. By virtue of the immersed boundary modification, 

the proposed model for the liquid-solid phase transition can be superior than the concentration 

based modeling of ice. The solution algorithm for the arbitrary shaped floating body should be 

more elaborated for general purpose and be extended to the multi-body interactions. The 

models are straightforward to the 3D formulation and computation.  The algorithm for the ice 

melting shares the idea that can be used for the local erosion and scour (Ettema, 1980). Also, the 

LB model for the sediment transport (Masselot, 1998) needs to get new pace into the 

application.   

As mentioned, the parallel implementations of the models are crucial to be effective and 

modern.  
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APPENDIXES 
contains the connection between the lattice Boltzmann equation and the macroscopic governing 

equation such as the continuity equation, the NSE and the advection-diffusion equation.  

 

A1 Derivation of the Navier-Stokes equation 

We can simply check that the discrete Boltzmann equation can produce the macroscopic 

continuity and momentum equation using the moments of the distribution function. However, 

now, we will deal with the method by which the macroscopic equations can be reduced from the 

lattice Boltzmann equation. The method is celebrated as the Chapman-Enskog (Guo & Shu, 

2013) (A.A.Mohamad, 2011) approximation that analysis the equation in multiple scales.  

The distribution function can be approximated as an infinite series constructed by its 

perturbations with the small parameter ϵ: 

𝑓𝑖(𝐱, 𝑡) = 𝑓𝑖
(0)(𝐱, 𝑡) + 𝜖𝑓𝑖

(1)(𝐱, 𝑡) + 𝜖2𝑓𝑖
(2)(𝐱, 𝑡) + ∙∙∙   ,                                       (𝐴. 1) 

where the small parameter is interpreted as (a) the small parameter, |𝜖| ≪ 1, expanding the 

function in a series, which can be assumed to be a  Knudsen number, Kn, in case of Chapman-

Enskog expansion and (b) the magnitude classifier for the perturbations, which can be a unit, 

𝜖 = 1, to be cancelled after the result derived (Wolf-Gladrow, 2000). In this expansion, the 

following properties are valid: 

∑𝑓𝑖
(1)(𝑥, 𝑡)

𝑖

= 0 , ∑𝐜𝑖𝑓𝑖
(1)(𝑥, 𝑡)

𝑖

= 0 ,   and                            (𝐴. 2𝑎) 

∑𝑓𝑖
(2)(𝑥, 𝑡)

𝑖

= 0 , ∑𝐜𝑖𝑓𝑖
(2)(𝑥, 𝑡)

𝑖

= 0 ,                                (𝐴. 2𝑏) 

which means that the perturbations cannot contribute to the mass and momentum conservation. 

The lattice Boltzmann equation with a force term can be rewritten from Eq.(187) as follow 

𝑓𝑖(𝐱 + 𝛿𝑥, 𝑡 + 𝛿𝑡) = 𝑓𝑖(𝐱, 𝑡) +
1

𝜏𝑣
(𝑓𝑖

(0)
− 𝑓𝑖) + 𝐹𝑖

𝐜 − 𝐮

𝑅𝑇
𝑓𝑖
(0)
 .                       (𝐴. 3) 

The left hand side and the force term in Eq.(A.3) can be expanded into a Taylor series up to 

terms of second order of 𝛿𝑥 = 𝐜𝑖𝛿𝑡: 

𝑓𝑖(𝐱 + 𝐜𝑖𝛿𝑡, 𝑡 + 𝛿𝑡) = 𝑓𝑖(𝑥, 𝑡) + 𝛿𝑡
𝜕𝑓𝑖
𝜕𝑡
+ 𝛿𝑡𝑐𝑖𝛼

𝜕𝑓𝑖
𝜕𝑥𝛼

 

+
(𝛿𝑡)2

2
[
𝜕2𝑓𝑖
𝜕𝑡2

+ 2𝑐𝑖𝛼
𝜕2𝑓𝑖
𝜕𝑡𝜕𝑥𝛼

+ 𝑐𝑖𝛼𝑐𝑖𝛽
𝜕2𝑓𝑖

𝜕𝑥𝛼𝜕𝑥𝛽
] + 𝑂[(𝛿𝑡)3]                            (𝐴. 4) 

and  

𝐹𝑖
𝐜 − 𝐮

𝑅𝑇
𝑓𝑖
(0)
=
c𝑖𝛼
𝑅𝑇

𝑓𝑖
(0)
𝐹𝛼(𝐱, 𝑡)⌈to expand 



 

© Ayurzana Badarch                                                                                                                                    199 
 

= 𝛿𝑡
c𝑖𝛼
𝑅𝑇

𝑓𝑖
(0)𝐹𝛼 +

(𝛿𝑡)2

2

c𝑖𝛼
𝑅𝑇

𝑓𝑖
(0) [

𝜕𝐹𝛼
𝜕𝑡

+ 𝑐𝑖𝛼
𝜕𝐹𝛽

𝜕𝑥𝛽
] + 𝑂[(𝛿𝑡)3] ,                            (𝐴. 5) 

where we have used that the peculiar velocity is equivalent with the discrete velocity at an 

equilibrium state. Substituting the expansions in Eq.(A.3) gives 

0 =
1

𝜏𝑣
𝑓𝑖
(0)
−
1

𝜏𝑣
𝑓𝑖 − 𝛿𝑡

𝜕𝑓𝑖
𝜕𝑡
− 𝛿𝑡𝑐𝑖𝛼

𝜕𝑓𝑖
𝜕𝑥𝛼

 

−
(𝛿𝑡)2

2
[
𝜕2𝑓𝑖
𝜕𝑡2

+ 2𝑐𝑖𝛼
𝜕2𝑓𝑖
𝜕𝑡𝜕𝑥𝛼

+ 𝑐𝑖𝛼𝑐𝑖𝛽
𝜕2𝑓𝑖

𝜕𝑥𝛼𝜕𝑥𝛽
] 

+𝛿𝑡
c𝑖𝛼
𝑅𝑇

𝑓𝑖
(0)𝐹𝛼 +

(𝛿𝑡)2

2

c𝑖𝛼
𝑅𝑇

𝑓𝑖
(0) [

𝜕𝐹𝛼
𝜕𝑡

+ 𝑐𝑖𝛼
𝜕𝐹𝛽

𝜕𝑥𝛽
] + 𝑂[(𝛿𝑡)3] .                     (𝐴. 6) 

Now, introducing two time scales and one spatial scale with the following scales, 

𝜕

𝜕𝑡
→ 𝜖

𝜕

𝜕𝑡(1)
+ 𝜖2

𝜕

𝜕𝑡(2)
 and 

𝜕

𝜕𝑥𝛼
→ 𝜖

𝜕

𝜕𝑥𝛼
(1)
 ,                                    (𝐴. 7) 

and the expansion in Eq.(A.1) to Eq.(A.6) and limiting up to order of 𝜖2 yields 

0 = 𝛿𝑡𝜖
𝜕𝑓(0)

𝜕𝑡(1)
+ 𝛿𝑡𝜖2

𝜕𝑓(1)

𝜕𝑡(1)
+ 𝛿𝑡𝜖2

𝜕𝑓(0)

𝜕𝑡(2)
+ 𝛿𝑡𝑐𝑖𝛾𝜖

𝜕𝑓(0)

𝜕𝑥𝛾
(1)
+ 𝛿𝑡𝑐𝑖𝛾𝜖

2
𝜕𝑓(1)

𝜕𝑥𝛾
(1)

 

+
(𝛿𝑡)2

2
𝜖2
𝜕2𝑓(0)

𝜕𝑡(1)
2 + (𝛿𝑡)

2𝑐𝑖𝛾𝜖
2

𝜕2𝑓(0)

𝜕𝑡(1)𝜕𝑥𝛾
(1)
+
(𝛿𝑡)2

2
𝑐𝑖𝛽𝑐𝑖𝛾𝜖

2
𝜕2𝑓(0)

𝜕𝑥
𝛽
(1)
𝜕𝑥𝛾

(1)
+𝑤𝜖𝑓(1) +𝑤𝜖2𝑓(2) 

−𝜖𝛿𝑡
c𝑖𝛼
𝑅𝑇

𝑓𝑖
(0)𝐹𝛼 −

(𝛿𝑡)2

2

𝑐𝑖𝛼
𝑅𝑇

𝑓(0)𝜖2
𝜕𝐹𝛼

𝜕𝑡(1)
 

−
(𝛿𝑡)2

2

𝑐𝑖𝛼
𝑅𝑇

𝑓(0)𝜖2𝑐𝑖𝛽
𝜕𝐹𝛼

𝜕𝑥𝛼
(1)
+ 𝑂[(𝛿𝑡)3] + 𝑂[𝜖3] .                                   (𝐴. 8) 

Sorting in order of ϵ and grouping the terms in G gives 

0 = 𝜖𝐺𝑖
0 + 𝜖2𝐺𝑖

1 + 𝑂[(𝛿𝑡)3] + 𝑂[𝜖3]                                   (𝐴. 9) 

with groups: 

𝐺𝑖
0 =

𝜕𝑓(0)

𝜕𝑡(1)
+ 𝑐𝑖𝛾

𝜕𝑓(0)

𝜕𝑥𝛾
(1)
+
𝑤

𝛿𝑡
𝑓(1) −

c𝑖𝛼
𝑅𝑇

𝑓𝑖
(0)𝐹𝛼  and                    (A. 10a) 

𝐺𝑖
1 =

𝜕𝑓(1)

𝜕𝑡(1)
+
𝜕𝑓(0)

𝜕𝑡(2)
+ 𝑐𝑖𝛾

𝜕𝑓(1)

𝜕𝑥𝛾
(1)
+
𝛿𝑡

2

𝜕2𝑓(0)

𝜕𝑡(1)
2 + 𝛿𝑡𝑐𝑖𝛾

𝜕2𝑓(0)

𝜕𝑡(1)𝜕𝑥𝛾
(1)
+
𝛿𝑡

2
𝑐𝑖𝛽𝑐𝑖𝛾

𝜕2𝑓(0)

𝜕𝑥
𝛽
(1)
𝜕𝑥𝛾

(1)
 

+
𝑤

𝛿𝑡
𝑓(2) −

𝛿𝑡

2

𝑐𝑖𝛼
𝑅𝑇

𝑓(0)
𝜕𝐹𝛼

𝜕𝑡(1)
−
𝛿𝑡

2

𝑐𝑖𝛼
𝑅𝑇

𝑓(0)𝑐𝑖𝛽
𝜕𝐹𝛼

𝜕𝑥𝛼
(1)
 .                            (𝐴. 10𝑏) 

First, we analyze the first term in Eq.(A.9). The zeroth and first order discrete velocity moments 

of 𝐺𝑖
0 can be estimated as 
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∑𝐺𝑖
0

𝑖

=∑[
𝜕𝑓(0)

𝜕𝑡(1) ⌈𝜌
+ 𝑐𝑖𝛾

𝜕𝑓(0)

𝜕𝑥𝛾
(1)

⌈𝜌𝑢𝛾

+
𝑤

𝛿𝑡
𝑓(1)

⌈0
−
c𝑖𝛼
𝑅𝑇

𝑓𝑖
(0)𝐹𝛼

⌈0
]

𝑖

 

=
𝜕𝜌

𝜕𝑡(1)
+
𝜕(𝜌𝑢𝛾)

𝜕𝑥𝛾
(1)

   and                                             (𝐴. 11𝑎) 

∑𝑐𝑖𝛼𝐺𝑖
0

𝑖

=∑𝑐𝑖𝛼 [
𝜕𝑓(0)

𝜕𝑡(1)
+ 𝑐𝑖𝛾

𝜕𝑓(0)

𝜕𝑥𝛾
(1)
+
𝑤

𝛿𝑡
𝑓(1) −

c𝑖𝛼
𝑅𝑇

𝑓𝑖
(0)
𝐹𝛼]

𝑖

 

=
𝜕

𝜕𝑡(1)
∑𝑐𝑖𝛼𝑓

(0)

𝑖 ⌈𝜌𝑢𝛼

+
𝜕

𝜕𝑥𝛾
(1)
∑𝑐𝑖𝛼𝑐𝑖𝛾𝑓

(0)

𝑖 ⌈𝑃𝛼𝛽
0

+
𝑤

𝛿𝑡
∑𝑐𝑖𝛼𝑓

(1)

𝑖 ⌈0

−
1

𝑅𝑇
∑𝑐𝑖𝛼c𝑖𝛽𝑓𝑖

(0)
𝐹𝛼

𝑖 ⌈𝜌𝑅𝑇𝐹𝛼

 

=
𝜕(𝜌𝑢𝛼)

𝜕𝑡(1)
+
𝜕𝑃𝛼𝛽

0

𝜕𝑥𝛾
(1)
− 𝜌𝐹𝛼  ,                                            (𝐴. 11𝑏) 

where  

𝑃𝛼𝛽
0 = 𝜌𝑢𝛼𝑢𝛽 + 𝜌𝑅𝑇𝛿𝛼𝛽                                            (𝐴. 12𝑐) 

We have used Eqs.(210), (211),(A.2) and (178) for Eq.(A.11a) and Eqs.(211),  (A.12c), (A.2) and 

the second term of (A.12c) for Eq.(A.11b). The first term in Eq.(A.9) readily gives the continuity 

equation with the zeroth order moment 

𝜖
𝜕𝜌

𝜕𝑡(1)
+ 𝜖

𝜕(𝜌𝑢𝛾)

𝜕𝑥𝛾
(1)

= 0                                                           (𝐴. 13) 

and gives the Euler equation with the first order moment 

𝜖
𝜕(𝜌𝑢𝛼)

𝜕𝑡(1)
+ 𝜖

𝜕(𝜌𝑢𝛼𝑢𝛽)

𝜕𝑥
𝛽
(1)

+ 𝜖
𝜕𝜌

𝜕𝑥
𝛽
(1)
𝑅𝑇𝛿𝛼𝛽 − 𝜖𝜌𝐹𝛼 = 0 ,                         (𝐴. 14) 

which is the Navier-Stokes equation without the viscosity term.  

Second, we analyze the second term in Eq.(A.9). The zeroth order discrete velocity moments 

of 𝐺𝑖
1 can be computed as 

∑𝐺𝑖
1

𝑖

=
𝜕

𝜕𝑡(1)
∑𝑓(1)

𝑖 ⌈0

+
𝜕

𝜕𝑡(2)
∑𝑓(0)

𝑖 ⌈𝜌

+
𝜕

𝜕𝑥𝛾
(1)
∑𝑐𝑖𝛾𝑓

(1)

𝑖 ⌈0

 

+
𝛿𝑡

2

𝜕2

𝜕𝑡(1)
2∑𝑓(0)

𝑖 ⌈𝜌

+ 𝛿𝑡
𝜕2

𝜕𝑡(1)𝜕𝑥𝛾
(1)
∑𝑓(0)𝑐𝑖𝛾
𝑖 ⌈𝜌𝑢𝛼

+
𝛿𝑡

2

𝜕2

𝜕𝑥
𝛽
(1)
𝜕𝑥𝛾

(1)
∑𝑐𝑖𝛽𝑐𝑖𝛾𝑓

(0)

𝑖 ⌈𝑃𝛼𝛽
0

 

+
𝑤

𝛿𝑡
∑𝑓(2)

𝑖 ⌈0

−
𝛿𝑡

2

1

𝑅𝑇

𝜕

𝜕𝑡(1)
∑𝑐𝑖𝛼𝑓

(0)

𝑖

𝐹𝛼
⌈0

−
𝛿𝑡

2

1

𝑅𝑇

𝜕

𝜕𝑥𝛼
(1)
∑𝑐𝑖𝛼𝑐𝑖𝛽𝑓

(0)𝐹𝛼
𝑖 ⌈𝜌𝑅𝑇𝐹𝛼

 

=
𝜕𝜌

𝜕𝑡(2)
+
𝛿𝑡

2

𝜕2𝜌

𝜕𝑡(1)
2
{(𝑎)

+ 𝛿𝑡
𝜕2(𝜌𝑢𝛼)

𝜕𝑡(1)𝜕𝑥𝛼
(1)

{(𝑏)

+
𝛿𝑡

2

𝜕2𝑃𝛼𝛽
0

𝜕𝑥
𝛽
(1)
𝜕𝑥𝛼

(1)

{(𝑐)

−
𝛿𝑡

2

1

𝑅𝑇

𝑅𝑇𝜕𝜌𝐹𝛼
𝜕𝑡(2)

 ,                 (𝐴. 15) 

where  
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(𝑎) →
𝜕2𝜌

𝜕𝑡(1)
2 =

𝜕 (
𝜕𝜌
𝜕𝑡(1)

)
⌈𝐸𝑞.𝐴.13

𝜕𝑡(1)
= −

𝜕2(𝜌𝑢𝛼)

𝜕𝑡(1)𝜕𝑥𝛼
(1)
= −

𝜕

𝜕𝑥𝛼
(1)

𝜕(𝜌𝑢𝛼)

𝜕𝑡(1) ⌈𝐸𝑞.𝐴.14
  

= −[
𝜕𝜌𝐹𝛼

𝜕𝑥𝛼
(1)
−
𝜕2(𝜌𝑢𝛼𝑢𝛽)

𝜕𝑥𝛼
(1)
𝜕𝑥𝛽

(1)
−

𝜕2𝜌

𝜕𝑥𝛼
(1)
𝜕𝑥𝛽

(1)
𝑅𝑇𝛿𝛼𝛽] , 

(𝑏) →  
𝜕2(𝜌𝑢𝛼)

𝜕𝑡(1)𝜕𝑥𝛼
(1)
=

𝜕

𝜕𝑥𝛼
(1)

𝜕(𝜌𝑢𝛼)

𝜕𝑡(1) ⌈𝐸𝑞.𝐴.14
 

=
𝜕𝜌𝐹𝛼

𝜕𝑥𝛼
(1)
−
𝜕2(𝜌𝑢𝛼𝑢𝛽)

𝜕𝑥𝛼
(1)𝜕𝑥𝛽

(1)
−

𝜕2𝜌

𝜕𝑥𝛼
(1)𝜕𝑥𝛽

(1)
𝑅𝑇𝛿𝛼𝛽   and 

(𝑐) →  
𝜕2𝑃𝛼𝛽

0

⌈𝐸𝑞.𝐴.12𝑐

𝜕𝑥
𝛽
(1)
𝜕𝑥𝛼

(1)
=
𝜕2(𝜌𝑢𝛼𝑢𝛽)

𝜕𝑥𝛼
(1)
𝜕𝑥𝛽

(1)
+

𝜕2𝜌

𝜕𝑥𝛼
(1)
𝜕𝑥𝛽

(1)
𝑅𝑇𝛿𝛼𝛽 . 

Substituting (a), (b) and (c) in Eq.(A.15) yields 

∑𝐺𝑖
1

𝑖

=
𝜕𝜌

𝜕𝑡(2)
 ,                                                            (𝐴. 16) 

which ensures that there is no mass diffusion and mass is conserved. Before proceeding with 

the first order momentum, let us define 𝑓𝑖
(1)

 from Eq.(A.10a) with a condition of 𝐺𝑖
0 = 0, 

0 =
𝜕𝑓(0)

𝜕𝑡(1)
+ 𝑐𝑖𝛾

𝜕𝑓(0)

𝜕𝑥𝛾
(1)
+
𝑤

𝛿𝑡
𝑓(1) −

c𝑖𝛼
𝑅𝑇

𝑓𝑖
(0)
𝐹𝛼 → 

→ 𝑓(1) =
𝛿𝑡

𝑤

c𝑖𝛼
𝑅𝑇

𝑓𝑖
(0)
𝐹𝛼 −

𝛿𝑡

𝑤

𝜕𝑓(0)

𝜕𝑡(1)
−
𝛿𝑡

𝑤
𝑐𝑖𝛾
𝜕𝑓(0)

𝜕𝑥𝛾
(1)
 .                            (𝐴. 17) 

The first order discrete velocity moment of 𝐺𝑖
1 is computed as 

∑𝑐𝑖𝛼𝐺𝑖
1

𝑖

=
𝜕

𝜕𝑡(1)
∑𝑐𝑖𝛼𝑓

(1)

𝑖 {(𝑎)

+
𝜕

𝜕𝑡(2)
∑𝑐𝑖𝛼𝑓

(0)

𝑖 {(𝑏)

+
𝜕

𝜕𝑥𝛾
(1)
∑𝑐𝑖𝛾𝑐𝑖𝛼𝑓

(1)

𝑖 {(𝑐)

 

+
𝛿𝑡

2

𝜕2

𝜕𝑡(1)
2∑𝑐𝑖𝛼𝑓

(0)

𝑖 {(𝑑)

+ 𝛿𝑡
𝜕2

𝜕𝑡(1)𝜕𝑥𝛾
(1)
∑𝑐𝑖𝛼𝑐𝑖𝛾𝑓

(0)

𝑖 {(𝑒)

 

+
𝛿𝑡

2

𝜕2

𝜕𝑥
𝛽
(1)
𝜕𝑥𝛾

(1)
∑𝑐𝑖𝛽𝑐𝑖𝛾𝑐𝑖𝛼𝑓

(0)

𝑖 {(𝑓)

+
𝑤

𝛿𝑡
∑𝑓(2)𝑐𝑖𝛼
𝑖 {(𝑔)

 

−
𝛿𝑡

2

1

𝑅𝑇

𝜕

𝜕𝑡(1)
∑𝑐𝑖𝛼𝑐𝑖𝛽𝑓

(0)𝐹𝛼
𝑖 {(ℎ)

−
𝛿𝑡

2

1

𝑅𝑇

𝜕

𝜕𝑥𝛼
(1)
∑𝑐𝑖𝛼𝑐𝑖𝛽𝑐𝑖𝛾𝑓

(0)𝐹𝛼
𝑖 {(𝑖)

,               (𝐴. 18) 

where 

(𝑎) →
𝜕

𝜕𝑡(1)
∑𝑐𝑖𝛼𝑓

(1)

𝑖

= 0 according to Eq. (A. 2) 
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(𝑏) →
𝜕

𝜕𝑡(2)
∑𝑐𝑖𝛼𝑓

(0)

𝑖 ⌈𝜌𝑢𝛼

=
𝜕(𝜌𝑢𝛼)

𝜕𝑡(2)
 

(𝑐) →
𝜕

𝜕𝑥𝛾
(1)
∑𝑐𝑖𝛾𝑐𝑖𝛼𝑓

(1)

𝑖 ⌈𝐸𝑞.𝐴.17

=
𝜕

𝜕𝑥𝛾
(1)
∑𝑐𝑖𝛾𝑐𝑖𝛼 [

𝛿𝑡

𝑤

c𝑖𝛼
𝑅𝑇

𝑓𝑖
(0)
𝐹𝛼 −

𝛿𝑡

𝑤

𝜕𝑓(0)

𝜕𝑡(1)
−
𝛿𝑡

𝑤
𝑐𝑖𝛾
𝜕𝑓(0)

𝜕𝑥𝛾
(1)
]

𝑖

 

=
𝜕

𝜕𝑥𝛽
(1)

𝛿𝑡

𝑤

1

𝑅𝑇
∑c𝑖𝛼𝑐𝑖𝛽𝑐𝑖𝛾𝑓𝑖

(0)
𝐹𝛼

𝑖 ⌈0

−
𝜕

𝜕𝑥𝛽
(1)

𝛿𝑡

𝑤

𝜕

𝜕𝑡(1)
∑𝑐𝑖𝛼𝑐𝑖𝛽𝑓

(0)

𝑖 (∗)

 

−
𝛿𝑡

𝑤

𝜕

𝜕𝑥𝛽
(1)

𝜕

𝜕𝑥𝛾
(1)
∑𝑐𝑖𝛼𝑐𝑖𝛽𝑐𝑖𝛾𝑓

(0)

𝑖 (∗∗)

 

(𝑑) →
𝛿𝑡

2

𝜕2

𝜕𝑡(1)
2∑𝑐𝑖𝛼𝑓

(0)

𝑖 ⌈𝜌𝑢𝛼

=
𝛿𝑡

2

𝜕2(𝜌𝑢𝛼)

𝜕𝑡(1)
2
⌈𝐸𝑞.𝐴.11𝑏

=
𝛿𝑡

2

𝜕

𝜕𝑡(1)
[𝜌𝐹𝛼 −

𝜕𝑃𝛼𝛽
0

𝜕𝑥
𝛽
(1)
] 

(𝑒) → 𝛿𝑡
𝜕2

𝜕𝑡(1)𝜕𝑥𝛾
(1)
∑𝑐𝑖𝛼𝑐𝑖𝛾𝑓

(0)

𝑖 (∗)

 

(𝑓) →
𝛿𝑡

2

𝜕2

𝜕𝑥
𝛽
(1)
𝜕𝑥𝛾

(1)
∑𝑐𝑖𝛽𝑐𝑖𝛾𝑐𝑖𝛼𝑓

(0)

𝑖 (∗∗)

 

(𝑔) →
𝑤

𝛿𝑡
∑𝑓(2)𝑐𝑖𝛼
𝑖 {𝐸𝑞.𝐴.2𝑎

= 0 

(ℎ) →
𝛿𝑡

2

1

𝑅𝑇

𝜕

𝜕𝑡(1)
∑𝑐𝑖𝛼𝑐𝑖𝛽𝑓

(0)𝐹𝛼
𝑖 ⌈𝜌𝑅𝑇𝐹𝛼

=
𝛿𝑡

2

𝜕𝜌𝐹𝛼

𝜕𝑡(1)
 

(𝑖) →
𝛿𝑡

2

1

𝑅𝑇

𝜕

𝜕𝑥𝛼
(1)
∑𝑐𝑖𝛼𝑐𝑖𝛽𝑐𝑖𝛾𝑓

(0)𝐹𝛼
𝑖

= 0 . 

In above, the second and third order moments of 𝑓(0) has been denoted by asterisk. Summation 

of (*)-terms in (c) and (e) gives 

−
𝜕

𝜕𝑥𝛽
(1)

𝛿𝑡

𝑤

𝜕

𝜕𝑡(1)
∑𝑐𝑖𝛼𝑐𝑖𝛽𝑓

(0)

𝑖

+ 𝛿𝑡
𝜕2

𝜕𝑡(1)𝜕𝑥𝛾
(1)
∑𝑐𝑖𝛼𝑐𝑖𝛾𝑓

(0)

𝑖

 

= (𝛿𝑡 −
𝛿𝑡

𝑤
)

𝜕2

𝜕𝑡(1)𝜕𝑥𝛽
(1)
∑𝑐𝑖𝛼𝑐𝑖𝛽𝑓

(0)

𝑖 ⌈𝑃𝛼𝛽
0

= (𝛿𝑡 −
𝛿𝑡

𝑤
)

𝜕2𝑃𝛼𝛽
0

𝜕𝑡(1)𝜕𝑥𝛽
(1)
 .                       (𝐴. 19𝑎) 

Summation of the (**)-terms in (c) and (f) results in 

−
𝛿𝑡

𝑤

𝜕

𝜕𝑥𝛽
(1)

𝜕

𝜕𝑥𝛾
(1)
∑𝑐𝑖𝛼𝑐𝑖𝛽𝑐𝑖𝛾𝑓

(0)

𝑖

+
𝛿𝑡

2

𝜕2

𝜕𝑥𝛽
(1)𝜕𝑥𝛾

(1)
∑𝑐𝑖𝛽𝑐𝑖𝛾𝑐𝑖𝛼𝑓

(0)

𝑖

 

(
𝛿𝑡

2
−
𝛿𝑡

𝑤
)

𝜕2

𝜕𝑥𝛽
(1)𝜕𝑥𝛾

(1)
∑𝑐𝑖𝛽𝑐𝑖𝛾𝑐𝑖𝛼𝑓

(0)

𝑖 ⌈𝑃𝛼𝛽𝛾
0

= (
𝛿𝑡

2
−
𝛿𝑡

𝑤
)
𝜕2𝑃𝛼𝛽𝛾

0

𝜕𝑥𝛽
(1)𝜕𝑥𝛾

(1)
 ,                  (𝐴. 19𝑏) 



 

© Ayurzana Badarch                                                                                                                                    203 
 

where 

𝑃𝛼𝛽𝛾
0 =∑𝑐𝑖𝛽𝑐𝑖𝛾𝑐𝑖𝛼𝑓

(0)

𝑖

= 𝜌𝑢𝛼𝑢𝛽𝑢𝛾 + 𝜌𝑅𝑇(𝑢𝛼𝛿𝛼𝛾 + 𝑢𝛽𝛿𝛽𝛾 + 𝑢𝛾𝛿𝛼𝛽) .       (𝐴. 20) 

Summing up (a) to (i) in Eq.(A.18) gives 

∑𝑐𝑖𝛼𝐺𝑖
1

𝑖

=
𝜕(𝜌𝑢𝛼)

𝜕𝑡(2)
+ (

𝛿𝑡

2
−
𝛿𝑡

𝑤
)

𝜕2𝑃𝛼𝛽
0

𝜕𝑡(1)𝜕𝑥𝛽
(1)

(𝑗)

+ (
𝛿𝑡

2
−
𝛿𝑡

𝑤
)
𝜕2𝑃𝛼𝛽𝛾

0

𝜕𝑥𝛽
(1)
𝜕𝑥𝛾

(1)

(𝑘)

 ,           (𝐴. 19𝑐) 

where  

(𝑗) →
𝜕2𝑃𝛼𝛽

0

𝜕𝑡(1)𝜕𝑥𝛽
(1)
=
𝜕2(𝜌𝑢𝛼𝑢𝛽)

𝜕𝑡(1)𝜕𝑥𝛽
(1)

+
𝜕2𝜌

𝜕𝑡(1)𝜕𝑥𝛽
(1)
𝑅𝑇𝛿𝛼𝛽

{𝐼𝑛𝑡𝑟𝑜𝑑𝑢𝑐𝑒 𝐸𝑞.𝐴.13

 

= −
𝜕2(𝜌𝑢𝛼𝑢𝛽𝑢𝛾)

𝜕𝑥𝛽
(1)
𝜕𝑥𝛾

(1)
−

𝜕2(𝜌𝑢𝛾)

𝜕𝑥𝛽
(1)
𝜕𝑥𝛾

(1)
𝑅𝑇𝛿𝛼𝛽 

(𝑘) →
𝜕2𝑃𝛼𝛽𝛾

0

⌈𝐸𝑞.𝐴.20

𝜕𝑥𝛽
(1)𝜕𝑥𝛾

(1)
=
𝜕2(𝜌𝑢𝛼𝑢𝛽𝑢𝛾)

𝜕𝑥𝛽
(1)𝜕𝑥𝛾

(1)
+
𝜕2𝜌(𝑢𝛼𝛿𝛼𝛾 + 𝑢𝛽𝛿𝛽𝛾 + 𝑢𝛾𝛿𝛼𝛽)

𝜕𝑥𝛽
(1)𝜕𝑥𝛾

(1)
𝑅𝑇 

The (j) and (k) terms in Eq.(A.19c) gives 

∑𝑐𝑖𝛼𝐺𝑖
1

𝑖

=
𝜕(𝜌𝑢𝛼)

𝜕𝑡(2)
+ (

𝛿𝑡

2
−
𝛿𝑡

𝑤
)𝑅𝑇

𝜕2(𝜌𝑢𝛼)

𝜕𝑥𝛽
(1)
𝜕𝑥𝛽

(1)
 .                         (𝐴. 21) 

By adding up Eq.(A.14) and Eq.(A.16) (the zeroth order moments), one finally obtains 

𝜖
𝜕𝜌

𝜕𝑡(1)
+ 𝜖

𝜕(𝜌𝑢𝛾)

𝜕𝑥𝛾
(1)

+ 𝜖2
𝜕𝜌

𝜕𝑡(2)
= 0 

and descaling by Eq.(A.7) gives the continuity equation 

𝜕𝜌

𝜕𝑡
+
𝜕(𝜌𝑢𝛼)

𝜕𝑥𝛼
= 0 .                                                        (𝐴. 22) 

Besides, adding up Eq.(A.14) and Eq.(A.21) (the first order moments), one can derive 

𝜖
𝜕(𝜌𝑢𝛼)

𝜕𝑡(1)
+ 𝜖

𝜕(𝜌𝑢𝛼𝑢𝛽)

𝜕𝑥𝛽
(1)

+ 𝜖
𝜕𝜌

𝜕𝑥𝛽
(1)
𝑅𝑇𝛿𝛼𝛽 − 𝜖𝜌𝐹𝛼 + 𝜖

2
𝜕(𝜌𝑢𝛼)

𝜕𝑡(2)
 

+𝜖 (
𝛿𝑡

2
−
𝛿𝑡

𝑤
)𝑅𝑇

𝜕2(𝜌𝑢𝛼)

𝜕𝑥𝛽
(1)𝜕𝑥𝛽

(1)
= 0 . 

Introducing the scales in Eq.(A.7) yields the Navier-Stokes equation 

𝜕(𝜌𝑢𝛼)

𝜕𝑡
+
𝜕(𝜌𝑢𝛼𝑢𝛽)

𝜕𝑥𝛽
= −

𝜕𝜌

𝜕𝑥𝛼
𝑅𝑇𝛿𝛼𝛽 + (

𝛿𝑡

𝑤
−
𝛿𝑡

2
)𝑅𝑇

𝜕2(𝜌𝑢𝛼)

𝜕𝑥𝛽
2 + 𝜌𝐹𝛼  ,                   (𝐴. 23) 

where the viscosity is realized as 

𝜈 = 𝛿𝑡 (
1

𝑤
−
1

2
)𝑅𝑇 = 𝛿𝑡 (𝜏𝜈 −

1

2
) 𝑐𝑠

2.                                        (𝐴. 24) 
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We have derived the Navier-Stokes equation from the Boltzmann equation in the way, 

presented above. The energy equation is also derived from the Boltzmann equation and the 

derivation can be found in (Viggen, 2014), (Gilberto, 2010), (Carlo, 1988), (Wolf-Gladrow, 2000) 

and (Alexander, 2008).  

 

A2 Derivation of the Advection-Diffusion equation 

We have briefly discussed the lattice Boltzmann method to solve diffusion and advection-

diffusion problem in Section 2.3.1 and 5.3.1. Now we shall see the derivation of the macroscopic 

advection-diffusion equation from the lattice Boltzmann equation using the Chapman-Enskog 

expansion.  

As the procedure elaborated in A1, the distribution function for scalar variable can be 

expanded into its perturbation terms using a small parameter ϵ: 

𝑔𝑖(𝐱, 𝑡) = 𝑔𝑖
(0)
(𝐱, 𝑡) + 𝜖𝑔𝑖

(1)
(𝐱, 𝑡) + 𝜖2𝑔𝑖

(2)
(𝐱, 𝑡) + ∙∙∙   .                                  (𝐴. 25) 

Summation of this leads 

∑𝑔𝑖(𝐱, 𝑡)

𝑁

𝑖=0

=∑[𝑔𝑖
(0)(𝐱, 𝑡) + 𝜖𝑔𝑖

(1)(𝐱, 𝑡) + 𝜖2𝑔𝑖
(2)(𝐱, 𝑡) + ∙∙∙]

𝑁

𝑖=0

 ,                   (𝐴. 26) 

where the left side is Eq.(395), the first term in right hand 𝑔𝑖
(0)

 is the equilibrium part of the 

distribution function, 𝑔𝑖
𝑒𝑞

. Therefore, other terms should be zero, i.e. 

∑𝑔𝑖
(1)
(𝐱, 𝑡)

𝑁

𝑖=0

= 0 and                                                    (𝐴. 27) 

∑𝑔𝑖
(2)(𝐱, 𝑡)

𝑁

𝑖=0

= 0 .                                                         (𝐴. 28) 

Now, the updated distribution function in Eq.(282), the first term in left hand, is expanded using 

Taylor series, 

𝑔𝑖(𝐱 + 𝛿𝑥, 𝑡 + 𝛿𝑡) = 𝑔𝑖(𝐱, 𝑡) +
𝜕𝑔𝑖(𝐱, 𝑡)

𝜕𝑥
𝐜𝑖𝛿𝑡 +

𝜕𝑔𝑖(𝐱, 𝑡)

𝜕𝑡
𝛿𝑡 

+
1

2
𝛿𝑡2 [

𝜕2𝑔𝑖(𝐱, 𝑡)

𝜕𝑥2
𝐜𝑖
2 + 2

𝜕2𝑔𝑖(𝐱, 𝑡)

𝜕𝑥𝜕𝑡
𝐜𝑖 +

𝜕2𝑔𝑖(𝐱, 𝑡)

𝜕𝑡2
] + 𝑂(𝛿𝑡)3  .             (𝐴. 29) 

Introducing scales, space 
𝜕

𝜕𝑥
→ 𝜖

𝜕

𝜕𝑥
  and time 

𝜕

𝜕𝑡
→ 𝜖

𝜕

𝜕𝑡1
+ 𝜖2

𝜕

𝜕𝑡2
 , into Eq.(A.29) and substituting 

the result into the lattice Boltzmann equation in Eq.(282) yields: 

𝛿𝑡

𝜏𝑠
(𝑔𝑖

𝑒𝑞
− 𝑔𝑖) = 𝜖

𝜕𝑔𝑖
𝜕𝑥

𝐜𝑖𝛿𝑡 + 𝜖
𝜕𝑔𝑖
𝜕𝑡1

𝛿𝑡 + 𝜖2
𝜕𝑔𝑖
𝜕𝑡2

𝛿𝑡 

+
1

2
𝛿𝑡2𝜖2 [

𝜕2𝑔𝑖
𝜕𝑥2

𝐜𝑖
2 + 2

𝜕2𝑔𝑖
𝜕𝑥𝜕𝑡1

𝐜𝑖 +
𝜕2𝑔𝑖

𝜕𝑡1
2 ] + 𝑂(𝛿𝑡)

3 + 𝑂(𝜖)3 ,                       (𝐴. 30) 
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where we simplified 𝑔𝑖(𝐱, 𝑡)  into 𝑔𝑖 . Substituting expansion in Eq.(A.25) into the above 

equation gives 

−
1

𝜏𝑠
(𝜖𝑔𝑖

(1) + 𝜖2𝑔𝑖
(2)) = 𝜖

𝜕𝑔𝑖
(0)

𝜕𝑥
𝐜𝑖 + 𝜖

2
𝜕𝑔𝑖

(1)

𝜕𝑥
𝐜𝑖 + 𝜖

𝜕𝑔𝑖
(0)

𝜕𝑡1
+ 𝜖2

𝜕𝑔𝑖
(1)

𝜕𝑡1
+ 𝜖2

𝜕𝑔𝑖
(0)

𝜕𝑡2
 

+
𝛿𝑡

2
𝜖2 [

𝜕2𝑔𝑖
(0)

𝜕𝑥2
𝐜𝑖
2 + 2

𝜕2𝑔𝑖
(0)

𝜕𝑥𝜕𝑡1
𝐜𝑖 +

𝜕2𝑔𝑖
(0)

𝜕𝑡1
2 ] + 𝑂(𝛿𝑡)3 + 𝑂(𝜖)3 .        (𝐴. 31) 

For further simplification of Eq.(A.31), we collect the terms of order of ϵ and ϵ2 from both sides 

of the equation and emphasize the results.  

The terms of order of ϵ are 

−
𝑔𝑖
(1)

𝜏𝑠
=
𝜕𝑔𝑖

(0)

𝜕𝑥
𝐜𝑖 +

𝜕𝑔𝑖
(0)

𝜕𝑡1
  .                                           (𝐴. 32) 

The distribution function 𝑔𝑖
(1)

 can be differentiated with respect to 𝑡1 and 𝑥 as follows 

−
1

𝜏𝑠

𝜕𝑔𝑖
(1)

𝜕𝑡1
=
𝜕2𝑔𝑖

(0)

𝜕𝑡1𝜕𝑥
𝐜𝑖 +

𝜕2𝑔𝑖
(0)

𝜕𝑡1
2  and                                          (𝐴. 33) 

−
1

𝜏𝑠

𝜕𝑔𝑖
(1)

𝜕𝑥
=
𝜕2𝑔𝑖

(0)

𝜕𝑥2
𝐜𝑖 +

𝜕2𝑔𝑖
(0)

𝜕𝑡1𝜕𝑥
 .                                            (𝐴. 34) 

Multiply Eq.(A.34) by 𝐜𝑖  , add it to Eq.(A.33) and summate the equations, 

−
1

𝜏𝑠
(
𝜕𝑔𝑖

(1)

𝜕𝑡1
+
𝜕𝑔𝑖

(1)

𝜕𝑥
𝐜𝑖) =

𝜕2𝑔𝑖
(0)

𝜕𝑡1
2 + 2

𝜕2𝑔𝑖
(0)

𝜕𝑡1𝜕𝑥
𝐜𝑖 +

𝜕2𝑔𝑖
(0)

𝜕𝑥2
𝐜𝑖𝐜𝑖  ,                      (𝐴. 35) 

which will be used later. 

The summation over lattice direction for Eq.(A.32) gives 

−
1

𝜏𝑠
∑𝑔𝑖

(1)

𝑁

𝑖=0

=
𝜕

𝜕𝑥
∑𝑔𝑖

(0)𝐜𝑖

𝑁

𝑖

+
𝜕

𝜕𝑡1
∑𝑔𝑖

(0)

𝑁

𝑖

 ,                             (𝐴. 36) 

where the first term is zero according to Eq.(A.27), the second term is  

𝜕

𝜕𝑥
∑𝑔𝑖

(0)𝐜𝑖

𝑁

𝑖

=
𝜕

𝜕𝑥
(𝜙𝐮) , 

and the third term is  

𝜕

𝜕𝑡1
∑𝑔𝑖

(0)

𝑁

𝑖

=
𝜕𝜙

𝜕𝑡1
 . 

Thus, Eq.(A.36) reformulated as, 

0 =
𝜕(𝜙𝐮)

𝜕𝑥
+
𝜕𝜙

𝜕𝑡1
 ,                                                             (𝐴. 37) 

which is the advection equation.  



 

𝚿 Ph.D. dissertation                                                                                                                                     206 
 

Return to Eq.(A.31), gather the terms of order of ϵ2: 

−
𝑔𝑖
(2)

𝜏𝑠
=
𝜕𝑔𝑖

(1)

𝜕𝑥
𝐜𝑖 +

𝜕𝑔𝑖
(1)

𝜕𝑡1
+
𝜕𝑔𝑖

(0)

𝜕𝑡2
+
𝛿𝑡

2
𝜖2 [

𝜕2𝑔𝑖
(0)

𝜕𝑥2
𝐜𝑖
2 + 2

𝜕2𝑔𝑖
(0)

𝜕𝑥𝜕𝑡1
𝐜𝑖 +

𝜕2𝑔𝑖
(0)

𝜕𝑡1
2 ] ,           (𝐴. 38) 

where the summation in bracket is the same as Eq.(A.35). Considering Eq.(A.35), after the 

simple arrangements, Eq.(A.38) becomes 

−
1

𝜏𝑠
𝑔𝑖
(2) = (1 −

𝛿𝑡

2𝜏𝑠
) (
𝜕𝑔𝑖

(1)

𝜕𝑡1
+
𝜕𝑔𝑖

(1)

𝜕𝑥
𝐜𝑖) +

𝜕𝑔𝑖
(0)

𝜕𝑡2
 .                                  (𝐴. 39) 

Summing Eq.(A.39) over lattice directions gives 

−
1

𝜏𝑠
∑𝑔𝑖

(2)

𝑁

𝑖=0 ⌈=0

= (1 −
𝛿𝑡

2𝜏𝑠
)(

𝜕

𝜕𝑡1
∑𝑔𝑖

(1)

𝑁

𝑖 ⌈=0

+∑
𝜕𝑔𝑖

(1)

𝜕𝑥
𝐜𝑖

𝑁

𝑖 ⌈𝐸𝑞.𝐴.34

)+
𝜕

𝜕𝑡2
∑𝑔𝑖

(0)

𝑁

𝑖 ⌈=𝜙

 .    (𝐴. 40) 

Introducing Eq.(A.34) to the term in Eq.(A.40) yields 

∑
𝜕𝑔𝑖

(1)

𝜕𝑥
𝐜𝑖

𝑁

𝑖

= −𝜏𝑠∑
𝜕2𝑔𝑖

(0)

𝜕𝑡1𝜕𝑥
𝐜𝑖

𝑁

𝑖 (𝑎)

− 𝜏𝑠∑
𝜕2𝑔𝑖

(0)

𝜕𝑥2
𝐜𝑖

𝑁

𝑖

𝐜𝑖
(𝑏)

 .                   (𝐴. 41) 

The term (a) become zero due to the cancelling of discrete velocities and the term (b) gives 

−𝜏𝑠∑
𝜕2𝑔𝑖

(0)

𝜕𝑥2
𝐜𝑖

𝑁

𝑖

𝐜𝑖 = −𝜏𝑠𝑅𝑇
𝜕2𝜙

𝜕𝑥2
 ,                                      (𝐴. 42) 

where the second order moments of the distribution function for the advection-diffusion 

problem is used. So substituting findings into Eq.(A.40) yields 

0 = −𝜏𝑠𝑅𝑇 (1 −
𝛿𝑡

2𝜏𝑠
)
𝜕2𝜙

𝜕𝑥2
+
𝜕𝜙

𝜕𝑡2
 ,                                       (𝐴. 43) 

or 

0 = 𝑅𝑇 (
𝛿𝑡

2
− 𝜏𝑠)

𝜕2𝜙

𝜕𝑥2
+
𝜕𝜙

𝜕𝑡2
 .                                             (𝐴. 44) 

Finally, adding Eq.(A.37) and Eq.(A.44) in Eq.(A.31) yields 

0 = 𝜖
𝜕𝜙

𝜕𝑡1
+ 𝜖2

𝜕𝜙

𝜕𝑡2
+ 𝜖

𝜕(𝜙𝐮)

𝜕𝑥
+ 𝜖2𝑅𝑇 (

𝛿𝑡

2
− 𝜏𝑠)

𝜕2𝜙

𝜕𝑥2
  .                     (𝐴. 45) 

Removing the space and time scales with the small parameter from Eq.(A.45) gives the 

advection-diffusion equation 

𝜕𝜙

𝜕𝑡
+ 𝐮

𝜕𝜙

𝜕𝑥
= 𝑅𝑇 (𝜏𝑠 −

𝛿𝑡

2
)
𝜕2𝜙

𝜕𝑥2
                                         (𝐴. 46)  

with the diffusion coefficient of 

𝐷 = 𝑅𝑇 (𝜏𝑠 −
𝛿𝑡

2
) .                                                        (𝐴. 47) 
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