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Intelligence plus character - that is the goal of true equation.” 

- Martin Luther King 

 

"When once you have tasted flight, you will forever walk the earth with your eyes 
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Abstract 

Taxis are an essential means of transportation for addressing the movement requirements of the 

citizens of the local area. Additionally, effective transportation infrastructure is required to 

lower CO2 emissions in the context of climate change. Inefficient taxi services result in 

increased idle time as well as increased CO2 emissions. Therefore, optimizing taxi allocation 

can help reduce CO2 emissions and improve the sustainability of suburban transportation. The 

impact of the taxi market on daily life is significant, both in terms of taxi driver’s salaries and 

social issues (e.g., travel demand satisfaction, and traffic congestion). The literature review 

conducted for this thesis revealed that shared mobility has become increasingly popular in 

recent years. Shared taxis have emerged as an important component of shared mobility, 

providing a cost-effective means of transportation for passengers. So, the efficient management 

of a fleet of shared taxis is challenging, particularly in terms of taxi allocations and routing cost 

optimization. Several studies have focused on developing mathematical models for fleet 

management and optimization, including the use of heuristic algorithms. The main objective of 

this thesis is to develop a mathematical model which would be used for shared taxi routing 

problems and taxi allocation. The shared taxi problem model deals with passenger demand, 

which is to find the shortest route of taxi routing decisions that can minimize the customers' 

total trip cost. On the other hand, the objective of the taxi allocation model is to minimize taxi 

idle time costs. This study was intended to maximize taxi allocation based on idle time costs, 

pickup delays, and passenger waiting time while minimizing CO2 emissions. 

Firstly, this study focuses on taxi demand prediction for areas in Nagaoka City using Machine 

Learning Algorithms. To do so, several ride-related parameters have been studied such as the 

month of the year, day of the week, and time of the day.  Moreover, weather-related variables, 

such as temperature, and weather conditions are used as predictors to estimate the demand level 

for taxis in urban areas.  A suggested approach for predicting taxi demand in suburban areas 

involves the use of four well-known machine learning algorithms: Linear Regression, Decision 

Tree, Random Forests, and Gradient Boosting. Additionally, a Hybrid Machine Learning 

method has been proposed for this purpose. 

Secondly, this thesis formulates a nonlinear shared taxi routing model for the riders considering 

the passengers' benefits and drivers. The model explores the concept of a shared taxi to 

minimize the total cost for passengers and the number of taxis utilized, while maximizing 
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customer satisfaction thereby increasing the taxi demand and driver’s income. The problem is 

solved using the Branch and Cut algorithm employed for estimating the parameters. The branch 

and cut methodology are mathematical optimization techniques that are commonly used to 

solve combinatorial optimization problems. It is based on two algorithms, branch and bound 

and cutting planes. The branch and bound algorithm divide the problem into smaller 

subproblems, while the cutting plane algorithm adds additional constraints to eliminate 

suboptimal solutions. Together, these algorithms have been used to find the global optimum 

solution for a given problem. The computational results obtained by the Gurobi solver showed 

that the proposed mathematical model can find the shortest route of taxi routing decisions that 

can minimize the customers' total cost. In addition, it demonstrated the effect of various taxi-

sharing practices, e.g., waiting time and fare decrease. Furthermore, the sensitivity of 

significant parameters such as time window, initial fare, and travel distance in the fixed fare is 

analyzed. Real taxi valid data of Sanjo city, Japan is used for this study. 

Lastly, this study proposes a mathematical model of the taxi allocation optimization problem 

for minimizing taxi driver idle time costs, which helps to reduce CO2 emissions in suburban 

contexts. For solving the proposed model, we used instead of proposing three heuristic 

algorithms: greedy algorithm, Simulated annealing algorithm, and dynamic greedy algorithm.  

Further, a case study has been carried out to demonstrate the proposed methods and show its 

implication by using real taxi data of Nagaoka, Japan. For the case study, we first identified the 

taxi travel hotspots as potential locations for taxi spots by investigating the pickup and drop-off 

locations and times by analyzing GPS data of taxi. After that, we found the optimal taxi 

allocations by applying the proposed model and solution algorithms. To summarize, dynamic 

greedy heuristics successfully obtained excellent solutions in relatively short runtimes for the 

taxi issue, making strategic decisions and feasible choices for taxi markets to adopt. The case 

study application in this study demonstrates the potential for using data analysis, optimization 

of taxi allocations and the number of taxis, and to reduce approximately 81.84% of CO2 

emissions in the transportation sector. Finally, sensitivity analysis was applied to validate the 

model for passenger demand. The sensitivity analysis showed that the total idle time cost 

increased if the demand increased. By strategically placing taxi spots and optimizing their 

routes, cities can reduce the number of vehicles on the road, decreasing harmful emissions and 

improving air quality. Therefore, this study suggests that it is essential for cities to invest in and 

prioritize taxi location optimization as a crucial step toward achieving sustainable 

transportation. 
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Chapter 1. INTRODUCTION 

 

One of the main challenges facing the taxi industry in Japan is the aging population of taxi 

drivers. Many taxi drivers in Japan are older, and there has been a decline in the number of 

young people entering the industry. Nowadays, most people are concentrated in urban areas. 

This has led to concerns about a potential shortage of taxi drivers in the future. According to 

research, more than 80% of the world's population will live in cities by 2030, (Lahariya (2008)). 

As a result, the number of vehicles, travel and upward mobility within cities will increase 

significantly. Therefore, the current capacity of a city's road network will confront operational 

issues that need to be addressed to encourage increased vehicular traffic in the urban 

environment. This chapter of the essay covers the background, research need, research 

questions, motivation, objective, and framework of the study.  

  



Chapter 1. INTRODUCTION 

2 | P a g e  

 

1.1 Background 

At present, taxis are an important part of supporting local public transport in major cities. Other 

public transport services such as trams, commuter rail, and urban buses (known as 'mass transit' 

systems) have some storage in some features. The general features of taxi services are door-to-

door operation, 24-hour-a-day service, and single-passenger hire. But the more time a taxi 

driver spends seeking a new customer, the more fuel is consumed, and fewer people are 

transported. Inexperienced taxi drivers frequently don't know where to pick up new passengers 

since they are acquainted with taxi overtime and space limits. Future taxi demand information 

can help both new and experienced drivers satisfy the city's taxi demand promptly. Taxi demand 

prediction in a particular location can be used to create new business opportunities or new 

services. That’s why, passenger location is one of the most important to all taxi drivers, 

Vanichrujee (2017). 

 However, taxis are available in all sections of Japan, with the exception of isolated places, 

and are nearly entirely provided by private taxi firms and owner-driver cabs. There are around 

6,400 taxi firms and 37,000 owner-driver cabs in the city, with a total fleet of over 230,000 

cars. The overall number of taxi passengers is expected to be around 15 billion every year. 

According to Fukumoto et al. (2017), the market size of taxis in Japan is over 1.7 billion yen 

(JPY), which is around 60% more than the market size in 1992.  Because the number of 

passengers is now declining, the Japanese taxi sector is experiencing several issues. The 

Japanese govt. and taxi companies are working together to address these fears, which are 

especially acute in regional cities and rural regions. The appropriate charge for shared taxis and 

taxi allocation in urban and suburban regions are presented in this thesis. As a result, it is 

required to provide a proposal that will help to revitalize the taxi business in the area. 

There are two types of taxi businesses such as regular/general taxis and sharing taxis in 

Japan. Regular taxis in Japan are typically painted in a distinctive color, such as black or white, 

and are equipped with a meter to calculate the fare based on distance and time. A taxi transports 

passengers to and from their desired location. Regular taxis in Japan have a long history, dating 

back to the early 20th century. Initially, taxis were primarily used by wealthy individuals, but 

as the industry grew, they became more widely used by the public. Today, taxis are a common 

mode of transportation in Japan, particularly in urban areas where public transportation may be 

crowded or infrequent. Taxi drivers in Japan are known for their high level of professionalism 

and customer service and are expected to be knowledgeable about the city and provide helpful 
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recommendations to passengers. Shared taxis, also known as "jumbo taxis" or "shuttle taxis", 

have been in operation in Japan since the 1970s. These taxis are larger than general taxis and 

can carry up to ten passengers. Shared taxis operate on fixed routes, picking up and dropping 

off passengers at designated locations. The introduction of shared taxis was a response to the 

high demand for public transportation in rural areas of Japan, where traditional buses and trains 

were often infrequent or unavailable. Shared taxis provide a more flexible and convenient 

option for passengers traveling to and from remote locations. Shared taxis have become 

increasingly popular in recent years, particularly in rural areas where public transportation 

options are limited. The Japanese government has also promoted the use of shared taxis as a 

means of reducing traffic congestion and improving environmental sustainability. However, 

regular taxis remain an important part of the transportation landscape in Japan, particularly in 

urban areas. One of the main challenges facing the shared taxi industry in Japan is the high cost 

of operation. Additionally, shared taxis require a larger vehicle and driver, which can increase 

operational costs. Another issue facing the shared taxi industry in Japan is the lack of public 

awareness and understanding of the service. Many people in Japan are not familiar with the 

concept of shared taxis and may not know how to use them, which can limit the demand for the 

service. Furthermore, the availability of shared taxis can be limited in some areas, particularly 

outside of major urban centers. This can make it difficult for passengers to find a shared taxi 

when they need one, particularly during peak travel times. In Japan, shared taxis have the 

advantage of being more cost-effective than general taxis for certain types of trips. By sharing 

the ride with other passengers, the fare per person can be lower than the fare for a general taxi 

ride. This can make shared taxis an attractive option for passengers traveling longer distances, 

particularly in rural areas where public transportation options are limited. 

Another benefit of shared taxis is that they can be more convenient than traditional public 

transportation options such as buses and trains. Shared taxis operate on fixed routes and 

schedules, which can provide a reliable and flexible option for passengers who need to travel 

to and from remote locations or at off-peak times. The fare structure for shared taxis in Japan 

can also be a challenge. While shared taxis may be more cost-effective than general taxis for 

certain types of trips, the fare is usually fixed and can be higher than the fare for a similar trip 

on a bus or train. This can make shared taxis less attractive to price-sensitive passengers who 

are willing to sacrifice convenience for lower fares. Furthermore, the fare structure for shared 

taxis can be complicated, particularly for passengers who are not familiar with the system. In 

some cases, the fare may be based on the number of passengers, the distance traveled, or a 
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combination of both. This can make it difficult for passengers to understand how much they 

will need to pay for the ride. At present, a shared taxi is becoming a travel mode. According to 

Chen et al. (2015), passengers and drivers agree that sharing a taxi with others is good for the 

environment, traffic congestion, and the participants. Taxi sharing can help the environment by 

reducing the usage of fuel and CO2 emissions. For society, sharing taxis can meet the growing 

travel demand. Passengers may save money on their travel expenses, and it is a win-win 

situation. Drivers can make more money when there are more passengers in the cab, according 

to Huang et al. (2018). The price systems for taxi sharing are varied, and the majority of them 

are only appropriate in certain circumstances. The authors looked at four different taxi-sharing 

scenarios: (a) Passengers have the same origin and destination, (b) the same origin and different 

destinations, (c) the different origins and the same destination, (d) the various origins and 

different destinations. 

  A certain amount is charged while driving a taxi for a certain distance. After the relaxation 

of taxi regulations in 2002, each operator can freely decide to increase the amount of the charge 

(MLIT). In certain regions, only distance system fares are used when traveling in cabs on 

expressways. This is done to prevent excessive fares if taxis are stuck in traffic on the highway 

and passengers are unable to drop off them. When a taxi goes slower than a certain speed (10 

km/h) or stops, the elapsed time is converted to distance using a formula, and the cost is added 

to the fare. Therefore, if there is traffic on the way to the destination, the fare is fairly expensive 

for the distance traveled. The fare determined by how long the passenger uses the taxi is called 

time charge care. This technique is often used by taxis to visit tourist attractions. Pre-determined 

fare without distance or time. This method is often employed by taxis transporting people to 

and from the airport. 

The taxi industry in Japan is the increased competition from ride-hailing services such as 

Uber. While these services are still relatively new in Japan and face regulatory hurdles, they 

have the potential to disrupt the general taxi market by offering lower prices and greater 

convenience. Additionally, there is a perception among some consumers that taxi fares in Japan 

are relatively high compared to other countries, which can make the service less attractive to 

price-sensitive customers. Taxis provide door-to-door service as a highly flexible means of 

transportation, but this flexibility also introduces another significant challenge: taxi idle time. 

Idle time is a source of overhead for the operator. Idle time may be divided into two categories: 

moving idle time and stationary idle time. When taxi drivers move their idle time, they simply 
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travel while looking for customers to pick up or return to their previous place. Taxi idle times 

occur for several reasons, the most common of which is a mismatch between supply and 

demand, as well as unevenly distributed demand (unless peak season) (taxi forecasting). 

Demand heterogeneity often occurs in urban areas due to high uncertainty when demand is 

unevenly distributed (context-aware), but in suburban areas, taxi demand is uncertain due to 

low per-taxi catchment area and low passenger density per square kilometer. As a result of all 

these changes, suburban taxi drivers have more idle time than city taxi drivers on daily trips. 

So, taxi businesses in suburban areas are facing a major problem, Hsu (2010). With such a wide 

catchment area, the main difficulty is taxi allocation. Without an optimized allocation strategy, 

the operator will have enough idle hours (context-aware). The study focused on this fleet 

allocation problem as we discovered the problems that operators regularly face due to it. 

Shi and Lian (2016) studied the behavior of socially aware taxi passengers and used social 

welfare to maximize the taxi buffer size. They also looked at how the government regulates the 

number of taxis and taxi drivers by subsidizing taxis or imposing taxi surcharges. In a two-level 

choice model of customer-searching taxi drivers, Wong et al. (2014a) developed a hierarchical 

logit modeling technique. Taxi drivers can use the hierarchical logit method to interpret real 

situations. The model framework should be more suitable to describe the desired behavior of 

taxi drivers when visiting the taxi stand to look for customers. The authors identified factors 

that influenced empty taxi drivers' decisions to go to nearby taxi stands to look for passengers 

and wait for other empty taxi drivers. They talked about possible consequences of the proposed 

taxi legislation, such as adding additional full-time, daytime, and nightstands in various service 

areas, and enacting measures to increase taxi stand utilization rates. In a smart city, Askari et 

al. (2020) showed how to forecast taxi demand. They proposed a different model. The authors 

found that taxi demand in each region is influenced by neighborhood location as well as 

neighborhood attractions. Data sets for points of interest provide useful information during peak 

hours. To improve the basic prediction model, they looked at the influence of external factors. 

Miwa et al. (2013) analyzed data from Nagoya City in Japan to examine how taxi probe car 

devices might be assigned effectively. Despite the fact that taxis in Manhattan spend 33 percent 

of their time cruising for customers, even at rush hour, O’Keeffe et al. (2021) developed a 

model for the occurrence of passes by investigating vehicles and seeking to find a practical use 

for it. Stationary idle time refers to when a driver parks his or her automobile for a variety of 

reasons, such as taking a break or waiting for a client's request. A method where, for example, 

a user hires a taxi for a day and pays its driver the smallest amount of compensation as fare, 
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which appears to be the same as the driver's day's sales, with less distance and time. This method 

is sometimes observed in private businesses with frequent customers. Higher fares apply for 

late hours which are between 22:00 (23:00 in some urban cities) and 5:00 the next morning. 

Usually, 20 to 30% of the regular fare is added. As 'warimashi' (extra fare) is printed in blue on 

the signaling lights, this time zone is also known as 'Aotan' (literally, a blue strip of paper). 

Winter rents are more expensive. Based on the fact that road conditions in Hokkaido, Tohoku, 

and Hokuriku become dangerous in winter. 

Depending on the area, disabled persons are usually entitled to a 10% discount by showing 

their identification booklet for the physically disabled. Again, when a passenger uses a taxi for 

a certain distance, a certain amount of fare concession is given. Fare placement will be 

important to ensure the viability of taxi sharing. Fare distribution will affect participation. The 

first step is to think about equity issues. With changes in various criteria, such as increased 

travel distance due to roundabouts, increased travel time due to more lifts or stops, and comfort 

due to more people in less than one taxi, the method of allocating taxi-sharing costs should be 

different. The second step is to develop a simple pricing model that takes into account the 

number of passengers as well as the distance traveled. 

1.2 Motivation 

Taxis are the most readily available mode of transport in low-demand situations due to the 

speed, door-to-door service, privacy, comfort, 24-hour operation, and no parking fee. A taxi is 

a form of public transport that provides convenience in both private and public transport. Taxis 

can be used in a variety of ways, from private use and variable routes to shared use and 

predetermined routes. Due to the geographical dispersion of demand, empty taxis accumulate 

in places where they will not be used, leaving a shortage of taxis where they will be needed. 

Taxi companies do not make a profit even if they run empty taxis. Consequently, optimizing 

taxi operational costs is an important component of transport operators' planning and control 

activities. In local cities, population density is declining, and it is expected that the role of taxis 

in public transport will increase in the future due to the reduction or elimination of buses on 

certain routes. 

A study of shared taxi trip costs in Japan helps us understand the factors influencing pricing 

and identify ways to make the industry more accessible and affordable. It can be influenced by 

a variety of factors, including operating costs, competition, and regulatory requirements. In 
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exploring how the cost structure of shared taxis affects pricing, as well as the impact of 

competition from other transportation providers. This may involve examining pricing strategies 

that encourage ridership, such as dynamic pricing based on demand, or exploring the potential 

for subsidies or other financial incentives to promote shared taxi use. However, regular taxi and 

shared taxi fares remain high due to labor shortages.  

 

Figure 1.1. Number of taxi drivers decrease. 

  [Source: Statista (2019)1] 

My research analyzes current operational conditions, finds existing problems, and 

ascertains potential for productivity gains. Also, we are trying to reduce costs by reducing 

operating costs and increasing demand by creating a new efficient taxi system based on real-

world understanding. During peak hours, taxis are undoubtedly the most popular mode of 

transport. That is, taxis are often in short supply. During off-peak hours, however, the difference 

between high-profit and low-profit drivers becomes apparent. The driver should be aware of 

the locations where they can pick up people at any time of the day. Another factor is the length 

of the typical journey that results from a pick-up location. As we know, demand for taxis is 

generated by transit hubs, stations, retail malls, restaurants, and hotels. Instead of random 

cruising, an experienced local driver usually has a place to go to pick up a new passenger after 

dropping off a passenger. Instead of wasting fuel on random trips, experienced drivers will wait 

for passengers in a parking lot, Yuan et al. (2011). Optimizing taxi idle time costs for 

 

1 Source: https://www.statista.com/outlook/mmo/shared-mobility/shared-rides/ride-hailing-
taxi/japan 
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minimizing CO2 emissions refers to the process of reducing the amount of time that taxi cabs 

spend idling in order to minimize their greenhouse gas emissions. This approach is important 

for reducing the carbon footprint of the transportation industry, as taxi cabs can spend a 

significant amount of time idling while waiting for passengers or traffic. 

Optimizing taxi idle time costs by using technologies such as GPS and real-time traffic data 

to minimize the time that taxis spend idling. For example, taxis can be directed to areas with 

high demand for rides, reducing the amount of time they spend waiting for passengers. 

Additionally, taxi companies can implement policies that encourage drivers to turn off their 

engines when idling for more than a certain amount of time. The necessity to minimize traffic 

in urban environments caused by automobiles looking for parking supplied the momentum for 

this thesis. As a result of traffic congestion, this wastes time and fuel for cars seeking parking 

and contributes to idle time and fuel for other drivers, Geng and Cassandras (2013). 

Therefore, shared taxi services have gained significant popularity in recent years due to 

their cost-effectiveness and environmental benefits. These services involve multiple passengers 

sharing a single vehicle to reach their destinations, resulting in reduced traffic congestion and 

lower carbon emissions. However, the allocation and routing of shared taxis present complex 

optimization challenges that need to be addressed to ensure efficient and reliable service. 

The allocation and routing problem of shared taxis involves determining the optimal 

assignment of passengers to available vehicles and finding the most efficient routes for these 

vehicles to minimize travel time and operational costs. This problem becomes even more 

challenging when considering real-world constraints such as varying demand patterns, dynamic 

passenger requests, limited vehicle capacity, and time windows for pick-up and drop-off. To 

tackle this problem, the development of mathematical models and heuristic algorithms has 

become crucial. Mathematical models provide a formal representation of the problem, capturing 

its key components, constraints, and objectives. Heuristic algorithms, on the other hand, offer 

efficient and practical solutions by employing approximate techniques to find near-optimal 

solutions within a reasonable time frame. 

The goal of this research is to develop mathematical models and a heuristic algorithm for 

the allocation and routing problem of shared taxis. The proposed models will take into account 

various factors such as travel distances, passenger waiting times, vehicle capacities, and time 

windows to ensure efficient and reliable service. The heuristic algorithm will employ intelligent 

search strategies to efficiently explore the solution space and find near-optimal solutions. 
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1.3 Research Questions, Objectives, and Originality 

The goal of this thesis is to determine taxi demand and the best taxi fleet allocations and costs 

for shared taxis in order to reduce the taxi service's system. The three factors of the taxi 

identified in the research and used in the models are passengers, drivers, and the environment. 

1.3.1 Research Questions 

In light of this context, the study's goal is to fill in the mentioned above. The primary research 

question is expressed as follows: 

RQ1. What is the most accurate and effective Hybrid Machine Learning approach for 

predicting taxi demand in a suburban area? 

RQ2. How can the shared taxi routing problem promote affordability and accessibility for 

passengers in Japan, particularly in underserved or rural areas where general transportation 

options may be limited? 

RQ3. How to design the appropriate trips cost for urban, suburban, and rural areas in a 

mathematical model to meet the conditions of the shared taxi problems with pickup and 

drop-off in time windows?  

RQ4. How to cost minimize through optimizing idle time in taxi operations and improving 

the utilization of taxi fleets to increase efficiency? 

 RQ5. How can taxi allocation be optimized while also improving the quality of service for 

passengers optimized in urban areas with high demand and rural areas with low demand, 

such as reducing wait times and improving safety? 

1.3.2 Research Objective 

The most important objectives of this thesis are: 

➢ Hybrid Machine Learning Algorithm: To build a new Machine Learning model and 

predict how time varies for passenger demand and taxi drivers waiting time. 

➢ Minimizing the total trip costs of passengers: To formulate a nonlinear shared taxi 

model to ensure that passengers receive a fair and reasonable cost for their shared taxi 
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trips, while also encouraging them to use the service during off-peak hours to reduce 

traffic congestion and increase profitability.  

➢ Improving the overall performance of the shared taxi service: To optimize various 

aspects of the service, such as route planning, and scheduling, to ensure that the service 

provides a valuable transportation option for passengers, while also contributing to the 

broader goals of reducing traffic congestion, improving air quality, and promoting 

sustainable urban mobility. 

➢ Minimizing the number of taxis fleet utilized: To optimize the allocation of taxis 

based on demand patterns, to ensure that the service remains cost-effective and efficient, 

while also minimizing the environmental impact of excessive taxi usage. 

➢ Minimizing the cost of taxi idle time: To minimize the total operational cost when 

minimizing the idle time of the taxi driver and the number of taxis utilized of potential 

demand. 

➢ Minimize CO2 emissions: To determine the idle time and reduce taxi numbers to 

optimize taxi operations thus reducing CO2 emissions. 

1.3.3 Research Originality 

The taxi model is a type of mathematical model used in transportation research to determine 

the fare charged to passengers in a shared taxi service and taxi utilization. 

➢ The proposed hybrid Machine Learning models for taxi data represent a novel 

approach to the analysis and optimization of taxi services. These models integrate 

different Machine Learning techniques, use multiple data sources, develop new 

prediction models, and focus on real-time prediction, leading to more accurate, efficient, 

and profitable taxi services. 

➢ The development of mathematical models for shared taxi routing problems represents 

a novel approach to the pricing of shared transportation services. These models integrate 

various factors, use optimization techniques, focus on sustainability, and develop new 

mechanisms, leading to more efficient, fair, and sustainable transportation systems. 

➢ The development of mathematical models for taxi allocations represents a novel 

approach to the management of taxi fleets. These models integrate data sources, use 

real-time optimization, develop new algorithms, and focus on sustainability, leading to 

more efficient, sustainable, and profitable taxi fleets. 
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➢ The shared taxi fare model provides a fair and efficient transportation service by 

optimizing the allocation of taxis and adjusting fare rates based on demand patterns. 

This helps to ensure that passengers receive fair and reasonable costs for their trip, while 

also ensuring that the taxi service remains profitable. 

Its originality lies in its ability to optimize the allocation of taxis, adjust fare rates based on 

demand patterns, and provide a fair and efficient transportation option for communities. 

1.4 Publications Related to the Research Done in the Thesis 

The following periodicals have published the contents of the current doctorate thesis:  

• MONDAL M., SANO K., WATARI T., PUPPATERAVANIT C., PERERA F., and DE 

SILVA C.K., An Efficient Modelling Approach on Passenger Demand with Fare in 

Shared Taxis: A Case Study of Sanjo City, Japan, Journal of the Eastern Asia Society 

for Transportation Studies, 2022 Volume 14 p. 684-701, 

https://doi.org/10.11175/easts.14.684 

• Mondal M., Sano K. Teppei K, and Chonnipa P., Optimization of Taxi Allocation for 

Minimizing CO2 Emissions Based on Heuristics Algorithms, Smart Cities, 2023, 

Volume 6, Issue 3, 1589-1611, https://doi.org/10.3390/smartcities6030075 

• Mondal M., Sano K. Teppei K, Chonnipa P., and Watari T., Predicting Taxi Demand in 

Urban Areas by the Application of Hybrid Machine Learning Algorithm, Journal of the 

Eastern Asia Society for Transportation Studies (Submitted) 

1.5 Scope and Limitations 

The scope of the shared taxi industry in Japan includes the various companies and organizations 

that offer shared taxi services, as well as the passengers who use these services. This includes 

both general taxi companies that are beginning to offer shared taxi services, as well as newer 

startups that specialize in shared transportation options. This research is divided into two 

categories: academic and practical. The current study, which is related to the academic sector, 

tries to address the conceptual concerns of why this topic? What difference does it make 

whether it's been accomplished? 

The shared taxi industry in Japan operates in a dynamic and evolving market, with a range 

of factors that can influence its growth and development. These include changing consumer 

https://doi.org/10.11175/easts.14.684
https://doi.org/10.3390/smartcities6030075
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preferences, technological advancements, regulatory requirements, and competitive pressures 

from other transportation providers. Research into the shared taxi industry in Japan may focus 

on various aspects of this market, such as pricing models, demand patterns, operational 

efficiency, and service quality. 

However, there are also some limitations to the scope of research on the shared taxi industry 

in Japan. One limitation is the relatively emerging stage of the industry, which means that there 

may be limited data and information available for analysis. Additionally, the shared taxi 

industry in Japan is just one segment of the broader transportation market, and research may 

need to consider the impact of other factors, such as public transportation or ride-hailing 

services, on the demand and viability of shared taxi services. A questionnaire survey might be 

used to learn about people's attitudes toward taxi-sharing services with various operation 

methodologies. 

Another limitation is the potential for cultural and linguistic barriers in conducting research 

on the shared taxi industry in Japan. Research may need to be conducted in Japanese, and 

researchers may need to have a deep understanding of Japanese culture and business practices 

in order to effectively analyze the industry. 

Overall, while there are some limitations to the scope of research on the taxi industry in 

Japan, there is also significant potential for exploring the challenges and opportunities facing 

this emerging sector of the transportation market. By understanding the scope and limitations 

of research in this area, researchers can help inform the development of effective strategies for 

promoting sustainable and accessible transportation options in Japan. 

1.6 Outline of the Dissertation 

To begin, Chapter 1 provides an outline of this research. Following a brief overview of the 

topic's research needs and purpose, the research gaps are highlighted as the backdrop for 

defining research objectives. The research question is given, together with the response, as the 

study's objectives. This part is critical in determining which components of the study should be 

prioritized and why they should be taken into account. 

Chapter 2, we review papers of taxi demand, taxi fleet utilization, taxi allocations, and 

shared taxi routing modelling, as well as papers on the impact of cost-efficiency of the shared 

taxi. 
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Chapter 3, the trajectory data is extracted by using Visual Basic macro-Excel. This chapter 

focuses on the process of data gathering, including data collection methods and extraction, with 

a particular emphasis on two types of data: taxi data obtained from Nagaoka City and Sanjo 

City Taxi companies in Japan, and weather data sourced from the Japan Meteorological 

Agency's website. 

Chapter 4, which provides a concise overview of methods and techniques used to estimate 

taxi demand, offering valuable insights for analysing and predicting passenger requests in the 

transportation industry. 

Chapter 5 presents a mathematical model for the shared taxi routing problem, focusing on 

minimizing idle time cost. The chapter discusses taxi allocation strategies and proposes a 

mathematical framework to optimize routing decisions, aiming to reduce the overall idle time 

cost of shared taxi services. 

In Chapter 6, explores the application of two models in the taxi sector of Sanjo and Nagaoka 

cities, yielding significant results such as optimal taxi routes and reduced CO2 emissions based 

on idle time. 

In Chapter 7, we present the cost-efficiency analysis of shared taxi operations, the cost-

efficiency analysis is to compare the operational performance of shared taxis and general taxis 

in suburban areas, in Japan, with a focus on factors such as vehicle utilization, driver expenses, 

and operational costs. 

Chapter 8, we discuss the validity of the calculation results, the limitations of this research, 

and future issues.  
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Figure 1.2. Research design – Conceptual framework 
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Figure 1.3. The framework by Chapter and organization of research 
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Chapter 2. LITERATURE 

REVIEW  

 

This chapter begins by reviewing the concept of taxi demand, taxi fleet utilization, taxi 

allocations, and shared taxi routing modeling. The most important research in each area is 

detailed in greater depth, with a discussion of their significance to the subject addressed in this 

study. The chapter finishes with a review of the literature, based on which a solution to the 

posed problem is offered. 
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2.1 Review of the Taxi Demand 

The demand for taxi services is a complex issue that has been studied extensively in the 

transportation literature. In the context of Japan, there are several key factors that have been 

identified as drivers of taxi demand, as well as challenges that the industry faces.  

One of the key drivers of taxi demand in Japan is the country's aging population. As the 

population ages, there is a growing need for transportation options that are accessible and 

accommodating for older adults. Taxis, with their door-to-door service and ability to 

accommodate mobility devices, can be an attractive option for seniors who may have difficulty 

using public transportation. There has been a lot of research on taxi services around the world, 

and lots of data on the regulation and deregulation of the taxi industry. A lot of information, 

including position, time, number of customers, weather, traffic, and so on, may be captured in 

real-time by putting widely used mobile phones in network sensors and taxis. This information 

covers the way for the development of a smart transportation system capable of controlling and 

coordinating a large number of taxis. Both taxi drivers and operators may gain from it. Taxi 

drivers are permitted to operate in places where there is substantial demand for taxis and shared 

taxi services. They can reallocate their cars utilizing surge pricing in advance to satisfy 

passenger demand. According to Miao et al. (2019), passenger demand data may be employed 

in taxi dispatch systems to minimize passenger waiting time, taxi traveling time, and re-

balancing expenses.  

 The taxi demand prediction problem has attracted more attention with ride companies' 

growth. Recently, some studies have been available concerning taxi demand forecasting (Mukai 

and Yoden (2012); Yao et al. (2018); Zhao et al. (2016); Zhao et al. (2019); Rajendran et al. 

(2021); Askari et al. (2020)). Askari et al. (2020) referred to points of interest, including the 

location, business type, and key timelines that emerge in demand as external features for the 

vanilla LSTM process. The study's findings reveal that external variables such as nearby sites 

and areas of interest might impact taxi demand forecasting in each region. Human movement 

patterns in an urban taxi transportation system were studied by Li et al. (2012). According to 

the variance of pickup quantity (PUQ) within an urban region, this can automatically estimate 

the boundaries of hotspots. In the related work on predicting taxi demand urban human mobility 

may help passengers have a more pleasant travel experience while also assisting the government 

in better managing the city's transportation system. Traditional time-series statistics like Auto-

regressive Integrated Moving Average (ARIMA) (Li et al. (2012); Moreira-Matias et al. 



Chapter 2. LITERATURE REVIEW 

18 | P a g e  

 

(2013)) developed new machine learning time series like Recruit Neural Network (RNN) and 

Long Short-term Memory (LSTM). (Zhao et al. (2019); Vanichrujee et al. (2018)) were also 

improved taxi demand. Studies had also extended the analytical approach based on big data by 

merging geographical and temporal characteristics, Yao et al. (2018). 

 James Cooper (2010) performed a study on taxi services worldwide. Taxis played an 

important role in providing transportation to all parts of the world, providing instantly 

recognizes consistent services. The mode provided access to social activities, contributes to 

tourism, and significantly contributes to the economy of a location that provided socially 

desirable accessibility to people without vehicles and used in emergencies. Yang et al. (2005) 

used realistic distance-based and delay-based price structures to investigate the exclusive, 

socially optimum, and stable competitive solutions of cruising taxi services in the presence of 

traffic congestion. The authors generalized by taking into account the negative effects of traffic 

congestion on taxi businesses, customers, and society. They also noted that, when modeling 

taxi fleets in urban environments, the majority of fleet size and profit occur at the unit flexibility 

of customer demand, when the increase in revenue from a higher charge is offset by the decline 

in consumer demand. Yang et al. (2010) proposed a solution to solve the problem of bilateral 

search and meeting between taxis and consumers in a shared network. A generic meeting 

function has been developed that may capture the many natures of meetings in physically 

disparate places and contains the waiting time function, which has been widely employed in 

earlier research in a specific scenario. To provide a stable balancing solution with the least 

amount of time variable distribution between taxis and clients, a repeating numerical technique 

was designed. Salanova et al. (2014) provided a thorough examination of the evolution of the 

formulation for modeling taxi services in metropolitan regions. They also discovered and 

studied several formulations proposed in the literature for each of the three operating modes, 

offering distinct formulations for each (healing, stand, and dispatching). 

 Cordeau (2006) devised a branch-and-cut solution for the dial-a-ride problem (DARP) for 

transportation from a given origin to a specific destination using a mixed-integer programming 

model on a three-index with a polynomial number of constraints. The challenge entails a 

minimal cost constraint that satisfies the capacity, time length, time window, pairing, 

precedence, and ride-time restrictions of the vehicle routes. DARP specializes in providing 

door-to-door transportation for the elderly and disabled. Sub tour elimination constraints, 

precedence constraints, extended order constraints, and order-matching constraints are among 
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the inequalities defined by the authors. Solving situations with up to four cars and 32 requests 

was made possible using this strategy. Ropke et al. (2007) created two new mathematical 

models for the pickup and delivery problem with time windows (PDPTW) of the dial-a-ride 

problem (DARP) in order to meet a collection of transportation requests between pickup and 

delivery. The PDPTW and the DARP did tests on numerous different instance sets to see if the 

branch-and-cut algorithms could solve these inequalities. The deregulation of the taxi sector in 

Japan has been the subject of several financial literature. Every day, a conventional taxi system 

transports thousands of customers. It is a wonderful illustration of a supply-demand system, 

with available taxis pointing in the supply direction and waiting for passengers pointing in the 

demand direction. 

The finest personal judgments contribute to overall inefficiencies in the taxi system, with 

excess or deficit taxi service delivery and extended periods of idle time with no clients inside. 

Empty travel diminishes the system to use and adds to traffic congestion. As a result, lowering 

the efficiency of the taxi industry is a difficult but necessary task for city transportation 

authorities and governments. Over the previous 10 years, Yang et al. (2000) created a 

simultaneous equation for predicting passenger demand, taxi utilization, and service level-

based regions in Hong Kong. The number of licensed taxis, taxi fares, disposable money, time 

of occupant taxi ride, daily taxi passenger demand, driver eating time, taxi accessibility, taxi 

use, and average taxi waiting time are all endogenous factors. Once provided external data or 

inferred from other socioeconomic factors, that model may be used to forecast future 

performance metrics of taxi services, including taxi demand, taxi utilization, and service 

quality. 

 Glaschenko et al. (2009) discussed the taxi system as a multi-agent system, offering a real-

time model to reschedule taxi service before confirming order acceptance to finish recent trip 

calls. A very complex problem of operating London’s largest taxi service was solved using a 

new multi-agent adapted scheduling method. This method is innovative, measurable, 

compatible with modern trends in optimization, and, effective in large-scale, practical, and 

commercial applications. Shen and Lopes (2015) proposed expanding and Target algorithms 

that can be readily combined with various scheduling techniques for dispatching autonomous 

cars to minimize passengers' normal waiting time and boost trip success rates. The authors 

implanted autonomous dynamics on the demand simulation platform and conduct an empirical 

study with New York City taxi data in 2013. 
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 Qu et al. (2014) advocated that a low-cost referral system for taxi drivers be developed. The 

purpose of the design is to maximize revenues while adhering to the specified passenger-finding 

path. To estimate the prospective profit of the driving route, they devised the objective function 

of a net profit. Then, using previous taxi GPS data, they created a graph representation of the 

road networks and used a brutal-energy technique to determine the optimum driving path. 

However, a major roadblock in this direction is the graph-based approach's high processing 

cost. As a result, they built a creative repeat strategy based on a specific form of the net profit 

function to determine the best client route. The authors conducted extensive tests on a real-

world data set acquired from the San Francisco Bay region, and the findings demonstrated that 

the suggested recommendation system is successful. To describe the behavior of empty taxis, 

Zheng et al. (2012) devised the non-homogeneous poisoning process, which can better forecast 

the real scenario and has a simple form for distributing the likelihood of waiting time. They 

calculated the time it would take for empty taxis to arrive at various points along the route and 

created a recommendation system for anyone who wanted to take a cab. They also conducted 

several tests to assess the real trajectory of simulated passengers and taxi drivers. They put the 

concept into reality by creating a model app that may assist users in finding an appropriate 

location to wait for a cab. 

 Qian et al. (2015) proposed a Sharing Considered Route Assignment Mechanism (SCRAM) 

to enhance egalitarian taxi services. SCRAM set out to deliver fair and efficient route 

recommendations to a community of competing taxi drivers. The fundamental purpose of 

SCRAM is to validate the accuracy of proposals offered by a group of competing taxi drivers. 

As a result of the proposed route's partitioning of present road segments, SCRAM's side effect 

is that taxi drivers' driving skills improve. Furthermore, rather than just directions, SCRAM 

may provide taxi drivers with an exact driving path. Yuan et al. (2011) demonstrated how to 

utilize the GPS trajectory of a large number of taxis to pinpoint parking spots. Taxi drivers often 

park their cars while waiting for passengers. The company calculated the chance of picking up 

a customer if the vehicle drove to a parking lot and parked in certain areas, enabling taxi drivers 

to use the advice. The authors proposed a feasible model for time-dependent taxi behavior 

(pickup/drop-off/parking), on both the highway and in parking lots, based on suggestions for 

taxi drivers and clients.  They devised a partition-and-group architecture for acquiring city-wide 

statistical knowledge in order to provide timely suggestions based on historical data. The 

technique was tested utilizing a large number of historical GPS trajectories (12,000 cabs in 110 

days) produced by taxicab companies. Zhan et al. (2014) investigated the effectiveness of the 
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taxi service system using real-world large-scale taxi trip data. In the case of a hypothetical 

framework recommendation system, two methodologies have been proposed to identify the best 

theoretical strategies that reduce the cost of idle travel and so need the least number of taxis to 

fulfill all observed trips. Optimization issues that are converted to equivalent graph problems 

are tackled using polynomial time approaches. The performance discrepancy between the real 

system and the theoretically perfect system is assessed using data from cab journeys in New 

York City. 

 Ali et al. (2004) developed a mathematical model of a new metric to determine a resource 

allocation related to the functional characteristics of the desired system against multiple 

disturbances of different systems and environmental conditions. Also, the authors described a 

general robustness metric method called FePIA (Features, Perturbation, Impact, Analysis) to 

systematically find out the metric of consistency for different parallel and distributed asset 

allocation systems. The FePIA method is employed to find out the consistency metrics for three 

instance distribution systems. Geng and Cassandras (2013) developed a "smart parking" system 

that uses technology to identify drivers and estimate available parking spaces. It allocated 

parking spaces to automobiles rather than merely providing instructions. They focused on 

building an efficient and optimal allocation approach for both the system and the user by solving 

a sequence of mixed integer linear programming problems with a solution that fulfills specific 

fairness conditions. The taxi demand prediction problem has recently attracted more attention 

to ride companies' growth. 

Mukai and Yoden, (2012), the authors discussed the taxi demand forecast from taxi 

historical probe data by a neural network. Since this is a study conducted in Tokyo, Japan, 

which may be similar in terms of business management and taxi passengers’ behavior. This 

study used the previous demand in each region, day of the week, and rainfall to input the neural 

network. The results show that the day of the week is critical for forecasting demand because 

the demand for taxis repeats every week. Whether it was raining or not at the time the taxi 

picked up the passenger, precipitation was not a factor in the effectiveness of the learning 

model. The limitation of this study is that it uses rain as the only weather factor to represent the 

effect of weather. In addition, the second limitation of this study is the forecast timeframe. 

Instead of forecasting hourly or shorter periods, this study divided the 4-hour interval to forecast 

the next 4-hour interval. This forecast may be helpful in fleet allocation at the company level 

but not for drivers' customer acquisition strategy. 

 Many studies use time series models to build predictive models, mainly LSTM or ARIMA, 
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with different approaches to enrich input features. Rodrigues et al., (2019) argued that a large 

part of the valuable information for the learning process is in the form of unstructured text. 

Therefore, this study attempts to build word embeddings and convolutional layers to collect 

rich text information before combining it with LSTM to forecast demand. Askari et al., (2020) 

referred to points of interest, including the location, business type, and key timelines that 

emerge in demand as external features for the vanilla LSTM process. The findings of the study 

reveal that external variables such as nearby sites and areas of interest might impact taxi demand 

in a certain region. Human movement patterns in an urban taxi transportation system were 

studied by Li et al., (2012). They concentrated on determining the pickup quantity (PUQ) for 

metropolitan hotspots with a high number of passengers boarding or exiting taxis. To cluster 

hotspots, they suggested an adaptive watershed algorithm. According to the variance of PUQ 

within an urban region, this algorithm can automatically estimate the boundaries of hotspots. 

Predicting urban human mobility can help passengers have a more pleasant travel experience 

and assist the government to enhance the development of a city's transportation infrastructure. 

They enhanced an ARIMA-based prediction system for predicting how many passengers would 

be at a specific hotspot in a specific period. These studies are based on the initial assumption 

that points of Interest (POIs) are related to differences in taxi demand at different times. 

However, they hypothesize that it is not only the POIs or neighboring locations that create the 

difference in demand. Therefore, the authors recommend cluster analysis and allowing 

historical data to voice for itself. The results of our cluster analysis will also be used as 

reinforcement input for demand forecasting models. Liao et al., (2018) developed the model of 

the Artificial Neural Network (ANN), Multi Regression, XGBoost, Decision Tree, Random 

Forest, LSBoost, STResNet, FCL-Net, and CNN-LSTM based on one million taxi records in 

New York City. Although considering a superior model, they concluded that a deep neural 

network is only effective when designed with a reasonable structure, where domain knowledge 

is key. Again, According to  Liao et al., (2018), a transportation problem (namely, the 

forecasting of taxi demand) is well-suited for a convolutional neural network (CNN) based on 

a deep neural network, which was originally developed to handle picture data. The authors then 

over the details of two newly suggested deep neural network (DNN) designs, ST-ResNet and 

FCL-Net, which were both meant to directly address the three constraints, albeit in different 

ways. They implemented both networks and used them to estimate taxi rider demand using a 

common dataset, namely New York City taxi data. Zhao et al., (2022) analyzed the 

effectiveness of the conventional ARIMA prediction model and the current machine-learning 
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model using 14 million sequence data. First, do some research to see which model has the most 

accuracy. After that, the team determined the maximum accuracy and examined which models 

exceeded it. The unexpected finding is that the machine learning algorithm is not the best 

prediction answer.  ARIMA-based forecasting is not the optimum method, according to 

Moreira-Matias et al., (2013). They introduced a novel are included, demonstrating that their 

technique can achieve high-accuracy prediction. They concentrated on the challenge of real-

time decision-making about where to go following a passenger drop-off (i.e., the frame where 

another passenger can be picked up more quickly). Another set of machine learning models is 

used that does not rely on time series data.  

TaxiRec, a framework for analyzing and detecting the prospective passengers of road 

clusters, was proposed by Wang et al., (2018). In its neural network forecasting algorithm, 

TaxiRec considers three important factors: locations of interest, road length, and road type. To 

find difficult taxi supply-demand patterns, the author employed a deep neural network structure. 

They used multiple data sources, including car-hailing orders, weather, and traffic data, to 

forecast taxi demand for each construction block. They used time-series data to analyze taxi 

demand in a single area. The road type, road length, and point-of-interest kinds are all fixed 

parameters for one building block, therefore they can't be used to anticipate anything. Li et al., 

(2011) used the L1-norm support vector machine as a feature selection method to find the most 

important feature patterns that affected taxi performance. They discovered that the suggested 

designs are capable of accurately interpreting empirical research results produced from raw data 

analysis, and they devised a novel way for describing passenger search techniques regarding 

the time triangle. A taxi performance prediction model was also built with high accuracy. Using 

the trajectories of past trips during the training phase, Li et al., (2018) suggested a multi-task 

representation learning method for taxi journey time estimate, which improved performance. 

To anticipate taxi demand in cities, recent studies have merged deep neural networks with 

different characteristics. 

2.2 Review of the Modeling of Shared Taxi  

Since the early 1970s, several studies on the taxi business have been published. While the early 

studies (1970–1990) employed aggregated models to examine the taxi sector's productivity and 

the necessity for government intervention, subsequent studies (1990–2010) used more realistic 

taxi industry models. New cab technologies like GPS, GIS, and GPRS were also simulated in 

different models to demonstrate their advantages and justify their use. Several of the models 
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developed have been evaluated in various locations throughout the globe using data from 

different sources.  

 Agatz et al. (2012) focused on the optimization challenge of optimally matching drivers and 

passengers in dynamic ridesharing networks. There are two phases to this ride-matching puzzle. 

It initially calculates the most efficient vehicle routes before assigning passengers to them, 

balancing the competing goals of increasing the number of matched travelers while minimizing 

operating costs and passenger discomfort. They designed and built a taxi-sharing system that 

accepts real-time trip requests from taxi customers via smartphone and dispatches relevant taxis 

to pick them up through ridesharing, within time, capacity, and monetary constraints. Ma et al. 

(2015) devised and built a taxi-sharing system that takes real-time trip requests from taxi 

customers through smartphones and dispatches relevant taxis to pick them up via ridesharing, 

subject to time, capacity, and financial constraints. Hosni et al. (2014) stated that taxi sharing 

improves taxi service quality, reduces traffic congestion, and reduces environmental impact, 

and then utilized a Lagrangian decomposition approach to model the taxi sharing problem as a 

mixed integer program. They described the taxi-sharing dilemma and its solution using 

heuristics. 

 Jung et al. (2016) established a dynamic shared taxi problem to optimize. Three kinds of 

taxi dispatch algorithms are investigated: nearest vehicle dispatch, insertion heuristic, and 

hybrid-simulated annealing. To begin, the taxi demand in this study is derived from the KOTI 

regional transportation planning model, in which the survey and GPS data from taxis are based 

on traditional street taxi-hailing conditions, whereas the simulation study assumes an online e-

hailing system, in which case actual demand patterns may differ. Second, we expected 

consumers to share their travels with others, and the simulation results show that ridesharing 

has a lot of potential for cutting taxi costs by improving system productivity. However, unless 

incentives are provided based on wait times and diversion hours, not all passengers are ready 

to share their travel. 

 Wang et al. (2017) formulated the dynamic shared taxi routing issue (D-STRP) and created 

a simulator that simulates the taxi-sharing procedure. The authors designed a generalized taxi 

allocation strategy to make a trade-off between passenger wait and detour time and taxi route 

length to optimize the suggested problem's goal. They also provided the insertion algorithm, 

which allocated the passenger request to the best option available at the lowest cost. The 

simulation findings indicated that the modeled taxi allocation strategy had a significant 
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influence on D-STRP.  They could determine the best taxi distribution strategy in each travel 

situation using simulations, which is critical for taxi service providers.  Chen et al. (2019) used 

expected optimization approaches and a time-space network strategy to construct a stochastic 

taxi pooling model. They were written as NP-hard integer multiple-commodity network flow 

issues. They provided a solution approach that combines the CPLEX with an issue 

decomposition strategy. First, the authors developed a unique model, when vehicle trip times 

are stochastic that can be used to solve the taxi pooling issue. Second, a solution approach is 

developed to address the model efficiently and effectively with large-scale challenges 

encountered in reality. Third, in a case study, the adoption of this unique model outperforms 

the numerical method, which typically uses average vehicle journey durations. The Capacitated 

Vehicle Routing Problem (CVRP) was created by Ben-smida et al. (2020) to reduce the total 

cost of all journeys for the taxi sharing issue, in which items are swapped between passengers 

and trucks exchanged between taxis. They proposed a new approach called the Iterated Granular 

Neighborhood Algorithm (IGNA). They investigated how the IGNA algorithm handled a 

variety of real-world situations involving 9 to 57 people. They compared the IGNA to the 

parallel micro evolutionary algorithm (pEA) and observed that the IGNA had a lower average 

than the pEA.  Mahmoudi and Zhou (2016) created a mathematical model for the vehicle 

routing issue with pickup and drop-off with time windows (VRPPDTW), which can identify 

time-dependent link travel time owing to traffic congestion at different times of the day. Using 

the Lagrangian relaxation framework, they optimized for matching passenger demands to 

transportation service providers, synchronizing vehicle routing, and computing requests for 

balancing transportation demand fulfillment and resource requirements on urban networks. 

They analyzed a variety of search space reduction methodologies and tested sub-gradient-based 

algorithms on medium and large-scale transportation networks, including the Chicago sketch 

and Phoenix regional networks, using a dedicated C++ application. Fagúndez et al. (2014) 

presented the application of an evolutionary algorithm to solve the problem of distributing a 

group of passengers traveling in different taxis from the same source to reduce the total cost of 

travel. They examined and compared the quality of the solutions obtained using the proposed 

algorithm which is calculated using an intuitive greedy heuristic.  

 Furuhata et al. (2013) presented a categorization of current ridesharing systems as well as 

the creation of appealing processes, such as a concierge-like ride arrangement and the 

establishment of confidence among unknown riders in online platforms, all of which point to 

new research prospects. The ridesharing taxonomy identified ridesharing matching patterns that 
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can be satisfied by existing industry methods and some that are still challenging to meet. Both 

the degree of automation in matching formations and the intended demand segment were 

considered. For automated ride-matching, dynamic real-time ridesharing matching agencies 

used modern technologies such as GPS, web, and mobile technologies for real-time 

communication and developed rideshare matching systems based on routing and scheduling 

functions. 

 Based on two integer programming of the issue, Baldacci et al. (2004) offered both exact 

and heuristic approaches to carpooling. The exact system is built on a bounding approach that 

combines three lower limits derived from several issue reductions. The heuristic approach, 

which converts the solution of a Lagrangian lower limit into a feasible solution, yields a valid 

upper bound.  The suggested precise technique may solve real-world Car-Pooling Problem 

(CPP) instances in acceptable computing time, whereas the heuristic takes limited computing 

time to produce effective solutions in all cases. Lokhandwala and Cai (2018) used agent-based 

modeling to investigate the advantages and downsides of taxi sharing. The authors developed 

a model that took into account individual preferences, compared conventional taxis to 

autonomous taxis, and investigated the geographical variation in service coverage in New York 

City taxis as a result of ride-sharing. They compared the advantages and disadvantages of ride-

sharing with general taxis and shared autonomous taxis. They also examined how ride-sharing 

has affected the geographical distribution of service coverage. They discovered that moving 

from regular taxis to shared autonomous taxis may cut fleet size by 59 percent while 

maintaining service levels and avoiding major increases in passenger wait times. Watel and 

Faye (2018) presented a taxi-sharing dilemma in which the expense of the journey is split 

evenly among the passengers. The cabs were able to meet capacity and time constraints. They 

defined three versions of the problem: the maximum Dial-a-Ride Money problem with money, 

in which the goal is to drive the maximum number of clients with a large number of taxis 

arbitrarily; the max-1-Dail-a-Ride Money problem, in which the goal is to drive the maximum 

number of clients with one taxi; and the 1-Dail-a-Ride Money problem, in which the goal is to 

drive the maximum number of clients with one taxi. They demonstrated that the 1-Dail-a-Ride 

Money issue is NP-Complete and that the maximum Dial-a-Ride Money and max-1-Dail-a-

Ride Money can't be approximated in polynomial time to within any variable ratio. Al-Ayyash 

et al. (2016) evaluated the potential for market demand for shared taxi services in an 

organization-based setting. It provided an integrated choice and latent variable modeling 

technique for calculating how often a shared taxi would be used in a company if it were 
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implemented. They also looked at how cost incentives and a variety of shared taxi features 

influenced passenger behavior in real-world policy contexts. Jung et al. (2013) investigated 

how shared-taxi algorithms might improve taxi services, as well as what sorts of functions and 

limits can be employed to reduce excessive passenger flow. Hybrid simulated annealing is 

dynamically conducted to effectively assign passenger needs, and a series of simulations are 

undertaken to utilize two different taxi operating methodologies. The authors assumed that all 

passengers want to share their rides with others, and the simulation results show that increasing 

ride-sharing system productivity has a large potential to reduce taxi prices. Paraboschi et al. 

(2015) proposed a framework for measuring the impact of ride-sharing at the city level, which 

they applied to the present taxicab service. The authors included ride-sharing in a typical 

economic model of the regulated taxi industry. Based on many sample factors and data, the 

model was able to anticipate the interactions between the demand and supply of a shared taxi 

service. They tested the approach using a New York taxi market case study. The study 

emphasized the significant effect of pricing policy and taxi fleet management on the systemic 

results of a shared taxi system at the city level.  Santos and Xavier (2013)  proposed a system 

that can help people find shared rides, reducing greenhouse gas emissions and saving money. 

The authors provided the best way to get to the destination by modeling a moving scene so that 

people can share the ride even if the car has left its source. They proposed a greedy randomized 

adaptive search procedure heuristic algorithm. 

 Nguyen et al. (2015) developed a feasible hybrid transportation solution for Tokyo, in 

which a passenger and freight share a taxi. To make constraint formulation simpler, they 

proposed a time-dependent model. They used real-world trial data from the Tokyo-Mussen taxi 

firm. Over 20,000 daily requests, 4,500 daily serviced taxis, and over 130,000 crossing points 

on the Tokyo map are all part of the data gathering. They looked at the overall advantages, as 

well as the distance stored in days, the number of cabs used, and the number of shared requests. 

Hosni et al. (2014) formulated the mathematical model of the shared taxi problem. The 

authors optimized the profit of the shared taxi problem under the multi-taxi dynamic dial-a-ride 

problem (DARP). They have approached a Lagrangian decomposition of the taxi-sharing 

problem and solved it with the new heuristics method. The inefficiency in transportation causes 

some economic and environmental problems, such as traffic congestion and severe traffic 

pollution. So, ride-sharing has some benefits from these problems. Co-ride has some advantages 

of (i) minimizing the vacancy rate of taxis; (ii) reducing the operating costs of taxi companies; 

(iii) fares are more favorable for passengers; (iv) reducing road congestion; (v) minimizing the 
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effect of traffic on the environment. First, the passengers that the taxi has already served are 

called onboard passengers, and passengers who have issued requests to prepare for boarding 

are called seekers. Taxi-seekers issue a ride-hailing request, including passengers' boarding 

place and destination, and set the appropriate time, the earliest taxi arrival time expected, the 

latest alighting time, and the maximum boarding time. Neoh et al. (2017) examined how to 

improve the carpooling market. The authors identified twenty-four carpooling factors, 

categorized into four dimensions such as demographic, intervention, judgmental, and 

situational factors. It provided information on policymaking in the demand of the transport 

management field of the application of meta-analysis.  

 Yazhe Wang et al. (2018) developed a stable matching algorithm to minimize all potential 

participants' total travel distance, either in a successfully paired ride or an unsuccessfully paired 

ride. The method can significantly increase the stability of ridesharing at the cost of only slightly 

reducing system-wide performance. The authors found that during peak hours, the shared taxi 

demand is very high. Zhang et al. (2019) developed the multi-objective optimization model and 

solved the detour problem of taxi carpooling using a genetic algorithm. They optimized the 

passenger cost of the detour and non-detour time and maximized the income of the drivers. 

They also obtained the detour and non-detour payment ratio and travel distance. Ye et al. (2015) 

designed a method to optimize ridesharing routes. The authors optimized the total sharing fare, 

the traveling time of passengers, and the fuel cost of taxis under the constraints of the driver's 

income, the traveling fare of passengers, and the fuel charge of taxis. They solved the model by 

a genetic algorithm. Taking part load network of Lanzhou Chengguan district as an example 

shows that, when implementing the same travel demands, ridesharing can shorten the taxis' total 

distance, thereby saving fuel and energy and alleviating urban traffic congestion to a certain 

extent.  Santos and Xavier (2015) examined an optimization model of both dynamic taxi sharing 

and ridesharing and suggested taking travel distance as the critical factor when calculating the 

taxi fare allocation. This kind of allocation method is fairer to the sharing of passengers. The 

optimization model was solved by a Greedy Randomized Adaptive Search Procedure (GRASP) 

and compared the heuristic and the proposed methods. 

Due to the similarities between the ride-sourcing and general taxi markets, supply-demand 

assets in equilibrium have their origins in research on street-hailing taxi services (Yang and 

Yang (2011)), e-hailing taxi services (He et al. (2018)), and dynamically adjusted trip fares 

(Sun et al. (2019)). Other specific research involves the coordination of demand and supply 
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using price and wage (Bai et al. (2019)); pricing and surge-pricing strategies (Chen et al. 

(2020); Yang et al. (2020b));  government regulations and policies (Yu et al. (2020)); impacts 

on traditional taxi markets (Nie (2017)); driver labor supply (Zha et al. (2018)); supply and 

demand predictions (Ke et al. (2019)); and multi-modal transportation with ride-sourcing and 

public transit services (Zhu et al. (2020)). Based on a queueing model with endogenous supply 

and demand, (Bai et al. (2019)) found that if potential customer demand is significant, the 

platform should charge passengers a high price, pay drivers a high wage, and implement a high 

payout ratio (the ratio of wage over price). Taylor (2018) examined the impacts of two essential 

features of a ride-sourcing market, i) delay sensitivity and agent independence, ii) a platform's 

optimal strategies in terms of price and wage. The platform should respond by decreasing the 

price and increasing the wage. Yang et al. (2020a) optimized the matching time interval and 

matching radius of the ride-sourcing demand. They investigated the impact of the new 

passenger waiting and idle taxi and improved the real-time matching of the ride-sourcing 

platform. Rong et al. (2019) identified the termination of the sharing economy. They developed 

a theoretical model influenced by the market structure, economic strategy, multi-homing, 

externality, and public cost. Wang and Li (2020) developed an Agent model based on time-

sharing pricing and studied travel decisions for involved individuals and their changes in the 

share of different modes of travel in transportation systems. The authors analyzed the sharing 

rate of peak and off-peak periods under the shared economic environment on the Beijing real 

data and improved the rate of incomes and equilibrium of the sharing rate of different types of 

travel. Wallsten (2015) discovered the competitive effect of the taxi industry. They analyzed a 

detailed dataset of New York and Chicago taxi data. Pepić (2018) discussed the concept of the 

sharing economy and optimized the operational cost of the taxi company. The authors examined 

Uber’s economic model, fare systems, driver income, and working conditions. Finally, they 

estimated the impact of Uber taxi companies in the present and future. 

2.3 Reviews of Taxi Allocation Problem 

Taxi transportation has developed as a main steam public transportation in several areas of the 

world (James Cooper (2010); Schaller (2007); OECD and European Conference of Ministers 

of Transport (2007)). The taxi allocation problem is placed in the context of taxi problems, 

models, and algorithms difficulties in the literature study. 

Taxis are an essential part of the public transportation system in urban and rural areas 

Wong et al. (2001); Yang and Wong (1998); Wong et al. (2008); Wong et al. (2014b); Zhan et 
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al. (2016). They offer a flexible and on-demand service that can accommodate multiple 

passengers, thereby reducing the need for individuals to rely on their private vehicles. For 

example, in 2019, New York City had 116,854 prearranged service vehicles and 16,678 street 

hail service vehicles, but more than one million rider trip requests was received every day. Hua 

et al., described in 2020, the 18,163 taxis in Hong Kong carried nearly one million passengers 

daily Hua et al. (2022). Although these studies analyzed the taxi demand in urban areas, feeder 

services of taxis are also important in areas where public transport services are not 

comprehensive enough to serve all locations, especially in more rural or suburban areas. Taxis 

can provide an efficient and reliable link between public transport hubs and other parts of the 

community, allowing people to access public transport more easily and quickly. Furthermore, 

taxis are accessible to people who may have difficulty using other public modes of 

transportation, such as those with health, mobility, or vision impairments. The taxi demand 

again increases when the older population increases as a more convenient mode of 

transportation. Most developed countries experience this in many sub-urban areas, Vazifeh et 

al. (2018). Further, taxis are more convenient than public transportation because they can be 

hailed at any time and can take passengers directly to their destinations. By using taxis and 

public transportation instead of owning a car, individuals can save money, reduce traffic 

congestion, and lower their carbon footprint. 

According to Abbas Abbas (2016), future taxi fleet size is determined by using three 

methods: "generic algorithm for estimation of taxi fleet size," "taxi fleet requirements based on 

taxi demand model," and "taxi fleet requirements based on taxi availability index". Yao et al. 

established a bilevel programming model for taxi fleet size demand according to capacity 

configuration and ticket cost, Yao et al. (2016). Li et al. introduced a strategy for logistics 

companies to optimize their public charging infrastructure localization and route planning. The 

proposed approach utilized a bilevel program and a two-phase heuristic approach, combining a 

two-layer genetic algorithm (TLGA) and simulated annealing (SA). The author focused on 

determining the optimal locations for public charging stations in Chengdu, a major city in 

southwest China. The study highlights the advantages of employing a bilevel optimizing 

approach in addressing the challenges of citywide charging station location selection and 

logistics routing problems, Li et al. (2022). Abbas (2016) discussed taxi fleet size allocation 

and demand forecasting. The study explained three models, future taxi fleet size, taxi fleet 

requirements a genetic algorithm based on taxi demand, and evaluated taxi allocation and 
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demand prediction. Yao et al. (2016) established the bilevel programming model for the fleet 

size demand according to the capacity configuration and ticket price. 

Mingolla and Lu associated vehicle technology to reduce the carbon emissions of the taxi 

fleet Mingolla and Lu (2021). The authors discussed a taxi cost-benefit analysis of the CO2 

equivalent. Li et al. aimed to examine how various optimizations of taxiing paths can contribute 

to the reduction of CO2 emissions. The authors analyzed to determine the influence of different 

parameters, such as aircraft speed, taxiway layout, and environmental conditions, on the 

reduction of CO2 emissions Li et al. (2019). Eslamipoor (2023b) proposed a comprehensive 

model for inventory transportation planning that incorporates multiple products, multiple 

periods, and CO2 emission considerations within a two-echelon framework. The problem 

focused on the deterministic and dynamic demands of retailers, where the supplier must adhere 

to delivery schedules and product quantities based on a vendor management inventory policy. 

The environmental pollution factor is recognized as a significant influence in assessing and 

choosing a supplier. The suggested model aimed to achieve several objectives, including 

reducing supplier costs (covering total ordering and shortage costs), minimizing the receipt of 

low-quality goods from suppliers, minimizing delivery time, and mitigating the emission of 

environmental pollutants caused by vehicles, Eslamipoor (2022). Nilrit and Sampanpanish 

conducted tests on a chassis dynamometer in an emission lab to determine automobiles' 

greenhouse gas (GHG) emissions. They obtained results for CO2 and methane emission rates 

from taxis and passenger cars that run on alternative fuels at different driving speeds. These 

findings can serve as a database for decision-making in developing transportation projects and 

controlling GHG emissions in Thailand's mitigation plans Nilrit et al. (2018). Zhang et al. 

conducted a case study in Shanghai to explore the potential for reducing carbon emissions from 

urban traffic based on CO2 emission satisfaction. The study utilized data collected through 

travel surveys and transportation models to assess the impacts of various measures on CO2 

emissions reduction and travel satisfaction. The research team examined the effectiveness of 

measures such as optimizing traffic signal timings, promoting public transportation, and 

encouraging non-motorized transport modes, Zhang et al. (2020). Ghahramani and Pilla 

(2021a) put forward an unsupervised learning method to explore how taxi trips affect CO2 

emissions. They utilized a hierarchical clustering algorithm optimized to identify emissions-

related clusters, enabling the identification of the most polluting trips. By doing so, they could 

pinpoint the vehicles associated with these trips, thereby prioritizing CO2 emissions and 

enabling informed decision-making in the future. Their results could give decision-makers a 
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clearer knowledge of fuel use and policy recommendations. The accessibility of data on taxi 

operations opens new avenues for mitigating the CO2 emissions brought on by taxis. Most 

previous studies on taxi emissions and greening the supply chain are based on surveys and 

statistical data Wang et al. (2015); An et al. (2011); Zhang et al. (2020); Eslamipoor (2023a). 

These studies adopted a new approach where the authors assessed and examined the CO2 

emissions from different forms of urban passenger transportation, such as cars, buses, taxis, and 

rail transit. Based on such information, several models may be created, and it is possible to 

determine the average amount of air pollution caused by vehicles.  

In addition, there are also several studies trying to improve the heuristic algorithms of 

transport systems. Abdel-Basset et al. presented a new nature-inspired meta-heuristic algorithm 

named the spider wasp optimization (SWO) algorithm, which was based on replicating the 

hunting, nesting, and mating behaviors of the female spider wasps in nature, Abdel-Basset et 

al. (2023). Kaya et al. aimed comparison of the performance of 7 meta-heuristic training 

algorithms in the neuro-fuzzy training for maximum power point tracking (MPPT), including 

particle swarm optimization (PSO), harmony search (HS), cuckoo search (CS), artificial bee 

colony (ABC) algorithm, bee algorithm (BA), differential evolution (DE) and flower 

pollination algorithm (FPA) Kaya et al. (2023). Ouyang et al. proposed a new heuristic solver 

based on the parallel genetic algorithm and an innovative crew scheduling algorithm, which 

improved traditional crew scheduling by integrating the crew pairing problem (CPP) and the 

crew rostering problem (CRP) into a single problem Ouyang and Zhu (2023). 

The Spatial-Temporal Diffusion Convolutional Network (ST-DCN) was also shown to 

outperform seven existing state-of-the-art baseline techniques to anticipate city taxi problems 

for waiting time (Rahimi et al. (2021), Sun and Fan (2021)). Currently, Yao et al. (2022) 

analyzed changes in the context of COVID-19 from both the demand and supply of taxi travel 

under situations such as closures and travel limits, using system dynamics to mimic taxi travel 

systems. A typical Chinese middle-sized city, Ningbo in Zhejiang province, discovered 

elements that contributed to a considerable decrease in taxi travel due to the outbreak. Liu et al. 

(2015) wanted to emphasize the necessity of communication problems for taxi supply among 

taxi drivers to estimate where and when a customer may require a vehicle. The routing data can 

be used in a machine learning process, which can then be integrated with an optimization 

process to reduce taxi idle time. You et al. (2021) found that the neural network model can 

dynamically predict taxi passenger waiting time in real-time given specific spatiotemporal 
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restrictions. Chen et al. (2022) presented a generative adversarial network-based technique that 

can greatly minimize computation. The generative adversarial network technique has two 

significant drawbacks: selecting the generative adversary network generator's input and finding 

many optimum solutions to aid in the generative adversary network's training. In order to 

identify the next passenger, it is also a hub for study on how to travel. Zhao et al. (2015) 

developed a method that uses a decision graph and a data field to cluster trajectory data. By 

comparing it with common clustering methods, it can determine parameters automatically 

rather than relying on experience. In addition, the method was applied to the discovery of urban 

hotspots in Wuhan City, China, based on trajectory data. Using taxi trajectory data, the 

distribution and dynamics of the hotspots were examined in relation to holidays, weekdays, and 

weekends. Kong et al. (2017) proposed a Time-Location-Relationship model for a data-driven 

taxi service suggestion to the taxi hotspot region. The model goes a step further to reveal the 

relationship between a passenger's ups and downs, which is then used to forecast the 

spatiotemporal distribution of passengers across various social functional zones and raise taxi 

drivers' earnings. This model assisted taxi drivers in quickly locating the next possible 

passenger. The authors suggested rewarding regions close to the driver's present location, which 

would be more practical in practice because drivers aren't ready to take a certain route or travel 

further only to get the optimal pick-up position. 

The model uses a weighted confusion matrix and a modified Viterbi algorithm to anticipate 

the availability of empty taxis and provide pick-up locations within arbitrarily defined zones 

and time intervals, considerations such as time of day, and traffic conditions. Hu and Thill 

(2019) offered a successful Hidden Markov Model-based method for predicting the arrival of 

unoccupied taxis at predetermined places and times. The model was applied to a large-scale 

dataset of taxi trajectories in Beijing. Cruz et al. (2020) proposed a mathematical model for the 

vehicle allocation problem in logistic systems, focusing on freight road transportation. The 

proposed model is solved by a new technique using a branch-and-price algorithm and a column-

generating approach with internal point stabilization based on Dontzig-Wolfe decomposition to 

tackle the problem. Machine learning and fuzzy methods have been around longer than 

optimization and simulation of transportation (de la Torre et al. (2021)). Ramezani and 

Nourinejad proposed a network-scale taxi dispatch model that optimizes an efficient 

dispatching system while considering the inter-related influence of typical traffic flows and taxi 

dynamics problems. To manage the taxi dispatch system, a model predictive control strategy is 

developed by Ramezani and Nourinejad (2018). 
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A mixed-integer program's (MIP) purpose is to balance the routing and client allocation 

costs, and it's done through heuristics (Labbé and Laporte (1986)). The dynamic vehicle 

allocation problem (DVAP) is raised in this context, which entails assigning empty cars to 

terminals where they are needed, given a set of required demand services between terminals, to 

maximize the profits generated by empty vehicle movements (B.Powell (1988)). Reihaneh and 

Ghoniem (2019) investigated vehicle routing with demand location and proposed an effective 

branch and price algorithm. Lin Lin (2014) established a framework for analyzing facility 

location, demand allocation, and resource capacity. Tanizaki (2013) improved the points to 

adjust the number of standby taxi cars at taxi stands. Crama and Pironet (2019) explored a 

multi-period stochastic vehicle allocation issue that occurs in transportation planning and 

proposed a variety of heuristics for dealing with it in a rolling-horizon scenario, in which 

information is gradually delivered to the decision-maker. 

A queuing model and an automated planning system were applied to taxis to an airport 

terminal when demand was strong and compared the existing system's taxi and passenger 

waiting times vs. one that employs ChangiNOW (Anwar et al. (2013)). Yao et al. (2020) 

proposed a multi-objective multivariate evolutionary algorithm based on decomposition and a 

dynamic resource allocation strategy (MFEA/D-DRA), and a dynamic resource allocation 

strategy with a multi-factorial environment. Based on data analytics, the suggested approach is 

used to address a multi-objective multi-factorial operation optimization issue of a continuous 

annealing process. De Oliveira et al. (2015) devised a method for serving all current customers 

in a fair period while lowering the distance traveled by existing free taxi cars. The authors 

investigated the effects of the Greedy Algorithm based on Euclidean Distance (GAED), the 

Greedy Algorithm based on the Shortest Path (GASP), the Hungarian Algorithm based on 

Euclidean Distance (HED), and the Hungarian Algorithm based on the Shortest Path on taxi 

selection (HASP). 

2.4 Reviews of Machine Learning 

This sub-section reviews the time series as well as multistep forecasting techniques during the 

aspects of machine learning methods that are practically useful for creating a forecasting 

system. In a time series, the order of the data points is usually monitored consecutively. 

Cochrane (1997) arranged dimensions captured during an occurrence in exact chronological 

order in a time series The two types of time series are discrete and continuous time series. 
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Observations are recorded at different points in time in a continuous time series. A continuous 

time series counts observations at each point in time, while a discrete time series counts 

observations at different times. Then, at equal intervals, a disconnected series of different 

periods, such as hourly, daily, monthly, or annual time divisions, were frequently recorded, 

KEITH W. HIPEL (1994). The process of fitting a time series into a suitable model is known 

as time series analysis. Model parameters are often derived from known data values in models 

that seek to analyze and grasp the nature of the series. A time series is assumed to be influenced 

by four major variables: trendy, cyclical, seasonal, and irregular features. These four 

components may be distinguished using the data collected. For one-time series decomposition, 

addiction, and qualitative models are often used, taking into consideration the effects of these 

four components. The addition model presupposes that a time series observation's four 

components are independent of one another. On the other hand, the qualitative method permits 

four components to interact with one another, meaning that they are not necessarily 

independent. 

2.4.1 Machine Learning in Data Networks 

Over the last decade, machine learning algorithms have become serious challengers to 

traditional statistical models in predicting. Following that, the notion expanded to additional 

models, including support vector machines, decision trees, random forests, gradient boost, and 

others, which are together known as machine learning models, according to Alpaydin (2004). 

Preliminary statistical models are used in some of these models. There has been tremendous 

progress in this area over the years, in terms of the quantity and variety of models as well as the 

theoretical knowledge of models, Trevor Hastie, Robert Tibshirani (2008). 

Many machine learning algorithms are designed to solve classification issues, but they may 

also be used to solve regression problems, which are used to forecast taxi demand, according 

to Hou (2010). Luo et al. (2021) proposed multi-task deep learning (MTDL), a multi-task deep 

learning model capable of forecasting the intensity of real-time demand in many traffic zones 

at the same time, to anticipate short-term taxi demand at a multi-zone level. A nonlinear 

Granger causal teat is used to discover the spatial temporal causal link between distinct traffic 

locations to filter the most relevant characteristics for the MTDL model. As a result, the 

suggested prediction model might automatically learn spatiotemporal characteristics to better 

capture spatiotemporal patterns and increase predictive performance. Several hyperparameter 

optimization approaches are also used to find the optimum hyperparameters and tweak the 
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MTDL model for improved prediction accuracy. The suggested MTDL model with feature 

selection is compared to the original MTDL model, the equivalent STDL model, and many 

benchmark algorithms such as LSTM, SVM, and K-NN. The models are validated using real-

world data from New York City, with the findings demonstrating that the MTDL model 

outperforms conventional prediction approaches for calculating MAPE, RMSE, MAE, and R-

square in large samples, including feature selection. The scientists used a clever multi-task deep 

learning model that took into account spatiotemporal dependencies to look at short-term taxi 

demand estimates. 

 Xu et al. (2021) proposed a smart taxi dispatch system that cut passenger wait times while 

also reducing the vehicle's idle driving distance. Two distinct models were used to forecast the 

distribution of taxi demand and prospective destinations, respectively. Models are created using 

a combination of long-term memory cells and a mixed-density network and are learned from 

past data. Taxi dispatching is stated as a mixed integer programming problem using these 

assumptions. In a real-world dataset of taxi travel in New York City, we test the performance 

and overall system of predictors. Between 2014 and 2019, Xie et al. (2020) did a thorough 

review of current development approaches for urban spatial flow forecasting, which is 

becoming increasingly significant in urban computing research and is connected to traffic 

management, land use, and public safety. They categorized the complex and dynamic 

influencing aspects of urban spatiotemporal flow, as well as the overall data preparation method 

for prediction. They also looked at current research on well-known and advanced urban flow 

forecasting approaches, such as data-based, classical ML-based, DL-based, and reinforcement 

learning-based methods for urban space-time-flow forecasting functions. 

 Zhang et al. (2016) used an integrated off-line data analysis and a real-time roaming sensor 

network to assess passenger demands, with taxicabs identifying the number of passengers and 

the time of arrival. They provided a fancy parameter called the pickup pattern that can be used 

to compare how a taxicab operates daily in a huge dataset, such as 900GB per year in Shenzhen. 

Omrani (2015) used four machine learning algorithms to predict the travel node of persons in 

Luxembourg, including Artificial Neural Net-MLP, Artificial Neural Net-RBF, Support Vector 

Machine, and Multi-nominal Logistic Regression. Data on an individual's attributes, means of 

transportation, place of employment, and lodging are used in the technique described. The data 

used in this study came from a nationwide poll. It provides data about persons living or working 

in Luxembourg's everyday movements (e.g., working from home). They devised unique 
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characteristics to link the characteristics of working individuals to everyday movement (travel 

between home and work). They analyzed data from public transportation as well as certain 

home and office areas. The authors used successful prediction rates and cross-validation 

produced by neural networks to assess other alternative strategies for predicting travel mode 

preferences. 

 Zhang and Xie (2008) investigated the use of outmoded models for travel mode choice 

modeling that rely on different preferred models, such as multinomial logit models. For 

modeling trip mode choice, a novel support vector machine, and an artificial intelligence model 

were used. Based on data collected in the San Francisco Bay Area of California, this support 

vector machine model was evaluated and compared to a multinomial logit model and a 

multilayer feed-forward neural network model. Because of its promising performance and ease 

of implementation, their findings suggest that the support vector machine model be employed 

as an alternate technique for simulating travel mode choice. Xie et al. (2003) looked at the 

capabilities and performance of two developing pattern-recognized data mining approaches for 

travel mode choice modeling: Decision Tree (DT) and Neural Network (NN). The models are 

rated as particular, approximate, and comparable to a typical multinomial logit (MNL) model 

based on these two methodologies. The authors have offered a unique three-tier structure of the 

MNL model for comparison and have highlighted similarities and differences in the mechanism 

and structure of the model, as well as discrepancies in the model specification and assumptions. 

To assess and compare model performance, two performance metrics are used: individual 

prediction rates and overall prediction rates, which quantify predictive accuracy at the 

individual and mode overall levels, respectively. Models estimate and assessment are based on 

diary records from the San Francisco Bay Area Travel Survey (BATS) 2000. In terms of 

modeling results, the two data mining models are comparable but slightly better than the MNL 

model, with the DT model demonstrating maximum predictive efficiency and the most obvious 

explanations, and the NN model giving a higher predictive efficiency and the most obvious 

explanations, and the NN model giving a higher predictive performance in most cases. 

Without any explicit prior programming, machine learning algorithms may learn directly 

from data. These are the kind of issues that might develop in a networking environment. 

Machine learning models may be used to solve a wide range of data network challenges, 

including Logistic Regression (Dreiseitl and Ohno-Machado (2002)), Random Forest ( 

Bentéjac et al. (2021)), Gradient Boosting, K-Nearest Neighbors (KNN) (Yu et al. (2002)), 
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Decision Tree, Principal Component Analysis  (Fitria (2013)), and many more. There are five 

sub-group of machine learning such as: 

1. Supervised: We start with some train data that includes the ground truth values 

(responses) that we want to predict later ( Zhao et al. (2019)).  

2. Regression: Predicting value is a constant process. 

3. Classification: Predictive value is categorical. The task at hand is to apply the forecast 

to test data for which the expected right value is unknown. 

4. Unsupervised: We begin with some training data that is devoid of values to predict. 

Without any prior knowledge, the purpose is to uncover the structure of this data. 

Clustering, dimensionality reduction (latent variables identification), outliers’ detection, 

and cumulative distribution function learning are some of the subsets. The task is to 

predict fresh test data while making use of the extra information offered by the unlabeled 

data. 

5. Semi-supervised: The goal is to figure out the appropriate sequence of actions to 

maximize the predicted total of future rewards while engaging with an often-unknown 

environment that provides the rewards and defines the interaction's dynamics. Without 

understanding the dynamics of the environment, the problem is to train a policy function 

that yields the optimal current action from an uncorrelated and perhaps sparse series of 

rewards. 

This thesis is mostly concerned with supervised classification techniques, specifically: 

➢ Machine Learning: Linear Regression, K-Nearest Neighbors, Decision Trees, Random 

Forest, Gradient Boosting. 

➢ Proposed model: Hybrid Machine Learning 

2.5 Review of Heuristic and Metaheuristic Methods 

Heuristic and metaheuristic methods are widely used in optimization problems across various 

domains, including transportation, engineering, and economics. These methods can be used to 

find solutions to problems where it is difficult or impossible to find an exact solution using 

traditional optimization techniques. Heuristic methods are problem-solving techniques that use 

practical rules or heuristics to find approximate solutions to optimization problems. They are 

often simple and easy to understand but may not always produce the best solution. Examples 
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of heuristic methods include greedy algorithms, hill-climbing algorithms, and simulated 

annealing. 

Metaheuristic methods, on the other hand, are more advanced optimization techniques that 

use heuristic methods to guide the search for a solution. Metaheuristic methods typically work 

by exploring the search space of a problem systematically and then using a combination of 

randomness and heuristic knowledge to determine the next steps in the search process. 

Examples of metaheuristic methods include genetic algorithms, particle swarm optimization, 

and ant colony optimization. 

In recent years, there has been significant research on the use of heuristic and metaheuristic 

methods in transportation problems. One key area of focus has been on the use of these methods 

in optimizing transportation network design and traffic management. Researchers have also 

explored the use of heuristic and metaheuristic methods in vehicle routing problems, such as 

the traveling salesman problem and the vehicle routing problem with time windows. In the early 

stage, heuristics and metaheuristics were usually built around available local search operators 

that have worked well on vehicle routing problems. A heuristic algorithm that sets a route from 

scratch is commonly called a root-building heuristic. Root-improvement, on the other hand, is 

an algorithm that seeks to generate a better solution based on an existing one. Metaheuristics 

are powerful methods that may be applied to a variety of problems. A metaheuristic is an 

adaptive expert strategy that intelligently integrates multiple conceptions for exploring and 

exploiting the search space to guide and change the operations of sub-heuristics. Heuristic and 

metaheuristic algorithms were developed in the late 70s for linear programming, Nonlinear 

programming, and dynamic programming optimization. When the traditional algorithm is slow 

then a heuristic algorithm is faster to solve a problem. A metaheuristic is a higher technique for 

an optimization problem. Because it is theoretically similar to the natural system of annealing, 

in which an element is heated to a liquid state and then returned to a crystallized solid form, it 

is called "simulated annealing". Vasco and Morabito (2016) presented a mathematical model 

for the dynamic vehicle allocation problem. They developed to solve the allocation problem 

involving creating a greedy and local search heuristic and simulated annealing metaheuristic 

methods. Daniel Fuentes and Sano (2020) presented a mathematical model of the vehicle 

routing problem with time windows developed by the greedy and local search algorithm. 

The application of heuristic and metaheuristic methods in solving taxi demand problems 

has been a topic of interest in recent years. Several studies have explored the effectiveness of 

these methods in optimizing taxi demand solutions, including route planning, dispatching, and 
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pricing. One area of focus has been on the use of heuristic and metaheuristic methods in taxi 

dispatching problems. Another area of focus has been on the use of heuristic and metaheuristic 

methods in taxi pricing problems. Despite the effectiveness of heuristic and metaheuristic 

methods in solving taxi demand problems, there are also challenges to their use. One challenge 

is the need for accurate and timely data, which is often difficult to obtain in real-world settings. 

Another challenge is the complexity of the taxi demand problem, which may require the use of 

advanced optimization techniques and computational resources. 

In summary, heuristic and metaheuristic methods have shown promise in solving taxi 

demand problems, including dispatching and pricing. Ongoing research in this area will be 

important in further refining these methods and improving their effectiveness in addressing the 

challenges of taxi demand in different cities and regions. 

2.6 Summary of the Chapter 

Based on my review of the literature on taxi demand, shared taxi routing models, taxi fleet 

management, and machine learning, the following conclusions can be drawn: 

• Taxi demand is influenced by a range of factors such as time of day, day of the week, 

weather conditions, and special events. Understanding these factors can help taxi 

companies optimize their services and increase efficiency. 

• Shared taxi routing models have the potential to reduce costs for both passengers 

and taxi companies. However, the success of these models depends on factors such 

as customer demand, pricing strategies, and regulatory frameworks. 

• Taxi location management is a complex task that involves balancing the supply of 

taxis with the demand in each area. Several studies have suggested that the use of 

dynamic pricing and dispatching algorithms can improve the efficiency of taxi 

fleets. 

• Machine learning techniques have been increasingly applied to taxi demand 

forecasting, dispatching, and pricing. These techniques have shown promising 

results in improving the accuracy of demand forecasting and the efficiency of taxi 

dispatching. 
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Therefore, the literature suggests that the use of shared taxi routing models, dynamic pricing 

and dispatching algorithms, and machine learning techniques can help taxi companies increase 

efficiency, reduce costs, and improve customer satisfaction.
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Chapter 3. DATA COLLECTION 

AND ANALYSIS 

 

This chapter delves into the specifics of data gathering, data collection methods, and data 

extraction. We've spoken about two different types of data. Then we begin data processing for 

each data set. The Nagaoka City and Sanjo City Taxi companies have provided all the original 

taxi data in Japan. The Japan Meteorological Agency provides weather data for download from 

the website. 
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3.1 Taxi Demand Data 

Data collection and analysis are essential components in understanding the taxi market and 

demand. In the context of the taxi industry, data collection and analysis refer to the process of 

gathering information on various aspects of the market, such as the number of trips, pick-up, 

and drop-off locations, fare pricing, and passenger demographics. The collection of taxi data 

can be done through various methods, including surveys, interviews, and technology-based 

solutions such as GPS and mobile applications. These data sources provide different types of 

information, which can be used to analyze the market from different perspectives. Data analysis 

involves the process of transforming the collected data into useful insights and knowledge. This 

can be achieved through the application of statistical methods and data mining techniques such 

as clustering and regression analysis. The results of data analysis can be used to identify 

patterns, trends, and relationships in the data, which can be useful for developing effective taxi 

demand solutions. 

In recent years, the availability of big data and advanced data analytics tools has enabled 

more sophisticated analysis of taxi market data. For example, machine learning algorithms can 

be used to develop predictive models that can forecast taxi demand based on historical data. 

This can be useful for improving taxi dispatching and route planning. 

3.1.1 Nagaoka City Taxi Data 

The target area is the entire area of present-day Nagaoka City. Nagaoka City, Niigata 

Prefecture, is located in the central part of Niigata Prefecture, "Nagaoka Area", "Nakanoshima 

Area", "Koshiji Area", "Mishima Area", "Yamakoshi Area", "Oguni Area", "Washima Area", 

"Teramari area," "Tochio area," "Yoita area," and "Kawaguchi area." The current 

administrative area is 891.06 Km2, of which about 50% is habitable. The Shinano River, which 

boasts the longest length and flowing water in Japan, runs through the central part of the city, 

and fertile alluvial plains spread on both banks. To the east and west, the Higashiyama 

Mountain range and the Nishiyama hills are connected. The number of households is about 

109,263, the population is about 263,728, the elderly population is about 80,000, and about 30 

% of the citizens are elderly2. 

 

2 nagaoka city website 

https://www.city.nagaoka.niigata.jp/index_menu.html
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There are three main public transportation lines operating in Nagaoka City, the Joetsu 

Shinkansen, Shin-Etsu Line, and Echigo Line. Regarding taxis, seven taxi companies, including 

Mitsukoshi Taxi, which is the subject of this study, also carry out regular taxi business. 

Regarding buses, highway buses to Niigata City, the Chuo Circulation Line, the Miyauchi 

Circulation Line, the Kawasaki Circulation Line, and public transportation projects are widely 

introduced throughout the city. We will analyze the actual situation of taxi operation by using 

GPS data of all vehicles and 50 vehicles belonging to Mitsukoshi Taxi Co., Ltd., which is the 

largest taxi company with a business area in the entire Nagaoka city. The analysis period is one 

year from January 1 to December 31, 2019. The number of acquired data is 178,254. The data 

acquisition method is input by the driver and recorded by the date, time, direction, operating 

status, latitude, and longitude acquired from GPS, and the recording device installed in the 

vehicle (see Table 3.1). This makes it easy to know where the taxi has secured passengers. 
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Table 3.1. Selected data (Nagaoka city) for the study 

Pickup Date Time Dropoff Date Time Pickup Lon Pickup Lat Dropoff Lon Dropoff 

Lat 

Fare (Yen) Travel 

Time 

1/1/2019 11:32 1/1/2019 11:46 138.8247 37.4634 138.8488 37.44448 1641.288 0:13:55 

1/1/2019 12:28 1/1/2019 12:39 138.8233 37.44263 138.8528 37.44718 1260.81 0:10:47 

1/1/2019 14:22 1/1/2019 14:38 138.8289 37.46078 138.8526 37.42944 2321.094 0:16:18 

1/1/2019 15:09 1/1/2019 15:21 138.829 37.46065 138.8388 37.44359 1408.019 0:12:01 

1/1/2019 16:01 1/1/2019 16:21 138.7792 37.44842 138.8517 37.43882 2987.91 0:19:57 

1/1/2019 16:51 1/1/2019 17:04 138.8287 37.46076 138.8533 37.44719 1623.026 0:12:26 

1/1/2019 17:38 1/1/2019 17:53 138.8273 37.4669 138.8624 37.43584 2548.618 0:14:41 

1/1/2019 18:22 1/1/2019 18:29 138.8365 37.47388 138.851 37.45392 1758.715 0:06:39 

1/1/2019 19:01 1/1/2019 19:11 138.829 37.46092 138.8529 37.44707 1622.905 0:10:00 

1/1/2019 20:52 1/1/2019 21:01 138.8549 37.44654 138.8839 37.43415 1446.137 0:09:24 

1/1/2019 21:21 1/1/2019 21:25 138.855 37.44648 138.8707 37.43641 1037.239 0:03:55 

. . . . . . . . 

. . . . . . . . 

. . . . . . . . 

. . . . . . . . 

. . . . . . . . 

. . . . . . . . 

. . . . . . . . 

12/28/2019 14:11 12/30/2019 14:14 138.8547 37.44659 138.8566 37.4406 732.6815 0:02:47 

12/29/2019 14:30 12/30/2019 14:34 138.8546 37.44661 138.8611 37.45165 630 0:03:46 

12/30/2019 15:50 12/30/2019 15:55 138.855 37.44653 138.8532 37.4326 814.4494 0:04:44 

12/30/2019 16:22 12/30/2019 16:31 138.8549 37.44655 138.8838 37.43792 1262.108 0:08:29 
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In this study, taxi operation data such as date, time, operation status and latitude, and 

longitude were used. The operating status of taxis recorded in the recording device installed in 

the car is classified into the following three types. 

a. Actual vehicle: Running with passengers. 

b. Empty car: A state in which passengers are picked up from the waiting area or are moving 

toward the taxi waiting area after unloading the passengers. 

c. Waiting or resting (hereinafter referred to as waiting): Waiting for passengers at the taxi 

waiting area. In addition, the state of resting at the resting place. 

The state of not performing business such as resting or moving between waiting places due 

to insufficient data cannot be separated from the waiting state, so it is treated as a waiting state.   

Figure 3.1. Taxi operations in Nagaoka City (Google Maps) 

Figure 3.1 shows a partial screen of the time when the taxi was replayed using the data 

recorded in the recording device installed in the car. In addition to the actual taxi operation 

status shown in Figure 3.1 Active vehicle (green), empty vehicle (blue), and standby (black), 

there are payments, meals, replenishment, etc., but the data is the actual vehicle, empty vehicle, 

and standby. 
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3.1.1.1 Average Number of Rides Hourly 

The colors of bars in a visualization of taxi demand by the day of the month can vary depending 

on the specific context and design choices. However, typically in such visualizations, the colors 

are used to represent different levels or categories of taxi demand. The specific color scheme 

used can vary depending on the purpose of the visualization and the preferences of the designer. 

Figure 3.2 shows the average number of trips hourly and time zone from January 1, 2019, to 

December 31, 2019. The unit on the vertical axis shows the average number of rides in each 

time zone for each hour. 

 

Figure 3.2. Hourly Number of trips 

  Looking at the time zone fluctuations from this figure, it was confirmed that there was a 

peak in demand from 9 am to 10 am. The number of operations after 10 o'clock. 

 It decreased and became the lowest in the afternoon. In addition, it was confirmed that the 

number of operations increased after 17:00 and there was a peak at 21:00. It is thought that 

there is a lot of demand because there is a rush hour for commuting and there are no buses after 

9 pm. 

3.1.1.2 Average Number of Trips Per Month 

Figure 3.3 shows the average number of rides per month from January 1, 2019, to December 

31, 2019. From Figure 3.3, the demand for January and August was the highest throughout the 

year, followed by March and December, and the lowest was May. The most common reason 

for January is that the snowfall has changed the use of bicycles and walking to taxis, and there 

are many year-end parties, so it is thought that taxi demand has increased more than usual. 

Since there are many farewell parties and welcome parties in March, taxi demand is higher than 

usual. 
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Figure 3.3. The average number of trips 

Next, the month of May was the lowest, probably because there were many holidays during 

Golden Week, so the demand for taxis was the lowest. The reason why it seems that the average 

number of rides in August is higher than in July and September is that it is fireworks display in 

Nagaoka City on August 2nd and 3rd. It was confirmed that the demand for the day was high. 

3.1.1.3 Average Number of Trips Weekly 

Looking at the day of the week fluctuations, it was confirmed that the demand on Sunday was 

less than that on other days. It is thought that demand in the morning will decrease on holidays. 

The lowest demand in the morning is on Sunday, followed by Saturday see Figure 3.4.  

 

Figure 3.4. The average number of trips Weekly 

It is thought that there will be fewer opportunities to go out on business trips and hospital 

visits. Looking at the time zone, it seems that the demand on Monday is less than the demand 

on other weekdays because there are many holidays on Monday. 
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3.1.1.4 Pickup Heatmap 

Figure 3.5 shows that the demand was overwhelmingly higher than on other days of the week 

after 19:00 on Friday and Saturday and between 0:00 and 4:00 on Saturday and Sunday. Since 

there are many opportunities to eat and drink, it is thought that there is a lot of demand in the 

middle of the night on weekends. In addition, the demand after 19:00 between Monday and 

Saturday tends to increase depending on the day of the week. 

 

Figure 3.5. Pickup, Day of week vs. Day Hour 

Figure 3.6 shows the average number of rides by month and day of the week from January 

1, 2019, to December 31, 2019. Looking at the day of the week fluctuations, the most demanded 

are Friday and Saturday. The lowest demands are on Mondays and Sundays. The reason for the 

low demand on Sundays is thought to be that there are fewer opportunities to eat and drink in 

the middle of the night, and there are no opportunities to go out on things such as business trips. 

 

Figure 3.6. Pickup, Month vs Days of the week 

Looking at the trends by looking at the monthly fluctuations, it was confirmed that there 

was a lot of demand in December. Time of day, it is thought that usage will increase on Fridays 

and Saturdays when there are many opportunities to eat and drink in the middle of the night. It 
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is thought that there will be a lot of demand in December due to the cold December and the end 

of the year. 

3.1.2 Sanjo City Taxi (Sharing) Data 

Sanjo City is located in the central part of Niigata Prefecture and is composed of the plains 

formed by the Shinano River, Igarashi River, and Kariyata River and the hills and mountainous 

areas in the southeastern part. In addition, it is a town blessed with abundant nature and 

agricultural and forestry resources. The total area is about 432 km2, the population is about 

94,514, and the elderly population is about 30,000.3) 

The main public transportation that operates in Sanjo City is the widespread public 

transportation business throughout the city, including the shared taxi "Hime Sayuri" which is 

the subject of this study, the city circulation bus "Guruttosan", and the high school student 

school liner bus.  The analysis period is one year from June 2015 ( Table 3.2). The number of 

acquired data is 5039. 

 

3 sanjo city - demographic data / sanjo city 

https://www.city.sanjo.niigata.jp/shisei/shinodata/5219.html
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Table 3.2. Selected data (Sanjo city) for the study 

Taxi Company Pickup 

datetime 

Pickup 

longitude 

(degree) 

Pickup 

latitude 

(degree) 

Dropoff 

longitude 

(degree) 

Dropoff 

latitude 

(degree) 

Dropoff 

datetime 

Passenger 

count 

Chuetsu Transportation 6/1/2015 7:20 138.8817 37.60497 138.9737 37.62851 6/1/2015 7:43 1 

Chuetsu Transportation 6/1/2015 7:30 139.1317 37.5412 138.9717 37.63309 6/1/2015 8:18 1 

Hinomaru sightseeing taxi 6/1/2015 7:50 139.0528 37.56554 138.9675 37.63287 6/1/2015 8:23 2 

Hinomaru sightseeing taxi 6/1/2015 7:51 139.1178 37.50412 138.9717 37.63309 6/1/2015 8:29 2 

Hinomaru sightseeing taxi 6/1/2015 7:55 139.0344 37.56621 138.9735 37.64175 6/1/2015 8:17 1 

S taxi 6/1/2015 8:00 138.9613 37.6301 138.9546 37.64321 6/1/2015 8:08 1 

Sanjo taxi 6/1/2015 8:00 138.9768 37.63565 138.9533 37.61257 6/1/2015 8:10 1 

Hinomaru sightseeing taxi 6/1/2015 8:00 138.9328 37.64898 138.9717 37.63309 6/1/2015 8:10 2 

Hinomaru sightseeing taxi 6/1/2015 8:01 138.9393 37.64862 139.0262 37.6448 6/1/2015 8:24 1 

Hinomaru sightseeing taxi 6/1/2015 8:02 139.0034 37.59727 138.9889 37.60494 6/1/2015 8:06 1 

Sanjo taxi 6/1/2015 8:05 138.9496 37.64019 138.9827 37.62533 6/1/2015 8:15 1 

Hinomaru sightseeing taxi 6/1/2015 8:09 139.0503 37.56646 139.0287 37.57637 6/1/2015 8:15 1 

Sanjo taxi 6/1/2015 8:10 138.8844 37.60965 138.9735 37.64175 6/1/2015 8:30 1 

Sanjo taxi 6/1/2015 8:13 138.9393 37.64862 138.9506 37.65328 6/1/2015 8:17 2 

Sanjo taxi 6/1/2015 8:15 138.9737 37.62851 138.9889 37.60494 6/1/2015 8:24 1 

Chuetsu Transportation 6/1/2015 8:15 138.9512 37.6304 138.9717 37.63309 6/1/2015 8:22 1 

Chuetsu Transportation 6/1/2015 8:20 138.9848 37.6233 138.955 37.63783 6/1/2015 8:29 1 

. . . . . . . . 

. . . . . . . . 

. . . . . . . . 

. . . . . . . . 

. . . . . . . . 

. . . . . . . . 

Sanjo taxi 6/1/2015 8:30 138.9751 37.60675 138.9686 37.63008 6/1/2015 8:35 1 

Sanjo taxi 6/1/2015 8:30 138.9737 37.62851 138.9619 37.63639 6/1/2015 8:35 1 
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3.1.2.1 Average Number of Trips Hourly 

Figure 3.7 shows the average number of trips hourly and time zone in June 2015. The unit on 

the vertical axis shows the average number of rides in each time zone for each hour. 

 

Figure 3.7. The average number of trips Hourly 

Looking at the time zone fluctuations from this Figure 3.7, it was confirmed that there was 

a peak in demand from 8 am to 10 am. 

3.1.2.2 Average Number of Trips Weekly 

The day of the week variations (Figure 3.8), it was confirmed that the demand on Monday and 

Tuesday was greater than that on other days. 

 

Figure 3.8. The average number of trips Weekly 
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3.1.2.3 Pickup Heatmap 

In Figure 3.9, and Figure 3.10, at the day of the week variations, the most demanded are Monday 

and Tuesday. The lowest demand is on Wednesday. 

 

Figure 3.9. Day of week vs. Day Hour 

 

Figure 3.10. Month vs Days of the week 

3.2 Weather Data Analysis 

The urban traffic system is exceedingly complicated, time-dependent, and random since it 

incorporates people, cars, roads, the environment, and other complex components. Various 

external factors, like policy, the economy, and the weather, have a direct or indirect impact on 

the traffic system's operational performance. The link between meteorological conditions and 

passenger movement, or ridership, is gaining scholarly attention. Most of their research 

emphasizes the importance of weather conditions in varying the strength of various climatic 

measures such as temperature, wind speed, snowfall, and precipitation. This section will look 

at how the weather affects the taxi ride. 
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Table 3.3. Selected data for the study 

Date/Time Precipitation 

(mm) 

Temperature 

(℃) 

Wind speed / 

direction (m / s) 

Snowfall 

(cm) 

Snow 

cover 

(cm) 

1/1/2019 0:00 0 0.7 0.5 0 6 

1/1/2019 1:00 0.5 1.3 2.2 0 7 

1/1/2019 2:00 1.5 1 2.3 0 7 

1/1/2019 3:00 0.5 0.8 2.3 0 7 

1/1/2019 4:00 1.5 0.5 1.9 0 7 

1/1/2019 5:00 1 0.7 0 0 7 

1/1/2019 6:00 0 1 1.3 0 7 

1/1/2019 7:00 1.5 0.9 1.7 1 8 

1/1/2019 8:00 0 1.2 3.4 0 7 

1/1/2019 9:00 3 0.6 2.5 1 8 

1/1/2019 10:00 0.5 1 2 0 7 

1/1/2019 11:00 0 1.8 3.5 0 7 

1/1/2019 12:00 0 2.4 3 0 6 

1/1/2019 13:00 0 2.5 2.4 0 6 

1/1/2019 14:00 3 1.7 1.2 0 6 

1/1/2019 15:00 1.5 1 1.3 1 7 

. . . . . . 

. . . . . . 

. . . . . . 

. . . . . . 

. . . . . . 

12/29/2019 21:00 1 0.7 1.1 0 6 

12/30/2019 22:00 0.5 0.7 1 0 6 

12/31/2019 23:00 0 0.8 0.1 0 6 

In general, the impact of different weather conditions on road conditions is mostly based on 

two effects: one when the weather directly affects drivers' driving conditions, and the other 

traffic volume because the weather conditions affect a person's travel choice. Given the link 

between weather and road conditions, this study chose four typical meteorological variables to 

properly represent weather conditions: temperature, snow cover, wind speed, precipitation 

amount, and snowfall. Hence, the weather measurements are used as the principal data sources 

(Japan Meteorological Agency4) in this study to understand the weather condition. The data 

was collected for one year (from January 1, 2019, to December 31, 2019) (see Table 3.3). 

 

4 https://www.jma.go.jp/jma/indexe.html  

https://www.jma.go.jp/jma/indexe.html


 

55 | P a g e  

 

Given the diversity of climate features among cities, this study focuses solely on general 

climatic changes and their impact on taxi movements, exposing the basic laws of transportation 

under present climate conditions. Therefore, some rare weather events in a particular city will 

not be considered in this study. Daily weather data used in this study were obtained from the 

Japan Meteorological Agency based on the 1-hour interval of ground observation with four 

major climate changes: temperature (F), wind speed (m / s), precipitation (mm), rainfall(mm) 

and snowfall (cm). 

3.2.1 Impact of Weather 

Figure 3.11 shows the frequency distribution of boarding time for each trip by weather. It can 

be confirmed that the number of operations, when it snows from 11 minutes, exceeds that of 

fine weather and rain. There are relatively few trips with a short boarding time and relatively 

many trips with a long boarding time when it snows. When the distribution of riding distance 

was confirmed, there was no significant difference due to the weather. It is presumed that the 

snowfall did not induce short-distance demand but that the vehicle speed decreased.  

It can be seen that the curve when it rains and the curve when it is fine are almost the same, 

and it is considered that it does not affect the decrease in vehicle speed due to rain. 

Figure 3.11. Number of trips by weather 

3.3 Summary of the Chapter 

In this chapter, we analyzed the actual operation by analyzing the GPS data of all vehicles and 

42 cars belonging to Mitsukoshi Taxi Co., Ltd., which is the largest taxi company with a 

business area in the entire Nagaoka city. As a result, the following points were clarified. 
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✓  The peak demand in the morning is from 9:00 to 10:00. 

✓  Weekday nighttime demand peaks from 21:00 to 22:00. 

✓  Since there are many eating and drinking opportunities on Fridays, Saturdays, and 

Sundays, there is a lot of demand in the middle of the night. 

✓ Throughout the year, demand was highest in January, followed by March and 

November, and the lowest was in May. 

✓ There is a decrease in vehicle speed due to snowfall. 

✓ Because there are many waiting times and breaks, the operation efficiency is poor. 

However, the nature and extent of this relationship may vary depending on several factors, 

including the type of weather, the location, and the time of day. In general, it seems that extreme 

weather conditions, such as heavy rain, snow, or extreme heat, can lead to an increase in taxi 

demand as people are less likely to walk or use other modes of transportation. On the other 

hand, mild weather conditions may not have as significant an impact on taxi demand. 

Regarding shared taxis specifically shared taxi demand may be more sensitive to weather 

conditions than general taxi demand. This is because shared taxis often follow fixed routes and 

schedules, which means that they may be more affected by disruptions caused by weather 

conditions. 

Therefore, while weather conditions do seem to play a role in determining taxi demand, 

other factors such as traffic patterns, events, and the availability of alternative transportation 

options may also have an impact. 
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Chapter 4. DEMAND 

ESTIMATION 

 

This chapter introduces machine learning methods, which are particularly useful for time 

series modeling and forecasting. Machine learning approaches are considered to be a 

superior method for predictive problems, including linear regression, random forest, 

gradient boost, decision tree, and hybrid machine learning, concepts, structures, and 

formulations to final. We've discovered that combining these mathematical forecasting 

approaches applied in the real-world taxi sector may drastically cut fuel costs, customer 

waiting times, and empty taxis if we can properly anticipate taxi demand. However, several 

problems remain beyond this encouraging study. The knowledge of driver-passenger 

demand is always changing. To forecast demand on a real-time basis, which model or 

technique should we use? What if the model you choose isn't suitable? How can you build 

a strong and dependable system that can locate or even always produce the best appropriate 

models? We'll deal with these issues in this chapter. 

 

  



Chapter 4. DEMAND ESTIMATION 

58 | P a g e  

 

4.1 Introduction 

To guarantee effective and secure means of transportation, modern transportation systems 

worldwide, such as taxis and trains, have been employing a varied spectrum of information 

technology-based applications. On the other hand, typical taxi systems often experience 

inefficiencies due to a lack of coordination when consumer demand shifts. Drivers are more 

likely to focus on probable destinations based on their job experience, Zheng et al. (2018) which 

is referred to as transfer to such a location based on a reward function. This situation leads to 

underserved areas where passengers have to wait long to be served and oversupply where 

vehicles exceed the demand (Huang and Powell (2012)). The disparity in taxi supply and 

demand causes uncomfortable waiting for passengers and creates useless waiting time for 

organizational resources such as drivers. Due to the lack of customer information, they are 

unaware of nearby areas with high taxi demand, and sometimes, drivers cannot pick up any 

customers. The forecast for taxi demand can improve the focus on the taxi-service 

ineffectiveness problem. Under such circumstances, the ‘Taxi Demand Prediction Problem’, an 

elementary requirement, yet not fully apprehended to achieve efficiency has attracted more 

attention recently. 

Furthermore, traffic is the pulse of a city that impacts the daily lives of millions of people. 

One of the most fundamental questions for future smart cities is how to build an efficient 

transportation system. A critical component to addressing this question is to create an accurate 

taxi demand prediction model. A better way to predict demand for travel and pre-allocated 

resources is to adapt to the taxi demand in the city while avoiding excessive energy 

consumption. Moreover, with the increasing popularity of taxi requesting services, it is essential 

to collect massive demand data unprecedentedly. In our study, we chose 15 minutes. The drop-

off points are generally within 15 minutes, and the boarding and alighting facilities were 

identified assuming that the target facility was used within 15m from the outer road of the target 

facility in Nagaoka City, Japan (Sano et al. (2020)). 

So, there are still specific research gaps in previous works. The proposed machine learning 

(ML) model is to develop a Hybrid Machine Learning (HML) model for taxi prediction. Others 

ignore the usefulness of external meteorological features, as in the work of (Askari et al. (2020); 

Zhao et al. (2016)). The approach to predicting is to maximize the impact of prospective pickup 

sites, also known as points of attraction, such as pubs, restaurants, shopping malls, and so on, 
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on the idea that taxi demand would vary from that of other regions (Askari et al. (2020); 

Vanichrujee (2017)). 

A novel HML model combining LR, DT, RF, and GB algorithms was developed in this 

work to predict and evaluate the significant performance of taxi demand. Compared to the ML 

model using a single algorithm, the hybrid model combining four different algorithms can 

enhance the robustness and generalization ability of the ML model for fast and effective 

predictions. In addition, an HML algorithm has been used to determine the hyper-parameters 

of each algorithm (LR, DT, RF, and GB) to enhance the adaptive ability and increase the 

accuracy of the prediction. 

Finally, we have conducted prediction and comparison tests based on a real-world travel 

demand dataset from Nagaoka City taxis. Numerical results show that HML outperforms 

benchmark models such as LR, DT, RF, and GB. 

To summarize, the main address in this chapter is as follows: 

1. We have proposed a new HML model to predict and evaluate the critical performance 

of taxi demand. The HML methods could effectively the features to reduce errors. 

2. We have provided a 15-minute demand prediction period that is acceptable and 

sufficient for drivers and contact centers to determine what to do when passengers are dropped 

off. 

3. We have examined several ML models to decide which one is the best based on 

prediction accuracy and data processing time. This data may be used to create an intelligent 

system that can govern and coordinate taxis on a broad scale, benefiting taxi drivers and 

businesses. Taxi drivers may travel to high-demand regions to accommodate customer demand, 

and ride-sharing companies can re-allocate their vehicles utilizing surge pricing in advance. 

Other than machine learning approaches, according to Liao et al. (2018), the deep neural 

network is the most powerful. As a result, in this study, we use Nagaoka City raw data to 

quantify taxi demand by incorporating weather-related factors.  

4.2 Demand Forecasting Using ML Algorithm 

The focus of the chapter is to determine the future demand for taxi systems as a percentage of 

the present regular taxi demand. The methods of the study are created model testing under five 

ML techniques, namely, linear regression, decision tree, random forests, gradient boosting, and 
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Hybrid Machine Learning method, to ensure robust model creation and assessment. 

One of the most often used classification algorithms in machine learning is the K-nearest 

neighbor (KNN) method. It is also one of the easiest ML algorithms. It can be used for 

classifications and regression tasks. KNN learning involves three main hyper-parameters: the 

number of neighbors 𝑘, the distance function, and the weighting function (for details, see Kang 

(2021); Yu et al. (2016)). There are two things to know about KNN. Firstly, a non-parametric 

algorithm means that no statements about the dataset are produced when the model is used. 

Secondly, when the KNN is used, the dataset is separated into train and test stage sets. So, all 

the training data is also utilized when the model is required to make predictions. 

𝑘 -means the cluster is the process of grouping data points into numerous groups such that 

data points with similar qualities are grouped. In the literature, several clustering techniques 

have been published and widely utilized, including the partition algorithm, hierarchy algorithm, 

mass-based, diagram-based, and model-based approaches. The partitioning method generates 

clusters, but most algorithms automatically estimate the number of 𝑘  cluster centroids 

depending on specified characteristics, where 𝑘 is a user-specific number of clusters. Because 

we have specified limitations such as a minimum degree of customer service, the partitioning 

technique is a better fit for the suggested research. It would be advantageous to change the 

number of clusters to satisfy these constraints. Our study suggests a different of the k-means 

algorithm, for example, which is a partitioning algorithm (see details Frigui (2008)). The cluster 

is divided by the taxi demand (see  Figure 4.1) 

The centroid-based clustering algorithms can be implemented by following steps: 

• Select 𝑘 points at random as centroids of the created cluster dividers, 

• Built on these centroids, allocate each point to a particular cluster, 

• Assign data points to the closest cluster based on calculating the Euclidean distance 

from the assigned point to the centroids and specific points to the clusters where the 

distance is minimum. 

• After the assigned points have been fixed to the clusters, find the new centroid of the 

cluster. 

So, repeat 𝑘  means multiple times with different initializations. The 𝑘  means cluster 

selection was done based on the shortest cumulative Euclidean distance.  
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Figure 4.1. Nagaoka city can be divided into 3-means clustering. 

Given a set of observations (𝑥1, 𝑥2, 𝑥3 … … … … … . 𝑥𝑛)  where each observation is a d-

dimensional vector, 𝑘 means clustering algorithm aims to divide the 𝑛  observations into a set 

of 𝑘 groups 𝑘 ≤ 𝑛  such as 𝐺 = 𝐺1, 𝐺2, 𝐺3 … … … … … . 𝐺𝑘, to reduce the within-groups sum of 

distance squares, which is defined as the sum of distance functions from each point in the groups 

to the appropriate center. The following is the objective function of 𝑘 means: 𝐺𝑖 Li et al. (2021).  

2

1

arg min
i

k

i i

i x G

x c
= 

−  (4.1) 

4.2.1 Linear Regression (LR) 

LR is applied to predict a nominal dependent variable, given several independent variables. We 

determine the possibility that the demand of the output variable corresponds to the relevant 

group using LR. Furthermore, LR may be utilized to determine the domain's solution. In ML, 

LR is appropriate for prediction problems ML (Zantalis et al. (2019)). A simple LR formula: 

0 1y x = +  (4.2) 

Where 𝑦 is the dependent variable, 𝑥 is the independent variable, 𝛽0 is the model's intercept 

and 𝛽1 is the slope. 

A vector Autoregression Sujath et al. (2020) is a prediction of two-time series. The following 

formula  
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0 1 1 2 2 ......................t t t p t p tY Y Y Y    − − −= + + + + +  ( 4.3) 

Where 𝛽0 is the model's intercept, 𝛽1, 𝛽2, 𝛽2, . . . . . . . . 𝛽𝑝 are the coefficient of the legs of Y 

till over p. Order ‘p’ means, up to p-lags of Y  is applied and they are the predictors in the 

equation. The t  is error considered white noise. 

The goal of LR is to find the line of best fit or the equation that best describes the 

relationship between the dependent and independent variables. LR is a simple yet powerful ML 

model that can be used to analyze a wide range of data sets. It is particularly useful for 

understanding the relationships between variables in continuous data sets, where the dependent 

and independent variables can be quantified and modeled using mathematical equations. 

4.2.2 Decision Tree (DT) 

The DT approach is a supervised ML method that constantly divides data according to a 

parameter. Two things describe the tree: decision nodes and leaves. The choices or outcomes 

where the data is divided are the leaves. By maximizing the separation of the data, this technique 

repeatedly breaks the data set into a tree-like structure (for details, see Dreiseitl and Ohno-

Machado (2002)). The greedy construction process gives a major disadvantage to DT: the 

combination of the single best variable and optimal split-point is selected at each step. However, 

a multi-step looks ahead that considers variables' combinations may obtain more outstanding 

results. Entropy is an amount of confusion or ambiguity and the goal of DT.  

The mathematical formula for entropy is: 

2

1

( ) log
c

i i

i

E s p p
=

= − , Where 𝑝𝑖 is simply probability of 𝑖 (4.4) 

So, decision trees can be disposed to overfitting, which means that they can be too complex 

and capture the noise in the data, resulting in poor generalization performance on unseen data. 

To address this, techniques such as pruning, ensemble methods, and limiting the maximum 

depth of the tree can be used. Decision trees are a powerful tool for the prediction of various 

aspects of taxi operations and have been widely used in literature. It is important to carefully 

consider the limitations and potential for overfitting when using decision trees for prediction. 
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4.2.3 Random Forests (RF) 

RF is an ensemble algorithm to estimate the outcome class by parallelly training processes on 

numerous DTs. RF is an ensemble of classifiers composed of DTs generated using two different 

sources of randomization. First, each decision tree is trained on a casual sample with 

replacement from the real data with the equal size to the given training set. The created bootstrap 

samples are likely to have approximately some duplicated instances. The second source of 

randomization applied in the random forest is attribute sampling. A subgroup of the input 

variables is randomly chosen at each node to search for the best split. For classification, the 

final estimate of the ensemble is given by margin voting (see details in Bentéjac et al. (2021); 

Breiman (2001); Sarica et al. (2017); Fitria (2013)). 

RF algorithm: 

Step 1: Pick the random K traffic data from the training data, 

Step 2: From the data, construct a decision tree, 

Step 3: Before repeating steps 1 and 2, choosing the number of trees to build, 

Step 4: Find the predictions of each decision tree, 

The general mathematical formula for an RF classifier Shah et al. (2020) is as: 

( ) ( ) ( ) ( )ij left j left j left j right j right jn w c w c w c= − −  (4.5) 

Where, 
jn = the significance of node j  

 
jw = weighted number of samples reaching node j  

 
jc = the impurity value of node j  

 ( )left j = child node from left split on node j  

 ( )right j = child node from right split on node j  

The random forest algorithm trains multiple decision trees driven by a different subset of data. 

Using the random forest classification approach, a large number of classifiers are created from 

smaller subsets of the input data, and then the individual findings of each classifier are 

combined based on a voting process to produce the desired output of the input data set. The 

conceptual diagram for the random forest approach is shown in Figure 4.2. From a particular 
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total training set, 𝑛 sub-training sets are first randomly chosen. In this context, a decision tree 

is referred to as a sub-training set. Although the processing of the sub-training set is identical 

to that of a typical decision tree, the application of available variables takes unpredictable into 

account. 

 

Figure 4.2. Classification of the random forest 

4.2.4 Gradient Boosting (GB) 

GB develops the tree model and updates it by lowering the expected value of the specified loss 

function. It can be used with other models that minimize the average of a loss function on 

training data, such as a square error or a complete error. The loss function calculates the 

disparity between the expected and actual values. The boosting approach is an "effective 

gradient descent" in regression issues. It is an optimization approach that reduces the size of a 

loss function by adding a base model to each step that reduces it. The final prediction of the 

demand class is the weighted voting of individual DTs; (for details, see Fitria (2013); Biau et 

al. (2019)). 

The GB is to build a base model to predict the observations in the training dataset. 

Mathematically, the average of the first target column is  

0 arg min ( , )
n

i

i

F L y


=   

Where L  is the loss function,   is the predicted value, iy  is the observed value. 

The loss function is  
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The following step of gradient boosting is to build a model: 

Step1: To build a model to predict the training dataset;  

Step 2: To calculate residual = (observed value – predicted value); 

Step 3: To minimize the residuals and improve the model accuracy;  

Step 4: To find the output values for each leaf of the decision tree;  

Step 5: Finally, update the predictions of the previous model. 

The gradient boosting can be computationally expensive, especially for large datasets, as 

multiple weak learners need to be built and combined. Additionally, gradient boosting can be 

less interpretable compared to decision trees, as the predictions are based on the combination 

of multiple weak learners rather than a single tree. 

4.2.5 The Proposed Hybrid Machine Learning (HML) 

HML is a combination of two or more ML algorithms that are used together to make 

predictions. In the context of taxi prediction, HML could involve combining multiple 

algorithms such as linear regression, decision trees, random forests, and gradient boosting to 

make more accurate predictions about taxi demand, supply, and trip duration. In HML models, 

firstly the LR model is used for estimating the association between the dependent and 

independent variables statistically. And then the RF is an ensemble learning method that 

constructs several decision trees at randomly selected features and predicts the class of a test 

instance by voting for the individual trees. The proposed HML defines a general framework for 

trees as a baseline model, such as a linear regression model. In order to tree baseline model, 

nonlinear models such as decision tree, random forest, and gradient boosting or combined 

models can be applied. 
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Figure 4.3 shows the conceptual diagram of an HML framework that combines the based 

dataset clustering technique and the based classification technique. First, clustering creates 

groups (i.e., clusters) and provides them as dependent variables for classification. 

Figure 4.3. A logical framework for the prediction and evaluation using HML. 

The HML framework generates six stages conducted in sequence. To use hybrid machine 

learning for taxi prediction, the following steps are as follows: 

1. Data collection and preparation: The first step is to collect and prepare the relevant 

data for the prediction. This data includes information such as time of day, weather, location, 

and previous demand patterns. The data has been cleaned, normalized, and transformed as 

necessary. 

2. Feature engineering: Next, the relevant features that will be used for prediction should 

be identified and extracted from the data. This involves creating new features based on the 

existing data or selecting the most relevant features through feature selection techniques. 

3. Model selection: The next step is to select the machine learning (LR, DT, RF, and GB) 

algorithms that will be used in the hybrid model. This involves considering the strengths and 
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weaknesses of different algorithms, as well as the nature of the data and the problem being 

solved. 

4. Model training: Once the algorithms have been selected, they should be trained on the 

prepared data. This involves splitting the data into training and testing sets, training each 

algorithm on the training data, and evaluating their performance on the testing data. 

5. Model combination: After each algorithm has been trained, they should be combined 

into a single hybrid model. This can be done through a variety of techniques, such as weighing 

the outputs of each algorithm, combining the outputs through a meta-model, or using a stacking 

approach where the outputs of each algorithm are used as inputs to another algorithm. A hybrid 

model involves using the predictions from one or more models as input to another model. There 

are several ways to combine models, including stacking, blending, and boosting. 

Figure 4.4. HML architecture 

Stacking: In stacking, the predictions of the individual models are combined as input to a 

meta-model, which makes the final prediction. The meta-model is trained on the predictions 

of the component models, instead of the original features. This technique can be used to 

overcome the weaknesses of individual models, by allowing the meta-model to learn from the 

predictions of multiple models. We use the output of the decision tree model as input to the 
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random forest model and then use the output of the random forest model as input to the 

gradient boosting model. The gradient boosting model makes the final prediction seen in 

Figure 4.4. 

For example: 

from sklearn.ensemble import StackingRegressor 

baseEstimators = [ 

    ('DTR', DecisionTreeRegressor()), 

    ('RFR', RandomForestRegressor()) 

] 

hybridModel = StackingRegressor( 

    estimators=baseEstimators, 

    final_estimator=GradientBoostingRegressor() 

) 

6. Model evaluation: Finally, the hybrid model should be evaluated to determine its 

performance. This involves comparing the prediction accuracy of the hybrid model to the 

accuracy of each algorithm and other prediction models.  

The use of hybrid machine learning for taxi prediction is an iterative process, and the steps 

may need to be repeated multiple times to fine-tune the model and achieve the best possible 

results. In this study, the demand for taxis has been modeled using a different hybrid method. 

The models combine multiple trees such as a LR, DT, RF, and GB to make predictions. 

4.2.6 Hyperparameters Selection 

Hyperparameter tuning is a very important step of ML to improve the performance of 

algorithms. And hyperparameter is also a component in increasing the model's accuracy. In 

linear regression, common hyperparameters include the regularization parameter, which 

determines the amount of reduction applied to the coefficients, and the choice of the loss 

function, which defines the objective to be optimized during training. 

In decision trees, hyperparameters include the maximum depth of the tree, the minimum 

number of samples required to split a node, and the minimum number of samples required to 

be at a leaf node with 5-fold cross-validation (CV) in Table 4.1. 
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Table 4.1. Hyperparameter of decision tree 

Hyperparameter Assigned Value 

max_depth 5 

max_features auto 

max_leaf_nodes 50 

min_samples_leaf 2 

min_weight_fraction_leaf 0.1 

splitter random 

For random forests, hyperparameters include the number of trees in the forest, the maximum 

depth of the trees, and the number of features to consider when splitting a node. A randomized 

search method with 5-fold cross-validation was used herein for exploring possible values of 

hyperparameters using the Scikit-learn package in Python in Table 4.2. 

Table 4.2. Hyperparameter of Randomized search 

Hyperparameter Assigned Value 

random state 1 

no of iteration 10 

cross-validation 5 

no of jobs -1 

In gradient boosting, hyperparameters include the number of trees, the learning rate, and the 

maximum depth of the trees along with the 5-fold CV (Table 4.3). 

Table 4.3. Hyperparameter of GB 

Hyperparameter Assigned Value 

learning_rate 0.05 

max_depth 2 

min_samples_leaf 5 

min_samples_split 10 

n_estimators 1000 

For hybrid machine learning, the hyperparameters would depend on the specific models being 

combined in Table 4.4. For example, if a linear regression model and a decision tree model are 

being combined, the hyperparameters for each model would need to be set and optimized 

separately.  
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Table 4.4. Hyperparameters for HML 

Hyperparameter Assigned Value 

n_estimators 1000 

learning_rate 0.05 

max_depth 2 

min_samples_leaf 5 

min_samples_split 10 

min_weight_fraction_leaf 0.1 

random_state 1 

cross-validation 5 

Max features 7 

Additionally, the choice of how to combine the models and any hyperparameters related to 

this combination would also need to be set. 

4.3 Baseline 

We compare the HML model: 

➢ HML is the model that combines multiple ML algorithms to generate more accurate 

predictions. In contrast, LR, DT, RF, and GB are all individual ML algorithms that are 

used on their own or combined with other algorithms to create hybrid models. 

➢ LR is a statistical approach that models the relationship between a dependent variable 

and one or more independent variables by fitting a linear equation to the observed data. 

It is a simple, straightforward approach that is well-suited to continuous data sets where 

the relationships between variables can be quantified and modeled using mathematical 

equations. 

➢ DTs are the ML models that use a tree-like structure to model the relationships between 

variables. They work by dividing the input data into smaller and smaller subsets, making 

predictions based on the data in each subset, and building up a tree-like structure that 

models the relationships between variables. DTs have been used for both continuous 

and categorical data sets and are particularly well-suited for use in complex data sets 

with many variables. 

➢ RFs are machine learning models that build multiple decision trees and combine their 

predictions to generate more accurate results. RFs work by randomly selecting subsets 

of the input data to use for building each DT and combining the predictions from all of 
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the trees to generate a final prediction. This approach helps to reduce the risk of 

overfitting, where a model becomes too closely tied to the input data, and can lead to 

more accurate predictions. 

➢ GB is a machine learning algorithm that uses a combination of decision trees and 

gradient descent optimization to generate more accurate predictions. GB works by 

building a series of decision trees, where each tree is designed to correct the errors made 

by the previous tree. This approach helps to produce more accurate predictions by 

combining the strengths of multiple decision trees into a single, more powerful model. 

The HML, LR, DT, RF, and GB models are all ML algorithms with their own strengths and 

weaknesses. The choice of which algorithm to use has depended on the particular data set being 

analyzed, the goal of the analysis, and the available resources and expertise. By combining 

multiple algorithms, HML models have offered a more powerful and flexible approach to data 

analysis and prediction and helped to overcome the limitations of individual algorithms. 

4.4 Experiments 

This section will analyze the actual situation of taxi operations. Firstly, the dataset used in the 

experiments. Then, analysis is done on the variables affecting how well taxi demand forecasting 

performs. The actual situation of taxi operations varies widely depending on the location, 

market conditions, and local regulations. However, there are some general trends and 

challenges that are common to many taxi operations around the world. 

Taxi companies have needed to invest in technology and data systems to stay competitive, 

but this can also be a significant expense that can impact on their bottom line. Despite these 

challenges, there are also many opportunities for taxi operations to improve their performance 

and increase their competitiveness. There is also growing demand for services such as shared 

taxis and dynamic pricing, which can help taxi companies to better match supply and demand 

and improve their overall cost efficiency. 

The actual situation of taxi operations is complex and dynamic and is impacted by a range 

of factors including competition, technology, and regulation. Taxi companies need to stay 

informed about the latest developments in the industry and be prepared to adapt and innovate 

in order to remain competitive. The experiments utilized the GPS data of 42 vehicles belonging 

to Mitsukoshi Taxi Co., Ltd., Nagaoka, the largest taxi company with a business area in the 
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entire Nagaoka city, Japan (see Figure 4.5). Ride-related data (e.g., pickup and drop-off 

locations, time of the day) are from the taxi company, and environment-related factors (e.g., 

temperature and presence of snow) are derived from the commercial weather service provider 

dataset. Nagaoka is in the center of Niigata and the nearby Chūetsu region of Japan (see Figure 

4.5). As of August 4, 2021, the city had an estimated population of 264,611 in 109,283 

households and a population density of 300 inhabitants per square kilometer (780 sq/mi). The 

city's total area was 891.06 square kilometers. Well-established machine learning (ML) 

algorithms are developed to predict demand. 

 

Figure 4.5. Location of the case study area: Nagaoka City, Japan. 

 The Nagaoka City Taxi collects information on individual taxi journeys. To estimate the 

demand, we used about 168156 individual taxi ride data for whole days in 2019. Each record 

includes the following field of core features (the meter was engaged or disengaged):  

➢ Pick up date & time; 

➢ Pick up longitude (unit: degree);   
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➢ Pick up latitude (unit: degree);  

➢ Drop off date & time;  

➢ Drop off longitude (unit: degree);  

➢ Drop off latitude (unit: degree);  

 In order to expand the forecast accuracy, taxi demands are also dependent on weather 

conditions as the number of taxi users increases in poor weather conditions. Weather data is 

obtained from the Japan Meteorological Agency provided by the past amount of precipitation 

in Japan, (Japan Meteorological Agenc, 2019). We chose the following characteristics from the 

raw data, which comprise more than 19 fields: 

➢ Date & time: e.g., 2019-01-01 11:00:00; 

➢ Every 15 minutes temperature (unit:  degree centigrade); 

➢ Every 15 minutes wind speed (unit: m/s);  

➢ Every 15 minutes precipitation (unit: mm); 

➢ Every 15 minutes snowfall (unit: cm); 

➢ Every 15 minutes snow cover (unit: cm); 

 The predictors and outcome variables are required for developing ML models which are 

prepared by gathering the fields available in the raw trip data. Firstly, to enhance the usability 

and generalizability of the prediction models, the pickup coordinates (latitude and longitude) 

are partitioned into different regions, also referred to as location ID, using a clustering 

algorithm. Specifically, the means of clustering process was selected for this research to control 

the number of clusters (i.e., the number of regions). Moreover, the pickup date is used to derive 

ride-related temporal factors - month, every 15 minutes of day indicator.  
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Table 4.5.  Description of features. 

Input Features Type and Description 

Month Categorical: Jan, Feb,···, Dec. 

Day of month Categorical: #1, #2,···, #31. 

Day of the week Categorical: Monday, Tuesday,···Sunday. 

Time of day (a day range (0, 23) with step 1 

where each step is 15 minutes) 

Categorical: #1, #2,···, (in mints) 

Traffic Volume Continuous 

Region ID Categorical: #1, #2, #3 

Temperature Continuous 

Wind speed Continuous 

Precipitation Continuous 

Snowfall Continuous 

Snow Cover Continuous 

Table 4.6. Outcome variable. 

Output Feature Type (Categorical) 

Demand Continuous 

In addition to these predictors, weather-related (or environmental) information, such as 

temperature, weather condition (snow, normal, etc.), and wind speed, are extracted for every 

15 minutes of the day and each date in the set of data using the Japan Meteorological Agency 

provider. The output variable is the demand for the taxi and is obtained by aggregating and 

binning the number of passengers transported for each location, date, and day of the week. We 

have calculated the taxi demand every 15 minutes in each region. A summary of the input 

features is presented in Table 4.5. 

The unified dataset contains inconsistencies, errors, and missing values and is typical for 

any real-world case. In particular, we observe several discrepancies in the data with zero, 

negative or irrational values in trip duration and travel distance. Likewise, in some cases, the 

longitude and latitude were recorded as 2,035. Remove 23 samples that are the outlier, i.e., has 

(longitude, latitude): (2,035, 2,035). As a result, the set of data is cleaned before being input 

into the ML model. After cleaning data, we were able to estimate the taxi demand depending 

on the weather. 
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 Each of the levels associated with a categorical variable is converted using a one-hot 

encoding technique to enable the training and testing process of the ML model. For instance, 

the variable “Month” has 12 levels, and each level is encoded as an independent variable (e.g., 

encoded feature “Month” Jan = 1 if the trip is made in January and 0 otherwise). On the other 

hand, the continuous output variable is demand.). 

4.5 Performance Metrics 

LR, GB, DT, RF, and HML are compared using various performance parameters of taxi 

prediction such as mean absolute error (MAE), mean absolute percentage error (MAPE), mean 

squared error (MSE), root mean squared error (RMSE), Median Absolute Error (MdAE), and 

R squared (R2) in identifying the best ML model. The formulas for performance parameters are 

given below: 

Mean Absolute Error (MAE): 

𝑀𝐴𝐸 =
1

𝑛
∑ |

(𝑦𝑖 − �̂�𝑖)

𝑦𝑖
|

𝑖∈𝑛

 (4.6) 

MAE is a commonly used evaluation metric in machine learning. It measures the average 

magnitude of errors in a set of predictions, without considering the direction of the errors. The 

reason for using MAE as an evaluation metric is that it is relatively easy to understand and 

interpret, and it provides a simple way to compare the performance of different models. MAE 

is particularly useful in situations where the target variable has a linear relationship with the 

predictors, and where the magnitude of errors is more important than the direction. Another 

advantage of using MAE is that it is easy to optimize using gradient descent algorithms, as it 

has a continuous and differentiable objective function. This makes it a good choice for many 

optimization problems in machine learning, such as linear regression and neural network 

training. 

Mean Absolute Percentage Error (MAPE): 

𝑀𝐴𝑃𝐸 =
100

𝑛
∑ |

(𝑦𝑖 − �̂�𝑖)

𝑦𝑖
|

𝑖∈𝑛

 (4.7) 

MAPE is another commonly used evaluation metric in machine learning. It measures the 

average percentage difference between the predicted and actual values of a target variable. 
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MAPE is particularly useful when we want to measure the performance of a model in terms of 

its ability to make accurate predictions on a relative scale, rather than an absolute scale. MAPE 

is commonly used in forecasting models, where we want to predict the future values of a 

variable based on its historical values. In such cases, MAPE can provide a useful measure of 

the model's accuracy in terms of percentage error. One advantage of using MAPE is that it is a 

relative measure of error that is scale independent. MAPE is also easy to understand and 

interpret, as it represents the average percentage error of the predictions. So, one potential 

drawback of using MAPE is that it can be sensitive to extreme values or outliers in the data. 

This is because the percentage error can become very large when the actual value is close to 

zero. As a result, some practitioners prefer to use other metrics like MAE or MSE instead of 

MAPE. 

Mean Squared Error (MSE): 

21
ˆ( )i i
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= −
 

(4.8) 

Root Mean Squared Error (RMSE): 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − �̂�𝑖)2

𝑖∈𝑛

 (4.9) 

MSE and RMSE are two commonly used evaluation metrics in machine learning. Both metrics 

are used to measure the average magnitude of errors in a set of predictions, and they are 

particularly useful when the direction of errors is important. MSE is calculated by taking the 

average of the squared differences between the predicted and actual values of a target variable. 

RMSE is simply the square root of MSE. Both metrics provide a measure of the average squared 

error of the predictions, with RMSE providing a more interpretable measure of the error in the 

original units of the target variable. MSE and RMSE are commonly used in regression 

problems, where the goal is to predict a continuous target variable. They are useful for 

comparing the performance of different models and selecting the best one for a given problem. 

Median Absolute Error (MdAE): 

𝑀𝑑𝐴𝐸(𝑦𝑖, �̂�𝑖) = 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑦1 − �̂�1|, |𝑦2 − �̂�2|, … … . , |𝑦𝑛 − �̂�𝑛|) (4.10) 
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MedAE is an alternative evaluation metric in machine learning that is similar to MAE, but 

instead of measuring the average magnitude of errors, it measures the median magnitude of 

errors. MedAE is calculated by taking the median of the absolute differences between the 

predicted and actual values of a target variable. This makes it a robust measure of error, as it is 

less sensitive to outliers in the data compared to mean-based metrics like MAE or MSE. MedAE 

is particularly useful in situations where there are a few extreme values in the data that can 

heavily influence the mean-based metrics. By using the median, we can reduce the impact of 

outliers and obtain a more accurate estimate of the typical error. Another advantage of using 

MedAE is that it is easy to interpret, as it represents the median magnitude of the errors in the 

original units of the target variable. It is also less influenced by extreme values than mean-based 

metrics, making it a good choice for evaluating the performance of models in situations where 

extreme values are expected. 

R-squared: 

𝑅2 = 1 −
∑ (𝑦𝑖 − �̂�𝑖𝑖∈𝑛 )2

∑ (𝑦𝑖 − �̅�)2
𝑖∈𝑛

 (4.11) 

Where ˆ
iy   are predicted values, iy  are observed values, 

iy is the mean of all iy , and n  is the 

number of observations. 

R-squared, also known as the coefficient of determination, is a widely used evaluation metric 

in machine learning. It measures the proportion of variance in the target variable that can be 

explained by the model. R-squared is calculated as the ratio of the explained variance to the 

total variance. The explained variance is the variance of the predictions of the model, while the 

total variance is the variance of the actual values of the target variable. R-squared ranges from 

0 to 1, with a value of 1 indicating a perfect fit of the model to the data. R-squared is particularly 

useful in regression problems, where the goal is to predict a continuous target variable. It 

provides a measure of the goodness of fit of the model and can be used to compare the 

performance of different models. One advantage of using R-squared is that it is easy to interpret, 

as it represents the proportion of variance in the target variable that can be explained by the 

model. It can also be used to assess the predictive power of the model, as a high value of R-

squared indicates that the model is able to explain a large proportion of the variance in the target 

variable. However, one potential drawback of using R-squared is that it can be misleading when 

used inappropriately. For example, R-squared can increase even when the model is not 

improving the predictions, as long as the variance of the predictions is increasing. This means 
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that R-squared should be used in conjunction with other metrics, such as MAE or MSE, to 

provide a more complete picture of the model's performance. 

 Therefore, machine learning models need to be evaluated using appropriate evaluation 

metrics to ensure their accuracy and reliability. There are a variety of evaluation metrics that 

are commonly used in machine learning, each with its advantages and disadvantages. MAE is 

a simple and interpretable evaluation metric that measures the average magnitude of errors 

between the predicted and actual values of the target variable. It is particularly useful when the 

direction of errors is not important. MAPE is a variation of MAE that measures the average 

percentage error between the predicted and actual values of the target variable. It is useful when 

we want to measure the relative magnitude of errors. MSE and RMSE are evaluation metrics 

that measure the average squared error between the predicted and actual values of the target 

variable. They are particularly useful in regression problems and can be easily optimized using 

gradient descent algorithms. However, they can be sensitive to outliers in the data. MedAE is a 

robust evaluation metric that measures the median magnitude of errors between the predicted 

and actual values of the target variable. It is less sensitive to outliers in the data compared to 

mean-based metrics and is particularly useful when extreme values are present. R-squared is a 

widely used evaluation metric in regression problems that measures the proportion of variance 

in the target variable that can be explained by the model. It provides a measure of the goodness 

of fit of the model and can be used to compare the performance of different models. However, 

it should be used in conjunction with other metrics to provide a more complete picture of the 

model's performance. 

4.6 Results 

The chapter is implemented using the sci-kit-learn in Python statistical computing packages. 

Besides, a computer configured with Intel i7 quad-core processor, 16 GB RAM, and Windows 

10 operating system is used to execute the study procedure. In this chapter, the ML models are 

applied to find the demand for our problem. We present some results and discuss different ML 

algorithms in our problem setting. The two most important parameters to consider when using 

ML techniques are how computationally concentrated and how quickly a given technique is. 

Depending on the application type, the most suitable ML algorithm is selected with the 

parameters (Zantalis et al. (2019); Mohammed et al. (1985)). 
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 Three sorts of listings were checked to identify the clustering of taxi demand in Nagaoka, 

Niigata: density area, railway station, and supermarket. A list of popular periods represents the 

number of people that visit this location on specific days and weeks of the week. Clusters may 

not reveal the exact number of visitors because they do not record all, but what is intriguing is 

that the number of clusters with popular time data and the number of places without this 

information in urban areas have the same spatial dimension tendency. From January 1, 2019, 

to December 31, 2019, its period depicts the spatial distribution of each zone's total number of 

pickups. The supermarket area has fewer visits during the year than the station area. In 2019, 

the central railway station received 129,244 pickups during the year. 

4.6.1 Performance Prediction 

For the LR model, the input is the demand intensity sequence in a single region after sequence 

stabilization. For DT, RF, and GB, the input that the model accepts each time is a feature vector 

of a single region in a time interval. For HML, the input consists of an adjacency matrix 

describing the spatial relationship between regions and the feature matrix composed of feature 

vectors of all regions in the same time interval. Multiple algorithms work together to 

complement and augment each other. Table 4.7 reveals the performance of the proposed 

prediction network compared with the modes. The proposed HML model achieves the best 

prediction results in the minimum values of MAE (1.49), MAPE (149.2), MSE (8.26), RMSE 

(2.87), MdAE (0.43), R2 (0.92).  

Table 4.7. Performance of different ML algorithms. 

No Model MAE MAPE MSE RMSE MdAE R2 

1 LR 4.04 404.24 34.02 5.83 2.86 0.67 

2 DT 1.97 197.15 14.06 3.75 0.51 0.86 

3 RF 1.74 174.17 11.78 3.43 0.44 0.89 

4 GB 2.01 200.61 15.16 3.89 0.73 0.85 

5 DT+RF+GB 1.5 150.24 8.44 2.9 0.41 0.92 

 The first three clusters were defined based on the demand, and then each ML algorithm was 

run separately in Table 4.6. Each of the used algorithms is described in more detail in the 

previous section. For splitting the data frame, train (85%) and test (15%) data sets are 

considered. Table 4.7 shows the comparison of various ML algorithms. The model is fitted with 

a 15-minute timestamp in this table. As per Table 4.7, the HML model, with the lowest errors 

and highest R2-score (0.92%), was identified as the best model. 
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4.7 Discussion 

This research considers machine learning methods for predicting taxi demand across different 

months, days, weeks, periods, and locations. Based on the presented results, the performance 

of the taxi demand forecasting models is as follows: 

➢ The taxi demand in each region might be impacted by the surrounding areas and the 

clusters located in that area. 

➢ Predicated demand for taxis is affected by weather-related features, such as temperature 

and the presence of snow. It can be confirmed that the number of operations when it 

snows, exceeds that of fine weather and rain. There are relatively few trips with a short 

boarding time and relatively many trips with a long boarding time when it snows. When 

the distribution of riding distance was confirmed, there is no significant difference due 

to the weather. It is presumed that the snowfall did not induce short-distance demand 

but that the vehicle speed decreased. As a result, basic HML techniques may be applied 

to avoid prejudice and achieve justice in the taxi demand problem. 

➢ Modifying the values of hyperparameters can result in performance improvement. 

➢ The HML model can provide more accurate results than the others (LR, DT, RF, and 

GB) for dynamic purposes. 

4.8 Prediction and Closeness of Predict Data 

The prediction and closeness of predicted data are key measures of the accuracy of an HML 

model. Predictions refer to the output generated by an ML model, which is based on input data 

and the model's underlying algorithms. The closeness of predicted data refers to the degree to 

which the predicted output values match the actual values of the target variables. 

HML models combined multiple ML algorithms to generate more accurate predictions. 

These models used a variety of techniques, such as LR, DT, RF, and GB, to analyze different 

aspects of the input data and generate more accurate predictions. The prediction and closeness 

of predicted data are critical measures of the effectiveness of these models, as they can help to 

determine the degree to which the models can make accurate predictions based on the input 

data. There are various techniques for measuring the accuracy of predictions in HML models. 

One common approach is to use a metric such as mean squared error MAE, MAPE, MSE, 
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RMSE, MdAE, and R2, which can help to quantify the difference between the predicted values 

and the actual values of the target variables. Another approach is to use cross-validation, which 

involves splitting the input data into multiple parts, using different parts for training and testing 

the model, and evaluating the performance of the model using a variety of metrics. 

Ultimately, the prediction and closeness of predicted data are key indicators of the 

performance of an HML model. By carefully analyzing these measures and identifying areas 

for improvement, it is possible to further optimize the performance of these models and improve 

their ability to make accurate predictions. 

 

Figure 4.6. The prediction results of 5 models. 

The actual vs predicted values of a hybrid machine learning model refers to the comparison 

between the observed real-world values (actual values) and the values that are estimated or 

predicted by the model. The accuracy of a hybrid ML model is evaluated by comparing the 
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actual vs predicted values. Plot the actual and predicted values in a line plot to visually compare 

the performance of the hybrid model. We added a line of best fit to the plot to see how closely 

the predicted values match the actual values. The result shows that taxi demand fluctuates due 

to its dynamic nature, which is influenced by various factors such as the time of day, day of the 

week, and season. Also, unexpected events like major public gatherings, festivals, or inclement 

weather conditions can significantly impact taxi demand. The fitted curves between the actual 

values and the different results obtained from various models are given in Figure 4.6, from 

which it can be concluded that the proposed HML model presents the best performance.  

4.9 Summary of the Chapter 

This chapter discussed the prediction demand in 15-minute timestamp periods. So, we prepared 

the data and used four popular ML models and the HML model to build a demand prediction 

model. We accepted five types of input data: demands of each area, months, days of weeks, 15-

minute timestamps, and weather for ML and evaluated their impact on taxi demand. The 

relationship between the predictors and demand with different accuracy tests has been 

discussed. Therefore, considering the input features and weather conditions for enhancing the 

model's performance, a taxi operator can estimate taxi demand. In this chapter, the 

implementation of these models has been evaluated using MAE, MAPE, MSE, RMSE, MdAE, 

and R2. The results demonstrated the capability of ML models to predict the demand level. The 

HML algorithm consistently achieved the best classification performance. 

Therefore, predicting taxi demand in urban areas is a crucial task for improving the 

efficiency and sustainability of the transportation system. HML algorithms, combining different 

ML methods, are indicated to be effective in accurately predicting taxi demand in urban areas. 

This can provide valuable insights for taxi companies and city planners to optimize their 

resources and improve urban transportation services. Additionally, the study revealed several 

critical predictors for estimating demand levels. The insights obtained from the study have 

numerous practical implications for aiding decision-makers at strategic, tactical, and 

operational levels. 
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Chapter 5. MATHEMATICAL 

MODEL  

 

In this chapter, we will delve deeper into the specific mathematical models used for shared taxi 

routing and taxi allocation, exploring the key variables, constraints, and objectives that are 

involved. The mathematical model of shared taxi routing involves the use of algorithms and 

optimization techniques to determine the most efficient routes for taxis to take and the optimal 

allocation of passengers to those taxis. By using a mathematical model, transportation planners, 

and operators can make informed decisions about how to allocate resources and maximize the 

benefits of shared taxi routing.  
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5.1 Introduction 

A mathematical model of shared taxi routing and taxi allocation in transportation is a system of 

equations that describes how an allocation of taxis can be optimized to serve the transportation 

needs of a population efficiently and cost-effectively. This model typically involves several 

variables, including the number of taxis in the fleet, the number of passengers requiring 

transportation, the location and distance of each passenger from their destination, the expected 

travel time for each trip, and the cost to be charged for each trip.  

The shared taxi routing problem is calculated based on the distance traveled, the number of 

passengers in the taxi, and other factors such as time of day or traffic congestion. The cost is 

typically split among the passengers, with each passenger paying a proportionate share of the 

total trip cost based on the distance they traveled. The goal of the model is to maximize the 

utilization of the taxi fleet while minimizing the cost to passengers. This is achieved by 

grouping passengers based on their proximity and destination and then assigning them to a 

single taxi for the trip. This reduces the number of taxis required to serve the population, which 

in turn reduces the cost to passengers. The model typically uses a set of algorithms to calculate 

the optimal route for each taxi based on the location and destination of its passengers. This may 

involve complex calculations to determine the shortest and most efficient route, taking into 

account traffic conditions, road closures, and other factors that may affect travel time. 

Therefore, the mathematical model of shared taxi routing problem and taxi allocation in 

transportation is a sophisticated system that can help improve the efficiency and cost-

effectiveness of taxi services, while also reducing traffic congestion and improving overall 

transportation outcomes for the population. 

5.2 Shared Taxi Routing Model 

Recently, shared taxis are the most popular for public transportation. The sharing charge 

influences the taxi-sharing enthusiasm of passengers. Due to the difference in the service order, 

travel distance, number of shared passengers, and waiting time, the cost-sharing ratio should be 

changeable. Again, establishing a generalized pricing method is necessary based on those 

factors. It can lower fare costs for each customer and reduce travel costs. Meanwhile, it 

increases the taxi company’s revenue as it accepts drivers to pick up multiple passengers. 
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Dial-A-Ride Problem (DARP) requests trips from indicating the pickup locations to drop-

off locations, while individual requirements on the ride (such as the initial pickup time and final 

drop-off time) (Cordeau and Laporte (2007)). Several variants of DARP exist, including single-

vehicle and multi-vehicle DARP and static and dynamic DARP. The dynamic version 

accommodates changes that include users leaving and entering the system. It is essential to 

handle new customer requests during the whole operation of the taxi rider fleets spread around 

and while traveling. Ke et al. (2020) examined the empirical probability density functions of 

trip time for ride-pooling service and non-pooling service for hire-vehicle ride-sourcing 

services in New York City and developed a mathematical model of a ride-pooling market. The 

authors found the optimum solution for passengers choosing ride-pooling and non-pooling 

services. The ride-pooling service has a slightly longer average trip time. 

 

 

 

 

 

 

 

 

Figure 5.1. Four prominent taxi-sharing cases. 

The taxi trip cost is calculated on the pickup and drop-off location of each passenger. The 

shared taxi problem is obtained to determine the optimal passenger position to taxi, the optimal 

route of each taxi, the optimal cost of each passenger, etc. The taxi can pick up different origins 

and drop off customers who go to various destinations in this model. 

The four characteristics of the routing problem (for details, see Figure 5.1) of shared taxis 

are given below: (a) passengers have the same origin and the same destination, (b) passengers 

have the same origin and different destinations, (c) passengers have the different origins and 
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the same destination, (d) passengers have the different origins and different destinations. Two 

main classes of taxi sharing are studied: static taxi sharing and dynamic taxi sharing. Static taxi 

sharing requires all taxi trips to be known beforehand. Therefore, a globally optimal sharing 

plan could be derived to maximize the collective benefits of sharing, e.g., cumulative trip length 

reduction. Dynamic taxi sharing matches real-time trip requests with running taxis. The trip 

requests are unknown beforehand, and the taxis can reroute and respond to new trip requests on 

the fly. 

The taxi allocation method based on the number of passengers has some benefits. It can 

calculate the cost per passenger. The payment limitation can be solved by turning where the 

early fare is equal to the next fare. 

5.2.1 Formulations 

For the mathematical model, some assumptions are needed: 

1. Each taxi driver is different from the others. 

2. The taxi capacity of each taxi is four passengers. 

3. Passengers are not allowed to transfer. 

4. The driving speed of the taxi remains unchanged in terms of taxi sharing. 

5. The pickup and drop-off must always happen within the specified time windows. 

6. The discount parameter value is from 10% to 30%. 

7. The first ride fare is 630 yen up to 1200 m, and additional fares are 90 yen every 249 

m. (Source: https://www.taxisite.com/far/info/15.aspx) 

Sets, indices, and parameters:  

The shared taxi of the pickup and drop-off problem contains 𝑛 requests and 𝑘 taxi. Passenger 𝑖 

request is represented by nodes 𝑖 and 𝑖 + 𝑛. Given a directed graph 𝐺 = (𝑉, 𝐴) where, the 𝑉, 

the set of all points, 𝑖, 𝑗 ∈ 𝑉,  and 𝑖, 𝑗, connect; and 𝐴 the set of arcs; 𝐾, the set of all taxi, 𝑘 ∈

𝐾, let 𝜏𝑘 = 2𝑛 + 𝑘, 𝑘 ∈ 𝐾 and 𝜏𝑘
′ = (2𝑛 − 1) + 𝑘, 𝑘 ∈ 𝐾 be the nodes representing the start 

and end terminals, respectively, of taxi 𝑘.  
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Symbols  Descriptions 

𝑞𝑘 : Capacity at 𝑘𝑡ℎ taxi 

𝐶0 : Initial fare [yen] 

𝑁𝑖
𝑘 : The number of passengers at 𝑘𝑡ℎ taxi at point 𝑖 

𝐵𝑖
𝑘 : Departure time at 𝑘𝑡ℎ taxi at point 𝑖, [hrs.] 

𝑠𝑖 : Service time at 𝑖 point, [min] 

𝑒𝑖 : The earliest departure time for each point 𝑖 ∈ 𝑉, [min] 

𝑙𝑖 : The latest arrival time for each point 𝑖 ∈ 𝑉, [min] 

𝑑𝑖𝑗 :  The distance of 𝑖 to 𝑗, [km] 

𝑡𝑖𝑗 :  Travel time from 𝑖 to 𝑗, [min] 

𝑊𝑖
𝑡 : Passenger waiting time at 𝑖 point, [min] 

𝑅𝑖𝑗 : The fare rate of going from 𝑖 to 𝑗, [yen/km] 

𝐶𝑖𝑗
𝑘  : The fare of going from 𝑖 to 𝑗 at 𝑘𝑡ℎ taxi, [yen] 

𝐶𝑖𝑗
𝑘 = {

𝐶0 , 𝑖𝑓 ∑ ∑ 𝑥𝑖𝑗
𝑘

𝑖𝑗

𝑑𝑖𝑗 ≤ 𝑑0     ∀𝑘 ∈ 𝐾

𝐶0 + 𝑅𝑖𝑗, Otherwise

 

𝑑0 : Initial distance in fixed fare, [km] 

𝛼 : The discount parameters of the passenger waiting time 

𝛽 : The fare of the passenger distance 

𝑃𝑖 : Number of passengers at 𝑖 point 

The decision variable 

𝑥𝑖𝑗
𝑘 = {

1, If and only if the arc (i, j) used by taxi k
0, Otherwise

 

The shared taxi fare problem is then formulated as follows. 

𝑀𝑖𝑛 ∑ ∑ ∑ (
𝐶𝑖𝑗

𝑘

𝑁𝑖
𝑘) 𝑥𝑖𝑗

𝑘

𝑘𝑗𝑖

     
(5.1) 

Here, the objective function minimizes the total trip fare of passengers and the number of taxis 

utilized for potential demand (maximizing passenger satisfaction). 
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Subject to constraints: 

1. The conservation of taxi flows specifies that each taxi must leave the depot and finally 

arrive at the same depot. Again, when a taxi visits a customer node, it must leave that 

node and arrive at the next node, respectively. 

∑ 𝑥𝑗𝑖
𝑘

𝑗∈𝑉

− ∑ 𝑥𝑖𝑗
𝑘

𝑗∈𝑉

= 0                         ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝑉 

∑ 𝑥𝑖𝑗
𝑘

𝑗∈𝑉

− ∑ 𝑥𝑗,𝑛+𝑖
𝑘

𝑗∈𝑉

= 0                         ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝑉 

∑ ∑ 𝑥𝑖𝑗
𝑘

𝑘∈𝐾𝑖∈𝑉

= 1,                  ∀𝑗 ∈ 𝑉 

∑ ∑ 𝑥𝑗𝑖
𝑘

𝑘∈𝐾𝑖∈𝑉

= 1,               ∀𝑗 ∈ 𝑉 

∑ 𝑥𝑗𝑗
𝑘

𝑘∈𝐾

= 0,               ∀𝑗 ∈ 𝑉 

∑ 𝑥𝑗0
𝑘

𝑘∈𝐾

= 0,               ∀𝑗 ∈ 𝑉 

∑ 𝑥
𝜏𝑘

′ ,𝑗
𝑘

𝑘∈𝐾

= 0,              ∀𝑗 ∈ 𝑉 

∑ 𝑥0𝑗
𝑘

𝑗∈𝑉

= 1,                 ∀𝑘 ∈ 𝐾 

∑ 𝑥
𝑖,𝜏𝑘

′
𝑘

𝑖∈𝑉

= 1,               ∀𝑘 ∈ 𝐾 

𝑥
0,𝜏𝑘

′
𝑘 + 𝑥

𝜏𝑘
′ ,0

𝑘 = 0,      ∀𝑘 ∈ 𝐾 

2. Each taxi's service time is reached by each taxi, while customers can only be picked up 

after the specified earliest pick-up time and drop-off before the specified latest drop-off 

time. 

(𝑥𝑖𝑗
𝑘 = 1) ⇒ 𝐵𝑗

𝑘 ≥ 𝐵𝑖
𝑘 + (𝑠𝑖 + 𝑡𝑖𝑗)𝑥𝑖𝑗

𝑘                ∀𝑘 ∈ 𝐾, ∀𝑖, 𝑗 ∈ 𝑉 

𝑒𝑖 ≤ 𝐵𝑖
𝑘 ≤ 𝑙𝑖                                                        ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝑉 

3. Capacity constraint defines the maximum number of passengers per trip request. This 

constraint avoids forming shared trips that exceed taxi capacity. 

(𝑥𝑖𝑗
𝑘 = 1) ⇒ 𝑁𝑗

𝑘 ≥ 𝑁𝑖
𝑘 + 𝑃𝑖𝑥𝑖𝑗

𝑘                   ∀𝑘 ∈ 𝐾, ∀𝑖, 𝑗 ∈ 𝑉   

0 ≤ 𝑁𝑖
𝑘 ≤ 𝑞𝑘                                              ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝑉   
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𝑁0
𝑘 = 0,                                       ∀𝑘 ∈ 𝐾 

𝑁
𝜏𝑘

′
𝑘 = 0,                                      ∀𝑘 ∈ 𝐾 

4. The waiting time may be longer for those passengers who arrive first than for those 

latecomers. If her or his waiting time is too long, the passenger should be given a 

discount. 

𝑊𝑖
𝑡 = (𝐵𝑖

𝑘 − 𝑒𝑖),                  ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝑉      

𝑊𝑖
𝑡 ≥ 0,                             ∀𝑖 ∈ 𝑉 

5. Waiting time defines the maximum time allowed when a traveler submits a request and 

when a taxi is assigned to serve the trip.  

Taxi fare rate constraint 𝑅𝑖𝑗 reflects the total shared taxi fare based on the shared trip's 

waiting time and travel distance.  

𝑅𝑖𝑗 = 𝛼𝑊𝑖
𝑡 + 𝛽 (∑ 𝑥𝑖𝑗

𝑘 𝑑𝑖𝑗

𝑘

− 𝑑0)                      ∀𝑖, 𝑗 ∈ 𝑉  

Finally, constraints specify the domain of the variables. 

5.2.2 Summary of Shared Taxi Model 

The shared taxi routing model is a mathematical model that calculates the fare for shared taxi 

trips based on the distance traveled and the number of passengers in the taxi. The trip cost is 

typically split among the passengers, with each paying a proportionate share based on the 

distance they traveled. The model aims to reduce the cost to passengers by grouping them based 

on their proximity and destination and assigning them to a single taxi for the trip, reducing the 

number of taxis required to serve the population.  

Therefore, the model can improve the cost-effectiveness of taxi services while providing a 

more affordable transportation option for passengers. So, the mathematical model for the shared 

taxi routing problem involves calculating the total cost for the ride based on the total distance 

traveled by all passengers and then dividing that cost among the passengers based on the 

distance each passenger travels. This ensures that each passenger pays a fare proportional to the 

distance they travel, and the total fare is fairly divided among all passengers. 
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5.3 Taxi Allocation Problem 

The taxi allocation model is a mathematical model that aims to optimize the use of a fleet of 

taxis to serve the transportation needs of a population efficiently and cost-effectively. With the 

growth of urbanization and the increase in the number of people using taxi services, there is a 

need for a more efficient and effective way to utilize taxi fleets to ensure the provision of high-

quality services at affordable prices. The taxi allocation model addresses this need by grouping 

passengers based on their proximity and destination and assigning them to a single taxi for the 

trip. This reduces the number of taxis required to serve the population, which in turn reduces 

the cost to passengers. The model also calculates the optimal route for each taxi based on the 

location and destination of its passengers, taking into account traffic conditions and other 

factors. Overall, the model can help improve the efficiency and cost-effectiveness of taxi 

services while reducing traffic congestion and improving transportation outcomes for the 

population. 

Climate change and global warming are increasing in today's world, which leads to 

finding strategic solutions to reduce carbon dioxide (CO2) emissions. Urban areas significantly 

impact CO2 emissions in traffic congestion due to high transport demand and excessive street 

parking. Vehicles typically run on gasoline or diesel fuel, both of which emit CO2 and other 

harmful pollutants into the air when burned. Increased traffic congestion caused by private 

vehicles can lead to decreased travel speed and increased travel time for passengers, which 

emits higher CO2 in urban areas (Yang et al. (2021); Ghahramani et al. (2021); Ghahramani 

and Pilla (2021b); Ghahramani et al. (2020); Franckx and Mayeres (2016); Aggoune-mtalaa 

(2023)). Such air pollution is becoming a serious problem with the rapid increase in vehicle 

ownership in developing countries (Singh et al. (2017); Wang et al. (2015); Zhang and Nian 

(2013)). In order to address the issue of air pollution caused by traffic congestion, it is essential 

to promote the usage of public transportation and taxis as substitutes for personal vehicles, 

thereby reducing the number of vehicles on the road network. 

On the other hand, inefficient or improper taxi service management can cause numerous 

issues such as increased idle time, high costs of operation, and increased CO2 emissions 

(Mingolla and Lu (2021); Postorino et al. (2019); Ashkrof et al. (2022)). In the case of idle 

time, there are two types of idle time for the driver, moving idle time and stationary idle time. 

Moving idle time is the time when taxi drivers travel while searching for passengers to pick up 

or while returning to their original location. Stationary idle time is the period when the driver 
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parks the car for various reasons, such as a driver’s break time or waiting for a customer’s 

request. The idle time occurs when the vehicle’s engine is running, but the taxi is standing, 

while delay time occurs when the taxi is stuck in traffic or waiting for passengers. When a taxi 

is idling, it is still burning fuel without moving, which leads to unnecessary CO2 emissions. As 

a result, the delay time can be identified as the key factor for CO2 emission in urban areas 

(Lazaroiu and Roscia (2012)). Most scholars argued that reducing idle and delay time is 

essential to mitigate the emission of CO2 in taxis (Song et al. (2019); Nicolaides et al. (2019); 

Pourakbari-Kasmaei et al. (2020); Hou et al. (2020); Wang et al. (2020)). The idle time cost is 

a measure of the time that taxi drivers spend idling without generating revenue and has a direct 

impact on profitability. Therefore, for effective taxi operation, taxi allocation is necessary to 

prioritize. Taxi allocation refers to the process of assigning taxis to pick up passengers Yang et 

al. (2000). Once the taxi allocation is optimized, idle time can be reduced, which results in 

reduced taxi operational costs. Therefore, reducing idle time by optimizing taxi allocation can 

lead to several benefits, including time, lower costs, and decreased CO2 emissions. 

However, the problem of taxi fleet allocation has been studied extensively in the literature, 

especially at the operational level of taxi companies. Most of the existing studies have focused 

on urban areas (Zhang et al. (2020); Wang et al. (2015); Zhang et al. (2023)), where the demand 

and supply of taxis are relatively high and dynamic. In contrast, suburban areas have different 

characteristics, such as lower demand, longer travel distances, and higher idle time. These 

factors affect not only taxi companies’ service quality and profitability but also the 

environmental impact of taxi operations, as idle time is correlated with CO2 emission. 

Therefore, this study aims to fill the gap in the literature by proposing an optimization model 

for taxi allocation in suburban areas, using authentic data from actual taxi firms. The model 

considers both the economic and environmental objectives of taxi companies and the 

constraints of demand, supply, and vehicle capacity. The model is applied to a case study of a 

suburban area, and the results show that the optimal fleet size and reallocation to meet future 

passenger demand can reduce both the idle time cost and CO2 emission of taxi companies while 

improving the community’s living standards, thereby creating a sustainable future. 

Furthermore, this study proposes a new dynamic greedy heuristic algorithm to obtain better 

solutions to the problem and evaluate the performance of this algorithm in comparison with 

greedy and simulated annealing heuristic algorithms. 

We formulate a mathematical model of the taxi allocation problem to optimize the taxi 

drivers’ idle time costs as a mixed-integer program, which will support decision-makers, urban 
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transport planners, and governmental and taxi companies to make their decisions more 

strategic. The proposed model focuses on taxis in suburban areas. Most of the existing studies, 

(e.g., Zhang et al. (2020); Wang et al. (2015); Zhang et al. (2023)), consider only the taxi model 

for urban areas other than suburban areas. Since the behavior of the taxi model for suburban 

areas is different from that of urban areas, our model can contribute to the reduction of CO2 

emissions and the efficient operation of a taxi service in suburban areas. In order to accomplish 

this objective is as follows: 

5.3.1 Establishing the Problem 

The cost of taxi services is influenced by the idle time of the drivers, which is the time they 

spend without passengers. Idle time is not only unproductive but also increases fuel 

consumption and emissions. One way to reduce idle time is to match the supply and demand of 

taxis more efficiently by predicting where and when passengers will need a ride. For example, 

if a driver received a call from a nearby location, they would move towards it, but if the call 

were from a faraway or congested area, they would ignore it or decline it. This subsection 

presents the challenges of modeling the cost function that incorporates idle time and the benefits 

of using data-driven methods to optimize it. This way, we could capture the complexity and 

variability of the taxi service in our simulation. 

By reducing the idle time, each taxi will have greater use, while the taxi driver spends less 

time finding passengers. Further, a smaller number of taxis can cover the same amount of 

demand. Accordingly, there are two objectives of this model: 

• To minimize the total idle time of the taxi driver when using the optimum number 

of allocated taxis. 

• To minimize the total operational cost when minimizing the idle time of the taxi 

driver and the number of taxis utilized of potential demand. 

The above goals are directly tied to taxi system efficiency and driver profitability. In 

addition, idle time costs can be considered important factors in reducing CO2 emissions. 

5.3.2 Problem Assumptions  

The following assumptions were used in this research to better understand the taxi problem: 

a) Assumption 1 - Passenger demand for taxis is assumed to be random: 
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This assumption highlights the importance of reducing idle time and optimizing routes 

to avoid unnecessary driving. Through the developed program, it is able to achieve 

significant reductions in both idle time and CO2 emissions while improving efficiency 

and reducing costs for all stakeholders involved.  

b) Assumption 2 - An empty car repeatedly moved over the planning horizon: 

This assumption highlights the importance of reducing idle time and optimizing routes 

to avoid unnecessary driving. Through the developed program, is able to achieve 

significant reductions in both idle time and CO2 emissions, while improving efficiency 

and reducing costs for all stakeholders involved. 

c) Assumption 3 -The pick-up and drop-off must always happen within the specified time 

windows i.e., the drivers waiting time for the passenger’s and the passenger's waiting 

time for the taxi. 

Assumption (3) is the requirement for a successful taxi service to ensure that passengers' 

pickup and drop-off are done on time. It means that the drivers and the passengers must 

respect the agreed time windows for each trip, creating a more sustainable and efficient 

transportation system. 

d) The first ride fare is 630 yen up to 1200 m, and additional fares are 90 yen every 249 

m. (Source: https://www.taxisite.com/far/info/15.aspx) 

5.3.3  Formulation of the Idle Time Cost 

This section shows a mathematical formulation of the taxi allocation problem. We consider 

an undirected graph 𝐺 = (𝑁, 𝐴) that consists of N locations and the A arcs (𝐴 = 𝑁 × 𝑁). Let 

𝑆𝑖
𝑘 and 𝐸𝑗

𝑘 represent the start and end working times of the taxi driver 𝑘 at the locations 𝑖 and 

𝑗. For arc (𝑖, 𝑗) ∈ 𝐴, we assign a positive distance and travel time 𝑇𝑖𝑗. Location 𝑖 ∈ 𝐴 has a 

service time 𝑠𝑒𝑟𝑖 . The service time represents the time required for pick-up and drop-off, and 

the time indicates when the visit to the location must start. A taxi is allowed to arrive at a 

location before the start of the time, but it has to wait until the start of the time before the trip 

can be performed. The maximum capacity of a taxi is denoted by 𝑄. 

https://www.taxisite.com/far/info/15.aspx
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Figure 5.2. A sample of taxi allocation for explaining the idle time 

Figure 5.2 shows a sample of taxi allocation. This taxi (numbered as 1 ∈K) starts working 

time at location 1 at the time 𝑆1
1. Location 1 is where this taxi remains stationed for passengers 

who are waiting. Then this taxi is assigned a passenger at the time 𝐸1
1 and moves to location 2 

where the passenger is waiting. Then, this taxi pick-up the passenger at location 2 at the time 

 𝑆2
1; after that, the onboard passenger drop-off at location 3 at the time  𝑆3

1. After that, the driver 

waits at specific locations for the passenger, then the taxi is assigned a passenger at the time 𝐸2
1 

and moves to new passenger pickup location 4 at the time 𝑆4
1 and the onboard passenger drop-

off location 5 at the time 𝑆5
1. We define idle time as the amount of time a driver spends waiting 
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for a new passenger request. Then, the total idle time can be calculated as (𝐸1
1 − 𝑆1

1) + (𝐸1
1 −

𝑆2
1) + (𝐸2

1 − 𝑆3
1) + ⋯ . . +(𝐸j

k − 𝑆i
k) for this sample. 

5.3.3.1 Notations 

In this paper, the notations and parameters to be applied in the formulations are as follows: 

Symbols  Descriptions 

A : The set of arcs 

N : The total number of taxi drivers 

k

iS  : 
Start time for driver k  his working day at a specific location 

i i A  (Sec.) 

k

jE
 

: 
Destination time for driver k  his working day at a specific location 

j j A  (Sec.) 

oc
 

: Idle time unit cost (yen) 

iq
 

: Demand at the location i i A   

iser
 

: 
Service time at the location i i A  , each taxi maximum stay at 

the location (Sec.). 

ijT
 

: Travel time from the location ,i to j i j A   

Q : Maximum capacity of each taxi 

M : A large number 

The decision variables are as follows: 

1 if traveling along (i,j) with taxi k

0 otherwise

k

ijZ


= 
  

5.3.3.2 Formulations 

The taxi driver idle time problem is formulated by several equations. Equation (5.2) develops 

from this study, and the flowing constraint functions are found in the previous literature surveys 

Ropke and Pisinger (2006). 
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A A
k

i ij

i j i j

q Z Q
= = 

  k N   
(5.8) 

{0,1}, , ,k

ijZ k N and i j A      
(5.9) 

The objective function (5.2) minimizes the cost of taxi idle time, which is the objective function. 

C0 is the idle time cost, which is dependent on the taxi company, but in this study, an idle time 

cost of JPY 300 has been used. Constraint (5.3) is that the number of taxis coming to a 

passenger's location and the number of taxis exiting are the same. (5.4) constraint that the taxi 

starts from the depot. Constraint (5.5) ensures that finally, the taxi returns to the depot. 

Constraint (5.6) means that each passenger is riding only once in one taxi. Constraint (5.7) 

means ensures that passengers do not consume more time at the taxi stand. Constraint (5.8) 

does not exceed the maximum capacity (Q) of the taxi. That means no more than one passenger 

per taxi. Constraint (5.9) is the binary condition. 

5.3.4 Summary of the Taxi Allocation Problem 

A formulation for the taxi allocation based on the taxi delay time has been studied, concluding 

in optimum cost for demand levels. The model involves grouping passengers based on their 
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proximity and destination and assigning them to a single taxi for the trip to reduce the number 

of taxis required. The model also calculates the optimal route for each taxi based on the location 

and destination of its passengers, taking into account traffic conditions and other factors. A 

mathematical model for taxi allocation involves estimating the number of taxis required to meet 

the demand for taxi rides in a given area at different times of the day while minimizing the cost 

of maintaining and operating the taxi location. 

Therefore, the taxi allocation model can improve the efficiency and cost-effectiveness of 

taxi services while reducing traffic congestion and improving transportation outcomes.  Using 

this model, we can estimate the optimal number of taxis required to meet the demand for taxi 

rides in each zone at different times of the day, while minimizing the cost of operating the taxi 

fleet. This can help taxi companies to better manage their fleet, reduce operational costs, and 

improve customer satisfaction by providing reliable and timely taxi services. 

5.4 Summary of the Chapter 

The shared taxi routing problem model aims to reduce the cost of transportation for passengers 

by allowing multiple riders to share a single taxi. This not only benefits the passengers but also 

increases the revenue for taxi drivers by increasing the number of riders per trip. The shared 

taxi routing problem model can also reduce traffic congestion by reducing the number of taxis 

on the road. 

The taxi allocation model aims to increase the efficiency of taxi fleets by optimizing the 

distribution of taxis to meet the demand for transportation services. This can be achieved 

through the use of data analytics and predictive algorithms that can analyze real-time data on 

passenger demand, traffic patterns, and weather conditions to make informed decisions on the 

allocation of taxis. By optimizing the allocation of the taxi, the model can reduce idle time costs 

for operators, increase the number of trips made by taxis, and reduce the number of empty taxis 

on the road and CO2 emissions. 

In conclusion, both the shared taxi routing model and the taxi allocation problem have the 

potential to improve the efficiency of the taxi industry and enhance the overall transportation 

system. The models can help to reduce costs for passengers, increase revenue for taxi drivers, 

and reduce traffic congestion. The success of these models depends on the implementation of 

effective policies and the use of advanced technologies to optimize the allocation of taxis.
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Chapter 6. CASY STUDY 

 

In this chapter, the two developed models are applied to the taxi sector of the city of Sanjo, 

providing significant results in terms of minimum and optimum taxi routes, and the city of 

Nagaoka, providing significant results in terms of optimum CO2 emissions based on idle time. 

  



 

99 | P a g e  

 

6.1 A Case Study of Sanjo City, Japan 

This section analyzes the actual taxi operation by using GPS data of all vehicles belonging to 

Sanjo Taxi Company, Ltd., the largest taxi company with a business area in the entire Niigata. 

The analysis period was in June 2015. Sanjo City, Niigata Prefecture, is in the center of Niigata 

Prefecture and is classified in the Chuetsu region. Three main public transportation lines are 

operating in Sanjo City: the Joetsu Shinkansen, Shin-Etsu Line, and Yahiko Line. Regarding 

taxis, the four taxi companies that operate the shared taxi "Hime Sayuri," which is the subject 

of this study, also carry out regular taxi business. Regarding buses, highway buses to Niigata 

City, city circulation bus "Gurutto-san," high school student commuting liner buses, and 

community buses in some areas are also running, and public transportation projects have been 

widely introduced throughout the city. 

 

Figure 6.1. Changes in the total population(T.P), the number of elderly people(E.P), and the 

percentage of elderly people(P.E.P) in Sanjo City5. 

In low density, rural areas were focused based on two factors essential for shared taxi 

operations; Limited availability of general transport services and High spatial dispersion of 

travel demand (AINI et al. (2019)). This situation caused problems for older and disabled 

people with traveling difficulties in rural areas. Considering the requirements, a demand share 

taxi system is introduced, incorporating a traditional taxi system. 

 

5 https://www.city.sanjo.niigata.jp/ 
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6.1.1 Data Analysis 

The taxi trips were categorized based on the day of the week (weekday) and time of day (“07:00-

09:00”, “09:00–11:00”, “11:00-13:00”, “13:00-15:00”, “15:00-18:00). The peak time is from 

8:00 to 10:00. Originally, the usage time is from 8:00 to 18:00, but it seems to operate around 

7:00 according to the user's request. At 7 o'clock, the synergistic rate halved before and after 

the price revision. It is probable that while the number of users was initially small, the number 

of users decreased further due to the price increase, and carpooling decreased significantly. The 

number of trips is always decreasing as well. The synergistic rate increases most of the time 

slightly.  

The dataset was cleaned for incorrect records. The taxi trips with 0 min travel time or 

kilometers traveled fare less than 630 yen (the initial fee for taxis in Niigata, Japan), trips 

originating and arriving at the same place, and trips with an average speed of less than 20 km/h. 

Figure 6.2 represents a partial screen of the operational status for pickup (red) and drop-off 

(yellow) locations. The taxis were deployed in June 2015, using the data recording devices 

installed in the car. The total number of recorded passenger rides is 5,041. The driver's data 

acquisition method is input and recorded by the date, time, vehicle ID, direction, operating 

status, latitude, & longitude readings acquired from GPS.  

 

 

Figure 6.2. Geographical distributions of the customers' locations in Sanjo City  



 

101 | P a g e  

 

In this research, after pre-processing, we have used taxi operation data such as date, the number 

of users, pick up and drop off (longitude and latitude), and operation status (departure and 

arrival time) in   

Table 6.1. 

Table 6.1. Taxi GPS trajectory data 

No Operating 

month 

No of 

Users 

Pickup 

latitude 

(degree) 

Pickup 

longitude 

(degree) 

Departure 

time 

Drop-off 

latitude 

(degree) 

Drop-off 

longitude 

(degree) 

Arrival 

time 

1 6/1/2015 2 37.56554 139.0528 7:50: AM 37.63287 138.9675 8:23:AM 

2 6/1/2015 2 37.50412 139.1178 7:51: AM 37.63309 138.9717 8:29:AM 

3 6/1/2015 2 37.64898 138.9328 8:00: AM 37.63309 138.9717 8:10:AM 

4 6/1/2015 2 37.64862 138.9393 8:13: AM 37.65328 138.9506 8:17:AM 

5 6/1/2015 2 37.59501 138.9655 8:33: AM 37.6159 138.9477 8:43:AM 

6 6/1/2015 3 37.52714 139.1182 9:15: AM 37.64862 138.9393 10:00:AM 

7 6/1/2015 2 37.59258 139.0542 9:15: AM 37.64175 138.9735 9:35: AM 

8 6/1/2015 2 37.61143 138.9941 9:27: AM 37.63639 138.9619 9:40: AM 

9 6/1/2015 2 37.63685 138.9497 9:30: AM 37.60423 138.9875 9:46: AM 

10 6/1/2015 2 37.6159 138.9477 9:47: AM 37.59501 138.9655 9:55: AM 

11 6/1/2015 2 37.58343 138.9549 9:56: AM 37.6304 138.9512 10:10: AM 

12 6/1/2015 2 37.6298 138.9879 10:00:AM 37.6448 139.0262 10:07: AM 

13 6/1/2015 2 37.615 138.968 10:25:AM 37.62699 138.9397 10:38: AM 

14 6/1/2015 2 37.5464 139.0775 10:30:AM 37.64175 138.9735 10:55: AM 

15 6/1/2015 2 37.63639 138.9619 10:40:AM 37.61143 138.9941 10:55: AM 

16 6/1/2015 2 37.64175 138.9735 10:46:AM 37.56554 139.0528 11:13: AM 

17 6/1/2015 2 37.64175 138.9735 11:16:AM 37.59258 139.0542 11:45: AM 

18 6/1/2015 2 37.62469 138.9558 11:30:AM 37.64175 138.9735 11:35: AM 

19 6/1/2015 2 37.64175 138.9735 12:00: PM 37.62874 138.9568 11:55: AM 

20 6/1/2015 2 37.63309 138.9717 12:10: PM 37.64898 138.9328 12:20: PM 

21 6/1/2015 2 37.64175 138.9735 12:30: PM 37.5464 139.0775 12:55: PM 

22 6/1/2015 3 37.62763 138.9781 1:30: PM 37.65328 138.9506 1:43: PM 

23 6/1/2015 2 37.62699 138.9397 2:22: PM 37.615 138.968 2:34: PM 

24 6/1/2015 2 37.61536 138.9733 3:50: PM 37.632 138.9737 3:57: PM 

6.1.2 Taxi Trip Analysis: Travel Times, and Trip Frequency 

Taxi trip analysis is the process of examining data related to taxi trips to gain insights into 

patterns and trends in travel times and trip frequency. This analysis can be useful for a variety 
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of purposes, including improving transportation planning, optimizing routes, and understanding 

consumer behavior. Travel times refer to the duration of taxi trips, which can be analyzed to 

identify peak travel times and popular destinations. By examining travel times over time, it is 

possible to identify patterns in when and where people are traveling. 

Trip frequency refers to the number of taxi trips taken in a given area over a certain period. 

By analyzing trip frequency data, it is possible to identify areas that are experiencing high 

demand for transportation services. This information can be used by transportation providers to 

optimize routes and schedules to better serve these areas. 

6.1.2.1 Number of Trips in Monthly 

The number of taxi trips in the monthly analysis is a process of examining the data related to 

the number of taxi rides taken during a particular month. This analysis is useful in understanding 

the travel behavior of individuals or groups over some time. To conduct a number of taxi trips 

in monthly analysis, data from taxi companies, ride-sharing services, or other transportation 

providers can be used. This data typically includes information on the number of rides taken, 

the pickup and drop-off locations, and the time and date of each trip. The number of taxi trips 

in monthly analysis can also be used to identify changes in travel behavior over time. For 

instance, it may be discovered that the number of taxi rides has increased or decreased 

significantly compared to the previous year or month. Figure 6.3 shows the average number of 

rides per month. The passenger demand varies every couple of days and is cyclical. 
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Figure 6.3. Taxi demand in the month (June 2015) 

6.1.2.2 Number of Trips Per Hour of the Day 

The number of taxi trips per hour of the day analysis is a process of examining the data related 

to the number of taxi rides taken during different hours of the day. This analysis is useful in 

understanding the travel behavior of individuals or groups during different times of the day. 

The number of taxi trips per hour of the day analysis is a valuable tool for transportation 

planners and providers to understand travel behavior and to optimize their services to better 

serve their customers during different times of the day.  

By analyzing this data, it is possible to identify trends and patterns in the number of taxi 

trips taken during different hours of the day. For example, it may be found that the number of 

rides tends to increase during peak hours when people are commuting to and from work or 

school. Understanding these trends can help transportation providers to plan their services 

accordingly and allocate resources more efficiently. 
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Figure 6.4. Number of taxi trips made at different times (06/2015) 

Figure 6.4 shows the operating status by the time of day. The peaks are usually on (“8:00-9:00”, 

and 9:00-10:00”). It can be confirmed that there is a peak demand after 8 am. 

6.1.2.3 Weekday Trips Per Hours 

 

Figure 6.5. Cross-analysis of hours vs. weekday 
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Figure 6.5 shows the average number of rides by week and the time of the day. It can be 

confirmed that there is a lot of demand on the weekday. And shows the color-labeled value of 

suitability time. It is intuitive to expect the suitability time to increase with increasing travel 

time. 

6.1.2.4 Data Description 

Taxi data description typically refers to a collection of information related to the operation of 

taxi cabs in a given area. This data may include details about the pickup and drop-off locations, 

time and date of the trip, the fare charged, distance traveled, and other relevant information. 

Taxi data is often collected by transportation authorities, taxi companies, or third-party 

providers using GPS tracking technology and other data collection methods. This data can be 

used for a variety of purposes, such as optimizing taxi routes and improving traffic flow, 

monitoring the performance of taxi drivers, and providing insights into transportation patterns 

in a given area. 

Table 6.2 shows the input and output variables. Input variables are influenced by other 

variables in the system on which the output variable depends.
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Table 6.2. Input and output data description  

Input variable Type and Description 

Taxi ID ID of the taxi 

Latitude 
Geographic coordinate expressing the north-south 

position of the taxi at the initial timestamp of the event 

Longitude 
Geographic coordinate expressing the east-west 

position of the taxi at the initial timestamp of the event 

Service time In hours and minutes 

Early Time In hours and minutes 

Late time In hours and minutes 

Service cost In Yen 

The early taxi penalty cost In Yen 

The late pass penalty cost In Yen 

Late taxi penalty cost In Yen 

Demand Continuous  

Output Variable Description 

Number of taxis Continuous 

Cost In Yen 

For the entire process of taxi sharing, these studies focus on two key aspects: matching, and 

fare.  

Table 6.3. The procedure, classification, and methods of taxi sharing. 

Procedure Classification Methods 

Taxi sharing matching Passenger-based Client agent calling a taxi 

together 

Taxi sharing Fare Number of passengers based The travel distance as the 

decision variable Travel distance based 

6.1.3 Methodology 

In order to solve the shared taxi fare problem using the Mixed-Integer Nonlinear Programming 

(MINLP) formulation described in Section 5.2.1, we use the Gurobi-9.0.1 environment via the 

Windows platform. The experiments were performed in a machine with an Intel(R) Core (TM) 

i7-5500U processor at 2.40 GHz, 16 GB of RAM, and a Windows 10 operating system.  
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Algorithm 6.1 solves the MINLP problem (5.1) at every iteration. We develop a Branch and 

Cut algorithm that generates valid inequalities dynamically during the Branch & Bound 

procedure. This functionality is offered by the Branch and Cut algorithm in Python using a 

Gurobi solver as a state-of-the-art computational feature. In a minimization problem, at each 

node, this problem would like to add cuts (obtained from a separation problem) to cut off 

fractional solutions. After the solving process, the taxi routes and service systems are found. 

Algorithm 6.1 The branch-and-cut algorithm for solving MINLP problems 

Step 0 (Initialization)  

      Generate an initial feasible solution 𝒙𝟎 & compute the objective function 𝒇(𝒙𝟎). 
      Set as the best solution 𝒙∗ ← 𝒙𝟎 and 𝒇(𝒙∗) ← 𝒇(𝒙𝟎) 

      Choose a set, 𝑵𝒔(𝒔 = 𝟏, 𝟐. . 𝒔𝒎𝒂𝒙) and 𝑵𝒌(𝒌 = 𝟏, 𝟐. . 𝒌𝒎𝒂𝒙) 

Step 1 Set 𝒔 ← 𝟏  

Step 2 MINLP formulation 

Step 3 (Callback Procedure)  

    Step 3.1 (Cut Generation) Randomly create a solution 𝒙′ from the 𝒔𝒕𝒉   neighborhood 

𝑵𝒔(𝒙∗) of the current solution. 

      Step 3.2 (Local Search)  

             Set  𝒌 ← 𝟏 

              If the objective function decrease 𝒇(𝒙′′) ← 𝒇(𝒙′) 

                𝒙′  ← 𝒙′′ and 𝒌 ← 𝟏 

              Else 

                Set 𝒌 ← 𝒌 + 𝟏 

            Until 𝒌 = 𝒌𝒎𝒂𝒙 

      Step 3.3 (Move or not) the local optimum is better than the current solution. 

      𝒇(𝒙′) < 𝒇(𝒙∗) 

Return to Step 1. 

6.1.4 Results and Discussion 

In this section, we present an optimization solution and sensitivity analysis of mathematical 

modeling.  

The model is applied to the case study of Sanjo City. Sanjo City, Niigata Prefecture, is 

located in Niigata Prefecture and is classified in the Chuetsu region. The area is about 432 km2. 

The number of households is about 36,611, the population is about 95,811, and about one in 

three citizens is elderly6. Figure 6.6 shows the simplified City location of Sanjo city based on 

Google Maps. 

 

6 
https://www.city.sanjo.niigata.jp/soshiki/shimimbu/shimimmadoguchika/madoguchi/madoguchi/4473.html 
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Figure 6.6. The case study area of Sanjo City 

The shared taxi has been operating in Sanjo City, Niigata Prefecture, since June 2011. 

Accordingly, the fares have increased. It has been indicated that the cause is that about 80% of 

users use it alone. 

 

Figure 6.7. Customers positions 

Figure 6.7 displays customers' position in Sanjo city. It is represented on a two-dimensional 

XY plateau; we have used 24 pickup nodes and 24 drop-off nodes. There are a total of 48 nodes 

for instance of customers in Sanjo city. 
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All passengers' pickup and drop-off needs, in particular, are arbitrarily manufactured. 

Although each whole instance contains 50 passengers, the initial few customers might be used 

to explore lesser sizes of the concerned representative. The cost of travel on an arc connecting 

two places was calculated using Euclidian distance calculations and rounded down to the closest 

integer if the difference was small. The total of the arc's travel cost and service time at the 

beginning point was used to calculate the travel time on the arc. 

6.1.5 Optimization Results 

There are three dimensions dependent on taxi speed, the number of taxis, and the seating 

capacity of each taxi. These are used for evaluating model performance. The time windows, 

initial fare rate, and distance-based fare are varied to conduct a sensitivity analysis concerning 

the cost components. The optimization results can be seen in Figure 6.9 by solving the optimal 

model and obtaining the optimal solution. The results have been carried out using Sanjo City 

taxi data. The experiment's major goal is to guarantee that all taxi rides are serviced at the same 

time and place as the data suggests. Meanwhile, we determine the best technique for (1) 

minimizing the cost of waiting time, distance-based cost, and total trip cost for all taxis, and (2) 

locating the fewest taxis. 

 

Figure 6.8. The original route before optimization 

Figure 6.8 represents the regular taxi route of Sanjo City. After the taxi trip route 

experiments, we consider the time window of 10 min and taxi speed of 20 Km/h, and the 
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distanced -based fares of 630 yen up to 1200 meters and additional fares of 90 yen every 294 

meters after that.  

After the optimal solution of the mathematical model (5.1) in the case study, we minimize 

the number of taxis and taxi shortest distances in Figure 6.9.  

From Figure 6.9, we can confirm for the model that the total taxi takes the minimum 

number of taxis and shortest distance. 

 

Figure 6.9. The optimal solution of MILP programs. 

Table 6.4. Solution for one-day taxi trips  

6.1.6 Sensitivity Analysis 

This section discusses the sensitivity of significant parameters, including time windows, initial 

fare, and distance-based fare. Analysis is vital in assessing the validity of the model. Sensitivity 

analysis is a technique used to determine how changes in the input variables of a model affect 

No of 

passengers 

(Trips) 

Time windows Initial 

Fare  

(Yen) 

Discount 

of 

waiting 

time (%)  

Distance

-based 

fare 

(Yen) 

Initial 

distance 

in fixed 

fare 

(Km) 

Number 

of taxis 

uses 

Waiting 

time 

cost 

(Yen) 

Distance 

based 

cost 

(Yen) 

Total 

cost 

(Yen) 
ITW 

(Min.) 

LTW 

(Min.) 

50(24) 10 10 630 [0.1,0.3] 90 1.2 3 4,001 12,440 13,975 
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the output of the model. In the context of a shared taxi fare model, sensitivity analysis can help 

determine the impact of changes in key input variables on the overall fare. Some key input 

variables for a shared taxi fare model might include time windows, initial fare, and distance-

based fare. 

 

Figure 6.10. Sensitivity analysis on time windows 

 

 Figure 6.11. Sensitivity analysis on initial fare  
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Figure 6.12. Sensitivity analysis on distance-based fare 

The sensitivities are carried out by increasing and decreasing the value of the parameters by 

10%. From the sensitivity, it is clear that the waiting time cost, distance-based cost, and total 

cost increase in Figure 6.10 if the time windows increase.  Figure 6.11 depicts that the initial 

fare positively influences the waiting time cost, distance-based cost, and total cost. Figure 6.12 

illustrates that the influence of distance-based fare is proportional to the waiting time cost, 

distance-based cost, and total cost. 

6.1.7 Summary of the Shared Taxi Model 

This chapter proposes a Mixed Integer Non-Linear Programming formulation model to 

investigate the DARP of shared taxis during congested travel periods caused by the ride sharers. 

The model's main goal is to reduce the overall cost of a passenger's journey as well as the 

number of taxis used. 

To begin, we used GPS data to determine the condition of the Sanjo city ridesharing taxi. 

The concept and solution technique was tested in the case study of Sanjo, Japan. The 

experimental findings demonstrate that the MINLP solver can identify the best solution to the 

issue in an acceptable amount of time for scenarios with 50 passengers. The model was solved 

using a Gurobi solver and the Branch and Cut procedure in Python. This research is significant 

because it addresses a genuine issue that was handled using an accurate approach of MINLP 

for consumers with capacity, demand, and time frame constraints. It can be seen that there is a 

lot of demand on weekdays. It's natural to assume that when journey time increases, the 

suitability time would grow as well. 
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 The model has validated the model sensitivity of different parameters such as time windows, 

initial fare, and distance-based fare are vital. The sensitivities have been carried out by 

increasing and decreasing the value of the parameters by 10%. The sensitivity shows that the 

waiting time cost, distance-based cost, and total cost increase if the different parameters 

increase.  

 This formulation may be used to create heuristics for the issue of shared taxi fares, perhaps 

speeding up the optimization process. More work may be done into enhancing the metaheuristic 

method and reducing the computing gap in the suggested model. A future study might lower 

the driver's idle time and take into account performance improvements. 

6.2 A Case Study of the Nagaoka Taxi Sector for Taxi Allocation 

Nagaoka is located in the Niigata area of Japan, as well as the adjacent Chetsu region. The city 

has a population density of 300 residents per square kilometer (780/sq mi) as of August 4, 2021, 

with a population of 264,611 people living in 109,283 homes. 

Table 6.5. Number of taxis in the case study area (Nagaoka) 

Name of the taxi company Number of vehicles 

Asahi Taxi 29 

kankô Taxi 45 

Sôgo Taxi 48 

Chûetsu Taxi 21 

Tsubame Taxi 36 

Nagaoka Taxi 39 

Mitsukoshi Taxi 50 

Demand for taxis in local cities is sparse in terms of time and space (see Table 6.5), which 

shows the number of taxis owned by each taxi company in Nagaoka City, the number of taxis 

owned by Mitsukoshi Taxi, the largest taxi company, is Nagaoka. It is about 20% of the city as 

a whole, and the share rate of Mitsukoshi taxis is considered to be about 20%. The number of 

actual vehicle trips in Nagaoka City is considered to be about 450 trips per day and the share 

rate is 20% even for the largest taxi companies. Nagaoka City as a whole is only about 2,300 

trips), and it is very difficult to find new passengers near the place where the passengers were 

dropped off with the demand of only one company. Therefore, this study focused on analyzing 
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idle time and reducing taxi numbers to optimize taxi operations thus reducing CO2 emissions. 

This study aims primarily to decrease the amount of CO2 emissions by optimizing the allocation 

of taxis. The study proceeds in three sequential steps, which are as follows:: 

1. We analyze taxi Global Positioning System (GPS) data to detect taxi hotspots where 

drivers and passengers appear frequently in suburban areas. This research easily and 

formally identifies areas with high demand and quantifies those hotspots. 

2. We compare the performance of the proposed algorithm with two heuristic algorithms, 

namely greedy and simulated annealing. Further, we evaluate the optimality of the 

model by applying it to a real case study in Nagaoka City, Japan. 

3. Even though the recent articles (Zhang et al. (2020); Arabani and Balooch Sirgani 

(2022)) analyzed the CO2 emissions in taxi operations, the optimization of the idle time 

and the number of taxis still needed to be considered. Therefore, this study focused on 

analyzing idle time and reducing taxi numbers to optimize taxi operations thus reducing 

CO2 emissions. 

6.2.1 Taxi Demand Hotspots 

For reducing CO2 emissions, this study focuses on reducing taxi’s idle time by optimizing taxi 

allocation in hotspot locations based on the high taxi demand. Therefore, taxi hotspot detection 

is necessary to consider appropriate taxi allocation. This paper detects taxi hotspots by using 

real data. The data collection starts by considering taxi usage patterns, including pick-up and 

drop-off locations, trip distances, and times of the day. This data will allow us to identify high-

traffic areas and peak usage times that can be utilized to optimize taxi allocation.  

In this study, Nagaoka sub-urban area was selected as the case study area. Nagaoka is in the 

center of Niigata and the nearby Chūetsu economic region of Japan and is on the national 

highway network. According to population data from August 4, 2021, there are 264,611 people 

living here and 109,283 households, with 300 people per square kilometer of population density 

(780 square miles). The total land extent of the city is 891.06 square kilometers. We selected 

Nagaoka because alternative public transportation is frequently unavailable in this location. 

After 9:30 p.m., there are no buses inside the city. Further, since the majority of individuals are 

elderly and unable to drive in this Nagaoka sub-urban area, they rely on public transportation. 

In order to solve these kinds of problems, the general taxis work 24 hours a day. A taxi driver 

works at a specific time every day and sometimes works overtime. The dynamic properties of 
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the identified taxi demand hotspots are analyzed in this study.  The selected city of Nagaoka is 

in the center of Niigata and the nearby Chūetsu eco-nomic region of Japan and is on the national 

highway network. 

6.2.2 Research Data 

Mitsukoshi Taxi Co., Ltd. is the largest taxi company with a business area in Nagaoka City. 

The Nagaoka Taxi Company provided the taxi data for this study. Their 60 taxis were equipped 

with the Global Positioning System (GPS), which enables vehicle identification in a location-

specific manner with date, and time (i.e., 1/1/2019 11:32:00 unique key), latitude and longitude 

(i.e., 37.4634 and 138.8147 degrees), and other relevant real-time information as depicts in 

Table 6.6. The origin and destination are considered places at the beginning of the ride and the 

arrival. The data was collected over a year in 2019, and 163,532 valid data were identified. This 

data can be utilized for detecting taxi demand information with dynamic features. 

Table 6.6. Selected data for the study. 

No 
Pick-up Date 

Time 

Drop-off Date 

Time 

Pickup 

Longitude 

(degree) 

Pickup 

Latitude 

(degree) 

Drop-off 

Longitude 

(degree) 

Drop-off 

Latitude 

(degree) 

1 1/1/2019 11:32 1/1/2019 11:46 138.8247 37.4634 138.8488 37.44448 

2 1/1/2019 12:28 1/1/2019 12:39 138.8233 37.44263 138.8528 37.44718 

3 1/1/2019 14:22 1/1/2019 14:38 138.8289 37.46078 138.8526 37.42944 

4 1/1/2019 15:09 1/1/2019 15:21 138.829 37.46065 138.8388 37.44359 

5 1/1/2019 16:01 1/1/2019 16:21 138.7792 37.44842 138.8517 37.43882 

. . . . . . . 

. . . . . . . 

163,532 12/31/2019 5:19 12/31/2019 5:56 138.8525 37.44682 138. 999 37.47461 

After preprocessing data, we can study taxi journeys from different perspectives. Here 

identified two specific types of characteristics: the geographic characteristics of positions (i.e., 

longitude, latitude) and trip characteristics (i.e., trip demand, distance, day of the week, time of 

day, day of the week). The taxi trip data includes average daily passenger travel times, 

distances, and waiting times. The analysis of the travel characteristics between the taxi demand 

locations and the times is also helpful for presenting events in the future. 
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6.2.3 Hourly Taxi Demand Locations 

Analyzing hourly taxi demand locations in a suburban area can provide valuable insights for 

taxi companies, transportation planners, and policymakers. This information can help them 

identify patterns and trends in taxi usage, which can inform decisions related to pricing, service 

areas, and infrastructure development. After identifying the hotspots, we analyze the data to 

determine the reasons for the high demand. For example, we might find that certain areas have 

high demand during rush hour because of their proximity to major employment centers or 

transportation hubs. Once we have the data, we start by visualizing the hourly taxi demand 

locations on a map to identify the hotspots or areas with the highest demand. This can be done 

using geographic information system (GIS) tools, which help us create density maps of taxi 

pickups and drop-offs. 

 

Figure 6.13. Locations of taxi demand per hour.  
*Location details for the taxi demand areas are listed in Table 6.7 (Locations ID). 

Alternatively, we might find that certain areas have high demand during late-night hours 

because of their proximity to entertainment venues or residential areas. With this information, 
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taxi companies can adjust their pricing and service areas to better meet the needs of their 

customers.  

Table 6.7. Hourly taxi demand locations. 

No 
Time of 

day 

Number 

of trips 

Total 

trips 
Address  

Locations 

ID 

1 0:00-1:00 7,901 

13,153 
LiVE MAX, Higashiguchi Street, Nagaoka, Niigata, 940-0033, 

Japan 
A 

2 1:00-2:00 5,252 

3 2:00-3:00 3,018 3,018 Shiromaru 2-chome, Nagaoka, Niigata, 940-0041, Japan B 

4 3:00-4:00 1,381 

4,250 E-PLAZA, East Exit Street, Nagaoka, Niigata, 940-0033, Japan C 
5 4:00-5:00 613 

6 5:00-6:00 812 

7 6:00-7:00 1,444 

8 7:00-8:00 2,922 2,922 Kamijo-cho, Nagaoka, Niigata, 940-8621, Japan D 

9 8:00-9:00 7,517 7,517 Horikane 1-chome, Nagaoka, Niigata, 940-8653, Japan E 

10 9:00-10:00 9,883 

28,253 
Nagaoka Red Cross Hospital, Nagaoka, Niigata, 940-2085, 

Japan 
F 11 10:00-11:00 9,846 

12 11:00-12:00 8,524 

13 12:00-13:00 7,733  E-PLAZA, East Exit Street, Nagaoka, Niigata, 940-0033, Japan C 

14 13:00-14:00 6,941  Daishi Bank, East Exit Street, Nagaoka, 940-0033, Japan G 

15 14:00-15:00 7,814 

30,953 
LiVE MAX, Higashiguchi Street, Nagaoka, Niigata, 940-0033, 

Japan 
A 

16 15:00-16:00 7,429 

17 16:00-17:00 7,295 

18 17:00-18:00 8,415 

19 18:00-19:00 8,973 8,973 Hasugata 4-chome, Nagaoka, Niigata, 940-2088, Japan H 

20 19:00-20:00 9,004 9,004 
Nagaoka Red Cross Hospital, Nagaoka, Niigata, 940-2085, 

Japan 
F 

21 20:00-21:00 9,633 9,633 
Kamiwake-cho Nishi 1-chome, Nagaoka, Niigata, 940-2035, 

Japan 
I 

22 21:00-22:00 11,245 11,245 Hasugata 5-chome, Nagaoka, Niigata, 940-2093, Japan J 

23 22:00-23:00 11,243 11,243 Oshima Honmachi 4-chome, Nagaoka, Niigata, 9402104, Japan K 

24 23:00-00:00 8,694 8,694 Shimoyanagi 3-chome, Nagaoka, Niigata, 940-2088, Japan L 

Therefore, analyzing hourly taxi demand locations in a suburban area can provide valuable 

insights that can inform decisions related to pricing, service areas, and infrastructure 
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development. By understanding the patterns and trends in taxi usage, taxi companies, 

transportation planners, and policymakers can better meet the needs of their customers and 

improve the overall transportation system. Table 6.7Table 6.7 depicts the hourly aggregated 

data for clarifying hotspot changes in the morning, afternoon, and night. In the morning (9:00-

12:00), taxi demand is high in the Nagaoka Red Cross Hospital area. Taxi trips were covered 

in the supermarket area in the afternoon (13:00-18:00). In the night, station and restaurant areas 

were high taxi demand for service. 

The consistent hotspots were determined mainly by passenger traffic in various time 

segments. Railway stations, being major hubs for moving people between cities, handled 

massive traffic. However, the majority of the hotspots seemed to work only at certain times. 

Therefore, hotspots were concentrated around stations, hospitals, restaurants, and business 

areas, as depicted in Figure 6.13. 

6.2.4 Weekly Taxi Demand Locations 

Table 6.8 depicts the taxi demand variation pattern on different days within the week. The 

number of daily trips was counted at taxi pick-up/drop-off points. The analysis showed that the 

highest and lowest demand for taxis per week occurred on Fridays and Sundays, respectively. 

This was consistent with the experience that Friday is the last working day of the week, when 

people tend to go out for recreation after work, thus resulting in more taxi trips. In contrast, 

Sunday is the second day of the weekend, and people prefer to rest at home to prepare for the 

workweek ahead, thus resulting in fewer taxi trips. Kernel density analysis was performed on 

the 24-hour data from Friday to quantify the dense grade of taxi demand and visualize taxi 

travel hotspots at the spatial level. 

The results indicate five hotspots, including No. 1, 2, 4, and 5 at the railway station or 

supermarket, while no. 3 located in Nagaoka Red Cross Hospital areas, see Table 6.8. Large 

public spaces where people and vehicles converge and deliver, stations are usually equipped 

with taxi locations at specific locations to meet passenger travel needs. Table 6.8 depicts the 

network of hotspot no. 1, covering 29,541 taxi trips on Friday. But three days (Monday, 

Wednesday, and Thursday) are high taxi demand covering 65,868 trips in the Nagaoka Red 

cross Hospital area.  
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Table 6.8. The top 5 busiest locations on the day of the week. 

No. Address 
Number 

of Trips 

Days of 

the Week 

Locations 

ID 

1 
Hasugata 5-chome, Nagaoka, Niigata Prefecture, 940-2093, 

Japan 
29,541 Friday J 

2 
Ojimahoncho 4-chome, Nagaoka, Niigata Prefecture, 940-

2104, Japan 
27,437 Saturday K 

3 
Nagaoka Red Cross Hospital, Nagaoka, Niigata, 940-2085, 

Japan 

23689 Wednesday 

F 22,914 Thursday 

19,265 Monday 

4 
Kaminozokimachi Nishi 1-chome, Nagaoka, Niigata, 940-

2035, Japan 
22,642 Tuesday I 

5 
Nagaoka Station, Nagaoka City, Niigata Prefecture, 940-

0061, Japan 
18,044 Sunday M 

In contrast, the city has several major routes where the high traffic leads to a significant need 
for taxi spots. Such hotspots with a dispersed network state are acceptable as a study area for 
taxi location citations (Figure 6.14).  

 

Figure 6.14. Taxi locations of the days of the week. 
*Location details for the taxi demand areas are listed in Table 6.7 and Table 6.8 (Locations ID). 

Represented as the blue area in Figure 6.14, the constant hotspots are mainly at Nagaoka 

Red Cross Hospital (F), Nagaoka Railway Station (M), supermarket (I), and so on. The constant 

hotspots mainly depend on passenger demand with respect to different days. In this study, taxi 
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data are used to determine the potential hotspot area for taxi stand locations. In suburban areas, 

the drivers and passengers’ behaviors affect the new taxi stand. So, this paper has formulated 

the mathematical model of the taxi fleets utilization problem to optimize taxi driver idle time 

by using taxi data, which may be a benefit for passengers and drivers.   

Table 6.9 shows the input and output variables. Input variables are influenced by other 

variables in the system on which the output variable depends. 

Table 6.9. Input and output data description 

Input variable  Type and Description 

Month (12 months) Categorical: Jan, Feb,···, Dec. 

Day of month (365 days) Categorical: #1, #2,···, #31. 

Time of day In hours and minutes 

Demand Continuous  

Idle time cost In yen 

Output Variable Description 

Number of taxis Continuous 

Cost In Yen 

For the entire process of taxi utilization, these studies focus on time aspects. Table 6.10. 

summarizes these aspects. 

Table 6.10. The procedure, classification, and methods of taxi utilization 

Procedure Classification Methods 

Taxi driver idle time cost Travel distance based The travel distance as the 

decision variable 

6.2.5 Methodology  

The pick-up and drop-off problem is well-established as a non-deterministic polynomial-time 

hardness (NP-hard) problem, which means that the computational time required to solve it 

increases rapidly as the size of the expansion Ghilas et al. (2016); Lu et al. (2018); Santos and 

Xavier (2013). This issue can be solved using two different kinds of algorithms. The first kind, 

known as an exact algorithm, is based on a mathematical model that guarantees the optimal 

result in every situation. However, the biggest disadvantage is the computing time necessary to 
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solve the issue, particularly if it is NP-hard. This is referred to as a set of heuristic algorithms, 

which use advanced mathematical optimization techniques such as branch-by-branch and 

neighborhood search. 

Consequently, heuristic algorithms take less time to execute than accuracy algorithms. 

Although it has a quick processing time, the optimal solution is not guaranteed, and the results 

may not be satisfactory. Construction heuristics, local search heuristics, and metaheuristics are 

the three types of heuristic techniques to make a new heuristic algorithm. 

In this research were used a linear mixed-integer programming model. The model ((5.2)-

(5.9)) can be solved by heuristic and metaheuristic algorithms. We have devised a technique 

for solving the taxi issue that entails the establishment of (i) a greedy heuristic (Daniel Fuentes 

and Sano (2020)), (ii) a local search strategy (Daniel Fuentes and Sano (2020)), (iii) a simulated 

annealing (Yu et al. (2021)) metaheuristic to solve the optimization problems, and (iv) dynamic 

greedy algorithm to improve the greedy algorithm. 

6.2.5.1  Greedy Algorithm 

The number of drivers, assignment costs, and the area that the first solution must have been all 

inputs to the heuristic method function. It begins by initializing all global parameters, such as 

the total number of passengers still requiring pick-up and drop-off, the global time, global 

distance, global service time, global waiting time, and total costs. The first iteration process 

begins when these variables are established, and it continues until all of the taxis available have 

been utilized. Once within the first iteration, the taxi driver parameters (i.e., total time, travel 

time, service time, waiting time, and costs) are set to their starting states, including the places 

that the taxi has previously chosen and its initial position and pick-up location. After collecting 

all pick-up sites from the passenger positions, the heuristic technique enters the second iterative 

step. This process continues until the present taxi runs out of drop-off sites or it is time to return 

to the depot. 

It is common to use greedy heuristics to create effective initial solutions to difficult 

optimization problems. One can first, and sometimes intuitively, find an initial possible 

solution, which is subsequently improved by heuristics. To obtain a possible initial solution to 

the problem, an attractively structured heuristic is developed that considers the demand for all 

taxi stands and periods, prioritizes demand with high profit, and checks which taxis can be 

moved empty when necessary. 
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In the pseudocode presented for the greedy algorithm, the proposed greedy heuristic 

method is described as generating a relatively good initial solution to the taxi allocation 

problem. The basic idea is to check if there is a taxi that does not meet every pick-up that 

"arrives on time". "Arrival time" refers to the travel time from the current location of pick-up 

within the requested time. It is also necessary to check whether the taxi route (empty or not) 

can be used to meet the demand. 

We have taxi ride data for a set of drivers, and we want to optimize the idle time cost. 

Here's the greedy algorithm would work: 

Step 1: Start with an initial solution. This could be the initial sequence of rides for each 

taxi driver. 

Step 2: Evaluate the cost of the initial solution. This would involve calculating the total 

idle time cost of all the taxi drivers. 

Step 3: Determine the set of candidate solutions that can be obtained by making a small 

modification to the current solution. For example, we could consider swapping the order of two 

consecutive rides for a particular taxi driver. 

Step 4: Evaluate the cost of each candidate solution. This would involve calculating the 

taxi drivers' total idle time cost for each candidate solution. 

Step 5: Select the candidate solution that provides the best immediate improvement in the 

objective function value and make it the new current solution. In this case, we want to minimize 

the total idle time cost of all the taxi drivers, so we would select the candidate solution that has 

the lowest idle time cost. 

Step 6: If the stopping criterion is not met, repeat steps 3-5 until no more candidate 

solutions can be found or until the stopping criterion is met. The stopping criterion could be a 

maximum number of iterations or a minimum improvement in the objective function value. 

Step 7: Return the current solution. The solution returned by the Greedy Algorithm would 

be the sequence of rides for each taxi driver that has the lowest total idle time cost. 

The greedy works step-by-step based on Algorithm 1 for optimizing idle time cost in taxi 

ride data.  
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Algorithm 1: Greedy Heuristic 

1 Function greedy 

2  Greedy solution = Solution() 

3  For each client in the total clients 

4   Minimum costs = np.inf 

5   Minimum costs driver = 0 

6   For each driver in the total drivers 

7    Current costs = calculate costs (client, driver, Greedy 

solution) 

8     If the current costs < minimum costs 

9      Minimum costs driver = driver 

10      Minimum costs = current costs 

11   Assert minimum costs driver != 0 

12   Assign client (client, minimum costs driver, Greedy solution) 

13  Return all to depot (Greedy solution) 

14  Costs = total costs (Greedy solution) 

15  Greedy solution (total costs) = costs 

16  Assigned drivers = 0 

17  For each driver in the total drivers 

18   If the Greedy solution in the current driver assigned for each client 

19    Assigned drivers += 1 

20 Return Greedy solution 

Taxi data (trip data) is input into memory. All empty and onboard passenger movement of 

the taxi is recorded in a data structure, including route, time, and cost. All passenger pickups 

are selected in sequential taxi calling, and if there are multiple pickups simultaneously, they are 

prioritized depending on the distance. The purpose of the problem is the value of the function. 

In the initial solution, the taxi driver calculates the cost of waiting time. It is the responsibility 

of the taxi driver if the current cost is less than the minimum cost. Finally, the optimal solution 

is evaluated by the greedy algorithm. 
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Figure 6.15. Greedy algorithm flowchart 

The Greedy algorithm is presented in the flowchart in Figure 6.15. This is a diagrammatic 

representation of the algorithm. Taxi data (trip data) is input into memory. In the initial solution, 

the taxi driver calculates the cost of waiting time. It is the responsibility of the taxi driver if the 

current cost is less than the minimum cost. Finally, the optimal solution is evaluated by the 

greedy algorithm. 

6.2.5.2 Local Search 

Greedy developed an advanced method to perform from a greedy starting solution to investigate 

unmet pick-ups, which would be profitable. The local search method looks like the following. 

Here the steps of a local search algorithm are: 

Step 1: Initialize the current solution to a random or heuristic solution. 

Step 2: Evaluate the quality of the current solution using an objective function. 
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Step 3: Repeat the following steps until a stopping criterion is met: 

a. Generate a neighboring solution by making a small perturbation to the current 

solution. 

b. Evaluate the quality of the neighboring solution. 

c. If the neighboring solution is better than the current one, accept it as the new 

one. 

d. If the neighboring solution is worse than the current solution, accept it with a 

probability that depends on the difference in quality between the two solutions and the 

current temperature. 

e. Update the temperature according to a cooling schedule. 

Step 4: Return the best solution found during the search.  

The following Algorithm 2 illustrates a basic outline of a local search algorithm, which can be 

used to solve various optimization problems. However, the specific implementation of the 

algorithm and the choice of the objective function, neighborhood structure, and cooling 

schedule depend on the problem being solved. 

Algorithm 2: Local Search  

1 Function ImproveSolutions(Initial Route): 

2  Get local (no iteration) 

3  Current solution = randomly 

4  NUMBER ITERATION = no iteration 

5  Minimum cost = current solution (total costs) 

6  Values = zeros (no iteration) 

7  For each position in NUMBER ITERATION 

8   New solution = neighbor (current solution) 

9   If new solution (total costs) < minimum cost 

10    Minimum cost = new solution (total costs) 

11    Current solution = new solution 

12    Each position values = new solution (total costs) 

13  Assigned drivers = 0 

14  For each position in the Number of drivers 

15  If current solution (each position of current driver 

assigned) 

16   Assigned drivers += 1 

17 Return Current solution, Values 

The Local search algorithm is presented in the flowchart in Figure 6.16. Let the current 

drivers' states be complete, and drivers are returned to the depot. The first step is to input the 
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relevant data into the formulation. Then, if necessary, the objective function is emptied. Next, 

randomly generate drivers and insert the copied passengers into a random location on the path 

of the second driver for the new solution. A model is formulated and calculated for all categories 

that should be included in the current problem neglecting the greedy solution. 

 

Figure 6.16. Local search flowchart 

According to the solution of the model, a short-term scheduling model is developed using 

taxi driver information. Then it re-evaluates the costs for the two mentioned drivers, as this 

conversion does not affect the other drivers. 

6.2.5.3 Simulated Annealing 

The simulated annealing metaheuristic algorithm that was developed to solve the taxi allocation 

problem is described in the following steps.  

Step 1: Start the program. 

Step 2: Define the initial state or solution to the problem. 
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Step 3: Set the initial values for the algorithm's parameters, such as the cooling rate and 

the number of iterations. 

Step 4: Define the temperature schedule, which determines how the temperature changes 

over time. 

Step 5: Generate a neighbor state or solution based on the current one. This is done by 

making a small change to the current state or solution. 

Step 6: Calculate the energy or difference in cost between the current and neighbor 

solutions. 

Step 7: Accept or reject the neighbor solution based on the energy or difference in cost 

and temperature. The neighbor solution is accepted if the energy is lower than the current 

energy. If the energy is higher, the neighbor solution is accepted with a certain probability that 

depends on the temperature. 

Step 8: Repeat steps 5-7 until the temperature reaches a minimum value. 

Step 9: End the program. 

Simulated annealing is a stochastic relaxation method based on an iterative procedure 

starting from an initial "high temperature" with the system in a known configuration. The 

simulated annealing Algorithm 3 is a stochastic optimization algorithm that finds global 

optima by allowing uphill moves early in the optimization process.  

It achieves this by using a temperature parameter to determine the probability of accepting 

a worse solution. The iterative method of simulated annealing improves the cost function until 

the current temperature cools down. At high temperatures, atoms can become unstable from 

initial positions, meaning that the algorithm is allowed to have flexibility in searching potential 

space. In contrast, at decreasing temperatures, it is more likely to improve with local searches 

than with initial conditions. 
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Algorithm 3: Simulated Annealing  

1 Function Simulated Annealing (no iteration, low temperature, step, 

iteration step) 

2  Current solution = greedy solution 

3  Initial temperature 

4  For each step in the no iteration 

5   Temperature solution = current solution 

6   Cost delta = (temperature solution (total costs) – current solution 

(total       

                     costs)) / current solution (total costs) 

7   If cost delta <= 0 or random < exp (-cost delta / temperature) 

8    If temperature != 0.1 or cost delta <= 0 

9     Current solution = temperature solution 

10     Values (current solution (total costs)) 

11   If each step % iteration step == 0 and temperature > low temperature 

+  1e-10: 

12    Temperature - = each step 

13 Return Current solution, values 

Start the solution with the greedy one, then always go to a solution with a good intention. 

The probability of jumping into a solution with a bad objective depends on temperature, 

decreasing as the algorithm progresses. 
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Figure 6.17. Simulated annealing flowchart. 

Simulated annealing is a potential method that is proposed to find a worldwide minimum 

cost function that may contain several minimums Dimitris Bertsimas ; John Tsitsiklis (2007). 

The objective is to minimize the cost function of the taxi system, while the search for the best 

solution relates to the cooling process. The Simulated annealing algorithm is presented in the 

flowchart in Figure 6.17. Simulated annealing is a stochastic relaxation method based on an 

iterative procedure starting from an initial "high temperature" with the system in a known 

configuration. The iterative method of SA improves the cost function until the current 

temperature cools down. At high temperatures, atoms can become unstable from initial 

positions, meaning that the algorithm is allowed to have flexibility in searching potential space, 

while at decreasing the temperatures it is more likely to improve with local searches than initial 

conditions. 
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6.2.5.4 Dynamic Greedy Programming 

In dynamic greedy programming, decisions are made by considering the current problem and 

the solutions of previously solved subproblems to compute the best solution. This makes it the 

best solution because it considers all possible cases and chooses the best. For dynamic 

programming implementation, an additional data structure must be created. Here's a step-by-

step explanation of the dynamic greedy algorithm based on the flowchart: 

Step 1: Start the program. 

Step 2: Define the problem that needs to be solved. This involves specifying the inputs, the 

objective function to be optimized, and any constraints that need to be satisfied. 

Step 3: Divide the problem into smaller subproblems that can be solved independently. 

This is done using dynamic programming. The subproblems are usually defined in terms of a 

sequence of decisions or states that need to be made or reached to obtain the optimal solution. 

Step 4: Solve each subproblem using the greedy algorithm. The greedy algorithm makes 

the locally optimal choice at each decision point in the subproblem. This means that it chooses 

the option that provides the maximum benefit at that particular point in time without considering 

the long-term consequences of that choice. 

Step 5: Combine the solutions to the subproblems to obtain a solution to the original 

problem. This is done using dynamic programming. The solutions to the subproblems are 

combined to obtain the optimal solution to the original problem. This is achieved by choosing 

the sequence of decisions or states that provide the maximum benefit overall. 

Step 6: Repeat steps 3-5 until an optimal solution is found. The dynamic greedy algorithm 

iteratively solves the subproblems and combines the solutions until an optimal solution is 

obtained. This involves solving the subproblems in a sequence that allows the maximum benefit 

to be achieved overall. 

Step 7: End the program. The dynamic greedy algorithm terminates once the optimal 

solution has been obtained. 

In summary, the dynamic greedy Algorithm 4 is an iterative process that uses dynamic 

programming and the greedy algorithm to obtain an optimal solution to a problem that involves 

a sequence of decisions or states. 
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Algorithm 4: Dynamic Greedy  

1 Function DynamicGreedySolution 

2  For each client in the total clients 

3   Minimum cost = np.inf 

4   Minimum driver = 0 

5   Time of minimum driver = 0 

6   For each driver in the total driver 

7    Distance to client = distance (client, driver) 

8    Time on arrive to the client = maximum (client desired 

time, distance  to client / speed + driver time) 

9    Lateness = time on arrive to the client - client desired 

time 

10    Idle cost = lateness ** 2 + time on arrive to the client + 

client segment 

11     If drivers == 0: 

12      Idle += driver opening cost 

13     If minimum cost > idle cost 

14      Minimum cost = idle cost 

15      Minimum driver = driver 

16      Time minimum driver = time on arrive to the 

client 

17 Driver cost[minimum driver] += minimum cost 

18 Drivers on[minimum diver] = 1.0 

19 Driver position[minimum driver] = client position 

20 Driver time [minimum driver] = time min driver + client 

segment / speed 

21 Minimum costs of drivers 

The Dynamic greedy algorithm is presented in the flowchart in Figure 6.18. The greedy 

solution methodology involves the initial solution. For this purpose, greedy and SA are 

combined into the dynamic greedy algorithm. The next step is the main solution. The 

optimization method is applied the dynamic programming and found the minimum total cost. 
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Figure 6.18. Dynamic greedy algorithm flowchart 

6.2.6 Explain (Clarify) Each Algorithm 

Greedy Algorithm: The Greedy Algorithm (Figure 6.19) is a simple and widely used approach 

in solving optimization problems. It starts with an empty solution and gradually builds it up by 

selecting the best possible option at each step. The Greedy Algorithm selects the local optimal 

solution at each step, without considering the global optimal solution. For taxi data, the Greedy 

Algorithm can be used to find the shortest path between two points. The algorithm would select 

the next intersection with the shortest distance to the current intersection until it reaches the 

destination. This approach is efficient for small datasets, but it may not always produce the 

most optimal solution. 
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Figure 6.19. Clarify the Greedy Algorithm 

Simulated Annealing: Simulated Annealing (Figure 6.20) is a probabilistic approach for 

finding the global optimal solution for an optimization problem. The algorithm starts with an 

initial solution and gradually modifies it to improve the solution quality. Simulated Annealing 

accepts suboptimal solutions to avoid getting stuck in local optima. For taxi data, Simulated 

Annealing can be used to find the optimal route for a taxi to reach the destination, considering 

various factors such as traffic, road conditions, and time of day. The algorithm would modify 

the initial route by swapping intersections and comparing the new route with the current route. 

The algorithm will accept the new route if it improves the solution, and it would also accept 

suboptimal solutions with a certain probability. 

 

Figure 6.20. Clarify the Simulated Annealing 
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Dynamic Greedy Algorithm: The Dynamic Greedy Algorithm (Figure 6.21) for taxi data is a 

variation of the Greedy Algorithm that considers additional factors such as traffic, road 

conditions, and time of day, but it updates the solution in real time. The algorithm starts with 

the initial position of the taxi and selects the next intersection that minimizes the travel time to 

the destination. The algorithm would also consider the traffic and road conditions, and it would 

update the route dynamically based on the current conditions. For example, if there is a traffic 

jam on the current route, the algorithm would select an alternate route to avoid congestion. This 

approach is efficient for real-time applications, as it can quickly find the best route based on the 

current traffic and road conditions. The dynamic nature of this algorithm makes it more suitable 

for large datasets and more complex scenarios. 

 

Figure 6.21. Clarify of the Dynamic Greedy Algorithm 

Table 6.11. Relation between three algorithms 

Greedy Algorithm Simulated Annealing Algorithm Dynamic Greedy Algorithm 

Makes locally optimal 

choices at each step. 

A probabilistic optimization 

algorithm inspired by annealing 

in metallurgy. 

Combines the principles of 

dynamic programming and 

greedy algorithms. 

Does not consider the 

global optimization. 

Uses a randomization process to 

escape local optima and explore 

the solution space. 

Utilizes memorization to 

store and reuse solutions to 

subproblems. 

May lead to suboptimal 

solutions. 

Starts with an initial solution and 

iteratively improves it by 

accepting or rejecting 

neighboring solutions based on a 

probability criterion. 

Considers previously 

computed solutions to make 

greedy choices at each step. 
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Typically has a 

complexity compared to 

dynamic programming 

and simulated annealing. 

Explores less optimal solutions to 

avoid getting stuck in local 

optima. 

Achieves better optimization 

compared to a pure greedy 

approach. 

Best suited for problems 

where a locally optimal 

choice leads to an 

acceptable overall 

solution. 

Can converge to the global 

optimal solution under certain 

conditions. 

Computes an optimal 

solution by considering the 

global optimization. 

Does not require a 

cooling schedule or 

probability criterion. 

Requires a cooling schedule and a 

mechanism to control the 

acceptance probability of worse 

solutions. 

Requires iterative 

calculations and storage of 

intermediate results. 

Example: Selecting the 

shortest available taxi at 

each pickup point 

without considering the 

overall optimization. 

Example: Optimizing the taxi 

problem by iteratively perturbing 

the current solution and accepting 

or rejecting it based on the 

simulated annealing probability 

criterion. 

Example: Calculating the 

optimal routes for taxis by 

considering the shortest 

distances between pickup 

and drop-off points. 

6.2.7 Computational Experiments 

This section details the experiments that have been carried out to solve the given model utilizing 

(Section 5.3) heuristics algorithms (greedy, simulated annealing, and dynamic greedy 

programming algorithms). The original taxi business data was the address from the Nagaoka 

taxi allocation issue in 2019, with average demand. The data has been started from 00:00 to 

23:00 in a week in 2019. The actual operation has analyzed the GPS data of all vehicles and 42 

taxis belonging to Mitsukoshi Taxi Co., Ltd., the largest taxi company with a business area in 

Nagaoka city. We have used the number of rides by the hour and the number of waiting for 

units by time zone in the taxi operation data.  

The beginning and finishing temperatures for the simulated annealing were set as 0.21. 

The decay rate was 0.001. These parameters were maintained for all problems and independent 

runs. Each problem was solved 10 times by using an iteration step of 500, with the initial step 

of 0.1 and a low temperature of 0.1. The lengthy simulated annealing schedule may take a while 

to complete. Further, simulated annealing has a lot of adjustable parameters. Therefore, 

simulated annealing takes comparatively longer CPU time for simulation. On the other hand, 

the greedy algorithm also consumes comparatively longer time since it breaks the issue into its 

components and re-members the answer for each element to apply it later when a similar 

component occurs again. Compared to other algorithms, dynamic greedy algorithms have lower 

temporal complexity and identify the most practical solution to arrive at the best solution at 
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every stage. Therefore, dynamic greedy algorithms consume comparatively less time for the 

simulation process. The heuristics were written in the Python programming language. The tests 

were carried out using a laptop with an Intel(R) Core (TM) i7-5500U CPU running at 2.40GHz, 

with 16 GB of RAM, and using the Windows 10 operating system. 

6.2.7.1 Results and Discussions 

In this section, we present several optimal solutions for mathematical modeling. We present the 

results of the experiments of the three algorithms in solving the random taxi demand problems. 

The total number of taxis (42) means the number of taxis in the company. The number of 

allocated taxis (20) is the number of taxis per day that the company used. Moreover, taxi 

demand (approximately 4) was the optimized number of taxis that was sufficient for a day 

according to the model.  

The dataset has three instances, 01.01.19, 01.03.19, and 15.03.19, representing taxi 

problems in Nagaoka City. These instances contain between 333 and 658 passenger demand. 

Additionally, there are problems where only a subset of the taxi fleet can serve the passenger 

requests. To make it easier for the heuristic to find solutions, we set the number of available 

vehicles to one more than required. According to the model, taxi demand was the optimized 

number of taxis (approximately 8) that was sufficient for a day. Table 6.12 presents the average 

passenger demand, the number of taxis, the total cost, and the CPU time calculated for each 

algorithm. The outcomes are based on randomly generated taxi demand situations. The greedy, 

simulated annealing, and dynamic greedy heuristics showed average total costs of JPY 

21,433.93, JPY 23,730.75, and JPY 20,573.98, respectively, in the optimal solution. The 

dynamic greedy heuristic required an average CPU time of 1.19 seconds to find the optimal 

solutions. The findings show it was able to identify better solutions in a shorter period on the 

CPU. 

Table 6.12. Results obtained from the heuristics algorithms. 

Instance 

Passenger 

Demand 

Greedy algorithm Simulated annealing Dynamic greedy 

Taxi 
Total cost 

(yen) 

CPU time 

(sec.) 
Taxi 

Total cost 

(yen) 

CPU time 

(sec.) 
Taxi 

Total cost 

(yen) 

CPU time 

(sec.) 

01.01.19 333 5 10,548.54 47.2 5 13,883.37 55.66 5 9,175.24 0.85 

01.03.19 537 9 25,461.13 37.25 9 26,303.6 68.67 8 24,602.08 1.32 

15.03.19 658 10 28,292.11 59.77 10 31,005.28 119.11 10 27,944.63 1.42 

Average 509 8 21433.93 48.07 8 23,730.75 81.15 8 20,573.98 1.19 

(1 yen = 0.0072 dollar) 
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The Passenger Demand/per day for the suburban area of Nagaoka city is, on average, 509, 

with the average number of taxis required as 8. The optimization results of the taxi allocation 

problem with different demands are summarized in Table 6.12. As the demand increased, the 

total idle time costs increased from JPY 10,548.54 with five taxis to JPY 28,292.11 with ten 

taxis in the greedy algorithm, and in the simulated annealing algorithm from JPY 13,883.37 to 

JPY 31,005.28. However, the proposed algorithm (dynamic greedy algorithm) increased the 

cost from JPY 9,175.24 to JPY 27,944.63. 

In addition, a dataset with information on taxi trips, including pick-up and drop-off 

locations, was examined. This investigated the pickup and drop-off coordinates from the dataset 

and used them to compile the taxi trips for each location. We combined the trips based on these 

coordinates to determine how frequently taxis picked up and dropped off passengers at each 

distinct place. Figure 6.22 represents the regular taxi trips of Nagaoka City. We consider the 

average of 387 taxi trips per day.  

 

Figure 6.22. Number of taxi trips to Nagaoka City (Observed) 

The number of journeys was reduced, and it was determined which trips showed notable 

drops. We created a complete dataset that reflects taxi journeys across several places by 
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integrating and preprocessing these various datasets. The proposed model was obtained to 

optimize taxi driver idle time, taxi routes, and allocations while taking into account parameters 

including trip distances, traffic conditions, and passenger demand (Figure 6.23). We were able 

to come up with a solution that reduced the overall number of trips while preserving effective 

transportation services by redefining the issue as an optimization challenge. The fact that the 

number of trips fell by a statistically significant amount shows that the model was successful in 

optimizing the taxi service and maximizing resource usage. This result implies that the model 

was successful in identifying chances for trip consolidation, whereby a number of passengers 

with comparable itineraries were put together, resulting in fewer individual journeys. 

 

Figure 6.23. Number of taxi trips to Nagaoka City (Optimal) 

The results of this study have implications that the reduction in taxi trips indicates the potential 

for improved efficiency and sustainability in suburban transportation systems. For general taxi 

number of trips 387 per day in Nagaoka City (Figure 6.22). One the other hand, the proposed 

model reduced the trip number to 174 (Figure 6.23). By optimizing route planning and 

allocation of resources, we have minimized the number of unnecessary trips, leading to reduced 

fuel consumption, and CO2 emissions. 
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Calculate the total CO2 emissions: 

The emission factor for taxis can vary depending on the type of vehicle, the fuel type, and 

the average distance traveled. According to the U.S. Environmental Protection Agency (EPA), 

the average CO2 emissions for a gasoline-powered taxi is approximately 0.404 kg/mile  

Environmental Protection Agency (2005). Using the carbon footprint model Rao, H. S., Hettige, 

H., Singru, N., Lumain, R., & Roldan (2010) provides a useful starting point for understanding 

the environmental impact of the taxi fleet and identifying ways to reduce emissions. The carbon 

footprint model is as follows: 

𝐶𝑂2 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 = 𝑁𝑎𝑡 × 𝐴𝐶𝑒 × 𝐴𝑡𝑡 … … … … … … … … … … . (6.1) 

Where 𝑁𝑎𝑡: the number of allocated taxis per day, 

  𝐴𝐶𝑒: the average CO2 emissions per taxi, 

  𝐴𝑡𝑡: the taxi travels on average per day. 

Minimizing the number of taxis required to serve all passenger demand is typically the top 

priority in this problem. The current heuristic approach addresses this objective by proposing a 

simple algorithm that minimizes the number of vehicles needed. It's worth noting that this 

algorithm is only suitable for problems involving a homogeneous fleet of taxis. We also assume 

that the number of taxis available is 42, so constructing an initial feasible solution can always 

be done. This paper focused on minimizing the CO2 emissions from taxi idle time, and we 

reduced the number of taxis that idle. This can be done by implementing policies or practices 

that encourage drivers to turn off their engines when not driving, such as turning off the engine 

during short breaks or when waiting for passengers.  

The number of allocated taxis per day is 42 taxis that the company used. and the average 

CO2 emissions per taxi are 0.404 kg/mile. Each taxi travels an average of 64.10 miles per day, 

then from the equation (6.1), the total daily CO2 emissions from the taxi would be: 

𝐶𝑂2 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 =  42 𝑡𝑎𝑥𝑖𝑠 ×  0.404 𝑘𝑔 𝐶𝑂2/𝑚𝑖𝑙𝑒 ×  64.10 𝑚𝑖𝑙𝑒𝑠 𝑝𝑒𝑟 𝑡𝑎𝑥𝑖  

= 1,087.65 kg CO2 per day. 

After the optimal solution of the mathematical model in the case study, we minimize the 

number of taxis and costs. On average, the number of taxis per day used is only 8 in Table 6.12. 

So, after solving the model, the total daily CO2 emission is: 
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𝐶𝑂2 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 =  8 𝑡𝑎𝑥𝑖𝑠 ×  0.404 𝑘𝑔 𝐶𝑂2/𝑚𝑖𝑙𝑒 × 64.10 𝑚𝑖𝑙𝑒𝑠 𝑝𝑒𝑟 𝑡𝑎𝑥𝑖  = 197.48 

kg CO2 per day. 

The taxis in the suburban area of Nagaoka have reduced their CO2 emissions by 81.84%, 

which amounts to 890.17 kg per day. 

We present a novel model for optimizing the operations of a taxi firm using a simulation-

based approach to evaluate the performance of our model. It shows that our model can 

effectively capture the real-world situation of the taxi market. By using the proposed model, 

the best number of taxi hours can be made available to customers while retaining driver benefits, 

which means reducing customer waiting time and making it one of the best solutions. The 

effects on taxi customers must be taken into account when researching reducing taxi operating 

costs. Table 4 shows the optimal allocation of taxi demand. This confirms that the model can 

minimize the total idle time costs of taxi drivers while minimizing CO2 emission. Dynamic 

greedy heuristics in a relatively short runtime successfully solved the taxi allocation problem, 

making this an effective tool for taxi companies.  

Taxi companies should know that establishing a decision support system will benefit fleet 

management and empty taxi repositioning. The results of our case study on optimizing taxi 

allocation and minimizing CO2 emissions in a suburban area were very encouraging. By 

collecting and analyzing data on taxi usage patterns, it is able to identify areas of high demand 

and optimize taxi allocation to reduce idle time, which in turn leads to a reduction in CO2 

emissions. Optimization algorithms to identify the most efficient routes for taxis also 

significantly reduced the distance traveled by taxis and the amount of CO2 emissions produced. 

This was achieved by minimizing the number of empty trips and optimizing routes to avoid 

traffic congestion. The existing studies (Zhang et al. (2020); Zhang and Nian (2013)) described 

their model could reduce CO2 emissions from 36% to 47.62% in urban areas, whereas this 

proposed model could reduce CO2 emissions up to 81.84 % in suburban areas. Therefore, this 

model can make a sufficient contribution to the reduction of CO2 emissions. 

Taxi drivers and passengers saved time and money, while the suburban area became more 

sustainable and environmentally friendly. The success of this case study highlights the potential 

for similar programs to be implemented in other regions and cities. Using data analysis, 

optimization algorithms, and incentives can create a more sustainable and efficient 
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transportation system that benefits everyone involved. It also highlights the importance of 

taking action to reduce CO2 emissions and mitigate the impact of climate change. 

6.2.7.2 Sensitivity Analysis 

This section discusses the sensitivity analysis based on taxi demand. Such analysis is vital in 

assessing the validity of the objective function. Sensitivity analysis is employed to identify 

relationships between input parameters and model outputs. For example, one can select initial 

concentrations of modeled species or reaction rates as input parameters. Sensitivity analysis is 

very helpful in mathematical modeling be-because it explains how different model components 

are interdependent. The developed model in this study was also subjected to a sensitivity 

analysis with regard to passenger demand. When performing a sensitivity analysis of expenses, 

the taxi demand was altered (increased or decreased) by 10% and 50% while only altering one 

parameter at a time, leaving the other parameters the same. The formula for calculating the 

percentage inaccuracy was (measured value-actual value) *100/actual value. Here the actual 

value is the average ideal time cost from the model, and the measured value is obtained after 

alternating the demand. 

 

Figure 6.24. Sensitivity analysis results for the model based on the demand. 

The sensitivity analysis was carried out by increasing and decreasing the passenger demands 

by the daily passenger volume. From the sensitivity, it was clear that the total idle time cost 

increased if the demand increased, as depicted in Figure 6.24. The operating costs (yen) 

increased significantly when taxi demand increased from 215 to 387 trips per day.  
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6.2.8 Summary of the Taxi Allocations Problem 

Efficient transportation systems are necessary to reduce CO2 emissions in the context of climate 

change. Taxi services are an essential part of the transportation system in urban and rural areas. 

Inefficient taxi services cause problems such as increased idle times, resulting in increased CO2 

emissions. Optimizing taxi allocation can help reduce CO2 emissions and improve the 

sustainability of urban transportation. This study proposed a mathematical model of taxi 

allocation optimization problem for minimizing taxi driver idle time costs which help to reduce 

CO2 emission in suburban contexts. For solving the proposed model, we proposed three 

heuristic algorithms: greedy algorithm, Simulated annealing algorithm, and dynamic greedy. 

Further, a case study has been carried out to demonstrate the proposed methods and show its 

implication by using real taxi data from Nagaoka, Japan. For the case study, we first identified 

the taxi travel hotspots as potential locations for taxi spots by investigating the pickup and drop-

off locations and times by analyzing the GPS data of the taxi. After that, we found the optimal 

taxi allocations by applying the proposed model and solution algorithms. To summarize, 

dynamic greedy heuristics successfully obtained excellent solutions in relatively short runtimes 

for the taxi issue, making strategic decisions and feasible choices for taxi markets to adopt. The 

case study application in this study demonstrates the potential for using data analysis, 

optimization of taxi allocations and the number of taxis, and reducing approximately 81.84% 

of CO2 emissions in the transportation sector. Finally, sensitivity analysis was applied to 

validate the model for passenger demand. The sensitivity analysis showed that the total idle 

time cost increased if the demand increased. 

To conclude, the optimization of taxi allocations can have a significant impact on creating 

carbon-free and environmentally friendly cities. By strategically placing taxi spots and 

optimizing their routes, cities can reduce the number of vehicles on the road, decreasing harmful 

emissions and improving air quality. Therefore, it is essential for cities to invest in and prioritize 

taxi allocation optimization as a crucial step toward achieving sustainable transportation. Future 

research able to be conducted utilizing ML algorithms to solve the allocation issue may provide 

promising results. This model can also be adapted to improve the performance of taxis in 

various cities and other urban public transport networks. 
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Chapter 7. COST-EFFICIENCY 

ANALYSIS ON SHARED TAXI  

Shared taxi operations, also known as shared-ride or demand-responsive transit, have gained 

popularity in recent years due to their potential for cost savings and improved efficiency. Shared 

taxi operations involve multiple passengers sharing a vehicle for a trip that may have different 

origins and destinations. In this chapter, we will discuss the cost-efficiency analysis of shared 

taxi operations, highlighting their potential cost savings and improved efficiency. 
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7.1 Introduction 

Japan has a well-developed transportation system, with a range of public and private options 

for individuals to get from place to place (Yudhistira et al. (2015)). In recent years, the use of 

shared taxis (paratransit) has emerged as a popular alternative to general taxi services, offering 

a more flexible and cost-effective solution for those who need to get around (Takeuchi et al. 

(2022)). In order to understand the cost-efficiency of shared taxi operations compared to general 

taxi operations in Japan, which can provide valuable insights into the movement of vehicles 

and drivers and help to identify strategies for improving the cost-efficiency of these services. 

The goal of this cost-efficiency analysis is to compare the operational performance of 

shared taxis and general taxis in suburban areas, in Japan, with a focus on factors such as vehicle 

utilization, driver expenses, and operational costs. By analyzing Global Positioning System 

(GPS) data, this study can identify how different operational strategies, such as route 

optimization and vehicle pooling, impact the cost-efficiency of shared taxi operations compared 

to general taxi operations. This information can be used to develop best practices for improving 

the cost-efficiency of shared taxi operations in Japan and to better meet the transportation needs 

of individuals and communities. The shared taxi model has gained popularity in some areas due 

to its cost-effectiveness and convenience, particularly for short trips.  

In contrast, general taxi services in Japan have been in operation for many decades and are 

a well-established mode of transportation. So, the cost of general taxi services can be a concern, 

particularly for longer trips or during peak hours when the cost per ride can be high. This has 

led to increased interest in shared taxi services as a potential solution to the cost inefficiencies 

of general taxi services. The shared taxi, also known as ridesharing, is an innovative form of 

transportation that has gained significant attention in recent years. Shared taxi services have 

been found to provide a flexible and convenient alternative to traditional public transportation, 

particularly for people living in suburban or rural areas where public transportation options are 

limited. 

In the article, Zhai et al. (2019) proposed a bottom-up approach to measuring transportation 

network efficiency, with a specific focus on taxi efficiency in New York City. The approach 

involved using GPS data from taxis to identify key network segments and calculated 

performance metrics such as travel time, delay, and accessibility. The authors argued that this 

approach provided a more comprehensive and accurate assessment of network efficiency 
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compared to traditional top-down approaches that rely on aggregate data. The study used real-

world data from over 100,000 taxi trips in New York City to demonstrate the effectiveness of 

the proposed approach. The results showed that the approach can identify areas of the network 

that are experiencing high levels of congestion and delay and can be used to inform policy 

decisions aimed at improving network efficiency. The authors highlight the potential of bottom-

up approaches to transportation network analysis and suggest that this approach could be 

applied to other modes of transportation as well. Inturri et al. (2021) compared the performance 

of general taxi systems with demand-responsive shared transport systems using agent-based 

simulation. The study aimed to investigate the potential of demand-responsive shared transport 

systems to reduce travel costs, improve accessibility, and enhance environmental sustainability. 

The study used a simulation model based on agent-based modeling (ABM) to compare the 

performance of general taxi systems with demand-responsive shared transport systems in terms 

of efficiency, cost-effectiveness, and environmental impact. The model considered various 

factors such as travel demand, vehicle availability, passenger preferences, and trip costs. The 

study found that demand-responsive shared transport systems have the potential to significantly 

reduce travel costs and improve accessibility, particularly in low-demand areas. The simulation 

results also showed that demand-responsive shared transport systems have the potential to 

significantly reduce carbon emissions compared to general taxi systems. Finally, the study 

suggested that demand-responsive shared transport systems can provide a more efficient, cost-

effective, and environmentally sustainable alternative to general taxi systems, particularly in 

low-demand areas.  

Wang et al. (2022) examined the relationship between urban road network centrality and 

taxi travel in Shenzhen, China. The authors used data on road network centrality at multiple 

scales and taxi GPS data to model the impact of network structure on taxi travel times and travel 

distances. They found that higher network centrality at the city and district levels is associated 

with shorter taxi travel times and distances, while higher centrality at the street level is 

associated with longer travel times and distances. The study provided insights into the complex 

relationship between urban road networks and travel behavior and suggested the importance of 

considering network structure when designing transportation policies and systems. Whitmore 

et al. (2022) explored the potential for integrating shared autonomous mobility (SAM) services 

with existing public transportation systems to provide more equitable transit coverage. The 

study used a cost-efficiency analysis to compare different integration scenarios and assess their 

impact on accessibility, travel time, and cost. The authors argued that integrating SAM services 
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with public transportation can provide significant benefits in terms of increased transit coverage 

and reduced travel time and cost, particularly for low-income and underserved communities. 

They also suggested that this approach can be more cost-effective than expanding traditional 

public transportation services alone. Elting and Ehmke (2021) investigated the feasibility and 

potential benefits of introducing shared taxi services in rural areas in China. The authors 

conducted a survey to understand the travel behavior and preferences of local residents and 

used simulation models to analyze the potential impacts of shared taxi services on travel time, 

cost, and accessibility. The results showed that shared taxi services could significantly improve 

travel efficiency and reduce travel costs for local residents, while also providing additional 

income opportunities for taxi drivers. However, the success of shared taxi services in rural areas 

depends on various factors such as population density, road infrastructure, and regulatory 

frameworks. Čulík et al. (2022) analyzed the impact of technological changes and taxi market 

regulations on the taxi vehicle fleets in Slovakia. The study used data collected from taxi 

companies and regulators in Slovakia to analyze changes in the taxi industry over time, 

including changes in the number and age of vehicles, as well as changes in the types of vehicles 

used by taxi companies. The authors also analyzed the impact of regulations on the taxi 

industry, including regulations related to vehicle emissions and safety standards. Therefore, the 

study provided insights into how technological changes and regulations can impact the taxi 

industry, and how taxi companies can adapt to these changes to remain competitive. Peng et al. 

(2022) proposed a new algorithm for matching multiple passengers to a single taxi in a ride-

sharing service. The algorithm aimed to balance the interests of the passengers, the taxi driver, 

and the ride-sharing service provider while minimizing the empty vehicle mileage and reducing 

congestion. The proposed algorithm was based on the stable matching theory and incorporates 

the concept of a price-based mechanism to incentivize the players to reveal their preferences 

truthfully. The authors evaluated the performance of the proposed algorithm through simulation 

experiments and demonstrate its effectiveness in achieving stable matching outcomes that 

satisfy the players' preferences and improve the operational efficiency of the taxi-sharing 

service. Qiu et al. (2022) explored various approaches to matching, routing, and pricing 

methods for taxi-sharing practices. The authors proposed a framework for matching and routing 

shared taxi services based on a shared taxi network model. They also examined different pricing 

methods for shared taxi services, including distance-based pricing, time-based pricing, and 

hybrid pricing. The article provided a comprehensive analysis of the key factors affecting the 

efficiency of taxi-sharing practices, including the network topology, passenger demand 
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patterns, and pricing strategies. Several authors conducted studies on the cost of on-demand 

taxi services (Čulík et al. (2020); Mingolla and Lu (2021); Qu et al. (2014); Whitmore et al. 

(2022)). 

Therefore, the literature review suggested that shared taxi services offer a number of 

benefits, but also face a range of challenges and limitations. Further research is needed to fully 

understand the potential benefits and limitations of shared taxi systems and to identify strategies 

for maximizing the positive impact of these services on communities and the environment. The 

growth of shared taxi services has also been accompanied by a number of challenges and 

concerns, including concerns about the safety of passengers, the impact on employment in the 

taxi industry, and the potential for increased congestion in densely populated areas. In terms of 

the cost-efficiency of shared taxi services, several studies have found that shared taxi systems 

can offer significant savings over general taxi services, due to the reduced costs of operating a 

single vehicle for multiple passengers. So, the cost-effectiveness of shared taxi services also 

depends on various factors such as the operating costs of the vehicle, the number of passengers 

sharing the ride, and the efficiency of the dispatch system. 

7.2 Contributions 

In general, a taxi's fare per passenger decreases as more people share it, and the driver makes 

more money as a result. Taxi sharing is a beneficial form of transportation that should receive 

greater attention in the future. Shared taxis can provide transportation services to areas where 

traditional public transit is limited or non-existent, increasing access to employment, healthcare, 

education, and other important destinations for individuals who may not have access to personal 

vehicles. Shared taxis can provide a more flexible and convenient mode of transportation, 

particularly for individuals who may have difficulty using traditional public transit, such as 

older adults, people with disabilities, and low-income individuals. By providing a 

complementary service to traditional public transit, shared taxis can help to increase the overall 

efficiency and effectiveness of the public transit system, reducing the need for larger and more 

expensive transit vehicles, and helping to meet the transportation needs of a wider range of 

individuals. So, by providing a more flexible, convenient, and cost-effective mode of 

transportation, shared taxis can play an important role in meeting the transportation needs of 

individuals and communities. This study aims to characterize the economic feasibility of public 

transportation for a shared taxi. Shared taxi services have the potential to improve the economic 

feasibility of taxi services in Japan by increasing ridership and reducing operational costs. By 
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allowing multiple passengers to share a ride, shared taxis can reduce the number of taxis on the 

road and increase the utilization rate of each taxi, leading to reduced operational costs for taxi 

companies. The main contributions of this chapter are as follows: 

Firstly, we propose a mathematical model of the shared taxi routing problem that considers 

the different time windows for passenger service, passenger behaviors, the capacity of the taxis, 

the locations of the pick-up and drop-off points, and other relevant variables. This model 

provides a framework for finding optimal solutions to the shared taxi routing problem. 

Secondly, we developed a multiboot algorithm that combines heuristic and metaheuristic 

techniques to efficiently solve the shared taxi routing problem. The algorithm employs various 

optimization techniques, including local search, simulated annealing, and genetic algorithms, 

to identify near-optimal solutions in a short amount of time. 

Thirdly, we compare the cost efficiency of shared and general taxi services by analyzing 

real-world data on travel time, distance, and cost, as well as environmental impacts such as 

emissions and congestion. Our results show that shared taxi services can potentially achieve 

significant cost savings compared to general taxi services, especially in areas with high demand 

for taxi services. 

Therefore, the economic feasibility of shared taxis in Japan may depend on factors such as 

regulatory policies, market demand, and the availability of technology to support shared taxi 

services. Additionally, the cost-effectiveness of shared taxis may vary depending on factors 

such as the density of urban areas and the availability of alternative transportation options. 

Finally, making sure riders and drivers are properly matched will also help to maximize 

efficiency. 

7.3 Analysis of Taxi Operations 

In Japan, shared taxis are a form of public transportation where passengers share a taxi with 

other passengers who are traveling in the same direction. General taxis, on the other hand, are 

private taxis that are hired by a single passenger or group of passengers for a specific trip. To 

analyze the differences and similarities between shared taxis and general taxis in Nagaoka City, 

we would need to gather data on various factors, such as time of day, day of the week, weather 

conditions, and special events. 
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The overall number of trips taken from others (such as a home) is 220, but the total number 

of journeys taken to others (such as a home) is 331, resulting in an asymmetrical distribution. 

The outward route is frequently sent to a family member, and the return route is typically a cab, 

it is presumed. Moreover, there are 116 total trips coming into Nagaoka Station and 37 total 

journeys leaving, which is an unbalanced ratio. Yet, because the final bus leaves early, the 

outward route is referred to as a bus and the return route as a taxi. There are more trips on the 

return trip from the city center to others (home, etc.) than on the outbound trip, but it is assumed 

that taxis are used to return home after the last bus. 

7.3.1 Analysis of Shared Taxi Operation 

Shared taxi operation in the Niigata area, Japan, involves the analysis of the taxi data to 

understand the benefits and challenges of the service. Niigata area has been implementing a 

shared taxi service since 2016 to provide more affordable and convenient transportation options 

for residents and visitors (MINAMI et al. (2016); Sano et al. (2007); MONDAL et al. (2021)). 

The analysis of shared taxi operations in Nagaoka City involves several factors, including 

the number of users, the cost savings, and the impact on the overall transportation system. Some 

of the key factors that need to be analyzed include: 

a) The number of users: One of the key factors in analyzing shared taxi operations in 

Nagaoka City is the number of users. This information can be obtained by analyzing the number 

of reservations made and the number of passengers who used the service. By analyzing this 

data, we can understand the level of demand for the service and identify areas where the service 

may need to be expanded. 

b) Cost savings: Another important factor to consider when analyzing shared taxi 

operations in Nagaoka City is cost savings. Since passengers are sharing a taxi with others, the 

cost of transportation is divided among them, making it more affordable than traveling alone. 

c) Impact on the overall transportation system: The shared taxi service in Nagaoka City 

has the potential to impact the overall transportation system. For example, if more people use 

the shared taxi service, it could lead to a reduction in the number of cars on the road, reducing 

traffic congestion and improving air quality. 

d) Challenges: Despite the benefits of shared taxi operations in Nagaoka City, several 

challenges need to be addressed. For example, the service may not be suitable for people who 
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need to travel at specific times or have tight schedules. Additionally, the service may not be as 

reliable as other forms of transportation, especially during bad weather or traffic congestion. 

Therefore, the analysis of shared taxi operations in Nagaoka City taxi data suggests that the 

service has the potential to provide more convenient and affordable transportation options for 

residents and visitors. There are several challenges that need to be addressed to make the service 

more accessible and reliable for passengers. By addressing these challenges, shared taxi 

services can play an important role in improving transportation options in suburban areas. 

7.3.2 Analysis of General Taxi Operation 

In Japan, general taxi operations are a vital part of the transportation industry. According to a 

report by the Japan Federation of Hire-Taxi Associations, the number of employees 283,193 in 

Japan has been steadily increasing in 2021( Kawanabe (2022)). The report also indicates that 

the majority of taxi drivers in Japan are self-employed and that the average working hours for 

taxi drivers are relatively long, ranging from 9 to 11 hours per day. One of the main issues 

facing general taxi operations in Japan is the aging population of drivers.  

According to the same report by MLIT, the average age of taxi drivers in Japan is 56.7 

years old, and the number of younger drivers is decreasing. This trend could lead to a shortage 

of drivers in the future, and it may become increasingly challenging to maintain high levels of 

service and reliability. Despite these challenges, general taxi operations in Japan continue to be 

an essential part of the transportation industry. With the increasing popularity of ride-hailing 

and ride-sharing services, general taxi companies are also exploring new business models and 

incorporating technology to stay competitive. For example, some companies have introduced 

mobile apps for booking rides, and others are experimenting with electric or hybrid vehicles to 

reduce their carbon footprint.  

Therefore, general taxi operations in Japan have a strong foundation and continue to be a 

critical mode of transportation for many people. So, the industry will need to adapt and innovate 

to remain competitive and relevant in a rapidly changing transportation landscape. The cost 

structure of taxi transportation is a basic element in understanding the taxi operation cost. For 

the cost structure of taxi transportation, we use the value of the Hire Taxi Annual Report 2018 

(Association (2018)). This cost is proportional to the number of taxis (personnel cost, vehicle 

depreciation cost, insurance fee: 76.4%) and proportional to mileage (fuel oil cost, vehicle 

repair cost, half of the other expenses: 16.6%). 
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Figure 7.1. Taxi transportation cost structure 

We calculated the reduction rate of the cost if all the rides were booked by the day before, 

with different time windows divided into three, which are not proportional to the number of 

vehicles and running (non-operating expenses, half of the other expenses: 6.9%). Figure 7.1 

shows calculations based on the results of hearings that other expenses include car lease fees 

and head office expenses. 

7.4 Materials  

The shared taxi routing problem with different time windows is a transportation problem that 

involves finding an optimal routing plan for a fleet of shared taxis, taking into account the 

different time windows for pick-ups and drop-offs of passengers. 

The problem involves determining the best routes for the shared taxis to pick up and drop 

off passengers at different locations within specific time windows while minimizing travel time 

and distance and maximizing the number of passengers served. This problem is particularly 

challenging because it requires balancing conflicting objectives, such as minimizing the costs, 

and number of taxis used while ensuring all passengers are served within their specified time 

windows. The problem can be further complicated by factors such as traffic congestion, varying 

demand for taxis at different times and locations, and the need to satisfy various operational 

constraints, such as vehicle capacity and driver availability. There are several ways to improve 

the efficiency of shared taxi operations. One would be to make sure that riders are properly 

matched with drivers so that they don't have to spend extra time going out of their way to pick 

up passengers. The metaheuristics algorithms can help to find efficient routing plans that meet 

Labor Cost 72.8%

Fuel Cost 8.5%
Vehicle repair cost 2.2%

Vehicle depreciation 

cost 1.3%

Insurance fee 2.3%

Non-operating expense 

1.0%

Other expenses11.8%
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the needs of both the taxi company and its passengers while taking into account the complex 

constraints and variables involved in the problem.  

7.4.1 Assumptions 

The following are some of the common assumptions made in the analysis of shared and general 

taxi operations: 

✓ Cost structure: The cost structures of shared and general taxi operations are similar, 

including costs for vehicle maintenance, insurance, and driver salaries. 

✓ Demand: The demand for shared and general taxi services is relatively stable and can be 

predicted with a certain degree of accuracy. 

✓ Utilization rate: The utilization rate of shared taxi vehicles is higher compared to general 

taxis, as shared taxis are used by multiple passengers per trip, whereas general taxis are 

used by one passenger at a time. 

✓ Technology: Both shared and general taxi operations have access to similar technology 

and data systems, such as GPS tracking, mobile apps, and real-time data analytics. 

✓ Economic conditions: The overall economic conditions and market trends are similar for 

both shared and general taxi operations. 

It is important to note that these assumptions may not hold in all cases, and the actual situation 

of shared and general taxi operations may vary based on specific market conditions and local 

factors. 

7.4.2 Data Collection and Preparation 

This section shows examples with distinct characteristics such as the arrangement of locations, 

passenger count, duration of time windows (whether short or long), and the number of taxis 

involved, which was introduced in Nagaoka on 15 March 2020. The driver's data acquisition 

method is input and recorded by the time, vehicle ID, direction, operating status, latitude, & 

longitude readings acquired from GPS. The acquirement of data was as follows: 

➢ Pick-up time (unit: mints); 

➢ Pick-up longitude (unit: degree);   

➢ Pick-up latitude (unit: degree);  

➢ Drop-off time (unit: mints); 
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➢ Drop-off longitude (unit: degree);  

➢ Drop-off latitude (unit: degree); 

In this research, after pre-processing, we have used taxi operation data such as id, the 

coordinates of the node (pick up and drop off longitude and latitude), service time (pick up and 

drop off time), the number of users, and operation status (departure and arrival time) in Table 

7.1. 

Table 7.1. Taxi data 

Id X* Y* Service time 

(mint.) 

Demand 

(Pass./Per 

trips) 

TW start 

(mint.) 

TW end 

(mint.) 

0 0 0 0 0 0 1440 

1 -2.87603 0.22042 5 1 570 580 

2 -2.11642 1.508638 5 1 627 637 

3 -2.28939 1.490674 5 1 798 808 

4 -2.13356 1.514184 5 1 881 891 

5 -0.53049 -0.45244 5 -1 579 589 

6 -6.76713 0.083942 5 -1 641 651 

7 -3.58415 0.150614 5 -1 806 816 

8 2.044301 -0.63208 5 -1 899 909 

Where Id is the node id, X and Y are the coordinates of the node Customers position in 

Nagaoka city was represented on a Two-Dimensional XY plateau. *Customers’ positions = 

(x,y), demand is positive for pickups and negative for drop-off, and TW start and TW end define 

the start and end of the time window for the node. 

7.4.3 Mathematical Model 

The shared taxi routing problem pertains to creating the most efficient routes for vehicles to 

serve a set of customer requests. Specifically, the service cannot be initiated before the start of 

the time window, nor extended beyond its end. Although a vehicle can arrive at a customer 

location earlier than the start of the time window, it must remain idle until the service's 

designated start time. 
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Let 𝑁 be the set of the passenger pickup/drop-off locations. Let 𝑀 be the set of all available 

taxis. Let 𝑇 be the set of all periods. The graph 𝐺 = (𝑉, 𝐴) consists of all passenger nodes, start 

depots, and end depots. Each taxi m has a limited capacity 𝐶𝑚. The cost and travel time from 

passenger 𝑖 to the passenger are denoted by 𝑐𝑖𝑗 and 𝑇𝑖𝑗 respectively. The cost and the traveled 

are assumed times to satisfy the triangle inequality. Furthermore, 𝑆𝑖 indicates the maximum 

number of passengers that passengers 𝑖 is willing to share a taxi. Let 𝑃𝑖 be the set of sharing 

preferences for passengers 𝑖 . 𝑟𝑖 : maximum wait time for passengers  𝑖 . Let 𝑤𝑡𝑖  be the set 

passenger 𝑖 by the waiting at time 𝑡. Let 𝑎𝑡𝑚𝑖 be the taxi 𝑚 arrives at passenger 𝑖 's location at 

time 𝑡. Let 𝑏𝑡𝑚𝑖 be the taxi 𝑚 drops off passenger 𝑖 at time 𝑡. 

There are three main types of decision variables in this mathematical model. The first one 

is 𝑥𝑡𝑖𝑗, a binary variable, equal to 1 if passenger 𝑖 is assigned to passenger 𝑗 at time 𝑡 and equal 

to 0 alternatively. It is possible that there may be insufficient taxis available to fulfill all the 

requests made. In such cases, these unfulfilled requests are added to a separate list known as 

the "request". While this problem prohibits the inclusion of any requests in the final solutions, 

the heuristic may employ the requests during a transitional phase. The second variable is 𝑦𝑡𝑚𝑖 

and is binary, it is set to 1 if taxi 𝑚 is assigned to passenger 𝑖 at time 𝑡, otherwise, it is set to 0. 

The third variable is 𝑠𝑡𝑚𝑖  and is binary, it is set to 1, if taxi 𝑚 serves passenger 𝑖 at time 𝑡, 

otherwise it is set to 0. The other decision variables are 𝑆ℎ𝑎𝑟𝑒𝑤𝑎𝑛𝑡𝑒𝑑𝑖
 and is binary, it is set to 

1, if passenger 𝑖 wants to share a taxi, otherwise 0, 𝑁𝑂𝑡𝑎𝑙𝑘𝑖𝑛𝑔𝑖
 and is binary, it is set to 1, if 

passenger 𝑖 does not want to share a taxi with passengers who are talking on the phone, 

otherwise 0, and 𝑡𝑎𝑙𝑘𝑖𝑛𝑔𝑗 and is also binary, it is set to 1, if passenger 𝑗 is talking on the phone, 

otherwise 0. As a summary of all the above, the mathematical formulation of the problem is as 

follows. 

Parameters: 

𝑁 : the set of nodes (passenger pickup/drop off locations) 

𝑀 : set of taxis 

𝑇 : set of time periods 

𝑐𝑖𝑗 : the cost of assigning passenger 𝑖 to passenger 𝑗 

𝐶𝑚 : maximum capacity of taxi 𝑚 
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𝑆𝑖 : maximum number of passengers that passengers 𝑖 is willing 

to share a taxi 

𝑃𝑖 : set of sharing preferences for passenger 𝑖 

𝑆ℎ𝑎𝑟𝑒𝑤𝑎𝑛𝑡𝑒𝑑𝑖
 : binary variable indicating if passenger 𝑖 wants to share a taxi 

𝑁𝑂𝑡𝑎𝑙𝑘𝑖𝑛𝑔𝑖
 : binary variable indicating if passenger  𝑖 does not want to 

share a taxi with passengers who are talking on the phone 

𝑡𝑎𝑙𝑘𝑖𝑛𝑔𝑗 : binary variable indicating if passenger 𝑗  is talking on the 

phone 

𝑇𝑖𝑗 : travel time from node 𝑖 to node 𝑗 

𝑟𝑖 : maximum wait time for passenger 𝑖 

𝑤𝑡𝑖 : passenger 𝑖 is waiting at time 𝑡 

𝑎𝑡𝑚𝑖 : taxi 𝑚 arrives at passenger 𝑖 's location at time 𝑡 

𝑏𝑡𝑚𝑖 : taxi 𝑚 drops off passenger 𝑖 at time 𝑡 

Decision Variables: 

𝑥𝑡𝑖𝑗 : binary variable indicating if passenger 𝑖 is assigned to passenger 𝑗 at time 𝑡 

𝑦𝑡𝑚𝑖 : binary variable indicating if taxi 𝑚 is assigned to passenger 𝑖 at time 𝑡 

𝑠𝑡𝑚𝑖 : binary variable indicating if taxi 𝑚 serves passenger 𝑖 at time 𝑡 

Objective Function: 

𝑚𝑖𝑛 ∑ ∑ ∑ 𝑐𝑖𝑗𝑥𝑡𝑖𝑗

𝑗∈𝑁𝑖∈𝑁𝑡∈𝑇

… … … … … … … … … … (7. 1) 

The objective function minimizes the total cost of all vehicles. 

Constraints: 

Passenger assignment constraints: 

∑ 𝑥𝑡𝑖𝑗

𝑖∈𝑁,𝑖≠𝑗

= 1        ∀𝑡 ∈ 𝑇, 𝑗 ∈ 𝑁 

∑ 𝑥𝑡𝑖𝑗

𝑗∈𝑁,𝑖≠𝑗

= 1        ∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝑁 

The constraints dictate that every vehicle must depart from its initial depot, reach its final depot, 

and when stopping at a customer node, it must both arrive at and depart from that node. 
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Taxi assignment constraints: 

∑ 𝑦𝑡𝑚𝑗

𝑚∈𝑀

= 1        ∀𝑡 ∈ 𝑇, 𝑗 ∈ 𝑁 

∑ 𝑦𝑡𝑚𝑗

𝑗∈𝑁

≤ 1        ∀𝑡 ∈ 𝑇, 𝑚 ∈ 𝑀 

A constraint is in place to ensure that both the pickup and drop-off locations are serviced by the 

identical vehicle, while also verifying that the drop-off node is only visited if and when the 

pickup node is visited. And, constraints ensure that each passenger is assigned to a vehicle, each 

passenger is assigned to only one vehicle, passengers are assigned to the same vehicle at the 

same time, passengers who do not want to share a ride are assigned to a vehicle alone, and 

passengers who want to share a ride are assigned to a vehicle with other passengers. 

Capacity constraints: 

∑ 𝑥𝑡𝑖𝑗

𝑗∈𝑁

≤ ∑ 𝑦𝑡𝑚𝑗

𝑚∈𝑀

. 𝐶𝑚        ∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝑁 

The existence of constraints guarantees that the taxis are accurately established and meet 

capacity limitations. 

Passenger behavior constraints: 

𝑥𝑡𝑖𝑗   ≤  𝑆ℎ𝑎𝑟𝑒𝑤𝑎𝑛𝑡𝑒𝑑𝑖
 ∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 

∑ 𝑥𝑡𝑖𝑗   ≤  𝑆ℎ𝑎𝑟𝑒𝑤𝑎𝑛𝑡𝑒𝑑𝑖
. |𝑃𝑖|

𝑗∈𝑃𝑖

   ∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝑁 

Service constraints ensure that each passenger wants to share with other passengers the same 

taxi. For passengers who prefer not to share, the taxi should be assigned only to them. 

𝑥𝑡𝑖𝑗   ≤ (1 − 𝑁𝑂𝑡𝑎𝑙𝑘𝑖𝑛𝑔𝑖
) + 𝑡𝑎𝑙𝑘𝑖𝑛𝑔𝑗    ∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 

If a passenger requests a no-talking ride, then all other passengers in the same shared taxi must 

also request a no-talking ride. If a passenger requests a talking ride, then at least one other 

passenger in the same shared taxi must also request a talking ride. 

Time constraints: 

𝑤𝑡𝑖 ≤ 𝑤𝑡+1,𝑖 ∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝑁  
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𝑤𝑡𝑖 ≤ ∑ 𝑎𝑡𝑚𝑖

𝑚𝜖𝑀

 ∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝑁 

∑ 𝑇𝑖𝑗𝑥𝑡𝑖𝑗

𝑗∈𝑁

≤ 𝑤𝑡𝑖 + 𝑟𝑖 ∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝑁 

∑ 𝑎𝑡𝑚𝑖

𝑚∈𝑀

≤ 𝑤𝑡𝑖 + 𝑟𝑖 ∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝑁 

∑ 𝑇𝑡𝑚𝑖

𝑚∈𝑀

≤ 𝑤𝑡𝑖 + 𝑟𝑖 ∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝑁 

Arrival and drop-off time constraints: 

𝑎𝑡𝑚𝑖 ≤ ∑ 𝑇𝑖𝑗𝑥𝑡𝑖𝑗  

𝑗∈𝑁

∀𝑖 ∈ 𝑁, 𝑚 ∈ 𝑀, 𝑡 ∈ 𝑇   

𝑏𝑡𝑚𝑖 ≤ ∑ 𝑇𝑖𝑗𝑥𝑡𝑖𝑗  

𝑗∈𝑁

∀𝑖 ∈ 𝑁, 𝑚 ∈ 𝑀, 𝑡 ∈ 𝑇   

𝑎𝑡𝑚𝑖 + 𝑇𝑖𝑗 ≤ 𝑎𝑡+1,𝑚𝑗 + 𝐵(1 − 𝑥𝑡𝑖𝑗)  ∀𝑖 ∈ 𝑁, ∀𝑗 ∈ 𝑁, 𝑚 ∈ 𝑀, 𝑡 ∈ 𝑇   

𝑏𝑡𝑚𝑖 + 𝑇𝑖𝑗 ≤ 𝑏𝑡+1,𝑚𝑗 + 𝐵(1 − 𝑥𝑡𝑖𝑗)  ∀𝑖 ∈ 𝑁, ∀𝑗 ∈ 𝑁, 𝑚 ∈ 𝑀, 𝑡 ∈ 𝑇   

The presence of constraints guarantees that a service will not commence at a particular 

location until the vehicle has the ability to reach that location. Additionally, the service cannot 

begin prior to the start of the time window or after the end of the time window at that specific 

location. The arrival time for a passenger at their destination should not be earlier than the lower 

bound of the time window specified for their drop-off time. Similarly, the arrival time should 

not be later than the upper bound of the time window. The drop-off time for a passenger at their 

destination should be after their pickup time plus the travel time from the pickup location to the 

drop-off location. 

Service constraints: 

∑ 𝑠𝑡𝑚𝑖

𝑇

𝑡=1

≤ 1  ∀𝑖 ∈ 𝑁, 𝑚 ∈ 𝑀  

𝑠𝑡𝑚𝑖 ≤ ∑ 𝑥𝑡𝑗𝑖

𝑗∈𝑁

  ∀𝑖 ∈ 𝑁, 𝑚 ∈ 𝑀, 𝑡 ∈ 𝑇 
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𝑠𝑡𝑚𝑖 ≥ 𝑦𝑡𝑚𝑖 + ∑ 𝑥𝑡𝑗𝑖

𝑗∈𝑁

− 1   ∀𝑖 ∈ 𝑁, 𝑚 ∈ 𝑀, 𝑡 ∈ 𝑇 

Service constraints are a set of constraints that ensure that each passenger is served within a 

specific time window and that each taxi has a maximum number of passengers to serve. 

7.4.4 Optimality Algorithm 

In this section, we develop a metaheuristics algorithm for the shared taxi routing problem. 

Metaheuristics are generally more effective than optimization algorithms, iterative techniques, 

or basic heuristics in combinatorial optimization because they search through a larger range of 

feasible solutions. 

One of the biggest challenges faced by heuristic algorithms is to prevent solutions from 

leading to a local optimum. A solution that is the best among a close-by group of potential 

solutions is known as the local optimum of an optimization problem. Most local search 

strategies are rendered worthless and unable to remove a solution from a local optimum when 

one occurs. One of the primary purposes for which metaheuristic techniques are utilized in 

algorithms is to avoid becoming trapped in a local optimum. Once again, the processing time 

presents a significant obstacle, as was stated in the metaheuristic technique. The likelihood that 

the algorithm will avoid local optimums increases with the number of initial solutions 

employed. So, with each new response, the amount of time needed to analyze them grows. This 

time-constrained delivery planning problem is resolved using the proposed method, one of the 

Metaheuristic methods.  

The Metaheuristic procedure is a function that takes two inputs: the number of taxis required 

in the initial solution and the area radius. The function initializes global parameters such as the 

number of locations, distance, travel time, service time, and waiting time. Then, the first 

iteration begins and runs until all available taxis are used. Within the first iteration, for each 

taxi, the taxi parameters such as total time, travel time, service time, and waiting time are set to 

their initial states. Next, the heuristic procedure selects all pickup locations from the number of 

locations and starts the second iterative process. This process continues until the taxi has no 

more locations to pick up and drop off or has run out of time to return to the depot. 

During the second iteration of the heuristic procedure, the search for the next optimal 

location begins. The procedure first selects locations where the taxi does not exceed the 

maximum capacity and places them in a list called possible locations. The open locations, where 
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the current total time plus travel time falls between the initial and final time window, are 

classified as open possible locations. If the possible locations are empty, the next location to be 

visited will be the one with the least travel time plus waiting time from the current taxi position. 

If this list is also empty, the iteration process stops. After obtaining the open possible locations 

list, the procedure identifies the locations that are within the previously defined area radius and 

adds them to a new list called area locations. The next location is filled with the earliest closing 

location in the area locations list. So, if the area locations are empty, the next location variable 

is completed with the closest location from the open possible locations list. Once the next 

location is determined, the procedure checks the priority destinations. If one of the priority 

destinations becomes unavailable due to the assigned next location, the next location is switched 

to that specific priority destination. 

After the total number of locations has been established, the taxi parameters are updated, 

and the current taxi's next location is removed from the total number of locations and pickup 

locations. If the taxi's next location is one of the total numbers of locations, its destination is 

added to the priority destinations list. The second iteration continues until all possible locations 

have been visited. At that point, a new taxi is set up, and the first iteration process proceeds 

until all locations have been visited or all taxis have been used. Once all locations have been 

visited or all taxis have been used, the global parameters are updated, and the function returns 

the final solution with the global and each taxi parameters. As a summary of all the above, the 

algorithm for this proposed method is as follows. 

Step 1: Set the total passenger set, 

Step 2: Find the first passenger from the passenger sets whose total cost from the pickup 

location to the passenger's departure point and the passenger's total cost on the return trip 

from the destination to the position is the lowest. If the set of passengers is empty, output 

the necessary number of taxis together with their routes, and then stop. 

Step 3: Based on the previously defined operating path, compute the cost of all feasible 

insertion places for distributing cars from the second person onward. Then, insert the 

vehicle at the position with the lowest cost. Take this passenger out of the group of 

unmoved passengers. If there is no passenger, output the necessary number of taxis 

together with their routes, then stop. 

Step 4: Until there are no more passengers that can be transported in the process. 
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Step 5: If there are no more passengers that can be transported in the same vehicle, prepare 

an additional vehicle and execute the process step 2. 

7.5 Result and Discussion 

In order to solve the problem using the Mixed-Integer Nonlinear Programming (MINLP) 

formulation described in equation (7.1), we solved the equation by metaheuristic algorithms 

and used hypothetical Nagaoka City general taxi data. The solving algorithms used in shared 

taxi operations can vary depending on the specific goals and objectives of the operation. 

Metaheuristic algorithms are optimization algorithms that can be applied to various problems, 

including those faced by shared taxi operations (Sano et al. (2020)). 

These metaheuristic algorithms can be used in combination with other optimization 

techniques and data analysis tools to improve the efficiency and profitability of shared 

operations. To perform a cost-efficiency analysis between shared taxi and general taxi 

operations using GPS data, first, analyze the total operational costs incurred for both services. 

Then, compare the average fare rate of the two services, taking into account the differences in 

service scope, geographic coverage, and demand levels. Finally, using GPS data such as 

distance and time traveled, calculate the transportation cost (Table 7.2) per km/trip for each 

service. 

Table 7.2. Taxi transportation cost structure 

Items Percentage 

Labor cost 72.8% 

Fuel oil cost 8.5% 

Vehicle repair cost 2.2% 

Vehicle depreciation 1.3% 

Insurance fee 2.3% 

Non-operating expenses 1.0% 

other expenses 11.8% 

7.5.1 Comparison Shared and General Taxi in Nagaoka 

The computational tests performed to evaluate the effectiveness of the heuristics are presented 

in this section. The algorithm was produced through the Google Collaboratory interface and 

was made using the Python programming language. 

In this section, the number of vehicles required for two options namely, general and shared 

taxi services, in Nagaoka city has been compared for a specific number of passengers (400 
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passengers). This time, as a case study, we will target 400 actual vehicle trips on March 15, 

2020, when there is an average demand for the taxi company, assuming the above-mentioned 

situation, and one of the heuristic solutions.  

Table 7.3 shows 42 vehicles are required for 400 passengers when general taxi services are 

used by the passengers. On the other hand, only 8 vehicles are required if the passenger uses 

the shared taxi services. In terms of expenses, approximately 78.21%, 78.28%, and 86.53% of 

the cost are reduced for a company in the shared taxi service over the general taxi services in 

10 mints, 20 mints, and 30-minute time windows respectively. 

Table 7.3. Compare the shared and general taxi cost  
General Taxi Shared Taxi 

 Time Window 0-24hrs. 10min 20 min 30 min 

Number of Taxis 42 8 8 4 

Total of Distance 4333 km 1810.24 km 1784.24 km 1693.32 km 

Fuel Cost ¥ 69,328 ¥ 28,963.84 ¥ 28,547.84 ¥ 27,093.12 

Driver Cost ¥ 403,200 ¥76,800.00 ¥ 76,800.00 ¥ 38,400.00 

Insurance Fee ¥11,507 ¥ 2,191.78 ¥ 2,191.78 ¥ 1,095.89 

Car maintains Cost ¥ 23,014 ¥ 4,383.56 ¥ 4,383.56 ¥ 4,383.56 

Car Buying ¥ 67,123 ¥ 12,785.39 ¥ 12,785.39 ¥ 6,392.69 

Total  ¥ 574,172 ¥ 125,124.57 ¥ 124,708.57 ¥ 77,365.27 

Cost (%) 
 

78.21% 78.28% 86.53% 

The results of the study showed that the shared taxi service was more cost-efficient than 

the general taxi service. The shared taxis had a higher occupancy rate and traveled longer 

distances per trip compared to general taxis.  

However, Table 7.3 represents the percentage difference in operational costs between 

shared taxis and general taxis, the results suggest that shared taxis may have a lower operational 

cost compared to general taxis in all three-time windows. The percentage differences may vary 

depending on the time window, with a smaller percentage difference in the 10-minute window 

and a larger percentage difference in the 30-minute window. This may be due to the fact that 

shared taxis, despite taking longer to reach their destination due to additional stops, may have 

a more optimized route and a higher passenger occupancy rate, which can reduce their 

operational cost per passenger. The actual operational cost of shared taxis and general taxis can 

vary widely depending on various factors such as fuel prices, maintenance costs, driver salaries, 

and demand for taxi services. Therefore, these results should be interpreted with caution and 

should be validated by a more thorough and context-specific analysis. This led to a lower cost 

per kilometer traveled for the shared taxis. Additionally, the study found that the shared taxi 
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service could potentially reduce the number of vehicles needed to serve the same demand as 

the general taxi service. This could lead to a reduction in congestion and environmental impact. 

Therefore, the cost-efficiency analysis based on GPS data suggests that shared taxi services 

can be a more cost-effective and environmentally friendly alternative to regular taxi services in 

certain settings. 

7.5.2 The Impact of Operational Cost Efficiency on the Shared Taxi 

The impact of operational cost efficiency for shared taxis can be significant in several ways: 

Reduced Cost for Passengers: Shared taxi services have the potential to provide 

passengers with a more affordable transportation option than general taxis or private cars. By 

optimizing operational costs, shared taxi services can keep fares low and attract more 

passengers. 

Increased Profit for Operators: Operational cost efficiency can also have a positive 

impact on the profit margins of shared taxi operators. By reducing the costs associated with 

operating the service, operators can increase their profits without increasing fares. 

Reduced Traffic Congestion: Shared taxi services can help reduce traffic congestion by 

providing a more efficient means of transportation. By optimizing routes and encouraging 

shared rides, shared taxi services can reduce the number of vehicles on the road and alleviate 

traffic congestion. 

Environmental Benefits: Shared taxi services can also have environmental benefits by 

reducing the number of vehicles on the road and decreasing carbon emissions. By optimizing 

routes and encouraging shared rides, shared taxi services can contribute to a more sustainable 

transportation system. 

Therefore, operational cost efficiency is essential for the success of shared taxi services. 

It can help reduce costs for passengers, increase profits for operators, reduce traffic congestion, 

and provide environmental benefits. 

7.6 Summary of the Chapter 

In summary, this study aimed to analyze the cost efficiency of taxis as public transport. The use 

of GPS data and cost-efficiency analysis provides a valuable tool for understanding the 

operational performance of shared taxis and general taxi services. The hypothetical data shows 
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that shared taxis can offer a more flexible, convenient, and cost-effective mode of transportation 

compared to general taxis, particularly when strategies such as route optimization and vehicle 

pooling are used. It is important to note that the specific results of this cost-efficiency analysis 

have depended on the particular context and market conditions in which the shared taxi services 

are operating.  

Therefore, the use of GPS data and cost-efficiency analysis can provide a valuable starting 

point for policymakers, and transportation providers to understand the operational performance 

of shared taxi services and to identify strategies for improving their cost-efficiency and 

effectiveness. This study had certain limitations. For instance, the most comprehensive and 

current dataset available pertained only to a specific time frame. Furthermore, only direct 

expenses were taken into account during the analysis, and other costs such as cleaning, 

garaging, and administrative expenses were excluded. Additionally, the primary objective of 

this research was not to devise a new methodology; instead, existing tools were utilized to 

aggregate the transit-dependent population and transit coverage.  

The current models only consider the economic viability, hence there is a need for future 

research to incorporate environmental concerns. In addition, the following general domains 

could be explored in upcoming research: (i) long-term analysis; (ii) geographic analysis; (iii) 

multi-modal analysis, social analysis, and (iv) technological analysis. These areas of research 

can help policymakers and investors make informed decisions about transportation 

infrastructure and investment to ensure efficient and sustainable transportation systems in the 

future. 
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Chapter 8. CONCLUSION AND 

FUTURE WORK 

 

The study's accomplishments, contributions, limitations, and suggestions are now presented. It 

might be valuable for policy and new geometric design testing, among other things. 
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8.1 Summary of the Work 

Taxi traffic is an important part of the urban area. If the number of taxis is too high, resulting 

in low per-taxi income and overall low revenue due to high operation costs since companies 

manage some excess number of fleets in waste of public resources, and if there are too few taxis 

it will cause inconvenience to the public. In areas like Niigata, we cannot lose operators as well 

as customers to overcome this bottleneck. The dissertation suggests a model that seamlessly 

brings benefits to both parties means reducing the fare of passengers and optimizing fleet 

planning on the operator's end.  

This thesis developed two mathematical models for intractable optimization problems. The 

two models have been applied to a case study, using real data from Nagaoka and Sanjo City, 

Japan. We focused on three different areas where to find such problems: a) Machine Learning, 

b) the shared taxi fare model, and c) the taxi allocation model. 

The first part of our study focused our attention on taxi demand for machine learning 

applications. Chapter 4 clarified the actual situation of taxi operation, GPS data of all vehicles, 

and 50 cars belonging to Mitsukoshi Taxi Co., Ltd., which is the largest taxi company with a 

business area of the entire Nagaoka city. Also, we developed a method to understand ML 

algorithms and established the usefulness of our method through various tests of real datasets. 

In the proposed method of clustering problems, we applied the approach to K-Near Neighbors, 

Linear Regression, Decision Trees, Random Forests, and Gradient Boosting problems in 

datasets with a moderate number of dimensions. We provided the first proof that the algorithm 

leads to the problems of one-dimensional data clustering. We developed an optimization-based 

approach for estimating Hybrid ML. We found that taxi demand has high predictability. The 

effectiveness of these models is evaluated using MAE, MAPE, MSE, RMSE, MdAE, and R2. 

The HML algorithm consistently achieved the best classification performance. 

We analyzed the actual taxi operation by using GPS data of all vehicles belonging to Sanjo 

Taxi Company, Ltd., the largest taxi company with a business area in the entire Niigata. The 

analysis period was in June 2015. Sanjo City, Niigata Prefecture, is in the center of Niigata 

Prefecture and is classified in the Chuetsu region. In the second part of this thesis, we developed 

a Mixed Integer Non-Linear Programming formulation model for the routing problem to study 

the Dial-A-Ride Problem (DARP) of shared taxis under busy travel times created by the ride 

shared themselves in Chapter 5. In Chapter 6, the model has its objective to minimize the total 
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cost of passengers and the number of taxis utilized. This thesis targets the reduction of the 

passenger’s effective fare because no attempts have been observed for the total taxi cost 

reduction. We have solved an effective Branch & Cut algorithm for the shared taxi fare 

problems. The problems have been solved in Python using a Gurobi solver showing that the 

proposed model can find the shortest route of taxi routing decisions that we compute the total 

cost of the shared taxi by developing a mathematical model. Establishing a generalized pricing 

method is necessary based on the service order, travel distance, number of shared passengers, 

and waiting time, the cost-sharing ratio. It can lower fare costs for each customer and reduce 

travel costs. Meanwhile, it increases the taxi company’s revenue as it accepts drivers to pick up 

multiple passengers. 

The third part of this study formulated the mathematical model for taxi allocation problems 

and routing problems in Chapter 5. The model has its to minimize taxi idle time, pick-up delays, 

and total costs in Chapter 6. We have solved the model by heuristic and metaheuristic methods 

such as the Greedy algorithm, Simulated Annealing, and Dynamic Greedy Programming that 

consider passengers, drivers, and time. We proposed three heuristic algorithms: greedy 

algorithm, simulated annealing algorithm, and dynamic greedy. Further, a case study has been 

carried out to demonstrate the proposed methods and show its implication by using real taxi 

data from Nagaoka, Japan. For the case study, we first identified the taxi travel hotspots as 

potential locations for taxi spots by investigating the pick-up and drop-off locations and times 

by analyzing the GPS data of the taxi. After that, we found the optimal taxi allocations by 

applying the proposed model and solution algorithms. To summarize, dynamic greedy 

heuristics successfully obtained excellent solutions in relatively short runtimes for the taxi 

issue, making strategic decisions and feasible choices for taxi markets to adopt. The case study 

application in this study demonstrates the potential for using data analysis, optimization of taxi 

allocations and the number of taxis, and reducing approximately 81.84% of CO2 emissions in 

the transportation sector. Finally, sensitivity analysis was applied to validate the model for 

passenger demand. The sensitivity analysis showed that the total idle time cost increased if the 

demand increased.  

Finally, in Chapter 7, the use of GPS data and cost-efficiency analysis provides a valuable 

tool for understanding the operational performance of shared taxi and general taxi services. 
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8.2 Recommendations for Future Works 

In this study, we examined the possibility of taxi visualization, reduced operating costs, and 

improved productivity when a reservation system or joint dispatch business was introduced 

using GPS data of taxi vehicles, but the accuracy was further improved. However, it is necessary 

to determine the optimum value that is more realistic by using the distance on the road network 

and the link running speed by weather and time zone throughout the year and limiting the 

driver's working hours. Also, the solution used in this study is very primitive and not suitable 

for large-scale problems. Due to its value in decreasing the service failure rate, it is necessary 

to collect historical data and study ML methods to learn such distributions. Here are some 

potential recommendations for future works in the shared taxi market in Japan: 

I. Partnerships with local transportation companies: Shared taxi companies can 

consider partnering with local transportation companies to expand their services and 

reach more customers. This can also help them to better integrate with existing 

transportation networks. 

II. Utilizing technology to improve efficiency: Shared taxi companies can consider using 

technology to improve their efficiencies, such as real-time routing and scheduling 

algorithms. They can also consider implementing mobile apps that allow customers to 

book and track their rides. The idea can be extended to predict the fare and routes all 

over the mega City in Japan. 

III. Offering personalized services: Shared taxi companies can differentiate themselves by 

offering personalized services, such as customized routes or in-vehicle amenities. This 

can help attract customers who value convenience and comfort. 

IV. Focusing on sustainability: With growing concern for the environment, shared taxi 

companies can consider incorporating eco-friendly vehicles or implementing carbon 

offset programs to reduce their environmental impact. 

V. Engaging in community outreach: Shared taxi companies can engage in community 

outreach initiatives to build goodwill and trust with customers. This can include 

partnerships with local businesses or community organizations or sponsoring local 

events. 

VI. Efficiency and utilization: Investigating the efficiency and utilization of taxis and ride-

sharing vehicles in a given area. This could involve analyzing data on trip durations, 
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wait times, and vehicle occupancy rates to determine how these factors differ between 

traditional taxis and ride-sharing services. 

VII. Socioeconomic implications: Examining the socioeconomic implications of the 

integration of ride-sharing and traditional taxi systems. This could involve studying the 

impact on employment, income distribution, and accessibility to transportation services 

in different socioeconomic groups. 

VIII. Environmental sustainability: Assessing the environmental sustainability of ride-

sharing services compared to traditional taxis. This could involve analyzing factors such 

as fuel consumption, emissions, and the potential for electric or hybrid vehicles in both 

taxi and ride-sharing fleets. 

IX. Exploring new markets: Shared taxi companies can explore new markets, such as rural 

areas where public transportation options are limited. This can help them to reach a new 

customer base and expand their business. 

Therefore, there are many potential areas for future growth and innovation in the shared taxi 

market in Japan. By focusing on customer needs, utilizing technology, and exploring new 

opportunities, shared taxi companies can continue to thrive and provide valuable transportation 

services to their customers.
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APPENDIX B. MAIN CODE-1 (Shared taxi Fare) 

# In[1]: 

import sys 

import math 

from gurobipy import * 

from gurobipy import Model, GRB, quicksum 

import scipy.sparse as sp 

import pandas as pd 

import numpy as np 

import datetime 

import matplotlib.pyplot as plt 

from itertools import combinations 

stime = datetime.datetime.now() 

# In[2]: 

path = 'I:\\25.11.20\\New gurobi code\My code gurobi\RD\Book06_RD_4_10.csv' 

#path = 'H:\\New\\Book20_5.csv' 

my_data = pd.read_csv(path, header=None, index_col=None, names=['Id', 'x', 'y', 

'serviceTime', 'demand', 'early_limit', 'late_limit', 'Destination']) 

my_data = np.array(my_data) 

# In[3]: 

L = my_data.shape[0] 

K = int((L - 2) / 2) 

 

# initial fare 

capacity = 3 

Ki = 2 

Mf = 630 

a2 = 90 

Id = 1.2 

# x = my_data[:, 1] 

# y = my_data[:, 2] 

s = my_data[:, 3] 
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d = my_data[:, 4] 

e = my_data[:, 5] 

l = my_data[:, 6] 

O_D = my_data[:, 7] 

 

# plt.plot(x[0], y[0], c='r', marker='s') 

# plt.scatter(x[:], y[:], c='b') 

 

speed = 1 

timestamp = np.zeros((L, L)) 

DistanceMatrix = np.zeros((L, L)) 

dN = [1, 1/2, 1/3] 

res = np.zeros((K, 1)) 

tnum = {} 

   for i in list(range(0, L, 1)): 

    for j in list(range(0, L, 1)): 

        DistanceMatrix[i, j] = ((my_data[j, 1] - my_data[i, 1])**2 + (my_data[j, 2] - my_data[i, 

2])**2)**0.5 

        timestamp[i,j]= DistanceMatrix[i, j]/ speed 

 

# In[4]: 

# Variable 

model = Model("FST") 

# model.params.timelimit = 5*60   

# In[5]: 

x = {} 

for i in range(0, L, 1): 

    for j in range(0, L, 1): 

        for k in range (0, K, 1): 

            x[i,j,k] = model.addVar(vtype=GRB.BINARY, name = "x(%s,%s,%s)" %  (i, j, k)) 

model.update() 

y = {} 

for i in range(0, L, 1): 
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    for j in range(0, L, 1): 

        for k in range (0, K, 1): 

            y[i,j,k] = model.addVar(vtype=GRB.BINARY, name = "y(%s,%s,%s)" %  (i, j, k)) 

model.update() 

z = {} 

for i in range(0, L, 1): 

    for j in range(0, L, 1): 

        for k in range (0, K, 1): 

            z[i,j,k] = model.addVar(vtype=GRB.BINARY, name = "z(%s,%s,%s)" %  (i, j, k)) 

model.update() 

w = {} 

for i in range(0, L, 1): 

    for k in range(0, K, 1): 

        for r in range(0, capacity, 1): 

            w[i,k,r] = model.addVar(vtype=GRB.BINARY, name = "w(%s,%s,%s)" % (i, k, r)) 

model.update() 

 # a1= model.addVar(vtype=GRB.CONTINUOUS, name = "a1" ) 

# model.update() 

S = model.addVar(vtype=GRB.BINARY, name = "S" ) 

model.update() 

   

C = {} 

for i in range(0, L, 1): 

    for j in range(0, L, 1): 

        for k in range (0, K, 1): 

            C[i,j,k] = model.addVar(vtype=GRB.CONTINUOUS, name = "C(%s,%s,%s)" %  (i, j, 

k)) 

model.update() 

pC = {} 

for i in range(0, L, 1): 

    for j in range(0, L, 1): 

        for k in range (0, K, 1): 
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            pC[i,j,k] = model.addVar(vtype=GRB.CONTINUOUS, name = "pC(%s,%s,%s)" %  (i, 

j, k)) 

model.update() 

B = {} 

for i in range(0, L, 1): 

    for k in range(0, K, 1): 

        B[i,k] = model.addVar(vtype=GRB.CONTINUOUS, name = "B(%s,%s)" % (i, k)) 

model.update() 

 

N = {} 

for i in range(0, L, 1): 

    for k in range(0, K, 1): 

        N[i,k] = model.addVar(vtype=GRB.CONTINUOUS, name = "N(%s,%s)" % (i, k)) 

model.update() 

 

R = {} 

for i in range(0, L, 1): 

   for j in range(0, L, 1): 

       R[i,j] = model.addVar(vtype=GRB.CONTINUOUS, name = "R(%s,%s)" %  (i, j)) 

model.update() 

Wt = {} 

for i in range(0, L, 1): 

    Wt[i] = model.addVar(vtype=GRB.CONTINUOUS, name = "Wt(%s)" %  (i)) 

model.update() 

 

# In[6]: 

#Constraints 

for i in range(0, L, 1): 

    for j in range(0, L, 1): 

        for k in range (0, Ki, 1): 

            model.addConstr((z[i,j,k] == 1) >> (C[i,j,k] == Mf), name = "D1") 

            model.addConstr((z[i,j,k] == 0) >> (C[i,j,k] >= Mf + R[i,j]), name = "D2") 

model.update() 
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#Equation 1 flow 

for j in range(1, (L-1), 1): 

    model.addConstr(quicksum(x[i,j,k] for i in range(0, L, 1) for k in range(0, Ki, 1)) == 1, name 

= "1b") 

    model.addConstr(quicksum(x[j,i,k] for i in range(0, L, 1) for k in range(0, Ki, 1)) == 1, name 

= "1c") 

    model.addConstr(quicksum(x[j,j,k] for k in range(0, Ki, 1)) == 0, name = "1d") 

    model.addConstr(quicksum(x[j,0,k] for k in range(0, Ki, 1)) == 0, name = "1e") 

    model.addConstr(quicksum(x[(L-1),j,k] for k in range(0, Ki, 1)) == 0, name = "1f")  

model.update() 

 

for k in range(0, Ki, 1): 

    for i in range(1, (L-1), 1): 

        model.addConstr(quicksum(x[j,i,k] for j in range(0, L, 1)) - quicksum(x[i,j,k] for j in 

range(0, L, 1)) == 0, name = "1j") 

        model.addConstr(quicksum(x[i,j,k] for j in range(0, L, 1)) - quicksum(x[j,O_D[i],k] for j 

in range(0, L, 1)) == 0, name = "1k") 

model.update() 

for k in range(0, Ki, 1): 

    model.addConstr(quicksum(x[0,j,k] for j in range(1, (L-1), 1)) == 1, name = "1g") 

    model.addConstr(quicksum(x[i,(L-1),k] for i in range(1, (L-1), 1)) == 1, name = "1h") 

    model.addConstr(x[0,(L-1),k] + x[(L-1),0,k] == 0, name = "1i") 

model.update() 

#Equation 2 Time Window  

for k in range (0, Ki, 1): 

    for i in range (0, L, 1): 

        for j in range (0, L, 1):         

            model.addConstr((x[i,j,k] == 1) >> (B[i,k] + (s[i] + timestamp[i,j]) * x[i,j,k] <= B[j,k]), 

name ="2a") 

        model.addConstr(B[i,k] >= e[i], name = "2b") 

        model.addConstr(B[i,k] <= l[i], name = "2c") 

        # model.addConstr(B[i,k] >= 0, name = "2d") 

model.update() 
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  #Equation 3 Capacity 

for k in range (0, Ki, 1): 

    for i in range(0, L, 1): 

        for j in range(0, L, 1): 

            model.addConstr((x[i,j,k] == 1) >> (N[i,k] + (d[i] * x[i,j,k]) <= N[j,k]), name = "3a") 

        model.addConstr(N[i,k] >= 0, name = "3b") 

        model.addConstr(N[i,k] <= capacity, name = "3c") 

    model.addConstr(N[0,k] == 0, name = "3d") 

    model.addConstr(N[L-1,k] == 0, name = "3e") 

model.update() 

#Equation 7 Fare rate 

for i in range(0, L, 1): 

    for j in range(0, L, 1): 

        model.addConstr(R[i,j] == 0*Wt[i] + a2*(quicksum(x[i,j,k]*DistanceMatrix[i, j] for k in 

range(0, Ki, 1)) - Id), name = "7") 

model.update() 

#Equation_Additional 2 

for i in range(0, L, 1): 

    for j in range(0, L, 1): 

        for k in range(0, Ki, 1): 

            model.addConstr(N[i,k] * y[i,j,k] == 0, name = "A2a") 

            model.addConstr(N[i,k] + y[i,j,k] >= 1, name = "A2b") 

model.update() 

for k in range(0, Ki, 1): 

    for i in range(0, L, 1): 

        for j in range(0, L, 1):     

            model.addConstr((y[i,j,k] == 1) >> (quicksum(w[i,k,r] for r in range(0, capacity, 1)) == 

0), name = "A2c") 

            model.addConstr((y[i,j,k] == 0) >> (quicksum(w[i,k,r] * dN[r] for r in range(0, 

capacity, 1)) == 1), name = "A2d") 

        #model.addConstr((quicksum(w[i,k,r] for r in range(0, capacity, 1)) == N[i, k]), name = 

"A2d") 

model.update() 
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#Equation_Additional 3 

for i in range(0, L, 1): 

    for j in range(0, L, 1): 

        for k in range (0, Ki, 1): 

            model.addConstr(pC[i,j,k] >= quicksum(C[i,j,k] * (w[i,k,r] * dN[r]) for r in range(0, 

capacity, 1)), name = "A3") 

model.update() 

#Equation_Additional 4 

for i in range(0, L, 1): 

    for j in range(0, L, 1): 

        for k in range(0, Ki, 1): 

            model.addConstr((quicksum(x[i,j,k]*DistanceMatrix[i, j] for k in range(0, Ki, 1)) - Id) 

* z[i,j,k] <= 0, name = "A4a") 

            model.addConstr(quicksum(x[i,j,k]*DistanceMatrix[i, j] for k in range(0, Ki, 1)) + (Id 

* z[i,j,k]) >= Id, name = "A4b") 

model.update() 

# In[7]: 

AFsum2 = quicksum((pC[i,j,k] * x[i,j,k]) 

        for i in range(0, L, 1) 

        for j in range(0, L, 1) 

        for k in range(0, Ki, 1)) 

model.setParam("NonConvex", 2) 

Tsum =  AFsum2 

model.setObjective(Tsum, GRB.MINIMIZE) 

model.optimize() 

print('*******************************') 

model.write("FST.lp") 

res = np.zeros((L, L, K)) 

rnp = np.zeros((L, L)) 

rax = np.zeros((1, 3)) 

rnp = np.zeros((L, K)) 

route = np.zeros((Ki, L)) 

route[:, 1:] = (L - 1) 
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for k in range(0, Ki, 1): 

    for i in range(0, L, 1): 

        for j in range(0, L, 1): 

            res[i, j, k] = x[i, j, k].X 

            rnp[i, k] = N[i, k].X 

rax[0, 1] = a2 

rax[0, 2] = Id 

 for k in range(0, Ki, 1): 

    i = 0 

    n = 1 

    while i != (L-1): 

        for j in range(0, L, 1): 

            if res[i, j, k] != 0: 

                route[k, n] = j 

                i = j 

                n = n + 1 

                break 

wtc = 0.0 

dtc = 0.0 

for k in range(0, Ki, 1): 

    for i in range(0, L, 1): 

        for j in range(0, L, 1): 

            if (rnp[i, k] >= 1) and (res[i, j, k] == 1): 

                # wtc = wtc + (rax[0, 0] * rwt[i, j]) 

                dtc = dtc + (rax[0, 1] * DistanceMatrix[i, j]) - rax[0, 2] 

print(wtc) 

print(dtc ) 

 


