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Chapter 1

Introduction

1.1 Optimum design and topology optimization

Most of the products have been developed through trial and error and repeated develop-

ment to bring them closer to convenient products that can be used safely by the all users.

However, there is not perfect product. There is a problem somewhere in them, and they

will fail at anytime. Maybe it will lead to a recall or a major life-threatening accident. As

a countermeasure, researches and developments on optimum design by numerical analysis is

being performed daily in the numerical computation to create better products[1]. Optimum

design is a technique of determining the most appropriate design variables and parameters to

maximize or minimize a performance function (objective function) by satisfying constraints

such as safety and cost. Structural optimization, which is the optimum design for a struc-

ture, can be classified into three types: size optimization[2, 3], shape optimization[4, 5, 6, 7],

and topology optimization[8, 9, 10, 11]. Each optimization is explained below. Size opti-

mization is the easiest method in structural optimization, as shown in Figure 1.1. It uses

dimensions such as length and diameter within a design domain as design variables, and

uses mathematical optimization methods to perform. Shape optimization is an optimization

method that changes the shape of boundary containing the external shape within a design

domain, as shown in Figure 1.2. Thus, it is expected to obtained a structure with high

performance because it has the higher degree of freedom than that of size optimization.

However, shape optimization cannot generate new boundaries, such as changing the number
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of voids in a design domain because it only changes the boundaries. On the other hand,

topology optimization is represented by material distribution within a design domain, as

shown in Figure 1.3. Thus, the number of voids can be changed. Compared to the other

structural optimization, topology optimization has the highest degree of freedom of design

variables and is expected to significantly improve performance. In recent years, the demand

for topology optimization in product design has been increasing. It has been incorporated

in Solidworks[12], which is a mechanical design software, ANSYS[13], which is an analysis

software, and Fusion 360[14], which is a mechanical design software that will be partially

free of charge in 2023. It is growing a familiar method in the field of engineering.

D� D� F

Figure 1.1: Size optimization.

F

Figure 1.2: Shape optimization.

F

Figure 1.3: Topology optimization.
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As mentioned above, topology optimization represents a optimum structure by material

distribution and is employed for conceptual design and weighting reduction to reduce ma-

terial costs. Structural optimization, including topology optimization, requires obtaining

state variables, which are output results in a general analysis. To obtain state variables,

a given mathematical model (differential equations) must be discretized based on a dis-

cretization method to obtain approximate solutions. The discretization method includes the

difference method, the finite element method (FEM), the finite volume method (FVM), and

the boundary element method (BEM)[15]. These methods will be explained. The difference

method is a method of numerically solving unknowns at grid points by approximating deriva-

tives in difference equations by differences and creating difference equations. This method

is characterized by its simple discretization and versatility. For this reason, it is still the

major methods used in the field of computational fluid dynamics. The FEM[16, 17, 18, 19]

was developed for aircraft structural analysis in mid 1950s. The method divides a domain

into a finite number of subdomains and approximates unknowns by superposition of simple

functions. Because a subdomains are arbitrarily shapes, it can be on either structured and

unstructured meshes. This domain part is called an element and the grid point is called

node. In two dimensional problems, there are triangles and quadrilateral elements. Ad-

ditionally, a technique was developed to automatically divide the element[20]. Because an

element geometry is arbitrary, element dividing is relatively easy, even for complex structures

and boundaries, compared to the difference method. The FVM was developed in 1960s for

fluid analysis based on unstructured mesh. As in the FEM, a domain is divided into a finite

number of arbitrarily shapes subdomain called cell. The governing equation is discretized

into integral equation obtained in a control volume controlled at a cell. Thus, it is also called

control volume method. In the discretization, a difference approximation is commonly used

to approximate a derivative, and a midpoint formula is commonly used to approximate an

integral. Thus, the theory of discretization is simple for unstructured meshes and is often

used in commercial fluid analysis codes. The BEM became a popular method in 1970s. It is

based on the old integral equation method and the boundary integral equation method. A
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differential equation representing a phenomenon is expressed in terms of a boundary integral

equation to obtain a numerically approximate solution. It is possible to reduce the number of

dimensions to be analyzed. Thus, this method reduces the domain segmentation. For exam-

ple, it is suitable for problems with infinite domains, such as wave propagation in a ground,

and problems with singularity in a solution, such as stress concentration. In this study,

since both structured and unstructured meshes are targeted, the state variables are obtained

based on FEM, and topology optimization is performed. Next, a classification of topology

optimization is explained. There are three methods to represent material distribution in

topology optimization. The homogenization method[21, 22] creates a microstructure with a

certain shape of vacancy in an element and determines the presence or absence of material

by a size of vacancy, as shown in Figure 1.4. The shapes of vacancies vary, including layered

microstructure[23, 24, 25], rectangular microstructure[26], and hexagonal microstructure[27].

The method can be used to obtain mathematically rigorous function for presence or absence

of material. However, it is well known that numerical calculations are difficult. Moreover,

as long as a function that shows even a qualitative trend is used, it does not require to

be that rigorous in an optimization. Thus, the density method[28, 29] was proposed as a

simple method for engineering. The method represents a material by using density, which

is a non-dimensional quantity, as the design variable, as shown in Figure 1.5. The range is

from 0 to 1. The image of density is similar to a 3D printer’s fill factor, with a density value

closer to 0 indicating no material(void) and a density value closer to 1 indicating material.

There are two methods in the density method, which will be introduced in the next chapter.

However, the method is inconvenient for products because it represents grayscale, which is

an intermediate material. Several countermeasures were proposed. One of the measures is

the level set method[30, 31, 32]. The method expresses a material distribution by the sign of

a function called the level set function, as shown in Figure 1.6. The advantage is that there

is no grayscale and the boundaries between object and cavity domains are clear. In contrast,

the disadvantage is that it is difficult to derive topological derivative for complex problems

such as elastoplastic materials[33]. Thus, this limits to apply. On the other hand, the den-
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sity method can be applied to complex problem such as the elastoplastic materials described

above, and many methods have been studied to suppress grayscale. In addition, compared

to the density method, the level set method is required a large number of iterations, even

for linear problems. It also has the disadvantage of being strongly dependent on the inital

design and conditions[34]. In light of the above, there is no universal method within topology

optimization, as all three methods have their own characteristics. Therefore, it is important

to consider the characteristics of optimum design problem and select an appropriate topol-

ogy optimization methodology. In recent years, besides performance improvement, topology

optimization has also been studied with aesthetic preferences in mind.

(a) Microstructure.

a
1

1b

θ

(b) Unit cell.

Figure 1.4: Homogenization method.
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(a) Material distribution.
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Figure 1.5: Density method.

(a) Material distribution. (b) Image of level set function.

Figure 1.6: Level set method.

1.2 Research trend in topology optimization and mod-

ern manufacturing

Manufacturing and production technologies are growing and changing rapidly. In recent

years, further development has continued based on the guidelines such as the Sustainable

Development Goals (SDGs)[36] and Society 5.0[37]. The SDGs are international goals for a

sustainable and better world by 2030, decided at the United Nations Summit in September
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2015 It was planned after the Millennium Development Goals (MDGs)[38] in 2001. The

MDGs have 8 goals. However, the SDGs have 17 goals and 169 targets. Among the added

goals, guidelines related to manufacturing such as “No.9: Industry, innovation and infras-

tructure” and “No.12: Responsible consumption and production” have been added. It can

be said that the importance of these goals is increasing year by year in the world. In par-

ticular, the targets in No.9 are not just about developing industry. There are targets such

as making resourses use less wastefully and making infrastructure and industry sustainable

for the environment. In other words, it is globally important to establish technologies for

efficient use of resources. Next, the Society 5.0, which is was performed from 2016 to 2020,

will be explained. The Society 5.0 is a concept for the future society proposed by Japan in

5th science and technology basic plan The aims is to achieve both economic developments,

including industry and solutions of social issues through advanced technologies. Social issues

include a review of industry to reduce greenhouse gas emissions, increase production, and

reduce losses. In light of the above, the manufacturing is being considered again in Japan as

well as the SDGs. This trend is also described in a statutory white paper based on Japan’s

basic law for the promotion of basic manufacturing technology. The 2020 white peper[39]

states that deign capability will be enhanced by strengthening the first half of the engineering

chain, lead times from design to production will be shortened, and corporate transformation

capabilities will be enhanced through front-loading, as shown in Figures 1.7 and 1.8. This

strategy has led to the use of computer aided engineering (CAE) in the product design,

and has emphasized the importance of design before manufacturing. The 2023 white paper

states that in Japan’s manufacturing industry, about 90% of large enterprise and 50% of

small and Medium-sized enterprise have begun decarbonization efforts. This includes not

only the front-loading mentioned above, but also a review due to weight reduction. Here,

hybrid vehicles, in which Japanese firms have a 56.3% share of the global market, are cited

as an example. Japan Automobile Manufactures Associate (JAMA) introduced major fuel

efficiency important technologies as part of its efforts to improve automobile fuel economy

to reduce CO2 emissions by 2022. Specifically, JAMA stated that the weight reduction of
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vehicle is a factor that contributes to improved fuel economy, and suggested improvements in

body structure and increased use of lightweight materials. Researchers at the Toyota Central

R&D Labs., Inc. also noted the importance of weighting reduction They described that its

weighting reduction is more important than ever in longer driving ranges for electric vehicles

and other vehicles. The above shows the importance and difficulty of weight reduction in

the industry. Figure 1.9 shows the number of papers by year when “Topology optimization”

is used as a search term in Science direct and Scopus, which are the paper search services.

The number of papers has been increasing since around 2015, and research is active.

Planning Product 
design

Process 
design

Manufacturing

Determinism of 
quality and cost

Degrees of 
freedom of design

20

80

100
(%)

80% determinants of 
quality and cost

Little freedom 
in design variables

Figure 1.7: Relationship between degrees of freedom of design and quality/cost.
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Figure 1.8: Reduced workload through front-loading.
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1.3 Aims in the research

The aim of this research is to propose a new updating method for the optimality criteria

(OC) method[43], which is an update equation for design variables used in density-based

topology optimization, by incorporating Newton’s method, which is a fast algorithm for

nonlinear equation. Density-based topology optimization is topology optimization based on

the density method, a theory that is also implemented in the commercial software men-

tioned above. The derivation of the performance function is needed to solve optimum design

problems involving topology optimization. When the performance function is a function of

the state variables, the derivative of the performance function with respect to variations in

the design variables must be obtained under equality constraints of state decision problems.

The direct derivative method using the chain rue of differentiation and the adjoint variable

method using the Lagrange multiplier method are available. The direct derivative method

is suitable for multi-constraint problems with few design variables. In contrast, the adjoint

variable method is suitable for problems with fewer constraints and more design variables.

From above, the adjoint variable method is employed in this topology optimization to find

optimum design variables for the number of elements.

Next, the update equation is explained. Since the proposed method is based on the OC

method and Newton’s method, each method is described below. Before explaining the OC

method, the explanation of the fully stressed design, which is considered to be closely re-

lated to the OC method, is described. The fully stressed design is the method before size

optimization was proposed, and refers to the design in which each member reaches its allow-

able stress assuming a static truss structure. The feature is that the design aims to ensure

that each structural member reaches a critical value, rather than including a minimizing or

maximizing performance function and constraint conditions in problem formulations as in

optimum design problems. Thus, it is not a mathematical concept that existed from the

beginning, but a basic design concept that was developed from the intuition and experience

of engineers. Moreover, the algorithm is quite intuitive, since the design aims to ensure all
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stress in each structural member satisfy the allowable value. The theory is not necessarily

accurate as a mathematical theory. However, it has had a significant impact on optimum

design theories and methods, and is still considered the useful design methods from an en-

gineering perspective. The iterative method for the fully stressed method uses the ratio of

the current stress value to the critical value to defines the updating of design variables as

d
(k+1)
⟨i⟩ = d

(k)
⟨i⟩

(
σ
(k)
⟨i⟩

σ̄
(k)
⟨i⟩

)α

(1.1)

where d⟨i⟩ is the i-th design variable, σ⟨i⟩ is the stress in i-th structural member, σ̄
(k)
⟨i⟩ is criti-

cal value of the member, and α is the relaxation factor. The relaxation factor α is generally

set to 1. Equation (1.1) is an equation similar to the update equation for the OC method

described later. The OC method used to update design variables is closely related to the

fully stressed design, which is as mentioned above. The method employs heuristics to find an

optimum solution that satisfies the Karush-Kuhn-Tucker (KKT) condition. A new updating

method is derived that incorporates the concept of Newton’s method for nonlinear equations

into the OC method, which is to find solutions that are close to correct solution to some

extent. The Newton’s method is characterized by faster convergence than other iterative

methods. Newton’s method was developed by the physicist and mathematician Sir Isaac

Newton (1642–1727). The detailed description is described in chapter 2. In the optimum

design problems, the approximate analysis time is determined by three factors: state anal-

ysis, sensitivity analysis, and the number of iterations of the entire computational flow, as

shown in Figure 1.11. High performance computer systems such as supercomputers, Fugaku,

have been developed to perform high speed calculations. Recently, giga-voxel computational

morphogenesis for structural design using the density-based topology optimization was re-

ported in Nature, one of the world’s top three journals, with an element count of about 1.1

billion[46]. This allows for, preference-based topology optimization for vehicle concept de-

sign with concurrent static and crash load cases[47], and topology optimization of frequency

responses of fluid–structure interaction systems[48], all on high performance computer sys-

tems. As shown in the research examples above, topology optimization is being performed on
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a large scale and in a wide range of fields. However, when performing these optimizations, it

is impractical to perform iterative analyses for appropriate parameter settings. In addition,

overconfidence in the performance of supercomputer systems is to be avoided. Thus, various

studies have been conducted on the three factors mentioned above to improve calculation

speed and accuracy by revising the theory. Recent researches for sensitivity analysis have

reported studies on accuracy of sensitivity analysis[49, 50] and on the suppression of sensi-

tivity oscillations in the iteration direction[51]. Several other recent researches on the update

equation have been reported, including studies on gradient method considering higher-order

gradients[52, 53] and on accelerated gradient methods[54, 55]. However, few researches have

improved the OC method. Although the OC method is faster than gradient methods such

as the steepest descent method, it is not a perfect method. There are several parameters

that the engineer must set, which will be shown in the next chapter, and the results obtained

will vary depending on how they are set[56]. In addition, it has the disadvantage that it can

not be employed under conditions such as when the sensitivity is positive. The OC method

required the setting of weighting factor and move-limit as described below. Some methods

have been developed that do not set the move-limit, but no method has been developed

that does not require arbitrary parameters such move-limit and weighting factor. When

the move-limit is set small, an optimal solution is obtained steadily, but the update speed

becomes slow. On the other hand, when it is set large, the update speed becomes rapid. The

relationship between the update speed is not only related to the move-limit. The weighting

factor is also related. Figure 1.10 shows the differences in density distribution depending

on the move-limit setting value. When the move-limit is set appropriately, the density is

gradually updated to obtaine an optimal density distribution, as shown in the uppar side

of Figure 1.10. The density values never suddenly approach zero, and a structure is always

updated so that there is always a connection between the elements. On the other hand,

when the move-limit is set large, the density is updated rapidly and the update becomes

unstable, as shown in the lower side of Figure 1.10. This may lead to a structure with a high

performance function. The weighting factor and the move-limit are empirical parameters,
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and their appropriate values differ for each analysis. This leads me to contemplate that it is

important to provide appropriate weighting factor for an optimization problem. It is impor-

tant to provide appropriate weighting factor for an optimization problem. If the weighting

factor is given as a function of the design variables, the move-limit is not required to be set.

The aim of this research is to propose a new update equation based on the OC method to

reduce the number of iterations for obtaining optimum results and to reduce the burden on

engineers using topology optimization.
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Figure 1.10: Differences in density distributions depending on the move-limit setting value.

In the next and subsequent chapters, density-based topology optimization for strain en-

ergy minimization and introduce the proposed modified OC method. The strain energy

minimization problem is a problem of self-adjoint relationship that does not require solving

an adjoint equation. After that, density-based topology optimization is performed for von

Mises stress minimization, which is a problem of non-self-adjoint relationship that require

solving an adjoint equation. While strain energy minimization problems are fundamental

consideration in structural optimization, they are not often employed in actual design. When

designing machines and structures, the materials must be able to wishstand the actual load

adequately. In addition, consideration must be given to ensure that they will not break
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down during their service life. This is important when designing, because if the machines

a structure do not function safely, it will lead to a serious accident. It is the engineer’s

responsibility to prevent this. Therefore, in mechanical design, the engineer must calculate

the stresses in each part of them and take care that they do not exceed the allowable limits

of the material used. The factor for safety required for strength calculations is determined

by the allowable stress and reference strength. Thus, the topology optimization for von

Mises stress minimization problems is performed The von Mises stress is a scalar value that

aggregates the stresses used as a design safety index in actual design. The verification of the

results obtained by these optimization problems will be demonstrated by actual experiments.

From the results, their industrial applicability and usefulness will be discussed. Finally, a

multi-objective topology optimization combining the performances of the strain energy min-

imization problem and the von Mises stress minimization problem is performed. From all

results, the usefulness of the proposed method is described.
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Figure 1.11: Flowchart of structural optimization.
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1.4 Thesis structure

The subsequent chapters of this thesis are organized as follows.

• Chapter 2 Topology optimization in the problems of self-adjoint relation and deriva-

tion of the modified OC method

• Chapter 3 Topology optimization in the problems of non-self-adjoint relation

• Chapter 4 Demonstration of numerical results by uniaxial tensile testing

• Chapter 5 Multi-objective topology optimization

• Chapter 6 Conclusion

【 Chapter 2 】
Topology optimization
in problem of self-adjoint relationship

【 Chapter 3 】
Topology optimization
in problem of non-self adjoint relationship

【 Chapter 4 】
Demonstration of numerical results by tensile testing

【 Chapter 5 】
Multi-objective topology optimization

Optimization : Strain energy minimization
   Positive definite 
   Always negative sensitivity
       Proposal : Modified OC method

Optimization : Von Mises stress minimization
   Negative definite
   Not always negative sensitivity 
       Proposal : Min-Max Normalized (MMN)
   modified OC method

Strain energy minimization vs Von Mises stress minimization
Update method : Modified OC method / MMN modified OC method

Optimization : Strain energy minimization and Von Mises stress minimization
       Proposal : Mapping-based modified OC method

Which is better for design?

Figure 1.12: Relationship between chapters.



Chapter 2

Topology optimization in the problem of

self-adjoint relationship and derivation of a

modified optimality criteria method

2.1 Formulation of topology optimization for strain en-

ergy minimization in steady problems

The optimization problem consists of a performance function and constraint conditions.

It is found the maximum or minimum performance function while satisfying the constrains.

Thus, the optimization problem performed in this chapter aims to find a material distribution

that minimizes a strain energy in steady state and satisfies the target volume in the design

domain Ω. It is a basic study for the topology optimization. Equation (2.1) shows the

strain energy in steady state, which is the performance function, Equation (2.2) shows the

discretized governing equation for isotropic linear elastic body in steady state, Equation

(2.3) shows the volume constraint for a target volume, and Equation (2.4) shows the density

constraint for the value of density ρ⟨e⟩ in an element e to be 0 to 1, respectively. Optimization

problems including constraint such as the volume constraint are called inequality-constrained
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optimization problem.

minimize J =
∑
e∈Ω

1

2

{
f⟨e⟩
}T {

u⟨e⟩
}
=
∑
e∈Ω

1

2

{
u⟨e⟩
}T [

K⟨e⟩
] {

u⟨e⟩
}

(2.1)

subject to [K] {u} = {f} (2.2)

V =
∑
e∈Ω

V⟨e⟩ρ⟨e⟩
Vtotal

− ρ̄0 ≤ 0 (2.3)

0 ≤ ρ⟨e⟩ ≤ 1 (2.4)

Here,
[
K⟨e⟩

]
,
{
u⟨e⟩
}
, and

{
f⟨e⟩
}
are the stiffness matrix in an element, displacement vector,

and load vector, respectively. In addition, V⟨e⟩, ρ⟨e⟩, Vtotal, and ρ̄0 are the volume or area

in an element, density (design variable), total volume or area in the design domain Ω, and

initial density average, respectively. Here, { } represents the vector and [ ] represents the

matrix. The superscript T denotes the transposed matrix and the subscript ⟨e⟩ denotes the

element e. The displacement vector
{
u⟨e⟩
}
is related to all density functions ρ⟨e⟩(e ∈ Ω),

however the displacement of element e is dominated by the value of the density in element

e. Thus, the stiffness matrix
[
K⟨e⟩

]
and displacement vector

{
u⟨e⟩
}

are assumed to be

function of the density ρ⟨e⟩. The effect of density values of neighboring elements is taken

into account using the sensitivity filter described below. To solve the optimization problem

shown above, the Lagrange multiplier method is employed. The method is a mathematical

technique for optimization subject to constraints. Here, the optimization is performed to

satisfy the governing equation shown in Equation (2.2) and to minimize the performance

function shown in Equation (2.1). The Lagrange function J∗ is defined as

J∗ =
∑
e∈Ω

J∗
⟨e⟩

=
∑
e∈Ω

J⟨e⟩ +
{
λ⟨e⟩
}T ([

K⟨e⟩
] {

u⟨e⟩
}
−
{
f⟨e⟩
})

(2.5)

where
{
λ⟨e⟩
}

is the Lagrange multiplier vector. In the subsequent expansions, the per-

formance function J⟨e⟩ in the element e is calculated because the calculation is performed

independently for each element. The optimum solution in an optimization problem is the

extreme value in mathematics. Maximization problems search for maximum value, and min-

imization problems search for minimum value. Note that the maximum or minimum in
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mathematics is the global optimum solution. In this study, the objective is to find a local

optimum solution, which is an extreme value. Moreover, not all optimization problems can

be solved. It is difficult to solve the optimization problem unless the KKT condition is

satisfied, as in

∂L

∂xi

=
∂f (x)

∂xi

+ λ
∂g (x)

∂xi

= 0

λg (x) = 0

λ ≥ 0

g (x) ≤ 0

(i = 1, 2, ..., n) (2.6)

Extreme value is the value of a function when the gradient of a function is zero. That is,

each term should be zero as shown in Equation (2.7), and the first variate of the Lagrange

function δJ∗
⟨e⟩ should be zero.

δJ∗
⟨e⟩ =

{
∂J∗

⟨e⟩

∂λ⟨e⟩

}T {
δλ⟨e⟩

}
+

{
∂J∗

⟨e⟩

∂u⟨e⟩

}T {
δu⟨e⟩

}
+

∂J∗
⟨e⟩

∂ρ⟨e⟩
δρ⟨e⟩ = 0 (2.7)

The constant terms may also be written, but need not be expanded since the variates are

zero. Each of the gradients and variables shown in Equation (2.7) can be expressed as{
∂J∗

⟨e⟩

∂λ⟨e⟩

}
= {0} ,

{
δλ⟨e⟩

}
̸= {0} (2.8)

{
∂J∗

⟨e⟩

∂u⟨e⟩

}
= {0} ,

{
δu⟨e⟩

}
̸= {0} (2.9)

∂J∗
⟨e⟩

∂ρ⟨e⟩
= 0, δρ⟨e⟩ ̸= 0 (2.10)

As shown in Equations (2.8) to (2.10), the variates are not zero. Thus, the gradients with

respect to the density ρ⟨e⟩ are obtained zero, as shown in Equations (2.8) to (2.10). Next,

each gradient is expanded. The gradient of the Lagrange function J with respect to the

Lagrange multiplier vector
{
λ⟨e⟩
}
shown in Equation (2.8) is expanded as{

∂J∗
⟨e⟩

∂λ⟨e⟩

}
=
[
K⟨e⟩

] {
u⟨e⟩
}
−
{
f⟨e⟩
}
= {0} (2.11)
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Equation (2.11) does not need to be solve because it is the same equation as the governing

equation shown in Equation (2.2). Next, the gradient of the Lagrange function J with

respect to the displacement vector
{
u⟨e⟩
}
shown in Equation (2.9) is obtained. The gradient

of the Lagrange function J with respect to the displacement vector
{
u⟨e⟩
}
is expanded as{

∂J∗
⟨e⟩

∂u⟨e⟩

}
=

{
∂J⟨e⟩

∂u⟨e⟩

}
+
{
λ⟨e⟩
}T ([

K⟨e⟩
]{ ∂

∂u⟨e⟩

}({
u⟨e⟩
}))

=
1

2

{
∂

∂u⟨e⟩

}({
u⟨e⟩
}T) [

K⟨e⟩
] {

u⟨e⟩
}

+
1

2

{
u⟨e⟩
}T [

K⟨e⟩
]{ ∂

∂u⟨e⟩

}({
u⟨e⟩
})

+
{
λ⟨e⟩
}T [

K⟨e⟩
]

=
[
K⟨e⟩

] {
u⟨e⟩
}
+
[
K⟨e⟩

] {
λ⟨e⟩
}

= {0} (2.12)

where the stiffness matrix
[
K⟨e⟩

]
is assumed to be a symmetric matrix. From Equation

(2.12), the relationship can be obtained as

{
λ⟨e⟩
}
= −

{
u⟨e⟩
}

(2.13)

This relationship is called the self-adjoint relationship. It is not necessary to solve the

adjoint equation to find the adjoint variables, which are the Lagrange multipliers. Finally,

the gradient of the Lagrange function J with respect to the density ρ⟨e⟩ is expanded as

∂J∗
⟨e⟩

∂ρ⟨e⟩
=

∂J⟨e⟩

∂ρ⟨e⟩
+
{
λ⟨e⟩
}T (∂

[
K⟨e⟩

]
∂ρ⟨e⟩

{
u⟨e⟩
}
+
[
K⟨e⟩

]{∂u⟨e⟩

∂ρ⟨e⟩

})

=
1

2

{
∂u⟨e⟩

∂ρ⟨e⟩

}T [
K⟨e⟩

] {
u⟨e⟩
}
+

1

2

{
u⟨e⟩
}T ∂

[
K⟨e⟩

]
∂ρ⟨e⟩

{
u⟨e⟩
}
+

1

2

{
u⟨e⟩
}T [

K⟨e⟩
]{∂u⟨e⟩

∂ρ⟨e⟩

}
+
{
λ⟨e⟩
}T ∂

[
K⟨e⟩

]
∂ρ⟨e⟩

{
u⟨e⟩
}
+
{
λ⟨e⟩
}T [

K⟨e⟩
]{∂u⟨e⟩

∂ρ⟨e⟩

}
=

({
u⟨e⟩
}T [

K⟨e⟩
]
+
{
λ⟨e⟩
}T [

K⟨e⟩
]){∂u⟨e⟩

∂ρ⟨e⟩

}
+

1

2

{
u⟨e⟩
}T ∂

[
K⟨e⟩

]
∂ρ⟨e⟩

{
u⟨e⟩
}

+
{
λ⟨e⟩
}T ∂

[
K⟨e⟩

]
∂ρ⟨e⟩

{
u⟨e⟩
}

(2.14)
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Using the self-adjoint relationship shown in Equation (2.13), the gradient of the Lagrange

function J with respect to the density ρ⟨e⟩ is rewritten as

∂J∗
⟨e⟩

∂ρ⟨e⟩
= −1

2

{
u⟨e⟩
}T ∂

[
K⟨e⟩

]
∂ρ⟨e⟩

{
u⟨e⟩
}

(2.15)

This gradient is called sensitivity. Up to here, only the governing equation have been con-

sidered as constraint. From next, the Lagrange function L is defined to satisfy the volume

constraint shown in Equation (2.3). The gradient of the Lagrange function L with respect

to the density ρ⟨e⟩ is calculated as

∂L⟨e⟩

∂ρ⟨e⟩
=

∂J∗
⟨e⟩

∂ρ⟨e⟩
+ Λ

∂V

∂ρ⟨e⟩
= 0 (2.16)

where Λ is the Lagrange multiplier. Equation (2.16) can be transformed as

∂J∗
⟨e⟩

∂ρ⟨e⟩

−Λ ∂V
∂ρ⟨e⟩

= 1 (2.17)

where the sensitivity in the numerator of Equation (2.17) is always negative and the gradient

of the Lagrange function L with respect to the density ρ⟨e⟩ and the Lagrange multiplier Λ in

the denominator of Equation (2.17) are always positives. Thus, there exists a solution that

satisfies the KKT condition. From the above, the OC method, which is an update equation,

is derived as

ρ
(k+1)
⟨e⟩ = ρ

(k)
⟨e⟩

 ∂J∗
⟨e⟩

∂ρ⟨e⟩

(k)

−Λ(k) ∂V
∂ρ⟨e⟩

(k)


η

= ρ
(k)
⟨e⟩

(
A

(k)
⟨e⟩

)η
(2.18)

where η is the weighting factor and is a constant. Moreover, the superscript (k) is the

number of iterations. The OC method will always update A
(k)
⟨e⟩ to be 1 through this iterative

calculation, thus satisfying Equation (2.17). The OC method is characterized by a faster

update speed that the steepest descent method. The steepest descent is popular method for

update equation in structural optimization problems. On the other hand, it may be too fast

and therefore exceed the upper and lower limits of the design variables initially set during
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the design variables update phase. As a countermeasure, the following updating constraints

are applied to the Equation (2.18).

ρ
(k+1)
⟨e⟩ =


ρL⟨e⟩

(k)
(
if ρ

(k)
⟨e⟩

(
A

(k)
⟨e⟩

)η
≤ ρL⟨e⟩

(k)
)
,

ρ
(k)
⟨e⟩

(
A

(k)
⟨e⟩

)η (
if ρL⟨e⟩

(k) ≤ ρ
(k)
⟨e⟩

(
A

(k)
⟨e⟩

)η
≤ ρU⟨e⟩

(k)
)
,

ρU⟨e⟩
(k)

(
if ρ

(k)
⟨e⟩

(
A

(k)
⟨e⟩

)η
≥ ρU⟨e⟩

(k)
) (2.19)

Here, ρL⟨e⟩
(k)

and ρU⟨e⟩
(k)

are set as the upper and lower limits as in

ρL⟨e⟩
(k)

= max
(
ρ
(k)
⟨e⟩ − ρmove, 0

)
ρU⟨e⟩

(k)
= min

(
ρ
(k)
⟨e⟩ + ρmove, 1

)
(2.20)

2.2 Topology optimization for strain energy minimiza-

tion in dynamic oscillation problems

2.2.1 Formulation and sensitivity of topology optimization in dy-

namic oscillation problems

This subsection describes the formulation of topology optimization for strain energy min-

imization in dynamic oscillation problems. Figure 2.1 shows the history of strain energy

versus time for an element. When strain energy is used as the performance function, as

in steady problems, dynamic oscillation problems can be classified into positive work and

negative work in an element, as shown in Figure 2.1. Thus, simply using the sum of strain

energy as the performance function may cancel each other out.

In this study, strain energy is classified into two works: positive work and negative work,

and optimization problems are solved as maximization and minimization problems, respec-

tively. The maximization problem can be replaced by a minimization problem by adding a

negative sign to the performance function. Equation (2.21) shows the performance function
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Figure 2.1: Strain energy waveform in an element.

in dynamic oscillation problem, Equation (2.22) shows the equation of work expressed in ab-

solute value for this optimization problem, Equation (2.23) shows the discretized governing

equation in dynamic oscillation problem, Equation (2.24) shows the volume constraint, and

Equation (2.25) shows the density constraint, respectively. The volume constraint shown in

Equation (2.24) and the density constraint shown in Equation (2.25) are the same as the

constrains used in the topology optimization for steady problem described in the previous

section. In this thesis, the constraints do not change in subsequent optimization problems

as well because the same constraint conditions are employed in topology optimization.

minimize J =

∫ tf

0

∑
e∈Ω

J⟨e⟩dt (2.21)

J⟨e⟩ =
1

2

∣∣∣{f⟨e⟩}T {u⟨e⟩
}∣∣∣ (2.22)

subject to [M ] {ü}+ [C] {u̇}+ [K] {u} = {f} (2.23)

V =
∑
e∈Ω

V⟨e⟩ρ⟨e⟩
Vtotal

− ρ̄0 ≤ 0 (2.24)

0 ≤ ρ⟨e⟩ ≤ 1 (2.25)
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Here, the mass matrix [M ] is defined as Equation (2.26), and the damping matrix [C] is

defined as Equation (2.27) from the Rayleigh damping.

[
M⟨e⟩

]
=

∫
Ω⟨e⟩

d⟨e⟩
[
N⟨e⟩

]T [
N⟨e⟩

]
dΩ (2.26)

[
C⟨e⟩

]
= ζ⟨e⟩

(
α1

[
M0⟨e⟩

]
+ α2

[
K0⟨e⟩

])
(2.27)

Here,
[
M0⟨e⟩

]
and

[
K0⟨e⟩

]
is the mass and stiffness matrices for certain material. Moreover,

α1 and α2 are the parameters for the Rayleigh damping. First, the Lagrange function J∗

is defined to consider only the governing equation, as in topology optimization for strain

energy minimization in steady problems.

J∗ =
∑
e∈Ω

∫ tf

0

J⟨e⟩ +
1

2

{
λ⟨e⟩
}T ([

M⟨e⟩
] {

ü⟨e⟩
}
+
[
C⟨e⟩

] {
u̇⟨e⟩
}
+
[
K⟨e⟩

] {
u⟨e⟩
}
−
{
f⟨e⟩
})

dt

=
∑
e∈Ω

J∗
⟨e⟩ (2.28)

The first variable of the Lagrange function J∗
⟨e⟩ in the element e shown in Equation (2.28) is

taken. As in the previous section, before solving for the gradient of the Lagrange function

J∗
⟨e⟩ for each variable, the time segments required for the case assignment of the performance

function shown in Equation (2.22) are defined. The time segments are classified into four

categories: starting time of an integral domain for positive work t
(−)
pi , end time of an integral

domain for positive work t
(+)
pi , starting time of an integral domain for negative work t

(−)
ni , and

end time of an integral domain for negative work t
(+)
ni . First, the gradient of the Lagrange

function J with respect to the Lagrange multiplier vector
{
λ⟨e⟩
}
is calculated as{

∂J∗
⟨e⟩

∂λ⟨e⟩

}
=

∫ tf

0

1

2

{
∂

∂λ⟨e⟩

}({
λ⟨e⟩
}T)

([
M⟨e⟩

] {
ü⟨e⟩
}
+
[
C⟨e⟩

] {
u̇⟨e⟩
}
+
[
K⟨e⟩

] {
u⟨e⟩
}
−
{
f⟨e⟩
})

dt

= {0} (2.29)

Equation (2.29) is zero from the governing equation shown in Equation (2.23). Next, the gra-

dient of the Lagrange function J with respect to the displacement vector
{
u⟨e⟩
}
is calculated
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as {
∂J∗

⟨e⟩

∂u⟨e⟩

}
=

∫ tf

0

{
∂J⟨e⟩

∂u⟨e⟩

}
+

1

2

{
λ⟨e⟩
}T ([

M⟨e⟩
]{ ∂

∂u⟨e⟩

}({
ü⟨e⟩
})

+

[
C⟨e⟩

]{ ∂

∂u⟨e⟩

}({
u̇⟨e⟩
})

+
[
K⟨e⟩

]{ ∂

∂u⟨e⟩

}({
u⟨e⟩
}))

dt (2.30)

Assuming that the summed gradient is smaller when the respective gradients are minimized,

the positive work and negative work are separated, as shown in{
∂J∗

⟨e⟩

∂u⟨e⟩

}
=

m+∑
i=1

{
∂J∗

⟨e⟩pi
∂u⟨e⟩

}
+

m−∑
i=1

{
∂J∗

⟨e⟩ni

∂u⟨e⟩

}
(2.31)

where m+ and m− are the number of positive work and negative work integral domains. It

is calculated from positive work case shown in the first term of Equation (2.31).{
∂J∗

⟨e⟩pi
∂u⟨e⟩

}
=

∫ t
p
(+)
i

t
p
(−)
i

1

2

{
f⟨e⟩
}T { ∂

∂u⟨e⟩

}({
u⟨e⟩
})

+
1

2

{
λ⟨e⟩
}T ([

M⟨e⟩
]{ ∂

∂u⟨e⟩

}({
ü⟨e⟩
})

+

[
C⟨e⟩

]{ ∂

∂u⟨e⟩

}({
u̇⟨e⟩
})

+
[
K⟨e⟩

]{ ∂

∂u⟨e⟩

}({
u⟨e⟩
}))

dt (2.32)

Using integration by parts, the acceleration vector
{
ü⟨e⟩
}

and velocity vector
{
u̇⟨e⟩
}

are

transformed into the displacement vector
{
u⟨e⟩
}
. Assuming that the acceleration vector{

ü⟨e⟩
}
, velocity vector

{
u̇⟨e⟩
}
, and displacement vector

{
u⟨e⟩
}
are zero at the starting time

of an integral domain for positive work t
(−)
pi , end time of an integral domain for positive work

t
(+)
pi , Equations (2.33) and (2.34) are obtained.∫ t

p
(+)
i

t
p
(−)
i

{
λ⟨e⟩
}T [

M⟨e⟩
]{ ∂

∂u⟨e⟩

}({
ü⟨e⟩
})

dt

=

[{
λ⟨e⟩
}T [

M⟨e⟩
]{ ∂

∂u⟨e⟩

}({
u̇⟨e⟩
})]t(+)

pi

t
(−)
pi

−
[{

λ̇⟨e⟩

}T [
M⟨e⟩

]{ ∂

∂u⟨e⟩

}({
u⟨e⟩
})]t(+)

pi

t
(−)
pi

+

∫ t
p
(+)
i

t
p
(−)
i

{
λ̈⟨e⟩

}T [
M⟨e⟩

]{ ∂

∂u⟨e⟩

}({
u⟨e⟩
})

dt

=

∫ t
p
(+)
i

t
p
(−)
i

{
λ̈⟨e⟩

}T [
M⟨e⟩

]{ ∂

∂u⟨e⟩

}({
u⟨e⟩
})

dt (2.33)
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∫ t
p
(+)
i

t
p
(−)
i

{
λ⟨e⟩
}T [

C⟨e⟩
]{ ∂

∂u⟨e⟩

}({
u̇⟨e⟩
})

dt

=

[{
λ⟨e⟩
}T [

M⟨e⟩
]{ ∂

∂u⟨e⟩

}({
u⟨e⟩
})]t(+)

pi

t
(−)
pi

−
∫ t

p
(+)
i

t
p
(−)
i

{
λ̇⟨e⟩

}T [
M⟨e⟩

]{ ∂

∂u⟨e⟩

}({
u⟨e⟩
})

dt

= −
∫ t

p
(+)
i

t
p
(−)
i

{
λ̇⟨e⟩

}T [
M⟨e⟩

]{ ∂

∂u⟨e⟩

}({
u⟨e⟩
})

dt (2.34)

Substituting Equations (2.33) and (2.34) into Equation (2.32), it is written as{
∂J∗

⟨e⟩pi
∂u⟨e⟩

}
=

1

2

∫ t
p
(+)
i

t
p
(−)
i

({
f⟨e⟩
}T

+
{
λ̈⟨e⟩

}T [
M⟨e⟩

]
−
{
λ̇⟨e⟩

}T [
C⟨e⟩

]
+
{
λ⟨e⟩
}T [

K⟨e⟩
])

{
∂

∂u⟨e⟩

}({
u⟨e⟩
})

dt (2.35)

The gradient of the Lagrange function with respect to the displacement vector is zero in

the positive work domain if the parenthesis in Equation (2.35) is zero. Using the fact that

the mass matrix
[
M⟨e⟩

]
, damping matrix

[
C⟨e⟩

]
, and stiffness matrix

[
K⟨e⟩

]
are symmetric

matrices, the parenthesis is rewritten as

[
M⟨e⟩

] {
λ̈⟨e⟩

}T

−
[
C⟨e⟩

] {
λ̇⟨e⟩

}T

+
[
K⟨e⟩

] {
λ⟨e⟩
}T

= −
{
f⟨e⟩
}T

(2.36)

From Equations (2.24) and (2.36), the following self-adjoint relationships hold for positive

work. {
λ̈⟨e⟩

}
= −

{
ü⟨e⟩
}
,
{
λ̇⟨e⟩

}
=
{
u̇⟨e⟩
}
,
{
λ⟨e⟩
}
= −

{
u⟨e⟩
}

(2.37)

It is calculated from negative work case shown in the second term of Equation (2.31).{
∂J∗

⟨e⟩ni

∂u⟨e⟩

}
=

∫ t
n
(+)
i

t
n
(−)
i

−1

2

{
f⟨e⟩
}T { ∂

∂u⟨e⟩

}({
u⟨e⟩
})

+
1

2

{
λ⟨e⟩
}T ([

M⟨e⟩
]{ ∂

∂u⟨e⟩

}({
ü⟨e⟩
})

+

[
C⟨e⟩

]{ ∂

∂u⟨e⟩

}({
u̇⟨e⟩
})

+
[
K⟨e⟩

]{ ∂

∂u⟨e⟩

}({
u⟨e⟩
}))

dt (2.38)

The same procedure is used for negative work as for positive work. Using integration by

parts, the acceleration vector
{
ü⟨e⟩
}

and velocity vector
{
u̇⟨e⟩
}

are transformed into the

displacement vector
{
u⟨e⟩
}
. Assuming that the acceleration vector

{
ü⟨e⟩
}
, velocity vector
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{
u̇⟨e⟩
}
, and displacement vector

{
u⟨e⟩
}
are zero at the starting time of an integral domain

for negative work t
(−)
ni , end time of an integral domain for negative work t

(+)
ni , Equation (2.39)

and Equation (2.40) are obtained.∫ t
n
(+)
i

t
n
(−)
i

{
λ⟨e⟩
}T [

M⟨e⟩
]{ ∂

∂u⟨e⟩

}({
ü⟨e⟩
})

dt

=

[{
λ⟨e⟩
}T [

M⟨e⟩
]{ ∂

∂u⟨e⟩

}({
u̇⟨e⟩
})]t(+)

ni

t
(−)
ni

−
[{

λ̇⟨e⟩

}T [
M⟨e⟩

]{ ∂

∂u⟨e⟩

}({
u⟨e⟩
})]t(+)

ni

t
(−)
ni

+

∫ t
n
(+)
i

t
n
(−)
i

{
λ̈⟨e⟩

}T [
M⟨e⟩

]{ ∂

∂u⟨e⟩

}({
u⟨e⟩
})

dt

=

∫ t
n
(+)
i

t
n
(−)
i

{
λ̈⟨e⟩

}T [
M⟨e⟩

]{ ∂

∂u⟨e⟩

}({
u⟨e⟩
})

dt (2.39)

∫ t
n
(+)
i

t
n
(−)
i

{
λ⟨e⟩
}T [

C⟨e⟩
]{ ∂

∂u⟨e⟩

}({
u̇⟨e⟩
})

dt

=

[{
λ⟨e⟩
}T [

M⟨e⟩
]{ ∂

∂u⟨e⟩

}({
u⟨e⟩
})]t(+)

ni

t
(−)
ni

−
∫ t

n
(+)
i

t
n
(−)
i

{
λ̇⟨e⟩

}T [
M⟨e⟩

]{ ∂

∂u⟨e⟩

}({
u⟨e⟩
})

dt

= −
∫ t

n
(+)
i

t
n
(−)
i

{
λ̇⟨e⟩

}T [
M⟨e⟩

]{ ∂

∂u⟨e⟩

}({
u⟨e⟩
})

dt (2.40)

Substituting Equations (2.39) and (2.40) into Equation (2.38), it is written as{
∂J∗

⟨e⟩ni

∂u⟨e⟩

}
=

1

2

∫ t
n
(+)
i

t
n
(−)
i

(
−
{
f⟨e⟩
}T

+
{
λ̈⟨e⟩

}T [
M⟨e⟩

]
−
{
λ̇⟨e⟩

}T [
C⟨e⟩

]
+
{
λ⟨e⟩
}T [

K⟨e⟩
])

{
∂

∂u⟨e⟩

}({
u⟨e⟩
})

dt (2.41)

The gradient of the Lagrange function with respect to the displacement vector is zero for

the negative work domain if the parenthesis in Equation (2.41) is zero. Using the fact that

the mass matrix
[
M⟨e⟩

]
, damping matrix

[
C⟨e⟩

]
, and stiffness matrix

[
K⟨e⟩

]
are symmetric

matrices, the parenthesis is rewritten as

[
M⟨e⟩

] {
λ̈⟨e⟩

}T

−
[
C⟨e⟩

] {
λ̇⟨e⟩

}T

+
[
K⟨e⟩

] {
λ⟨e⟩
}T

=
{
f⟨e⟩
}T

(2.42)
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From Equations (2.24) and (2.42), the following self-adjoint relationships hold for negative

work. {
λ̈⟨e⟩

}
=
{
ü⟨e⟩
}
,
{
λ̇⟨e⟩

}
= −

{
u̇⟨e⟩
}
,
{
λ⟨e⟩
}
=
{
u⟨e⟩
}

(2.43)

Finally, the gradient of the Lagrange function J⟨e⟩ with respect to the density ρ⟨e⟩, which is

the sensitivity, is extended as

∂J∗
⟨e⟩

∂ρ⟨e⟩
=

∫ tf

0

∂J⟨e⟩

∂ρ⟨e⟩
+

1

2

{
λ⟨e⟩
}(∂

[
M⟨e⟩

]
∂ρ⟨e⟩

{
ü⟨e⟩
}
+
[
M⟨e⟩

]{∂ü⟨e⟩

∂ρ⟨e⟩

}
+

∂
[
C⟨e⟩

]
∂ρ⟨e⟩

{
u̇⟨e⟩
}

+
[
C⟨e⟩

]{∂u̇⟨e⟩

∂ρ⟨e⟩

}
+

∂
[
K⟨e⟩

]
∂ρ⟨e⟩

{
u⟨e⟩
}
+
[
K⟨e⟩

]{∂u⟨e⟩

∂ρ⟨e⟩

})
dt (2.44)

Similar to the gradients of the Lagrange function with respect to the displacement vector

shown in Equation (2.31), it is assumed that the summed gradients are smaller when the

respective gradients are minimized, and the positive and negative work cases are separated,

as shown in

∂J∗
⟨e⟩

∂ρ⟨e⟩
=

m+∑
i=1

∂J∗
⟨e⟩pi

∂ρ⟨e⟩
+

m−∑
i=1

∂J∗
⟨e⟩ni

∂ρ⟨e⟩
(2.45)

The first term in Equation (2.45), which is the positive work case, is expanded as

∂J∗
⟨e⟩pi

∂ρ⟨e⟩
=

∫ t
(+)
pi

t
(−)
pi

1

2

{
f⟨e⟩
}T {∂u⟨e⟩

∂ρ⟨e⟩

}
+

1

2

{
λ⟨e⟩
}T (∂

[
M⟨e⟩

]
∂ρ⟨e⟩

{
ü⟨e⟩
}
+
[
M⟨e⟩

]{∂ü⟨e⟩

∂ρ⟨e⟩

}
+
∂
[
C⟨e⟩

]
∂ρ⟨e⟩

{
u̇⟨e⟩
}
+
[
C⟨e⟩

]{∂u̇⟨e⟩

∂ρ⟨e⟩

}
+

∂
[
K⟨e⟩

]
∂ρ⟨e⟩

{
u⟨e⟩
}
+
[
K⟨e⟩

]{∂u⟨e⟩

∂ρ⟨e⟩

})
dt (2.46)
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Similar to the gradient of the Lagrange function with respect to the displacement vector, an

integration by parts is performed on each term, as shown in∫ t
p
(+)
i

t
p
(−)
i

{
λ⟨e⟩
}T [

M⟨e⟩
]{∂ü⟨e⟩

∂ρ⟨e⟩

}
dt

=

[{
λ⟨e⟩
}T [

M⟨e⟩
]{∂u̇⟨e⟩

∂ρ⟨e⟩

}]t(+)
pi

t
(−)
pi

−
[{

λ̇⟨e⟩

}T [
M⟨e⟩

]{∂u⟨e⟩

∂ρ⟨e⟩

}]t(+)
pi

t
(−)
pi

+

∫ t
p
(+)
i

t
p
(−)
i

{
λ̈⟨e⟩

}T [
M⟨e⟩

]{∂u⟨e⟩

∂ρ⟨e⟩

}
dt

=

∫ t
p
(+)
i

t
p
(−)
i

{
λ̈⟨e⟩

}T [
M⟨e⟩

]{∂u⟨e⟩

∂ρ⟨e⟩

}
dt (2.47)

∫ t
p
(+)
i

t
p
(−)
i

{
λ⟨e⟩
}T [

C⟨e⟩
]{∂u̇⟨e⟩

∂ρ⟨e⟩

}
dt

=

[{
λ⟨e⟩
}T [

C⟨e⟩
]{∂u⟨e⟩

∂ρ⟨e⟩

}]t(+)
pi

t
(−)
pi

−
∫ t

p
(+)
i

t
p
(−)
i

{
λ̇⟨e⟩

}T [
C⟨e⟩

]{∂u⟨e⟩

∂ρ⟨e⟩

}
dt

= −
∫ t

p
(+)
i

t
p
(−)
i

{
λ̇⟨e⟩

}T [
C⟨e⟩

]{∂u⟨e⟩

∂ρ⟨e⟩

}
dt (2.48)

Using Equations (2.47) and (2.48), Equation (2.46) is rewritten as

∂J∗
⟨e⟩pi

∂ρ⟨e⟩
=

1

2

∫ t
(+)
pi

t
(−)
pi

({
f⟨e⟩
}T

+
{
λ̈⟨e⟩

}T [
M⟨e⟩

]
−
{
λ̇⟨e⟩

}T [
C⟨e⟩

]
+
{
λ⟨e⟩
}T [

K⟨e⟩
]){∂u⟨e⟩

∂ρ⟨e⟩

}
+
{
λ⟨e⟩
}T (∂

[
M⟨e⟩

]
∂ρ⟨e⟩

{
ü⟨e⟩
}
+

∂
[
C⟨e⟩

]
∂ρ⟨e⟩

{
u̇⟨e⟩
}
+

∂
[
K⟨e⟩

]
∂ρ⟨e⟩

{
u⟨e⟩
})

dt (2.49)

From Equation (2.36), the first term in the integration of Equation (2.49) is zero. Moreover,

using the self-adjoint relationship for positive work, Equation (2.49) is shown in

∂J∗
⟨e⟩pi

∂ρ⟨e⟩
= −1

2

∫ t
(+)
pi

t
(−)
pi

{
u⟨e⟩
}T (∂

[
M⟨e⟩

]
∂ρ⟨e⟩

{
ü⟨e⟩
}
+

∂
[
C⟨e⟩

]
∂ρ⟨e⟩

{
u̇⟨e⟩
}
+

∂
[
K⟨e⟩

]
∂ρ⟨e⟩

{
u⟨e⟩
})

dt

(2.50)
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Next, the second term in Equation (2.45), which is the negative work case, is expanded as

∂J∗
⟨e⟩ni

∂ρ⟨e⟩
=

∫ t
(+)
pi

t
(−)
pi

−1

2

{
f⟨e⟩
}T {∂u⟨e⟩

∂ρ⟨e⟩

}
+

1

2

{
λ⟨e⟩
}T (∂

[
M⟨e⟩

]
∂ρ⟨e⟩

{
ü⟨e⟩
}
+
[
M⟨e⟩

]{∂ü⟨e⟩

∂ρ⟨e⟩

}
+
∂
[
C⟨e⟩

]
∂ρ⟨e⟩

{
u̇⟨e⟩
}
+
[
C⟨e⟩

]{∂u̇⟨e⟩

∂ρ⟨e⟩

}
+

∂
[
K⟨e⟩

]
∂ρ⟨e⟩

{
u⟨e⟩
}
+
[
K⟨e⟩

]{∂u⟨e⟩

∂ρ⟨e⟩

})
dt (2.51)

Similar to the gradient of the Lagrange function with respect to the displacement vector, an

integration by parts is performed on each term, as shown in∫ t
n
(+)
i

t
n
(−)
i

{
λ⟨e⟩
}T [

M⟨e⟩
]{∂ü⟨e⟩

∂ρ⟨e⟩

}
dt

=

[{
λ⟨e⟩
}T [

M⟨e⟩
]{∂u̇⟨e⟩

∂ρ⟨e⟩

}]t(+)
ni

t
(−)
ni

−
[{

λ̇⟨e⟩

}T [
M⟨e⟩

]{∂u⟨e⟩

∂ρ⟨e⟩

}]t(+)
ni

t
(−)
ni

+

∫ t
n
(+)
i

t
n
(−)
i

{
λ̈⟨e⟩

}T [
M⟨e⟩

]{∂u⟨e⟩

∂ρ⟨e⟩

}
dt

=

∫ t
n
(+)
i

t
n
(−)
i

{
λ̈⟨e⟩

}T [
M⟨e⟩

]{∂u⟨e⟩

∂ρ⟨e⟩

}
dt (2.52)

∫ t
n
(+)
i

t
n
(−)
i

{
λ⟨e⟩
}T [

C⟨e⟩
]{∂u̇⟨e⟩

∂ρ⟨e⟩

}
dt

=

[{
λ⟨e⟩
}T [

C⟨e⟩
]{∂u⟨e⟩

∂ρ⟨e⟩

}]t(+)
ni

t
(−)
ni

−
∫ t

n
(+)
i

t
n
(−)
i

{
λ̇⟨e⟩

}T [
C⟨e⟩

]{∂u⟨e⟩

∂ρ⟨e⟩

}
dt

= −
∫ t

n
(+)
i

t
n
(−)
i

{
λ̇⟨e⟩

}T [
C⟨e⟩

]{∂u⟨e⟩

∂ρ⟨e⟩

}
dt (2.53)

Using Equations (2.52) and (2.53), Equation (2.51) is rewritten as

∂J∗
⟨e⟩ni

∂ρ⟨e⟩
=

1

2

∫ t
(+)
ni

t
(−)
ni

(
−
{
f⟨e⟩
}T

+
{
λ̈⟨e⟩

}T [
M⟨e⟩

]
−
{
λ̇⟨e⟩

}T [
C⟨e⟩

]
+
{
λ⟨e⟩
}T [

K⟨e⟩
]){∂u⟨e⟩

∂ρ⟨e⟩

}
+
{
λ⟨e⟩
}T (∂

[
M⟨e⟩

]
∂ρ⟨e⟩

{
ü⟨e⟩
}
+

∂
[
C⟨e⟩

]
∂ρ⟨e⟩

{
u̇⟨e⟩
}
+

∂
[
K⟨e⟩

]
∂ρ⟨e⟩

{
u⟨e⟩
})

dt (2.54)
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From Equation (2.42), the first term in the integration of Equation (2.54) is zero. Moreover,

using the self-adjoint relationship for negative work, Equation (2.54) is shown in

∂J∗
⟨e⟩ni

∂ρ⟨e⟩
=

1

2

∫ t
(+)
ni

t
(−)
ni

{
u⟨e⟩
}T (∂

[
M⟨e⟩

]
∂ρ⟨e⟩

{
ü⟨e⟩
}
+

∂
[
C⟨e⟩

]
∂ρ⟨e⟩

{
u̇⟨e⟩
}
+

∂
[
K⟨e⟩

]
∂ρ⟨e⟩

{
u⟨e⟩
})

dt

(2.55)

From Equations (2.45), (2.50), and (2.55), the gradient of the Lagrange function with respect

to the density, which is the sensitivity, is shown in

∂J∗
⟨e⟩

∂ρ⟨e⟩
=

m+∑
i=1

1

2

∫ t
(+)
ni

t
(−)
ni

−
{
u⟨e⟩
}T (∂

[
M⟨e⟩

]
∂ρ⟨e⟩

{
ü⟨e⟩
}
+

∂
[
C⟨e⟩

]
∂ρ⟨e⟩

{
u̇⟨e⟩
}
+

∂
[
K⟨e⟩

]
∂ρ⟨e⟩

{
u⟨e⟩
})

dt

+

m−∑
i=1

1

2

∫ t
(+)
ni

t
(−)
ni

{
u⟨e⟩
}T (∂

[
M⟨e⟩

]
∂ρ⟨e⟩

{
ü⟨e⟩
}
+

∂
[
C⟨e⟩

]
∂ρ⟨e⟩

{
u̇⟨e⟩
}
+

∂
[
K⟨e⟩

]
∂ρ⟨e⟩

{
u⟨e⟩
})

dt

=
1

2

∫ tf

0

Se

{
u⟨e⟩
}T (∂

[
M⟨e⟩

]
∂ρ⟨e⟩

{
ü⟨e⟩
}
+

∂
[
C⟨e⟩

]
∂ρ⟨e⟩

{
u̇⟨e⟩
}
+

∂
[
K⟨e⟩

]
∂ρ⟨e⟩

{
u⟨e⟩
})

dt(2.56)

where Se is the sign function as shown in

Se =


−1

(
if
{
f⟨e⟩
}T {

u⟨e⟩
}
≥ 0
)
,

1
(
if
{
f⟨e⟩
}T {

u⟨e⟩
}
< 0
) (2.57)

2.2.2 Discretization method for time

Time derivative terms for unknown variables are included in the governing equation in

dynamic oscillation problem shown in Equation (2.24). Thus, when performing a discretiza-

tion analysis, in addition to discretization in the spatial direction, discretization in the time

direction is also required. In the FEM, the difference method is employed for discretization

in the time direction. In the discretization in the time direction by the difference method,

the time derivative terms in an ordinary differential equation is solved by a difference ap-

proximation. In this research, the Newmark-β method is employed in the direct integration

method used for nonlinear problems. Besides the Newmark-β method, there are the linear

acceleration method and Wilson θ-method. The Newmark-β method is an extension of the
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linear acceleration method, and is assumed that the relationship between displacement and

velocity shown in{
u⟨e⟩
}(t+1)

=
{
u⟨e⟩
}(t)

+∆t
{
u̇⟨e⟩
}(t)

+∆t2
(
1

2
− β

){
ü⟨e⟩
}(t)

+∆t2β
{
ü⟨e⟩
}(t+1)

(2.58)

{
u̇⟨e⟩
}(t+1)

=
{
u̇⟨e⟩
}(t)

+∆t (1− βγ)
{
ü⟨e⟩
}(t)

+∆tβγ

{
ü⟨e⟩
}(t+1)

(2.59)

where β and βγ are the parameter for the Newmark-β method, and the superscript (t) is the

time t. Generally, βγ = 1/2, and Equation (2.59) becomes as{
u̇⟨e⟩
}(t+1)

=
{
u̇⟨e⟩
}(t)

+
∆t

2

({
ü⟨e⟩
}(t)

+
{
ü⟨e⟩
}(t+1)

)
(2.60)

Equation (2.60) is a trapezoidal equation in numerical integration. The another parameter

β has the constraint shown in

0 ≤ β ≤ 1

2
(2.61)

Generally, the setting values of β are 0, 1/4 and 1/6. In this study, β = 1/4 is used because

it is an unconditionally stable integration method. Substituting β = 1/4, Equation (2.58) is

written as{
u⟨e⟩
}(t+1)

=
{
u⟨e⟩
}(t)

+∆t
{
u̇⟨e⟩
}(t)

+
∆t2

2

({
ü⟨e⟩
}(t)

+
{
ü⟨e⟩
}(t+1)

2

)
(2.62)

The method used in Equation (2.62) is called the mean acceleration method, the acceleration

is assumed to be constant during the time increment ∆t. Applying the difference equation

in the Newmark-β method shown in Equations (2.58) and (2.59) to the governing equation

shown in Equation (2.24), it is obtained as([
M⟨e⟩

]
+

∆t

2

[
C⟨e⟩

]
+ β∆t2

[
K⟨e⟩

]){
ü⟨e⟩
}(t+1)

=
{
f⟨e⟩
}(t+1) −

[
C⟨e⟩

]({
u̇⟨e⟩
}(t)

+
∆t

2

{
ü⟨e⟩
}(t))

−
[
K⟨e⟩

]({
u⟨e⟩
}(t)

+∆t
{
u̇⟨e⟩
}(t)

+

(
1

2
− β

)
∆t2

{
ü⟨e⟩
}(t))

(2.63)

After solving this algebraic equation and finding the acceleration at time t+1, the displace-

ment and velocity shown in Equations (2.58) and (2.59) are calculated.
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2.3 Density method and filter

First, the density method is explained. As described in the previous chapter, the density

method represents material distribution by giving a non-dimensional density as a parameter

for each element. The generalized density method is shown in

E⟨e⟩ = E0f
(
ρ⟨e⟩
)

(2.64)

where E0 is the Young’s modulus for a certain material. The function f is used to express

the Young’s modulus E⟨e⟩ in the element e ,as shown in Equation (2.64). When the function

is close to zero, the Young’s modulus E⟨e⟩ is also close to zero. In addition, when the function

is close to one, the Young’s modulus E⟨e⟩ is also close to one. The method of expressing this

function as follows is called the solid Isotropic material with penalization (SIMP) method[61].

E⟨e⟩ = E0ρ⟨e⟩
ps (2.65)

Here, ps is penalization parameter for the SIMP method, the value of the function f varies

depending on how the penalization parameter ps is set. The Hashin–Shtrikman bound

condition, which provides a boundary for the Young’s modulus when two materials are

mixed, is an indicator of the penalization parameter ps. From the Hashin–Shtrikman bound

condition, the setting range of the penalization parameter ps is shown in

ps ≥ max

(
2

1− ν
,

4

1 + ν

)
(in 2D) (2.66)

ps ≥ max

(
15

1− ν

7− 5ν
,

3

2

1− ν

1− 2ν

)
(in 3D) (2.67)

where ν is poisson ratio. As shown in Equations (2.66) and (2.67), the setting range of

the penalization parameter ps depends on the number of dimensions. However, since the

condition is an indicator, it is difficult to evaluate them strictly according to actual materials.

When the penalization parameter ps is set small, the gradient of the function with respect to

the density ρ⟨e⟩ also becomes small. Thereby, there exists the grayscale, which represent the

intermediate material, in a density distribution. Thus, the setting value of the penalization
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parameter ps should satisfy the condition shown in Equations (2.66) and (2.67). In addition

to the SIMP method, there is the rational approximation of material properties (RAMP)

method[62], shown in

E⟨e⟩ = E0

ρ⟨e⟩

1 + c
(
1− ρ⟨e⟩

) (2.68)

where c is the appropriate constant. The RAMP method produces a less grayscale in a

density distribution. However, in this study, the SIMP method is employed to represent

density because the method is also used in many researches. In addition, in Equation (2.65),

numerical instability remains when the density value is zero. Thus, the improved SIMP

method, which avoids numerical instability, is shown in

f
(
ρ⟨e⟩
)
= (1− ρmin) ρ⟨e⟩

ps + ρmin (2.69)

where ρmin is the parameter to avoid numerical instability and should be as close to 0 as

possible. In the dynamic oscillation problem, besides the stiffness matrix
[
K⟨e⟩

]
, there exists

the mass matrix
[
M⟨e⟩

]
and damping matrix

[
C⟨e⟩

]
. Similar to the expression of Young’s

modulus shown in Equation (2.69), the mass d⟨e⟩ is defied in the mass matrix
[
M⟨e⟩

]
, and

the damping ζ⟨e⟩ is defied in the damping matrix
[
C⟨e⟩

]
.

d⟨e⟩ = (d0 − dmin) ρ⟨e⟩
ps + dmin (2.70)

ζ⟨e⟩ = (1− ζmin) ρ⟨e⟩
ps + ζmin (2.71)

Here, dmin and ζmin is also the parameter to avoid numerical instability and should be as

close to 0 as possible. d0 is the mass density for a certain material.

Next, the filter is explained. Density-based topology optimization, which gives design vari-

ables to elements, is computed independently for each element. When shear forces dominate

the structure, a checkerboard is seen within a density distribution, as shown in Figure 2.3.

From a manufacturing perspective, this checkerboard is point-connected rather than line-

connected and surface-connected. Thereby, it is difficult to actually manufacture. Thus, the
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Figure 2.2: Graph of SIMP method.

filter is employed for density-based topology optimization to avoid a checkerboard. How-

ever, if the filter radius R is set too large, numerous grayscales is seen within a density

distribution, as shown in Figure 2.4. Filtering methods can be categorized as filtering on

sensitivity, filtering on density, and filtering based on image processing techniques. In this

thesis, filtering on sensitivity is employed. Hereafter, it is called sensitivity filter. There

are several types of filtering methods. Only the most representative methods are introduced

here with generalized equations. First, the sensitivity filter[63], which is employed in this

study, is explained. The sensitivity filter shown in Equation (2.72) transforms the sensitivity

into a smooth sensitivity distribution in the design domain Ω by averaging the sensitivities

of elements with their neighbors.

∂ ¯f⟨e⟩
∂ρ⟨e⟩

=

∑
j∈Ωfilter

wfilter⟨j⟩
∂f

∂ρ⟨j⟩

1
V⟨j⟩

1
V⟨e⟩

∑
j∈Ωfilter

wfilter⟨j⟩ρ⟨j⟩
(2.72)

Here, wfilter is the weight function for filter, and there are several suggestions. In this study,

a weight function is employed in which the weights are determined by a norm that represents

the length of a geometric vector in space. The weight function wfilter is shown in

wfilter = R− ∥xj − xe∥ (2.73)
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where R is the filtering radius which determines the filtering domain Ωfilter, as shown in

Figure 2.5. Additionally, xe is the coordinates of the element e in the natural coordinate

system. In the following, it is assumed that a sensitivity filter is employed and corrected

for sensitivity before updating the density. Next, the filtering on density[65] is introduced.

Hereafter, it is called density filter. The density filter shown in Equation (2.74) is expressed

similar to the sensitivity filter.

ρfilter⟨e⟩ =

∑
j∈Ωfilter

wfilter⟨j⟩V⟨j⟩ρ⟨j⟩∑
j∈Ωfilter

wfilter⟨j⟩V⟨j⟩
(2.74)

Finally, the filtering based on image processing techniques[66] is briefly introduced. The

filter considers the elements as pixels in an image, and uses processes such as open and close

to obtain a clear distribution. However, depending on the problem setup, the number of

iterations for repeated calculations a may increase compared to sensitivity or density filters.

Figure 2.3: Density distribution when the

filter is not employed.
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Figure 2.4: Density distribution when the

filter radius is too large.
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Figure 2.5: Filtering area.
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2.4 New optimality criteria method incorporating the

concept of Newton’s method

2.4.1 Formulation of modified optimality criteria method

First of all, update equations used in general gradient-based optimization problems will

be introduced. The steepest descent method and Newton’s method are often employed as

update equations for structural optimization. Equation (2.75) shows the generalized steepest

descent method, Equations (2.76) and (2.77) show the generalized Newton’s method for linear

and multivariate variables.

x(k+1) = x(k) − αs
df (x)

dx

(k)

(2.75)

x(k+1) = x(k) −

(
d2f (x)

dx2

(k)
)−1

df (x)

dx

(k)

(2.76)



x
(k+1)
1

x
(k+1)
2

...

x
(k+1)
N


=



x
(k)
1

x
(k)
2

...

x
(k)
N


−



d2f
dx2

1

(k) d2f
dx1dx2

(k)
· · · d2f

dx1dxN

(k)

d2f
dx2dx1

(k) d2f
dx2

2

(k)
· · · d2f

dx2dxN

(k)

...
...

. . .
...

d2f
dxNdx1

(k) d2f
dxNdx2

(k)
· · · d2f

dx2
N

(k)



−1

df
dx1

(k)

df
dx2

(k)

...

df
dxN

(k)


(2.77)

Here, αs is step length. The steepest descent method shown in Equation (2.75) is a reliable

search method, but the number of iterations required to find an optimum solution may be

high. On the other hand, Newton’s method for multivariate variables shown in Equation

(2.77) requires to solve the Hessian. Newton’s method is characterized by rapid updates

and a small number of iterations. However, the inverse of Hessian in Newton’s method is

not always solved in a short analysis time due to its high computational cost. In particular,

topology optimization has numerous design variables that make it somewhat difficult to

employ.

This sub section presents the formulation of the modified OC method which is the proposed
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method. As mentioned in chapter 1, the modified OC method is update method that

incorporates the concept of Newton’s method for nonlinear equations into the OC method.

The Newton’s method is mathematically proven the quadratic convergence, which is superior

to the speed of convergence among iterative methods. The OC method shown in Equation

(2.18) is multiplicative and differs from gradient methods such as the steepest descent method

and Newton’s method. Thus, the OC method is also modified in the form of additive

equation. First of all, taking the natural logarithm for both sides of Equation (2.18), it is

transformed as

ln ρ
(k+1)
⟨e⟩ = ln ρ

(k)
⟨e⟩ + η lnA

(k)
⟨e⟩ (2.78)

Thereafter, the calculation is performed in the same procedure as when deriving Newton’s

method for nonlinear equations. When the second term in Equation (2.78) is zero, the

density update has been finalized. Thus, since the weighting factor η is a constant, lnA
(k)
⟨e⟩

should be zero. For lnA
(k)
⟨e⟩ to be 0, A

(k)
⟨e⟩ must be 1, which is consistent with Equation (2.17).

Using Taylor expansion, lnA
(k)
⟨e⟩ is expanded as

lnA
(k+1)
⟨e⟩ = lnA

(k)
⟨e⟩ +∆ρ⟨e⟩

∂

∂ρ⟨e⟩

(
lnA

(k)
⟨e⟩

)
+ o

(
∆ρ⟨e⟩

2
)

(2.79)

where o is terms of higher order than the second order terms. Next, when lnA
(k+1)
⟨e⟩ shown

in the left side of Equation (2.79) is close to zero, the following equation holds.

∆ρ⟨e⟩ =

(
− ∂

∂ρ⟨e⟩

(
lnA

(k)
⟨e⟩

))−1

lnA
(k)
⟨e⟩ (2.80)

From Equation (2.80), the difference in density update ∆ρ⟨e⟩ is obtained. From the concept

of the gradient method, it is expanded as

ln ρ
(k+1)
⟨e⟩ = ln ρ

(k)
⟨e⟩ +∆ρ⟨e⟩

= ln ρ
(k)
⟨e⟩ +

(
− ∂

∂ρ⟨e⟩

(
lnA

(k)
⟨e⟩

))−1

lnA
(k)
⟨e⟩ (2.81)

Finally, to convert the additive equation shown in Equation (2.81) to the same multiplication

equation as the OC method, Equation (2.81) takes the antilogarithm as in

ρ
(k+1)
⟨e⟩ = ρ

(k)
⟨e⟩

(
A

(k)
⟨e⟩

)(− ∂
∂ρ⟨e⟩

(
lnA

(k)
⟨e⟩

))−1

(2.82)
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Equation (2.82) is the modified OC method, which is the proposed method. One difference

from the OC method shown in Equation (2.18) has the weighting factor η, whereas the

modified OC method replaces it with a function of density, which has different values for

each element. The function A⟨e⟩ is derived for each optimization problem because it depends

on the optimization problem.

2.4.2 Modified optimality criteria method for strain energy min-

imization problems in steady problems

This subsection describes the modified OC method for topology optimization to minimize

strain energy in steady problem shown in Equations (2.1) and (2.3). As mentioned in the

previous subsection, the exponent corresponding to the weighting factor η is replaced by a

function, it is expended as

− ∂

∂ρ⟨e⟩

(
lnA

(k)
⟨e⟩

)
=

−
∂2J∗

⟨e⟩
∂ρ⟨e⟩

(k)

Λ(k) ∂V
∂ρ⟨e⟩

(k)
+

∂J∗
⟨e⟩

∂ρ⟨e⟩

(k)
∂

∂ρ⟨e⟩

(
Λ(k) ∂V

∂ρ⟨e⟩

(k)
)

(
−Λ(k) ∂V

∂ρ⟨e⟩

(k)
)2

 ∂J∗
⟨e⟩

∂ρ⟨e⟩

(k)

−Λ(k) ∂V
∂ρ⟨e⟩

(k)


−1

= −
∂2J∗

⟨e⟩

∂ρ⟨e⟩2

(k)(
∂J∗

⟨e⟩

∂ρ⟨e⟩

(k)
)−1

(2.83)

Using the SIMP method shown in Equation (2.65), the second-order derivative of the La-

grange function J∗
⟨e⟩ with respect to the density ρ⟨e⟩ shown in Equation (2.83), which is the
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gradient of the sensitivity with respect to the density ρ⟨e⟩, is calculated as

∂2J∗
⟨e⟩

∂ρ⟨e⟩2

(k)

=
∂

∂ρ⟨e⟩

(
−1

2

{
u⟨e⟩
}T ∂

[
K⟨e⟩

]
∂ρ⟨e⟩

{
u⟨e⟩
})

= −
∂
{
u⟨e⟩
}T

∂ρ⟨e⟩

∂
[
K⟨e⟩

]
∂ρ⟨e⟩

{
u⟨e⟩
}
− 1

2

{
u⟨e⟩
}T ∂2

[
K⟨e⟩

]
∂ρ⟨e⟩2

{
u⟨e⟩
}

= − ∂

∂ρ⟨e⟩

({
f⟨e⟩
}T [

K⟨e⟩
]−1
) ∂

[
K⟨e⟩

]
∂ρ⟨e⟩

{
u⟨e⟩
}
− 1

2

{
u⟨e⟩
}T ∂2

[
K⟨e⟩

]
∂ρ⟨e⟩2

{
u⟨e⟩
}

= −
{
f⟨e⟩
}T ∂

[
K⟨e⟩

]−1

∂ρ⟨e⟩

∂
[
K⟨e⟩

]
∂ρ⟨e⟩

{
u⟨e⟩
}
− 1

2

{
u⟨e⟩
}T ∂2

[
K⟨e⟩

]
∂ρ⟨e⟩2

{
u⟨e⟩
}

= −
∂E⟨e⟩

−1

∂ρ⟨e⟩

∂E⟨e⟩

∂ρ⟨e⟩

{
f⟨e⟩
}T [

Ks⟨e⟩
]−1 [

Ks⟨e⟩
] {

u⟨e⟩
}
− 1

2

∂2E⟨e⟩

∂ρ⟨e⟩2
{
u⟨e⟩
}T [

K⟨e⟩
] {

u⟨e⟩
}

= ps
2ρ⟨e⟩

−2
{
f⟨e⟩
}T {

u⟨e⟩
}
− 1

2
ps (ps − 1) ρ⟨e⟩

−2
{
u⟨e⟩
}T [

K⟨e⟩
] {

u⟨e⟩
}

= 2ps
2ρ⟨e⟩

−2J⟨e⟩ − ps (ps − 1) ρ⟨e⟩
−2J⟨e⟩

= (ps + 1) psρ⟨e⟩
−2J⟨e⟩ (2.84)

Here,
[
Ks⟨e⟩

]
is the stiffness matrix without the Young’s modulus E⟨e⟩. Using the sensitivity

and the gradient of the sensitivity with respect to the density shown in Equations (2.15) and

(2.84), the function located in the weighting factor η is calculated as

(
− ∂

∂ρ⟨e⟩

(
lnA

(k)
⟨e⟩

))−1

=

−
∂2J∗

⟨e⟩

∂ρ⟨e⟩

(k)(
∂J∗

⟨e⟩

∂ρ⟨e⟩

(k)
)−1

−1

=
−psρ

(k)
⟨e⟩

−1
J
(k)
⟨e⟩

(ps + 1) psρ
(k)
⟨e⟩

−2
J
(k)
⟨e⟩

=
ρ
(k)
⟨e⟩

ps + 1
(2.85)

Finally, by substituting Equation (2.85) into the modified OC method shown in Equation

(2.82), the modified OC method for strain energy minimization in steady problem when

using the SIMP method can be expressed simply as

ρ
(k+1)
⟨e⟩ = ρ

(k)
⟨e⟩

(
A

(k)
⟨e⟩

) ρ
(k)
⟨e⟩

ps+1
(2.86)
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2.4.3 Modified optimality criteria method for strain energy min-

imization problems in dynamic oscillation problems

This subsection describes the modified OC method for topology optimization to minimize

strain energy in dynamic oscillation problem shown in Equations (2.21) and (2.24). Since

the constraint conditions are the same as in the previous subsection, the function of the

exponent corresponding to the weighting factor η is the same as in Equation (2.83). Thus,

the gradient of the sensitivity with respect to the density ρ⟨e⟩ is obtained as

∂2J∗
⟨e⟩

∂ρ⟨e⟩2

=
∂

∂ρ⟨e⟩

(
1

2

∫ tf

0

Se

{
u⟨e⟩
}T (∂

[
M⟨e⟩

]
∂ρ⟨e⟩

{
ü⟨e⟩
}
+

∂
[
C⟨e⟩

]
∂ρ⟨e⟩

{
u̇⟨e⟩
}
+

∂
[
K⟨e⟩

]
∂ρ⟨e⟩

{
u⟨e⟩
})

dt

)

=
1

2

∫ tf

0

Se

{
∂u⟨e⟩

∂ρ⟨e⟩

}T
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∂
[
M⟨e⟩

]
∂ρ⟨e⟩

{
ü⟨e⟩
}
+

∂
[
C⟨e⟩

]
∂ρ⟨e⟩

{
u̇⟨e⟩
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+

∂
[
K⟨e⟩

]
∂ρ⟨e⟩

{
u⟨e⟩
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+Se
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]
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{
ü⟨e⟩
}
+

∂2
[
C⟨e⟩
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∂ρ⟨e⟩
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dt (2.87)

The gradient of the displacement vector
{
u⟨e⟩
}

with respect to the density ρ⟨e⟩ shown in

the first term of Equation (2.87) is difficult to obtain directly. Thus, differentiating the

displacement vector, velocity vector, and acceleration vector, which are shown in Equations

(2.58), (2.59) and (2.63), by the density ρ⟨e⟩ yields{
∂u⟨e⟩

∂ρ⟨e⟩

}(t+1)

=

{
∂u⟨e⟩

∂ρ⟨e⟩

}(t)

+∆t

{
∂u̇⟨e⟩
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+∆t2
(
1

2
− β

){
∂ü⟨e⟩

∂ρ⟨e⟩

}(t)

+∆t2β

{
∂ü⟨e⟩

∂ρ⟨e⟩

}(t+1)

(2.88)

{
∂u̇⟨e⟩

∂ρ⟨e⟩

}(t+1)

=

{
∂u̇⟨e⟩

∂ρ⟨e⟩

}(t)

+∆t (1− βγ)

{
∂ü⟨e⟩

∂ρ⟨e⟩

}(t)

+∆tβγ

{
∂ü⟨e⟩

∂ρ⟨e⟩

}(t+1)

(2.89)
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ü⟨e⟩
}(t))−

[
C⟨e⟩

]({∂u̇⟨e⟩

∂ρ⟨e⟩

}(t)

+
∆t

2

{
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Using the SIMP method, Equation (2.90) is expended as
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From Equations (2.88), (2.89) and (2.91), the gradient of the displacement vector with

respect to the density is obtained. Next, using the concept of the SIMP method, the second

term of Equation (2.87) is calculated as
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Finally, the third term of Equation (2.87) is calculated. Before that, the governing equa-

tion shown in Equation (2.23) are differentiated with density to replace the gradient of the

acceleration vector with respect to the density and the gradient of the velocity vector with
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respect to the density.
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Using Equation (2.93), the third term of Equation (2.87) is calculated as
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Using Equations (2.87), (2.92) and (2.94), Equation (2.83) is expended as
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ü⟨e⟩
}
+

∂
[
C⟨e⟩

]
∂ρ⟨e⟩

{
u̇⟨e⟩
}
+

∂
[
K⟨e⟩

]
∂ρ⟨e⟩

{
u⟨e⟩
})

+2Seps (ps − 1) ρ⟨e⟩
−2J (k)

e + Seps
2ρ⟨e⟩

−2J
(k)
⟨e⟩

)
dt×

(
∂J∗

⟨e⟩

∂ρ⟨e⟩

(k)
)−1

= −
∫ tf

t0

(
1

2
Se

{
∂u⟨e⟩

∂ρ⟨e⟩

}T
(
∂
[
M⟨e⟩

]
∂ρ⟨e⟩

{
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2.5 Flow of density-based topology optimization for

strain energy minimization

This section described the flow of the density-based topology optimization for strain energy

minimization in steady and dynamic oscillation problems. The optimizations are performed

using procedure shown in Figure 2.6 and below.

1. Input of the computation model and calculation conditions shown in next section.

2. The finite element analysis for linear elastic body is performed. For steady problems,

the governing equation shown in Equation (2.2) is used, and for dynamic oscillation

problems, the governing equation shown in Equation (2.23) is used to obtain the dis-

placement vector {u}.

3. The strain energy, which is the performance function is calculated. Using the displace-

ment vector {u} obtained in the previous step, the performance function shown in

Equation (2.1) is calculated for steady problems, and the performance function shown

in Equation (2.21) is calculated for dynamic oscillation problems.

4. If the judgement of convergence |J(k)−J(k−1)|
J(0) < εconv is satisfied, the computation is

finalized. Otherwise, go to the next step.

5. Using self-adjoint relationship, the sensitivity, which is the gradient of the Lagrange

function J∗
⟨e⟩ with respect to the density ρ⟨e⟩, is calculated. For steady problems, the

sensitivity shown in Equation (2.15) is calculated using the self-adjoint relationship

shown in Equation (2.13). For dynamic oscillation problems, the sensitivity shown in

Equation (2.56) is calculated using the self-adjoint relationships shown in Equations

(2.37) and (2.43).

6. The sensitivity filter shown in Equation (2.72) is applied．

7. The density ρ⟨e⟩, which is the design variable, is updated. When using the OC method,

Equation (2.18) is employed, when using the modified OC method, Equation (2.82)
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is employed, and when using the gradient method with first-order and second-order

derivatives, Equation (2.76) is employed. Note that when using the modified OC

method, the expansion of equation after Equation (2.82) varies depending on the opti-

mization problem. After updating, the number of iterations is updated to the k+1-th

step and the process returns to step 2.

However, depending on the setting of the optimization problem, the judgement of conver-

gence described above may not be satisfied. Then, if the number of iterations k exceeds

the maximum number of iterations kmax, the optimization calculation is finalized because no

solution can be obtained by continuing the calculation any further. The gradient method

with first-order and second-order derivatives assumes to be updated independently on an

element-by-element basis, as is the OC method. The gradient method is a general term for

methods that use information about the gradient of a function in the search for a solution

to an optimization problem. Thus, it differs from Newton’s method that uses the Hessian

and is referred to as the gradient method with first-order and second-order derivatives in

this study.
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1. Input model and conditions

2. Finite element analysis

3. Performance function

5. Sensitivity analysis

7. Update density

4. Judgement End

6. Filter

Start

Figure 2.6: Flowchart of density-based topology optimization for the strain energy mini-

mization problems.



Chap. 2 Topology optimization in problem of self-adjoint relationship 48

2.6 Calculation conditions in density-based topology

optimization for strain energy minimization

This section explains about the calculation model and conditions. In this chapter, topology

optimization for steady and dynamic oscillation problems is performed. First, the topology

optimization is performed for two dimensional models of cantilever beam and Messerschmitt-

Bölkow-Blohm (MBB), shown in Figure 2.7, to minimize strain energy in steady problem.

The cantilever beam model is a general analytical model and MBB beam model is a model

commonly used in the field of topology optimization. The results are to verify the usefulness

of the modified OC method. As a verification method, it is checked whether the results of

topology optimization when using the OC method, the Gradient method with first-order

and second-order derivatives, and the modified OC method change when the value of the

move-limit ρmove is changed. Next, based on the results of topology optimization in two

dimensional steady problems, topology optimization is performed for the three dimensional

models of cantilever beam and MBB beam shown in Figure 2.8, with the thickness direction

added to Figure 2.7. Here, the influence of the updating equations and parameters on three

dimensional optimum results is investigated. Finally, the usefulness of the modified OC

method for topology optimization in dynamic oscillation problems is demonstrated using

the three dimensional models of cantilever beam and MBB beam shown in Figure 2.8.

First of all, the calculation conditions and models used in topology optimization for two

dimensional steady problems will be explained in detail. The two dimensional model shown

in Figure 2.7 uses a 4-node quadrilateral element and has a structural grid divided by squares

of 1 [mm] per side. The cantilever beam model shown in Figure 2.7(a) is added a uniformly

distribution load of total load 90 [N] from coordinates (60,16) to (60,24). The MBB beam

model shown in Figure 2.7(b) is added 10 [N]. However, the value of load does not significantly

affect the topology optimization, because the model is a liner elastic body. Other calculation

conditions are shown in Table 2.1. Next, the calculation conditions and models used in

topology optimization for three dimensional steady problems will be explained in detail.
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The three dimensional model shown in Figure 2.8 uses a 8-node hexahedral element and has

a structural grid divided by cube of 1 [mm] per side. The cantilever beam model shown in

Figure 2.8(a) is added a uniformly distribution load of total load 100 [N]. The MBB beam

model shown in Figure 2.8(b) is also added 100 [N]. The other calculation conditions are

shown in Table 2.2 as for two dimensional steady problem. Finally, the calculation conditions

and models used in topology optimization for three dimensional dynamic oscillation problems

will be explained in detail. Similar to the topology optimization for three dimensional steady

problems, the models shown in Figure 2.8 is used. The models shown in Figures 2.8(a) and

2.8(b) are added a load such as impulse response, as shown in Figure 2.9. The reason for this

load setting is that for the optimization problem in this chapter, the displacement vector

{u} and the Lagrange multiplier vector {λ} must be zero at the starting time and end time.

Thus, the time after applying the load must be sufficient. The other calculation conditions

are shown in Table 2.3 as for two dimensional steady problem. The initial density in the

design domain Ω is given uniformly by ρ̄0. Here, the Rayleigh damping coefficients α1 and

α2 are set for numerical verification, unlike the physical properties of real materials.
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60[mm]

40[mm]Design domain Ω

X

Y

(a) Cantilever beam model.

f

90[mm]

30[mm]Design domain Ω

X

Y

(b) MBB beam model.

Figure 2.7: Computation models on two dimension in strain energy minimization problems.
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The XY plane is fixed 

in X, Y and Z-directions.

60[mm]

Uniformly distributed load f

40[mm]

10[mm]

(a) Cantilever beam model.

The edge in Y direction is fixed in Z-direction.

90[mm]

Uniformly distributed load f

30[mm]

10[mm]

The YZ plane is fixed in X-direction.

(b) MBB beam model.

Figure 2.8: Computation models on three dimension in strain energy minimization problems.
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Table 2.1: Calculation conditions of topology optimization for strain energy minimization in

two dimensional static problems.

Model Cantilever beam MBB beam

Number of elements 2400 2700

Number of nodes 2501 2821

Initial density average, ρ̄0 0.5 0.3

Penalization parameter for the SIMP method, ps 4.5 4.5

Weighting factor, η 0.75 0.75

Filter radius, R 1.5 1.5

Convergence criterion, εconv 5.0× 10−4 5.0× 10−4

Maximum number of iterations, kmax 150 150

Young’s modulus, E0 [Pa] 1.0× 106 1.0× 106

Poisson ratio, ν 0.3 0.3
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Table 2.2: Calculation conditions of topology optimization for strain energy minimization in

three dimensional static problems.

Model Cantilever beam MBB beam

Number of elements 24000 27000

Number of nodes 27511 31031

Initial density average, ρ̄0 0.5 0.3

Penalization parameter for the SIMP method, ps 4.5 4.5

Weighting factor, η 0.75 0.75

Filter radius, R 1.5 1.5

Convergence criterion, εconv 1.0× 10−3 1.0× 10−4

Maximum number of iterations, kmax 150 150

Young’s modulus, E0 [Pa] 1.0× 106 1.0× 106

Poisson ratio, ν 0.3 0.3

0 0.05 0.1 0.15 0.2 0.25
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Figure 2.9: Load waveform for dynamic oscillation problem.
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Table 2.3: Calculation conditions of topology optimization for strain energy minimization in

three dimensional dynamic oscillation problems.

Model Cantilever beam MBB beam

Number of elements 24000 27000

Number of nodes 27511 31031

Total time, [s] 0.3 0.3

Time increments, ∆t [s] 1.0× 10−5 1.0× 10−5

Parameter for Newmark-β method, β 0.25 0.25

Initial density average, ρ̄0 0.5 0.3

Penalization parameter for the SIMP method, ps 4.5 4.5

Weighting factor, η 0.75 0.75

Filter radius, R 1.5 1.5

Convergence criterion, εconv 1.0× 10−4 1.0× 10−4

Maximum number of iterations, kmax 100 100

Mass density, d0 [kg/m3] 7860 7860

Rayleigh damping, α1, α2 90, 1.0× 10−5 90, 1.0× 10−5

Young’s modulus, E0 [Pa] 208× 109 208× 109

Poisson ratio, ν 0.3 0.3
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2.7 Results and considerations of density-based topol-

ogy optimization for strain energy minimization

2.7.1 Results of topology optimization in two dimensional steady

problems

This subsection describes the results of density-based topology optimization for strain

energy minimization in two dimensional steady problems. Figures 2.10 to 2.12 show the

density distributions at convergence in the cantilever beam model, with the OC method,

the Gradient method with first-order and second-order derivatives, and the modified OC

method and the update method changed, respectively. Sub caption (a) in Figures 2.10 to

2.12 show the results when the move-limit ρmove = 0.01, and (b) shows the results when the

move-limit ρmove = 0.40 or ρmove = 1.00. Sub caption (a) is set as a small value, and (b) is

set as a large value. Since the move-limit is the constraint for the update width of density

update, topology optimization when the move-limit ρmove = 0.01 is assumed to steadily find

an optimum results. In contrast, topology optimization when the move-limit ρmove = 1.00

is synonymous with not setting a move-limit constraint for density update. In other words,

only density constraint shown in Equation (2.4) is set. If the move-limit is set to large value,

the speed of updating the design variables increases. However, this does not guarantee that

a steady optimum result will be obtained. The results will be reviewed in turn.

First of all, the results of topology optimization when using the OC method for the can-

tilever beam model, shown in Figure 2.7(a), is described. The result of topology optimization

when the move-limit ρmove is set to 0.01, shown in Figure 2.10(a), show that the optimum

density distribution is obtained at convergence. The history of performance function shown

in Figure 2.13 also confirms that the performance function converges to a certain value.

On the other hand, the result of topology optimization when the move-limit ρmove is set

to 0.40, shown in Figure 2.10(b), yield a different result than in Figure 2.10(a). Moreover,

the results is hardly an optimum density distribution. The history of performance function
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shown in Figure 2.13 also confirms that the performance function does not converge to a

certain value. The performance function vibrates up to the maximum number of iterations

kmax. In other words, when using the OC method, it is necessary to set an appropriate

move-limit ρmove to some extent. Next, the results of topology optimization when using the

gradient method with first-order and second-order derivatives is described. The result of

topology optimization when the move-limit ρmove is set to 0.01, shown in Figure 2.11(a),

also show that the optimum density distribution is obtained at convergence. Similarly, the

history of performance function shown in Figure 2.13 confirms that the performance func-

tion converges to a certain value. However, the result of topology optimization when the

move-limit ρmove is set to 1.00 show a partially dispersed density distribution. The history

of performance function shown in Figure 2.13 indicates that the computation speed was too

fast, and another result was found. In addition, its converged value is larger than the per-

formance function of topology optimization when the move-limit ρmove is set to 1.00. Thus,

it is clear that simply using the second-order derivative is problematic. Finally, the results

of topology optimization when using the modified OC method is described. Similar to the

results obtained when using the other methods, the result of topology optimization when

the move-limit ρmove is set to 0.01, shown in Figure 2.12(a), also show that the optimum

density distribution is obtained at convergence. The same trend is obtained for the perfor-

mance function, which converges to a certain value. When the move limit ρmove is set to

1.00, the topology optimization when using the OC method and Newton’s method did not

obtained an optimum density distribution. However, the topology optimization when using

the modified OC method produce an optimum density distribution similar to that of Figure

2.12(a), as shown in Figure 2.12(b). Compared to the results obtained for other optimum

solutions, the history of performance function confirms that the performance function drops

rapidly in the initial iteration and that the number of iterations is small. From Table 2.4,

under conditions where similar forms were obtained, the value of the normalized performance

function at convergence did not change significantly.
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(a) OC method when ρmove = 0.01. (b) OC method when ρmove = 0.40.

Figure 2.10: Density distributions at convergence of topology optimization for strain en-

ergy minimization when using the OC method in the cantilever beam model for the two

dimensional static problem.

(a) Newton’s method when ρmove = 0.01. (b) OC method when ρmove = 1.00.

Figure 2.11: Density distributions at convergence of topology optimization for strain en-

ergy minimization when using Newton’s method in the cantilever beam model for the two

dimensional static problem.
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(a) Modified OC method when ρmove = 0.01. (b) Modified OC method when ρmove = 1.00.

Figure 2.12: Density distributions at convergence of topology optimization for strain energy

minimization when using the modified OC method in the cantilever beam model for the two

dimensional static problem.

Figure 2.13: The history of normalized performance function in the topology optimization

for strain energy minimization in the cantilever beam model for the two dimensional static

problem.
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Table 2.4: Normalized performacne function at final iteration in topology optimization for

strain energy minimization in the cantilever beam model for the two dimensional static

problem.

Update method Move-limit ρmove Normalized performance function

OC 0.01 0.085

Gradient 0.01 0.086

Modified OC 0.01 0.089

OC 0.40 0.640

Gradient 1.00 0.131

Modified OC 1.00 0.087

*Gradient: Gradient method with first-order and second-order derivatives.
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Next, the results of topology optimization when using the OC method for the MBB beam

model, shown in Figure 2.7(b), is described. As shown in Figure 2.14, the topology optimiza-

tion when the move-limit ρmove is set to 0.01 obtains an optimum density distribution such

as a structure. However, the topology optimization when the move-limit ρmove is set to 0.40

does not obtain an optimum density distribution. The results follow the same trend as the

results of topology optimization when using the OC method in cantilever beam model shown

in Figure 2.10. Next, the results of topology optimization when using the gradient method

with first-order and second-order derivatives is described. As shown in Figure 2.15, the

topology optimization when the move-limit ρmove is set to 0.01 obtains an optimum density

distribution such as a structure. However, the topology optimization when the move-limit

ρmove is set to 1.00 does not obtain an optimum density distribution. The results follow the

same trend as the results of topology optimization when using the OC method in cantilever

beam model shown in Figure 2.11. Finally, the results of topology optimization when using

the modified OC method is described. As shown in Figure 2.16, the topology optimization

when the move-limit ρmove is set to 0.01 and 1.00 obtains an optimum density distribution

such as a structure. Similar to the history of performance function in cantilever beam model

shown in Figure 2.13, it can be seen from the history of the performance function shown

in Figure 2.17. In addition, from Table 2.5, under conditions where similar forms were

obtained, the value of the normalized performance function at convergence did not change

significantly. From the above, it can be said that the modified OC method, which is the

proposed method, does not require the setting of the move-limit ρmove by the results of nu-

merical analysis. Additionally, in the modified OC method, the weighting factor η becomes

a function of density ρ⟨e⟩.
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(a) OC method when ρmove = 0.01. (b) OC method when ρmove = 0.40.

Figure 2.14: Density distributions at convergence of topology optimization for strain energy

minimization when using the OC method in the MBB beam model for the two dimensional

static problem.

(a) Newton’s method when ρmove = 0.01. (b) OC method when ρmove = 1.00.

Figure 2.15: Density distributions at convergence of topology optimization for strain energy

minimization when using Newton’s method in the MBB beam model for the two dimensional

static problem.
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(a) Modified OC method when ρmove = 0.01. (b) Modified OC method when ρmove = 1.00.

Figure 2.16: Density distributions at convergence of topology optimization for strain energy

minimization when using the modified OC method in the MBB beam model for the two

dimensional static problem.
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Figure 2.17: The history of normalized performance function in the topology optimization for

strain energy minimization in the MBB beam model for the two dimensional static problem.

Table 2.5: Normalized performacne function at final iteration in topology optimization for

strain energy minimization in the MBB beam model for the two dimensional static problem.

Update method Move-limit ρmove Normalized performance function

OC 0.01 0.019

Gradient 0.01 0.019

Modified OC 0.01 0.024

OC 0.40 0.168

Gradient 1.00 0.038

Modified OC 1.00 0.021

*Gradient: Gradient method with first-order and second-order derivatives.
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2.7.2 Parametric study for move-limit when using the modified

optimality criteria method

This sub section describes the results when the modified OC method is employed and

the value of the move-limit ρmove is set more finely than in the previous sub section. The

move-limit ρmove is set to 0.01, which is the value shown in the previous sub section, plus

increasing values in increments of 0.1. Other calculation conditions are same as in the previ-

ous sub section. Figures 2.18 and 2.19 show the density distributions obtained by topology

optimization for the cantilever beam model and the MBB beam model, respectively. From

Figure 2.18, which is the result for cantilever beam model, shows that a similar structure is

obtained for all value of the move-limit ρmove setting. Similarly, Figure 2.19, which is the

result for MBB beam model, shows that a similar structure is obtained for all value of the

move-limit ρmove setting. Next, the history of performance function is confirmed. Figures

2.20 and 2.21 show the histories of normalized performance function obtained by topology

optimization for each model. Figures 2.20 and 2.21, it can be confirmed that the history of

normalized performance fucntion when the move-limit ρmove is set between 0.10 and 1.00 are

generally consistent. In other words, even when the upper and lower limits of update, the

move-limit ρmove, are changed, the process of updating the dentisy distribution is also the

same because all iteration performance functions are identical. The OC method, which the

modified OC method is based, often finds local solutions.[67] Thus, it is assumed that the

modified OC method tends to find local solutions as well. In the OC method, the update

speed depends on the adjusment of the weighting factor η and the move-limit ρmove. However,

in the proposed modified OC method, the weighting factor is defined as a function, as shown

in Equation (2.85). Therefore, it is thought that appropriate updates were made rather than

cumbersome searches. From Equation (2.85), in the strain energy minimization problem

with volume constraint, the value of the exponent, which is the weighting factor, is given as

the value the exponent increases as the value of the density approaches 1, so that the density

is updated significantly. In contrast, as the value of the density approaches zero, the value
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of the exponent decreases and the density is updated slowly. Thus, the grayscale elements

do not rapidly decrease in density value and become no-material, indicating that the update

is gradual. This ensures that structural connections between elements are maintained and

updated. In addition, from the SIMP method, a larger value of the penalization parameter ps

results in a larger value of sensitivity and a smaller value of exponent. Conversely, a smaller

value of the penalization pramter ps results in a smaller value of sensitivity and larger value

of exponent. Thus, even if the penalization parameter ps is set to a difficult value, the up-

date is automatically changed as well. THe industrial advantage of obtaining similar density

distributions is that it reduces the analysis time required for parametric studies, allowing an

optimum design to be efficiently applied to actual products. It also eliminates the need to

examine different structures when an equivalent performance is obtained.
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(a) When ρmove = 0.01.
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(b) When ρmove = 0.10.
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(c) When ρmove = 0.20.
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(d) When ρmove = 0.30.
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(e) When ρmove = 0.40.
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(f) When ρmove = 0.50.
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(g) When ρmove = 0.60.
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(h) When ρmove = 0.70.
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(i) When ρmove = 0.80.
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(j) When ρmove = 0.90.
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(k) When ρmove = 1.00.

Figure 2.18: Density distributions at convergence of topology optimization for strain energy

minimization when changing the move-limit ρmove and using the modified OC method in the

cantilever beam model.
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(b) When ρmove = 0.10.
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(c) When ρmove = 0.20.
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(d) When ρmove = 0.30.
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(e) When ρmove = 0.40.
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(f) When ρmove = 0.50.
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(g) When ρmove = 0.60.
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(h) When ρmove = 0.70.
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(j) When ρmove = 0.90.
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(k) When ρmove = 1.00.

Figure 2.19: Density distributions at convergence of topology optimization for strain energy

minimization when changing the move-limit ρmove and using the modified OC method in the

MBB beam model.
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(a) When ρmove = 0.01, 0.10, 0.20,

0.30, 0.40 and 0.50.

(b) When ρmove = 0.60, 0.70, 0.80,

0.90 and 1.00.

Figure 2.20: The history of normalized performance function when changing the move-limit

ρmove and using the modified OC method in the cantilever beam model.

(a) When ρmove = 0.01, 0.10, 0.20,

0.30, 0.40 and 0.50.

(b) When ρmove = 0.60, 0.70, 0.80,

0.90 and 1.00.

Figure 2.21: The history of normalized performance function when changing the move-limit

ρmove and using the modified OC method in the MBB beam model.
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2.7.3 Results of topology optimization in three dimensional steady

problems

This subsection is described the results of topology optimization for strain energy mini-

mization in three dimensional steady problems. Based on the results of topology optimization

for strain energy minimization in two dimensional steady problems described in the previous

subsection, topology optimization was performed when using the conventional OC method

and the proposed modified OC method. The move limit ρmove is set to 0.01 when using the

OC method and 1.00 when using the modified OC method. The calculation models are the

cantilever beam model and MBB beam model shown in 2.8. First, the results of topology

optimization when using the OC method in the cantilever beam model is described. Figures

2.22(a) and 2.22(b) show an isometric and side view of the density distribution at conver-

gence obtained by topology optimization when using the OC method. In addition, Figures

2.22(c) and 2.22(d) show the density distributions with the elements with density values

less than 0.5 in the density distribution, shown in Figures 2.22(a) and 2.22(b), eliminated.

Compared to the density distribution of topology optimization in two dimensional steady

problems shown in Figure 2.10(a), there appear to be more domain of material, even though

the initial density average mean density ρ̄0 has the same value. This can be predicated that

the material is distributed on the outside such as a hollow. The reason is that the value of

density became smaller from the boundary between material and no material (cavity and

air), which is the point where stiffness is less affected. Moreover, the small update rang of

density also means that the update is gradual. Next, the results of topology optimization

when using the modified OC method is described. Figure 2.23 is the density distribution

at convergence obtained by topology optimization when using the modified OC method, as

well as Figure 2.22. In contrast, the cavities can be seen as well as the density distribution

of topology optimization when using the modified OC method in two dimensional steady

problem shown in Figure 2.12. In other words, it is not a hollow material, but a solid ma-

terial. It is consider to be the effect of setting ρ = 1.00. ρ = 1.00 is synonymous with
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not using the move-limit. This facilitated the density distribution such as a truss, and a

structure such as solid material was obtained. From a manufacturing standpoint, hollow

materials, as shown in Figure 2.22, are difficult to machine when cutting, while solid ma-

terials, as shown in Figure 2.23, are easy to machine. In this respect, the modified OC

method, which does not require the setting of the move-limit ρmove, is a useful method.

Next, the history of performance function shown in Figure 2.24 is described. Similar to

the history of performance function obtained by topology optimization in two dimensional

steady problems, the topology optimization when using the modified OC method confirms

a significant drop in the initial iterations and fewer iterations. However, it can be seen that

the performance function increases from the 4th iteration to the 12th iteration. Table 2.6

shows that the value of normalized performance fucntion at convergence when using the

modified OC method was slightly larger than the value when using the OC method. The

cause can be seen in the density distribution and the distribution of normalized performance

function for the topology optimization in progress, shown in Figures 2.25 and 2.26. The

normalized performance function here is the function of dividing the performance function

J
(k)
⟨e⟩ in the element e by the value of the total performance function in an iteration. From

the distribution of normalized performance function shown in Figure 2.26, the performance

function is higher for the element located at the tip in 4th iteration. It can also be confirmed

that the normalized performance function becomes smaller as the iterations progress. When

confirmed with Figure 2.25, the normalized performance function tends to be higher when

the value of density in the element is small. This is probably due to the fact that it was more

easily deformed when the value of density was small. The history of performance function

for topology optimization when using the OC method, shown in Figure 2.24, also confirms

this trend, shown in a temporary change in the decrease in the performance around the 4th

iteration. Thus, the temporary increase of the performance function is considered to depend

on the calculation model.



Chap. 2 Topology optimization in problem of self-adjoint relationship 70

(a) Isometric view. (b) Side view.

(c) Isometric view without any elements of

density less than 0.5.

(d) Side view without any elements of

density less than 0.5.

Figure 2.22: Density distributions at convergence of topology optimization for strain energy

minimization when using the OC method (ρmove = 0.01) in the cantilever beam model for

the three dimensional static problem.
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(a) Isometric view. (b) Side view.

(c) Isometric view without any elements of

density less than 0.5.

(d) Side view without any elements of

density less than 0.5.

Figure 2.23: Density distributions at convergence of topology optimization for strain energy

minimization when using the modified OC method (ρmove = 1.00) in the cantilever beam

model for the three dimensional static problem.
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Figure 2.24: The history of normalized performance function in the topology optimization

for strain energy minimization in the cantilever beam model for the three dimensional static

problem.

Table 2.6: Normalized performacne function at final iteration in topology optimization for

strain energy minimization in the cantilever beam model for the three dimensional static

problem.

Update method Move-limit ρmove Normalized performance function

OC 0.01 0.042

Modified OC 1.00 0.081
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(a) Isometric view at the 4th iteration. (b) Side view at the 4th iteration.

(c) Isometric view at the 12th iteration. (d) Side view at the 12th iteration.

Figure 2.25: Density distributions at the 4th and 12th iterations of topology optimization

when using the modified OC method (ρmove = 1.00) in the cantilever beam model for the

three dimensional static problem.
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(a) At the 4th iteration. (b) At the 12th iteration.

(c) At convergence.

Figure 2.26: Isometric views of the distribution of the normalized strain energy when using

the modified OC method.
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Next, the results of topology optimization when using the OC method in the MBB beam

model shown in Figure 2.8(b) is described. Similar to the density distribution in the can-

tilever beam model described above, Figures 2.27 and 2.28 show isometric and side views

of the density distribution at convergence obtained by topology optimization when using

the OC method and the modified OC method. In addition, the sub captions (c) and (d) of

Figures 2.27 and 2.28 show the density distributions with the elements with density values

less than 0.5 in the density distribution, shown in the sub captions (a) and (b) of Figures

2.27 and 2.28, eliminated. Similar to the density distribution shown in Figures 2.22 and 2.23,

it can be confirmed that the results differ depending on the update method. The density

distribution of topology optimization when using the OC method, shown in Figure 2.27, is

obtained a density distribution with trusses with thin members. On the other hand, the

density distribution of topology optimization when using the OC method, shown in Figure

2.28, is obtained a density distribution with trusses with thicker members. From a manufac-

turing standpoint, the structure with thin members, as shown in Figure 2.27, is difficult to

machine when cutting, while the structure with thicker members, as shown in Figure 2.28,

is relatively easy to machine. The history of performance function for topology optimiza-

tion when using the modified OC method, shown in Figure 2.29, converges earlier than one

when using the OC method, with a larger drop in the initial iteration. Table 2.7 shows that

the value of normalized performance fucntion at convergence when using the modified OC

method was as same as the value when using the OC method.
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(a) Isometric view. (b) Side view.

(c) Isometric view without any elements of

density less than 0.5.

(d) Side view without any elements of

density less than 0.5.

Figure 2.27: Density distributions at convergence of topology optimization for strain energy

minimization when using the OC method (ρmove = 0.01) in the MBB beam model for the

three dimensional static problem.
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(a) Isometric view. (b) Side view.

(c) Isometric view without any elements of

density less than 0.5.

(d) Side view without any elements of

density less than 0.5.

Figure 2.28: Density distributions at convergence of topology optimization for strain energy

minimization when using the modified OC method (ρmove = 1.00) in the MBB beam model

for the three dimensional static problem.
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Figure 2.29: The history of normalized performance function in the topology optimization

for strain energy minimization in the MBB beam model for the three dimensional static

problem.

Table 2.7: Normalized performacne function at final iteration in topology optimization for

strain energy minimization in the MBB beam model for the three dimensional static problem.

Update method Move-limit ρmove Normalized performance function

OC 0.01 0.013

Modified OC 1.00 0.013

2.7.4 Results of topology optimization in three dimensional dy-

namic oscillation problems

This subsection is described the results of topology optimization for strain energy mini-

mization in three dimensional dynamic oscillation problems. As in the previous subsection,

the move-limit ρmove is set to 0.01 when using the OC method, and it is set to 1.00 when

using the modified OC method. The calculation models are the cantilever beam model and



Chap. 2 Topology optimization in problem of self-adjoint relationship 79

MBB beam model shown in Figure 2.8, and is added impact loads as shown in Figure 2.9.

First, the density distribution of topology optimization when using the OC method in the

cantilever beam model is described. Similar to the density distribution of topology optimiza-

tion in three dimensional steady problems, Figure 2.30 shows isometric and side views of the

density distribution. Compared to the density distribution of topology optimization for three

dimensional steady problem shown in Figure 2.22, while both of these results obtain a struc-

ture such as a hollow material, the density distribution of topology optimization for three

dimensional dynamic oscillation problem shown in Figure 2.30 is characterized by a density

distribution concentrated at the tip. Next, the density distribution of topology optimization

when using the modified OC method is described. Also, compared to the density distribution

of topology optimization for three dimensional steady problem shown in Figure 2.23, while

both of these results obtain a structure such as a solid material, the density distribution of

topology optimization for three dimensional dynamic oscillation problem shown in Figure

2.31 is characterized by a density distribution concentrated at the tip. This was confirmed

by both update methods, suggesting that the inertia term, which is only present in dynamic

oscillation problem, is influential. It is not possible to determine which is better based solely

on the density distributions. However, from a manufacturing standpoint, as with the steady

problem, the density distribution when using the modified OC method is considered easier

to process. Next, as a verification of problem setup for topology optimization, the displace-

ment waveforms at the loading point are described. Figure 2.32 shows the displacement

waveforms in Z-direction at first iteration before optimization and at the optimum solution

obtained by topology optimization when using the OC method. From Figure 2.32, the sig-

nificant reduction of displacement waveforms indicates that the topology optimization has

been properly implemented. Next, the differences in the optimum results depending on the

update method are discussed. Figure 2.33 shows the displacement waveforms in Z-direction

at optimum solutions obtained by topology optimization when using the OC method and

the modified OC method. From the detailed view of displacement waveform shown in Fig-

ure 2.33(b), the displacement waveform obtained by topology optimization when using the
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modified OC method is confirmed the shorter period than one when using the OC method.

However, no significant difference in amplitude can be observed. Finally, from the history of

performance function shown in Figure 2.34, the history of performance function for topol-

ogy optimization when using the modified OC method shows that the performance function

drops significantly in the initial iteration and converges in fewer iterations than one when

using the OC method. Table 2.8 shows that the value of normalized performance fucntion

at convergence when using the modified OC method was as same as the value when using

the OC method. In topology optimization for density oscillation problems, reduction of the

number of iterations is directly related to reduction of the number of finite element analysis,

which are sequential analysis. However, the history of performance function for topology op-

timization when using the modified OC method confirms that it is constant from a certain

number of iterations.
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(a) Isometric view. (b) Side view.

(c) Isometric view without any elements of

density less than 0.5.

(d) Side view without any elements of

density less than 0.5.

Figure 2.30: Density distributions at convergence of topology optimization for strain energy

minimization when using the OC method (ρmove = 0.01) in the cantilever beam model for

the three dimensional dynamic oscillation problem.
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(a) Isometric view. (b) Side view.

(c) Isometric view without any elements of

density less than 0.5.

(d) Side view without any elements of

density less than 0.5.

Figure 2.31: Density distributions at convergence of topology optimization for strain energy

minimization when using the modified OC method (ρmove = 1.00) in the cantilever beam

model for the three dimensional dynamic oscillation problem.
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(b) Detailed view.

Figure 2.32: Displacement waveform of the initial cantilever beam model in the Z–direction

at the load point, and displacement waveform of the initial cantilever beam model in the Z

direction at the load point when topology optimization is performed using the OC method.
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Figure 2.33: Displacement waveform in the Z–direction at the load point on the cantilever

beam model at convergence when topology optimization is performed using the OC method

or modified OC method.
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Figure 2.34: The history of normalized performance function in the topology optimization for

strain energy minimization in the cantilever beam model for the three dimensional dynamic

oscillation problem.

Table 2.8: Normalized performacne function at final iteration in topology optimization for

strain energy minimization in the cantilever beam model for the three dimensional dynamic

problem.

Update method Move-limit ρmove Normalized performance function

OC 0.01 0.060

Modified OC 1.00 0.065

Next, the results of topology optimization when using the OC method and the modified

OC method in the MBB beam model, shown in Figure 2.8(b), is described. Similar to the

results in the cantilever beam model described above, it can be confirmed that the density

distributions are obtained for both update methods, as shown in Figures 2.35 and 2.36. How-

ever, it can be seen that numerous grayscale remains within the density distribution than

in any of the aforementioned results. On the other hand, from the displacement waveforms

shown in Figures 2.37 and 2.38, the topology optimization reliably reduces the oscillation.
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Similar to the results for cantilever beam model described above, the displacement waveform

of topology optimization when using the modified OC method has a shorter period. The

reason why numerous grayscales remain is thought to be due to the difficulty of determining

convergence. From the history of the performance function shown in Figure 2.39, similar to

the results of the other analyses, the history of performance function for topology optimiza-

tion when using the modified OC method shows a significant drop in the initial iteration.

Table 2.9 shows that the value of normalized performance fucntion at convergence when us-

ing the modified OC method was slightly smaller than the value when using the OC method.

However, it was found that even if the performance function is a certain value, the density

distribution could still contain grayscale. Thus, the convergence equation in the next and

subsequent chapters is set to finalize the calculation at the maximum number of iterations.
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(a) Isometric view. (b) Side view.

(c) Isometric view without any elements of

density less than 0.5.

(d) Side view without any elements of

density less than 0.5.

Figure 2.35: Density distributions at convergence of topology optimization for strain energy

minimization when using the OC method (ρmove = 0.01) in the MBB beam model for the

three dimensional dynamic oscillation problem.
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(a) Isometric view. (b) Side view.

(c) Isometric view without any elements of

density less than 0.5.

(d) Side view without any elements of

density less than 0.5.

Figure 2.36: Density distributions at convergence of topology optimization for strain energy

minimization when using the modified OC method (ρmove = 1.00) in the MBB beam model

for the three dimensional dynamic oscillation problem.
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(b) Detailed view.

Figure 2.37: Displacement waveform of the initial cantilever beam model in the Z–direction

at the load point, and displacement waveform of the initial cantilever beam model in the Z

direction at the load point when topology optimization is performed using the OC method.
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(b) Detailed view.

Figure 2.38: Displacement waveform in the Z–direction at the load point on the MBB model

at convergence when topology optimization is performed using the OC method and the

modified OC method.
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Figure 2.39: The history of normalized performance function in the topology optimization for

strain energy minimization in the cantilever beam model for the three dimensional dynamic

oscillation problem.

Table 2.9: Normalized performacne function at final iteration in topology optimization for

strain energy minimization in the MBB beam model for the three dimensional dynamic

problem.

Update method Move-limit ρmove Normalized performance function

OC 0.01 0.0087

Modified OC 1.00 0.0078

2.7.5 Consideration of the influence of the setting value of the

move-limit on an optimum result

This subsection discusses the reasons why the optimum solutions can not be obtained

or differs depending on the setting value of the move-limit ρmove, as described above. The

difference between the OC method and the modified OC method is whether the weighting
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factor η is given as a constant or as a function. From the expression for the natural logarithm

of both sides of the OC method shown in Equation (2.78), it is inferred that the OC method

updates the linear search in the same way as the steepest descent method. In contrast,

since the modified OC method is based on Newton’s method, it can be inferred that updates

are made in Newtonian direction. The search speed of Newton’s method is faster than

that of other methods, but it is also dependent on the analysis model and initial values.

The characteristics may have had a positive effect. Figure 2.40 illustrates the image of

the search to the optimum solution. Figure 2.40(a) shows the image of the search when

the move-limit ρmove is set to too small value (ρmove = 0.01). In this case, the number of

iterations increases due to the small update range, but the optimum solution is steadily

obtained. However, topology optimization using the OC method when the move-limit ρmove

is set to large value, as shown in Figure 2.40(b), requires a large update range, making

the search for the optimum solution complicated. Thus, the analysis will either settle on

a different solution or continue searching around the optimum solution. This is confirmed

by the reusults of topology optimization in two dimensional steady problems. On the other

hand, topology optimization using the modified OC method when the move-limit ρmove is

set to large value, as shown in Figure 2.40(c), is not subject to the update constraint by

the move-limit ρmove. And, it is assumed that the optimum solution was steadily obtained

by finding a mathematically appropriate update length. In addition, because the initial

model and initial conditions are the same, it is assumed that the topology optimization in

two dimensional problem produced similar density distributions even when the move-limit

ρmove was changed. However, in three dimensional steady problems, more design degrees of

freedom is obtained because of the greater effect of the update constraints due to the move-

limit ρmove. Also, similar density distributions can not be obtained. In the next chapter, the

density distribution will be compared in more detail.



Chap. 2 Topology optimization in problem of self-adjoint relationship 91

Solutions
Initial

ρ(0)

ρ(n)

ρ(4)

(a) Move-limit ρmove is set to

a smaller value.
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(b) Move-limit ρmove is set to

a larger value in the OC method.

Solutions
Initial

ρ(0) ρ(1)

ρ(2) ρ(3)
ρ(4)

(c) Move-limit ρmove is set to a larger value in the modified OC method.

Figure 2.40: Image of solution update by each update method.



Chapter 3

Topology optimization in the problem of

non-self-adjoint relationship

3.1 Formulation of topology optimization for von Mises

stress minimization

The previous chapter discusses the topology optimization for strain energy minimization.

The strain energy minimization problem is a fundamental optimization problem in structural

optimization because the self-adjoint relationship holds. The self-adjoint relationship is

characterized by the fact that the adjoint equation does not required to be solved and the

Lagrange multiplier (adjoint variable) is replaced as the state variable, as shown in Equation

(2.13). Thus, the time required for a single iteration is reduced. In contrast, strain energy

is not widely employed in industry. Therefore, an optimization problem is performed here

to minimize the von Mises stress used in the strength design. The von Mises stress is a

scale amount of stress calculated from the vertical and shear stresses, also called equivalent

stress. However, topology optimization for stress remains a challenging problem. First

of all, stress-constrained topology optimization focused on the optimization problem for

truss structures[68]. The optimization for truss structures was solved by the ε–relaxation

method[69] and smooth envelope function[70]. After that, it is applied to stress-constrained

design of continuum structures. Recently, normalized global or local stress schemes have
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been developed based on the p-norm of von Mises stress[72, 73]. In this study, the p-norm

of von Mises stress is employed as performance function to make the same constraints as

in the previous chapter. The optimization problem in this chapter consists of performance

function shown in Equation (3.1) and the same conditions as shown in Equations (2.2) to

(2.4).

minimize J =

(∑
e∈Ω

(
ρ⟨e⟩

1
2σVM ⟨e⟩

)p
V⟨e⟩

) 1
p

(3.1)

subject to [K] {u} = {f} (3.2)

V =
∑
e∈Ω

V⟨e⟩ρ⟨e⟩
Vtotal

− ρ̄0 ≤ 0 (3.3)

0 ≤ ρ⟨e⟩ ≤ 1 (3.4)

Here,
[
K⟨e⟩

]
,
{
u⟨e⟩
}
, and

{
f⟨e⟩
}
are the stiffness matrix in an element, displacement vector

in an element, and load vector in an element, respectively. In addition, p, V⟨e⟩, ρ⟨e⟩, Vtotal,

and ρ̄0 are the penalization parameter for p-norm, the volume or area in an element, density,

and total volume or area in the design domain Ω, respectively. If p is set to a large value,

it is approximately equal to the maximum value in the domain. If you want to focus on

elements with higher stresses, p should be set to a large value. However, if p is set to a large

value, an empirical setup is essential because of the strong nonlinearities and discontinuities.

The von Mises stress σVM ⟨e⟩ in two dimensional problem, which is a plane stress state, and

three dimensional problem are shown in

σVM ⟨e⟩ =
√

σxx⟨e⟩
2 + σyy⟨e⟩

2 − σxx⟨e⟩σyy⟨e⟩ + 3σxy⟨e⟩
2 (in 2D) (3.5)

σVM ⟨e⟩
2 =

1

2

((
σxx⟨e⟩ − σyy⟨e⟩

)2
+
(
σyy⟨e⟩ − σzz⟨e⟩

)2
+
(
σzz⟨e⟩ − σxx⟨e⟩

)2
+6
(
σxy⟨e⟩

2 + σyz⟨e⟩
2 + σxz⟨e⟩

2
))

(in 3D) (3.6)

The stress is a function of density, and is defined as

{
σ⟨e⟩
}

= [De]
{
ε⟨e⟩
}

= [De] [Be]
{
u⟨e⟩
}

(3.7)
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Here,
{
σ⟨e⟩
}
is the stress vector aggregating the components of stress, and

{
ε⟨e⟩
}
is the strain

vector aggregating the components of strain. In Equation (3.7), the D matrix [De], which

represents the material properties in element e, and the B matrix [Be], which represents the

shape, are not a function of density. Only the displacement vector
{
u⟨e⟩
}
is a function of

density. The sensitivity is obtained using a procedure similar to the topology optimization

for strain energy minimization shown in the previous chapter. Thus, the duplicated contents

are omitted. The optimization is performed to satisfy the governing equation shown in

Equation (3.2) and to minimize the performance function shown in Equation (3.1). The

Lagrange function J∗ is defined as

J∗ =
∑
e∈Ω

J∗
⟨e⟩

=
∑
e∈Ω

J⟨e⟩ +
{
λ⟨e⟩
}T ([

K⟨e⟩
] {

u⟨e⟩
}
−
{
f⟨e⟩
})

(3.8)

where
{
λ⟨e⟩
}
is the Lagrange multiplier vector. It is sufficient if the variate of the Lagrange

function δJ∗
⟨e⟩ is zero, as shown in

δJ∗
⟨e⟩ =

{
∂J∗

⟨e⟩

∂λ⟨e⟩

}T {
δλ⟨e⟩

}
+

{
∂J∗

⟨e⟩

∂u⟨e⟩

}T {
δu⟨e⟩

}
+

∂J∗
⟨e⟩

∂ρ⟨e⟩
δρ⟨e⟩ = 0 (3.9)

As in the previous chapter, each term is calculated to be zero. First, the gradient of the

Lagrange function with respect to the Lagrange multiplier vector shown in the first term

is the same as the governing equation shown in Equation (3.2). Thus, it is therefore not

explained. Next, the gradient of the Lagrange function with respect to the displacement

vector shown in the second term is calculated as{
∂J∗

⟨e⟩

∂u⟨e⟩

}T

= G
1
p
−1ρ⟨e⟩

p
2σVM ⟨e⟩

p−1V⟨e⟩

{
∂σVM ⟨e⟩

∂u⟨e⟩

}T

+
{
λ⟨e⟩
}T [

K⟨e⟩
]
= {0}T (3.10)

where G is as

G =
∑
e∈Ω

(
ρ⟨e⟩

1
2σVM ⟨e⟩

)p
V⟨e⟩ (3.11)

From Equation (3.10), the Lagrange multiplier vector is calculated as{
λ⟨e⟩
}T [

K⟨e⟩
]
= −G

1
p
−1ρ⟨e⟩

p
2σVM ⟨e⟩

p−1V⟨e⟩

{
∂σVM ⟨e⟩

∂u⟨e⟩

}T

(3.12)
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The gradient of the von Mises stress with respect to the displacement vector in Equation

(3.12) is calculated as follows. The gradients of the von Mises stress with respect to the

displacement vector in the X, Y, and Z-directions for three dimensional problem are shown

in

∂σVM ⟨e⟩

∂u
=

1

2σVM ⟨e⟩

((
2σxx⟨e⟩ − σyy⟨e⟩ − σzz⟨e⟩

)
D11

∂εxx⟨e⟩
∂u

+
(
2σyy⟨e⟩ − σxx⟨e⟩ − σzz⟨e⟩

)
D21

∂εxx⟨e⟩
∂u

+
(
2σzz⟨e⟩ − σxx⟨e⟩ − σyy⟨e⟩

)
D31

∂εxx⟨e⟩
∂u

+6τxy⟨e⟩D44

∂γxy⟨e⟩
∂u

+ 6τzx⟨e⟩D66

∂γzx⟨e⟩
∂u

)
(3.13)

∂σVM ⟨e⟩

∂v
=

1

2σVM ⟨e⟩

((
2σxx⟨e⟩ − σyy⟨e⟩ − σzz⟨e⟩

)
D12

∂εyy⟨e⟩
∂v

+
(
2σyy⟨e⟩ − σxx⟨e⟩ − σzz⟨e⟩

)
D22

∂εyy⟨e⟩
∂v

+
(
2σzz⟨e⟩ − σxx⟨e⟩ − σyy⟨e⟩

)
D32

∂εyy⟨e⟩
∂v

+6τxy⟨e⟩D44

∂γxy⟨e⟩
∂v

+ 6τyz⟨e⟩D55

∂γyz⟨e⟩
∂v

)
(3.14)

∂σVM ⟨e⟩

∂w
=

1

2σVM ⟨e⟩

((
2σxx⟨e⟩ − σyy⟨e⟩ − σzz⟨e⟩

)
D13

∂εzz⟨e⟩
∂w

+
(
2σyy⟨e⟩ − σxx⟨e⟩ − σzz⟨e⟩

)
D23

∂εzz⟨e⟩
∂w

+
(
2σzz⟨e⟩ − σxx⟨e⟩ − σyy⟨e⟩

)
D33

∂εzz⟨e⟩
∂w

+6τyz⟨e⟩D55

∂γyz⟨e⟩
∂w

+ 6τzx⟨e⟩D66

∂γzx⟨e⟩
∂w

)
(3.15)

The gradients of the von Mises stress with respect to the displacement vector in the X and

Y-directions for two dimensional problem are shown in

∂σVM ⟨e⟩

∂u
=

1

2σVM ⟨e⟩

((
2σxx⟨e⟩ − σyy⟨e⟩

)
D11

∂εxx⟨e⟩
∂u

+
(
2σyy⟨e⟩ − σxx⟨e⟩

)
D21

∂εxx⟨e⟩
∂u

+6τxy⟨e⟩D33

∂γxy⟨e⟩
∂u

)
(3.16)
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∂σVM ⟨e⟩

∂v
=

1

2σVM ⟨e⟩

((
2σxx⟨e⟩ − σyy⟨e⟩

)
D12

∂εyy⟨e⟩
∂v

+
(
2σyy⟨e⟩ − σxx⟨e⟩

)
D22

∂εyy⟨e⟩
∂v

+6τxy⟨e⟩D33

∂γxy⟨e⟩
∂v

)
(3.17)

Finally, the gradient of the Lagrange function with respect to the density, shown in the third

term of Equation (3.9), is obtained. From Equation (3.10), the gradient of the Lagrange

function with respect to the density is calculated as

∂J∗
⟨e⟩

∂ρ⟨e⟩
=

1

2
G

1
p
−1ρ⟨e⟩

p
2
−1σVM ⟨e⟩

pV⟨e⟩ +
{
λ⟨e⟩
}T ∂

[
K⟨e⟩

]
∂ρ⟨e⟩

{
u⟨e⟩
}

+

(
G

1
p
−1ρ⟨e⟩

p
2
−1σVM ⟨e⟩

p−1V⟨e⟩

{
∂σVM ⟨e⟩

∂u⟨e⟩

}T

+
{
λ⟨e⟩
}T [

K⟨e⟩
]){∂u⟨e⟩

∂ρ⟨e⟩

}
=

1

2
G

1
p
−1ρ⟨e⟩

p
2
−1σVM ⟨e⟩

pV⟨e⟩ +
{
λ⟨e⟩
}T ∂

[
K⟨e⟩

]
∂ρ⟨e⟩

{
u⟨e⟩
}

(3.18)

Next, the extended Lagrange function L is defined by considering the volume constraint

shown in Equation (3.3). As in the previous chapter, the gradient of the Lagrange function

with respect to the density, which is the sensitivity, is calculated as

∂L⟨e⟩

∂ρ⟨e⟩
=

∂J∗
⟨e⟩

∂ρ⟨e⟩
+ Λ

V⟨e⟩

Vtotal

= 0 (3.19)

However, unlike the previous section, this optimization problem does not guarantee that the

sensitivity is always negative, as shown in Figure 3.1. That is, there is no guarantee that

the extended Lagrange multiplier Λ also always be positive.

Thus, as it is, it is impossible to employ the OC method and the modified OC method.

In other words, when the sensitivity is always negative, the extended Lagrange multiplier

Λ is always positive, and the OC method and the modified OC method can be employed.

Therefore, to ensure that the sensitivity term is always negative, the Equation (3.19) is offset

as

∂J∗
⟨e⟩

∂ρ⟨e⟩
+ Λ

V⟨e⟩

Vtotal

+ gmax − gmax = 0 (3.20)

where gmax is an offset function, can be given in various ways. In this chapter, based on the

concept that the modified sensitivity should be less than or equal to zero, the offset function
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Figure 3.1: Sensitivity distribution at 1st iteration obtained in a numerical example.

gmax is defined as

gmax = max
e∈Ω

(
0,

∂J∗
⟨e⟩

∂ρ⟨e⟩

)
(3.21)

Equation (3.20) is rewritten as

A⟨e⟩ =

∂J∗
⟨e⟩

∂ρ⟨e⟩
− gmax

−
(
Λ

V⟨e⟩
Vtotal

+ gmax

)
=

∂J∗
⟨e⟩

∂ρ⟨e⟩
− gmax

−Λmod

(3.22)

where Λmod is the modified extended Lagrange multiplier, which is obtained by the bisection

method. The offset ensures that the numerator and denominator shown in Equation (3.22)

are always negative and the function A⟨e⟩ is positive. Thus, the OC and the modified OC

methods can be employed.

3.2 Modified optimality criteria method corresponding

to negative values

This section derives a modified OC method that takes into account when the exponent

located in the weighting factor are negative. Search direction is an important factor in
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optimization problems. Sometimes the search direction is different, and what should be a

minimization problem becomes maximization one. Thus, in the steepest descent method, the

step length αs is given such that its set value exceeds 0. In addition, the modified Newton’s

method [74] is often employed to correct negative definite values to positive definite value.

Negative definite means when the sign is negative, and positive definite when the sign is

positive. Moreover, when the sign is greater than or equal to 0, it is called semi-positive

definite, and when the sign is less than or equal to 0, it is called semi-negative definite. The

modified OC method modifies the diagonal components by adding a matrix to the negative

definite Hessian [H], as shown in

[Q] = [H] + µ [I] (3.23)

where [Q] and [I] are the modified Hessian and identity matrix. µ is a parameter that

is adjusted to be a positive definite. The modified OC method is employed in the strain

energy minimization problem because the function located at the weighting factor η was

always guaranteed to be positive. However, in the von Mises stress minimization problem

in this chapter, there is no guarantee that this function will always be positive, as shown in

Figure 3.2. In the modified OC method, a sign reversal causes a reversal of the numerator-

denominator, which makes it impossible to search for an optimum solution. Thus, a new

proposal is needed to employ the modified OC method.
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Figure 3.2: Second order derivative distribution at 1st iteration obtained in a numerical

example.

Based on the above, this chapter derives a new modified OC method that incorporates

the concept of the modified Newton’s method to modify the negative value. First, the

function located at the weighting factor η is obtained. By assuming that gmax is zero when

differentiated by density, the function located at the weighting factor η become as

(
− ∂

∂ρ⟨e⟩

(
lnA

(k)
⟨e⟩

))−1

= −

 ∂2J∗
⟨e⟩

∂ρ⟨e⟩2

(k)

∂J∗
⟨e⟩

∂ρ⟨e⟩

(k)

− gmax


−1

(3.24)

The denominator in Equation (3.24) can be calculated by Equations (3.18) and (3.21). The

calculation method of the numerator in Equation (3.24) will be explained. The gradient of

the sensitivity shown in the numerator of Equation (3.24) is obtained as

∂2J∗
⟨e⟩

∂ρ⟨e⟩2
=

∂

∂ρ⟨e⟩

(
1

2
G

1
p
−1ρ⟨e⟩

p
2
−1σVM ⟨e⟩

pV⟨e⟩ +
{
λ⟨e⟩
}T ∂

[
K⟨e⟩

]
∂ρ⟨e⟩

{
u⟨e⟩
})

=
1

2

(
1

p
− 1

)
G

1
p
−2 ∂G

∂ρ⟨e⟩
ρ⟨e⟩

p
2
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pV⟨e⟩ +
1

2

(p
2
− 1
)
G

1
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p
2
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pV⟨e⟩

+
1

2
pG

1
p
−1ρ⟨e⟩

p
2
−1σVM ⟨e⟩

p−1V⟨e⟩
∂σVM ⟨e⟩

∂ρ⟨e⟩
+

{
∂λ⟨e⟩

∂ρ⟨e⟩

}T ∂
[
K⟨e⟩

]
∂ρ⟨e⟩

{
u⟨e⟩
}

+
{
λ⟨e⟩
}T ∂2

[
K⟨e⟩

]
∂ρ⟨e⟩2

{
u⟨e⟩
}
+
{
λ⟨e⟩
}T ∂

[
K⟨e⟩

]
∂ρ⟨e⟩

{
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∂ρ⟨e⟩

}
(3.25)

Differentiating the governing equation, shown in Equation (3.2) by the density, it is obtained
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as

∂
[
K⟨e⟩

]
∂ρ⟨e⟩

{
u⟨e⟩
}
+
[
K⟨e⟩

]{∂u⟨e⟩

∂ρ⟨e⟩

}
= {0} (3.26)

The gradient of the Lagrange multiplier vector with respect to the density in Equation (3.25)

is unknown variable. Thus, differentiating the adjoint equation shown in Equation (3.12),

the gradient of the Lagrange multiplier vector with respect to the density is obtained as{
∂λ⟨e⟩

∂ρ⟨e⟩

}T [
K⟨e⟩
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λ⟨e⟩
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From Equations (3.26) and (3.27), Equation (3.25) is written as
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(3.28)

In three dimensions, differentiating the gradient of the von Mises stress with respect to the
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displacement vector by density, they are obtained as
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In two dimensions, differentiating the gradient of the von Mises stress with respect to the

displacement vector by density, they are obtained as
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∂σxx⟨e⟩

∂ρ⟨e⟩

)
D22

∂εyy⟨e⟩
∂v

σVM ⟨e⟩

−
(
2σyy⟨e⟩ − σxx⟨e⟩

)
D22

∂εyy⟨e⟩
∂v

∂σVM ⟨e⟩

∂ρ⟨e⟩

+6
∂τxy⟨e⟩
∂ρ⟨e⟩

D33

∂γxy⟨e⟩
∂v

σVM ⟨e⟩ − 6τxy⟨e⟩D33

∂γxy⟨e⟩
∂v

∂σVM ⟨e⟩

∂ρ⟨e⟩

)
(3.33)

From the above, the modified OC method for this problem, based on the concept of the

modified OC method shown in Equation (3.23), is shown in Equation (3.34). Figure 3.3

shows the derivation procedure of the Min–Max normalized (MMN) modified OC method,

which is the proposed method described so far.

ρ
(k+1)
⟨e⟩ = ρ

(k)
⟨e⟩

 ∂ ¯J∗
⟨e⟩

∂ρ⟨e⟩

(k)

−Λ
(k)
mod


1

ι
(k)
norm

−

∂ ¯J∗
⟨e⟩

∂ρ⟨e⟩

(k)

∂2J∗
⟨e⟩

∂ρ⟨e⟩
2

(k)
−ι

(k)
min


(3.34)

Here,
∂ ¯J∗

⟨e⟩
∂ρ⟨e⟩

is the filtered sensitivity after offset. Moreover, ιmin and ιnorm are the shift

parameter to be positive definite and parameter for normalization. The reason why using

the parameter ιnorm is that the OC method gives a parameter in the range between zero to

one. However, if the parameter ιnorm is not used, the modified OC method in this problem

may exceed to one. Thus, it is normalized to one as an upper bound.

ι
(k)
min = min

e∈Ω

0, −
∂ ¯J∗

⟨e⟩
∂ρ⟨e⟩

(k)

∂2J∗
⟨e⟩

∂ρ⟨e⟩2

(k)

 (3.35)

ι(k)norm = max
e∈Ω

1, −
∂ ¯J∗

⟨e⟩
∂ρ⟨e⟩

(k)

∂2J∗
⟨e⟩

∂ρ⟨e⟩2

(k)
− ι

(k)
min

 (3.36)
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Figure 3.3: Image of the derivation process for Min–Max normalized modified OC method.
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3.3 Flow of density-based topology optimization for

von Mises stress minimization

This section described the flow of the density-based topology optimization for von Mises

stress minimization in steady problems. The general flow of the optimization is the same

as the flowchart for topology optimization to minimize strain energy, shown in Figure 2.6 in

the previous chapter. The detailed procedure is as follows.

1. Input of the computation model and calculation conditions shown in next section.

2. The finite element analysis for linear elastic body is performed. The governing equation

shown in Equation (3.2) is used to obtain the displacement vector {u}.

3. The von Mises stress, which is the performance function is calculated. Using the

displacement vector {u} obtained in the previous step, the performance function shown

in Equation (3.1) is calculated.

4. If the judgement of convergence k < kmax is satisfied, the computation is finalized.

Otherwise, go to the next step.

5. The sensitivity, which is the gradient of the Lagrange function J∗
⟨e⟩ with respect to the

density ρ⟨e⟩, is calculated. From the adjoint equation shown in Equation (3.12), the

Lagrange multiplier vector {λ} is obtained. After that, using the Lagrange multiplier

vector {λ}, the sensitivity is calculated.

6. The sensitivity filter shown in Equation (2.72) is applied．

7. The density ρ⟨e⟩, which is the design variable, is updated. When using the OC method,

Equations (2.18) and (3.22) is employed, and when using the MMN modified OC

method, Equation (3.34) is employed. After updating, the number of iterations is

updated to the k + 1-th step and the process returns to step 2.
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3.4 Calculation conditions in density-based topology

optimization for von Mises stress minimization

This section explains about the calculation model and conditions. In this chapter, topol-

ogy optimization for von Mises stress minimization in steady problems is performed. As in

the previous chapter, the topology optimization is performed to verify the dependence of

the move-limit ρmove. The calculation models are the MBB beam model shown in Figure

3.4(a) and the hook model, used in the stress analysis example, shown in Figure 3.4(b). In

the topology optimization for two dimensional problem, topology optimization is performed

when the value of move-limit ρmove is changed to 0.01, 0.30, or 1.00. ρmove = 0.01 is the

problem setting for finding the optimal solution, ρmove = 0.30 is the optimization problem

for a slightly larger setting, and ρmove = 1.00 is the optimization problem with no move-limit.

Based on the results of topology optimization for von Mises stress minimization in two di-

mensional problems, topology optimization is performed to minimize the von Mises stress in

three dimensional MBB beam model and hook model shown in Figure 3.5, with thickness

direction added to Figure 3.4. The influence of the update method and parameters on the

three dimensional optimum results will be investigated.

First, the calculation model and conditions used in topology optimization for two dimen-

sional problems are explained in detail. The two dimensional model shown in Figure 3.4 uses

a 4-node quadrilateral element and has a structural grid divided by squares of 1 [mm] per

side. The MBB beam model shown in Figure 3.4(a) is added 0.5 [N]. The hook beam model

shown in Figure 2.7(b) is added 1 [N]. Other calculation conditions are shown in Table 3.1.

The initial density in the design domain Ω is given uniformly by ρ̄0. In addition to the design

domain Ω, the hook model has a non-design domain Ωnon. The non-design domain Ωnon is

always updated so that the density value is zero. Next, the calculation model and conditions

used in topology optimization for three dimensional problems are explained in detail. The

three dimensional model shown in Figure 3.5 uses a 8-node hexahedral element and has a

structural grid divided by cube of 1 [mm] per side. The MBB beam model shown in Figure
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3.5(a) is added a uniformly distribution load of total load 300 [N]. The hook model shown in

Figure 3.5(b) is also added a uniformly distribution load of total load 300 [N]. Figure 3.5(c)

shows the hook model, shown in Figure 3.5(b), eliminated the non-design domain Ωnon. The

other calculation conditions are shown in Table 3.2 as for the two dimensional problem.

f (0.5[N])

150[mm]

50[mm]

Design domain Ω

(ρe=ρ
0
)

X
Y

(a) MBB beam model.

f (1[N])

120[mm]

160[mm]

Design domain Ω
(ρe=ρ

0
)

X
Y

60[mm]

Non-design 
domain Ω

non
(ρe=0)

60[mm]

(b) Hook model.

Figure 3.4: Computation models on two dimension in von Mises stress energy minimization

problems.
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50[mm]

Uniformly distributed load 
(Total load  f : 300[N] )

The edge in Y-direction
is fixed in Z-direction.

The YZ plane is fixed
in X-direction.

(a) MBB beam model.

X

Y

Z

30[mm]

120[mm]

60[mm]

160[mm]

60[mm]

Uniformly distribution load

(Total load  f : 300[N] )

The XY plane is fixed
in X, Y and Z- directions.

(b) Hook beam model.

X
Y

Z

(c) Design domain in the hook model.

Figure 3.5: Computation models on three dimension in von Mises stress minimization prob-

lems.



Chap. 3 Topology optimization in problem of non-self-adjoint relationship 110

Table 3.1: Calculation conditions of topology optimization for von Mises stress minimization

in two dimensional static problems.

Model MBB beam Hook

Number of elements 7500 19200

Number of nodes 7701 19481

Initial density average, ρ̄0 0.2 0.2

Penalization parameter for the SIMP method, ps 3.0 3.0

Penalization parameter for p–norm, p 6.0 6.0

Weighting factor, η 0.75 0.75

Filter radius, R 1.25 1.25

Maximum number of iterations, kmax 400 500

Young’s modulus, E0 [Pa] 1.0× 106 1.0× 106

Poisson ratio, ν 0.3 0.3
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Table 3.2: Calculation conditions of topology optimization for von Mises stress minimization

in three dimensional static problems.

Model MBB beam Hook

Number of elements 75000 576000

Number of nodes 84711 603911

Initial density average, ρ̄0 0.3 0.3

Penalization parameter for the SIMP method, ps 3.0 3.0

Penalization parameter for p–norm, p 6.0 6.0

Weighting factor, η 0.75 0.75

Filter radius, R 1.25 1.25

Maximum number of iterations, kmax 150 150

Young’s modulus, E0 [Pa] 210× 109 210× 109

Poisson ratio, ν 0.3 0.3
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3.5 Results and considerations of density-based topol-

ogy optimization for von Mises stress minimization

3.5.1 Results of topology optimization in two dimensional steady

problems

This subsection describes the results of density-based topology optimization for von Mises

stress minimization in two dimensional problems. First, the results of topology optimization

for MBB beam model shown in Figure 3.4(a) is discussed. Figures 3.6 to 3.8 show the

density distribution obtained by topology optimization when using the OC method. Sub

caption (a) in these figures shows the density distribution at k = 20, (b) shows the density

distribution at at k = 50, and (c) shows the density distribution at k = 400. In addition,

Figures 3.9 to 3.11 show the density distribution obtained by topology optimization when

using the MMN modified OC method. Similarly, (a) to (c) in these figures show the density

distributions at k = 20, 50 and 400, respectively. As shown in (a) of Figures 3.6 to 3.8,

there is numerous grayscale in the density distribution because it is still in the process of

being updated. As shown in (b) of Figures 3.6 to 3.8, when the number of iterations k is 50,

some density distribution such as a structure is obtained, but there is grayscale in density

distribution. In the topology optimization for strain energy minimization when using the

modified OC method, described in the previous chapter, is obtained an optimum solution.

Thus, the optimization problem, which is the von Mises stress minimization problem, that

the optimum solution is difficult to find. In the density distributions at the final iteration

shown in (c) of Figures 3.6 to 3.8, all of the results show a density distribution such as a

structure. The density distributions obtained by topology optimization when using the OC

method, shown in Figures 3.6 and 3.8, depend on the setting value of move-limit ρmove. On

the other hand, the density distributions obtained by topology optimization when using the

MMN modified OC method, shown in Figures 3.6 and 3.11, is difficult to obtain different

density distributions depending on the setting value of move-limit ρmove. However, Topology
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optimization when using the MMN modified OC method confirms that a small amount of

grayscale remains within a density distribution. Figure 3.12 shows the von Mises stress

distributions at the final iteration obtained by topology optimization using each method.

The elements with a density value of 0.3 or less are eliminated. The unit of von Mises

stress distributions is [MPa]. As shown in Figures 3.12(a) to 3.12(e), similar von Mises

stress distributions are obtained, although the density distributions are different. However,

the von Mises stress was higher only in Figure 3.12(f) due to the large amount of grayscale

remaining in the density distribution. For the agreement rates, the comparison is made using

the mean squared error (MSE) shown in

MSE =
1

mx

∑
e∈Ω

(
ρ⟨e⟩ − ˆρ⟨e⟩

)2
(3.37)

where ˆρ⟨e⟩ is a correct value. Topology optimization when ρmove = 0.01 is an optimization

problem that steadily finds an optimum solution. Thus, the correct value ρ̂⟨e⟩ is the density

value of density distribution at the final iteration obtained by topology optimization when

ρmove = 0.01. Table 3.3 shows the MSE of the density distribution obtained by topology

opitmization when the move-limit ρmove is set to 0.30 and 1.00. From Table 3.3, for any

move-limit ρmove, the MSE of topology optimization when using the MMN modified OC

method is smaller than one when using the OC method. Thus, compared to the results

of topology optimization when using the OC method, the results of topology optimization

when using the MMN modified OC method show that the influence of the move-limit ρmove

on the density distribution is smaller. Figure 3.13 shows the history of performance function

obtained by topology optimization when using the OC method and the MMN modified OC

method. From Figure 3.13, after 100 iterations, it is found to convergence to a certain

value. In addition, Table 3.4 shows that the value of normalized performance fucntion at

convergence when using the MMN modified OC method was as same as the value when

using the OC method. However, it is difficult to determine convergence because numerous

grayscales remain in a density distribution.
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(c) Final iteration (400th iteration).

Figure 3.6: Density distributions of two dimensional MBB beam model at each iteration k

when using the OC method (ρmove = 0.01).
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(b) 50th iteration.
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(c) Final iteration (400th iteration).

Figure 3.7: Density distributions of two dimensional MBB beam model at each iteration k

when using the OC method (ρmove = 0.30).



Chap. 3 Topology optimization in problem of non-self-adjoint relationship 116

X

Y

0 50 100 150
0

20

40

60 RHO
0.95
0.9
0.85
0.8
0.75
0.7
0.65
0.6
0.55
0.5
0.45
0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05

(a) 20th iteration.

X

Y

0 50 100 150
0

20

40

60 RHO
0.95
0.9
0.85
0.8
0.75
0.7
0.65
0.6
0.55
0.5
0.45
0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05

(b) 50th iteration.
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(c) Final iteration (400th iteration).

Figure 3.8: Density distributions of two dimensional MBB beam model at each iteration k

when using the OC method (ρmove = 1.00).
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(b) 50th iteration.
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(c) Final iteration (400th iteration).

Figure 3.9: Density distributions of two dimensional MBB beam model at each iteration k

when using the MMN–modified OC method (ρmove = 0.01).
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(b) 50th iteration.
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(c) Final iteration (400th iteration).

Figure 3.10: Density distributions of two dimensional MBB beam model at each iteration k

when using the MMN–modified OC method (ρmove = 0.30).
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(b) 50th iteration.
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(c) Final iteration (400th iteration).

Figure 3.11: Density distributions of two dimensional MBB beam model at each iteration k

when using the MMN–modified OC method (ρmove = 1.00).
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(d) When using the MMN–modified
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Figure 3.12: Von Mises stress distributions of two dimensional MBB beam model at final

iteration.
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Table 3.3: MSE for final density distribution on the MBB beam model.

Move-limit ρmove 0.30 1.00

MSE when using the OC method 0.1748 0.1280

MSE when using the MMN–modified OC method 0.1290 0.0985
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Figure 3.13: The history of normalized performance functions in the two dimensional MBB

beam model.



Chap. 3 Topology optimization in problem of non-self-adjoint relationship 122

Table 3.4: Normalized performacne function at final iteration in topology optimization for

von Mises stress minimization in the MBB beam model for the two dimensional static prob-

lem.

Update method Move-limit ρmove Normalized performance function

OC 0.01 0.032

OC 0.30 0.039

OC 1.00 0.038

Modified OC 0.01 0.034

Modified OC 0.30 0.038

Modified OC 1.00 0.038

Next, the results of topology optimization for hook model shown in Figure 3.4(b) is dis-

cussed. Figures 3.14 to 3.16 show the density distribution obtained by topology optimization

when using the OC method. Sub caption (a) in these figures shows the density distribution

at k = 20 and (b) shows the density distribution at k = 500. In addition, Figures 3.17 to

3.19 show the density distribution obtained by topology optimization when using the MMN

modified OC method. Similarly, (a) and (b) in these figures show the density distribution

at k = 20 and 500. In the density distribution at 20th iterations as shown in (a) of Figures

3.14 to 3.19, as in the results of the MBB beam model, there is numerous grayscale in a

density distribution because it is in the process of being updated. In the density distribution

at the final iteration as shown in (b) of Figures 3.14 to 3.19, all of the results show a density

distribution such as structure. As in the results of the MBB beam model, the density dis-

tribution obtained by topology optimization when using the OC method, shown in Figures

3.14 to 3.16, depends on the setting value of the move-limit ρmove. On the other hand, the

density distribution obtained by topology optimization when using the OC method, shown

in Figures 3.17 to 3.19, is difficult to obtain different density distributions depending on the

setting value of the move-limit ρmove. However, although there is less grayscale than results
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in the MBB beam model, topology optimization when using the MMN modified OC method

confirms that a small amount of grayscale remains within a density distribution. Figure

3.12 shows the von Mises stress distribution at the final iteration obtained by topology op-

timization when using each update method, eliminating elements with density values less

than 0.3. The unit of von Mises stress distributions is [MPa]. Although the obtained density

distributions are different, the von Mises stress is higher at the tip of the hook where the

load is added, and there is no significantly difference in the von Mises stress distribution.

Using Equation (3.37), the MSE for the MBB beam model is calculated. Table 3.3 shows

the MSE of the density distribution obtained by topology optimization when the move-limit

ρmove is set to 0.30 and 1.00. From Table 3.3, for any move-limit ρmove in the hook model,

the MSE of topology optimization when using the MMN modified OC method is smaller

than one when using the OC method. Thus, compared to the results of topology optimiza-

tion when using the OC method, the results of topology optimization when using the MMN

modified OC method show that the influence of the move-limit ρmove on the density distribu-

tion is smaller. Figure 3.21 shows the history of performance function obtained by topology

optimization when using the OC method and the MMN modified OC method. In Figure

3.21(a), the performance functions are constant between the 100th to 200th iterations, but

decreases between the 200th to 300th iterations. It then converges again to a constant value.

The same trend was observed in history of performance function obtained by topology opti-

mization when using the MMN modified OC method, shown in Figure 3.21(b). In addition,

Table 3.6 shows that the value of normalized performance fucntion at convergence when

using the MMN modified OC method was as same as the value when using the OC method.

This is due to the complexity of the hook model compared to the MBB beam model and

the normalization based on the modified Newton’s method. In addition, convergence at the

primary time point is not convergent because there are numerous grayscale in the density

distribution.
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(a) 20th iteration.
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(b) Final iteration (500th iteration).

Figure 3.14: Density distributions of two dimensional hook model at each iteration k when

using the OC method (ρmove = 0.01).
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(a) 20th iteration.
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(b) Final iteration (500th iteration).

Figure 3.15: Density distributions of two dimensional hook model at each iteration k when

using the OC method (ρmove = 0.30).
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(a) 20th iteration.
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(b) Final iteration (500th iteration).

Figure 3.16: Density distributions of two dimensional hook model at each iteration k when

using the OC method (ρmove = 1.00).
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(a) 20th iteration.
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(b) Final iteration (500th iteration).

Figure 3.17: Density distributions of two dimensional hook model at each iteration k when

using the MMN–modified OC method (ρmove = 0.01).
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(a) 20th iteration.
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(b) Final iteration (500th iteration).

Figure 3.18: Density distributions of two dimensional hook model at each iteration k when

using the MMN–modified OC method (ρmove = 0.30).
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(a) 20th iteration.
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(b) Final iteration (500th iteration).

Figure 3.19: Density distributions of two dimensional hook model at each iteration k when

using the MMN–modified OC method (ρmove = 1.00).
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(a) When using the OC method

(ρmove = 0.01).
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(b) When using the MMN–modified

OC method (ρmove = 0.01).
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(c) When using the OC method

(ρmove = 0.30).
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(d) When using the MMN–modified

OC method (ρmove = 0.30).
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(e) When using the OC method

(ρmove = 1.00).
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(f) When using the MMN–modified

OC method (ρmove = 1.00).

Figure 3.20: Von Mises stress distributions of two dimensional hook model at final iteration.
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Table 3.5: MSE for final density distribution on the hook model.

Move-limit ρmove 0.30 1.00

MSE when using the OC method 0.0335 0.0525

MSE when using the MMN–modified OC method 0.0113 0.0096
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Figure 3.21: The history of normalized performance functions in the two dimensional hook

model.
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Table 3.6: Normalized performacne function at final iteration in topology optimization for

von Mises stress minimization in the hook model for the two dimensional static problem.

Update method Move-limit ρmove Normalized performance function

OC 0.01 0.033

OC 0.30 0.033

OC 1.00 0.032

Modified OC 0.01 0.032

Modified OC 0.30 0.033

Modified OC 1.00 0.033

3.5.2 Parametric study for move-limit when using the Min–Max

normalized modified optimality criteria method

This sub section describes the results when the modified OC method is employed and

the value of the move-limit ρmove is set more finely than in the previous sub section. The

move-limit ρmove is set to 0.01, which is the value shown in the previous sub section, plus

increasing values in increments of 0.1. Other calculation conditions are same as in the previ-

ous sub section. Figures 3.22 and 3.23 show the density distributions obtained by topology

optimization for the MBB beam model and the hook model. The density distributions of

MBB beam model shown in Figure 3.22(a) and Figures 3.22(g) to (k) are relatively similar.

On the other hand, in contrast to the results in the previous section, the density distribu-

tions of MBB beam model shown in Figure 3.22(b) to (f) obtained different results. The

reasons for this will be discussed later. The hook model results shown in Figure 3.23 confirm

that a similar structure is obtained for all move-limit setting. Thus, the von Mises stress

minimization problem is difficult to obtain similar density distributions for some models.

Next, the history of performance function will be confirmed. Figures 3.24 to 3.25 show the
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histories of performance function obtained by topology optimization for each model. The

X-axis in the history of performance function is expressed in logarithm. From the history

of performance function for the hook model shown in Figure 2.21, it can be confirmed that

the history of performance function when the move-limit ρmove is set between 0.01 and 1.00

is generally consistent, although there are some differences. On the other hand, the history

of performance function for MBB beam model shown in Figure 3.24 shows that the value of

the performance function oscillate at a certain number of iterations, rather than coincide.

In other words, it can be inferred that the process of updating the density distribution for

each iteration in MBB beam model differs depending on the setting value of the move-limit

ρmove. From the history of performance function shown in Figure 3.24(a), the results at the

9th and 10th step in the topology optimization are of interest here when the move-limit

ρmove = 0.20. The reason for focusing on this number of iteration is that it is the number

of iterations by which the performance function is increased. Figure 3.26 shows the density

distributions at k = 9 and 10, and Figure 3.27 shows the distribution of von Mises stress,

sensitivity distribution and exponent distribution at k = 9. From the density distributions

shown in Figures 3.26(a) and 3.27(a), it can be confirmed that the element with higher values

of density and von Mises stress have higher sensitivity as shown in Figure 3.27(b). Since

the sensitivity is the gradient of the Lagrange function with respect to the density tends to

increase the density, which is the design variable, in the next iteration. On the other hand,

the exponent determining the update length shown in Figure 3.27(c) was significantly higher

only for the upper right element and lower for the other elements. This tends to reduce the

overall update length. From this, it can be inferred that the reason why similar density dis-

tribution was not obtained is that a structure with partially higher stress at certain number

of iterations was obtained, which increased the sensitivity and changed the updating process.

It is also believed that the restrictions on updating design variables by the move-limit ρmove

in the proposed method made it easier to cause this. Therefore, when the move-limit ρmove

is set a little higher, such as 0.1 to 0.5, the constraint caused the von Mises stress to take a

partially higher form and the performance function ocsillated. On the other hand, when the
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move-limit ρmove is set small (0.01) and large (0.6 or more), the von Mises stress does not

become partially high and an optimum solution is obtained.
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(d) When ρmove = 0.30.
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(e) When ρmove = 0.40.

X

Y

0 50 100 150
0

20

40

60

RHO 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

(f) When ρmove = 0.50.
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(g) When ρmove = 0.60.
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(h) When ρmove = 0.70.
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(i) When ρmove = 0.80.
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(j) When ρmove = 0.90.
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(k) When ρmove = 1.00.

Figure 3.22: Density distributions at convergence of topology optimization for von Mises

stress minimization when changing the move-limit ρmove and using the MMN modified OC

method in the MBB beam model.
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(a) When ρmove = 0.01.
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(b) When ρmove = 0.10.
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(c) When ρmove = 0.20.
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(d) When ρmove = 0.30.
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(e) When ρmove = 0.40.
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(f) When ρmove = 0.50.
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(g) When ρmove = 0.60.
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(h) When ρmove = 0.70.
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(i) When ρmove = 0.80.
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(j) When ρmove = 0.90.
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(k) When ρmove = 1.00.

Figure 3.23: Density distributions at convergence of topology optimization for von Mises

stress minimization when changing the move-limit ρmove and using the MMN modified OC

method in the hook model.
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(a) When ρmove = 0.01, 0.10, 0.20,

0.30, 0.40 and 0.50.

(b) When ρmove = 0.60, 0.70, 0.80,

0.90 and 1.00.

Figure 3.24: The history of normalized performance function when changing the move-limit

ρmove and using the MMN modified OC method in the MBB beam model.

(a) When ρmove = 0.01, 0.10, 0.20,

0.30, 0.40 and 0.50.

(b) When ρmove = 0.60, 0.70, 0.80,

0.90 and 1.00.

Figure 3.25: The history of normalized performance function when changing the move-limit

ρmove and using the MMN modified OC method in the hook model.
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(a) When iteration k = 9.
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(b) When iteration k = 10.

Figure 3.26: Density distributions of topology optimization for von Mises stress minimization

when using the MMN modified OC method (ρmove = 0.20) in the MBB beam model.
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(a) Von Mises stress distribution.
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Figure 3.27: Each distribution of topology optimization at 9th iteration for von Mises stress

minimization when using the MMN modified OC method (ρmove = 0.20) in the MBB beam

model.
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3.5.3 Result of topology optimization in three dimensional steady

problems

This subsection describes the results of density-based topology optimization for von Mises

stress minimization in three dimensional problems. Similar to the topology optimization for

strain energy minimization described in the previous chapter, based on the results of topology

optimization for von Mises stress minimization in two dimensional problem described in

the previous subsection, the topology optimization when using the OC method and the

MMN modified OC method is performed. The move-limit ρmove is set to 0.01 when using

the OC method and 1.00 when using the MMN modified OC method. The calculation

models are the MBB beam model and hook model shown in Figure 3.5. First, the result of

topology optimization in the MBB beam model is described. Figure 3.28 shows the density

distribution obtained by the OC method, and Figure 3.29 shows the density distribution

obtained by the MMN modified OC method. Sub caption (a) in Figures 3.28 and 3.29

shows the isometric view of density distribution at the final iteration, (b) shows the side

view at the final iteration, and (c) shows the isometric view at 50th iterations. In addition,

since this is a three dimensional model, elements with a density value of 0.5 or less are

eliminated in (a) and (b) of these figures, and elements with a density value of 0.3 or less

are eliminated in (c) to make it easier to check the depth direction. From Figures 3.28 and

3.29, it can be seen that different density distributions are obtained. As shown in Figure

3.30, the only major difference is in density distribution, and no significant difference in

von Mises stress distribution. Here, too, elements with density values less than 0.5 are

eliminated, and the unit of von Mises stress is [MPa]. However, the history of performance

function shown in Figure 3.31 confirms that the MMN modified OC method has a faster

drop in the performance function than the OC method. In addition, Table 3.7 shows that

the value of normalized performance fucntion at convergence when using the modified OC

method was slightly smaller than the value when using the OC method. In the results for

three dimensional model, although it is difficult to distinguish between update methods,
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the MMN modified OC method has a clearer density distribution at 50th iterations, and a

smaller performance function.
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(c) Side view at 50th iteration.

Figure 3.28: Density distributions of three dimensional MBB beam model at each iteration

k when using the OC method (ρmove = 0.01).
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(c) Side view at 50th iteration.

Figure 3.29: Density distributions of three dimensional MBB beam model at each iteration

k when using the MMN–modified OC method (ρmove = 1.00).
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(a) When using the OC method.
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(b) When using the MMN–modified OC method.

Figure 3.30: Von Mises stress distributions of three dimensional MBB beam model at final

iteration.

Figure 3.31: The history of normalized performance function in the topology optimization

for von Mises stress minimization in the MBB beam model for the three dimensional static

problem.
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Table 3.7: Normalized performacne function at final iteration in topology optimization for

von Mises stress minimization in the MBB beam model for the three dimensional static

problem.

Update method Move-limit ρmove Normalized performance function

OC 0.01 0.065

Modified OC 1.00 0.063

Next, the results of topology optimization in the hook model is described. As in the results

for MBB beam model described above, Figure 3.32 shows the density distribution obtained

by topology opitmization when using the OC method, and Figure 3.33 shows the density

distribution obtained by topology opitmization when using the MMN modified OC method.

Sub caption (a) in Figures 3.32 and 3.33 shows the isometric view of density distribution at

the final iteration, (b) shows the side view at the final iteration, and (c) shows the isometric

view at 50th iterations. In addition, since this is a three dimensional model, elements with

a density value of 0.5 or less are eliminated in (a) and (b) of these figures, and elements

with a density value of 0.3 or less are eliminated in (c) to make it easier to check the depth

direction. From Figures 3.32 and 3.33, similar to the density distribution for strain energy

minimization in three dimensional problems, the density distribution obtained by topology

optimization when using the OC method yields a structure like a hollow, while the density

distribution obtained by topology optimization when using the MMN modified OC method

yields a structure like a solid. Figure 3.34 shows the von Mises stress distributions. Here,

too, elements with density values less than 0.5 are eliminated, and the unit of von Mises

stress is [MPa]. From Figure 3.34, the von Mises stress distribution obtained by topology

optimization when using the MMN modified OC method tends to be slightly higher than one

when using the OC method. It can be assumed that this is due to the grayscale distributed

on the surface of structure, which tends to make the stresses appear slightly higher. However,

the history of performance function shown in Figure 3.31 confirms that the MMN modified
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OC method has a faster drop in the performance function than the OC method. In addition,

Table 3.8 shows that the value of normalized performance fucntion at convergence when using

the modified OC method was slightly smaller than the value when using the OC method.

The MMN modified OC method has the advantages that the performance function decreased

rapidly and does not require the setting of the weighting factor η and the move-limit ρmove,

which are arbitrary parameters. On the other hand, some grayscale may remain depending

on the calculation model. In addition, based on the previous chapter, the OC method and

the modified OC method are difficult to determine the convergence conditions.
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(c) Side view at 50th iteration.

Figure 3.32: Density distributions of three dimensional hook model at each iteration k when

using the OC method (ρmove = 0.01).
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(a) Isometric view at final iteration.
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(c) Side view at 50th iteration.

Figure 3.33: Density distributions of three dimensional hook model at each iteration k when

using the MMN–modified OC method (ρmove = 1.00).



Chap. 3 Topology optimization in problem of non-self-adjoint relationship 145

X
Y

Z

VMES

8
7.5
7
6.5
6
5.5
5
4.5
4
3.5
3
2.5
2

(a) When using the OC method.
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(b) When using the MMN–modified OC method.

Figure 3.34: Von Mises stress distributions of three dimensional hook model at final iteration.

Figure 3.35: The history of normalized performance function in the topology optimization

for von Mises stress minimization in the hook model for the three dimensional static problem.
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Table 3.8: Normalized performacne function at final iteration in topology optimization for

von Mises stress minimization in the hook model for the three dimensional static problem.

Update method Move-limit ρmove Normalized performance function

OC 0.01 0.060

Modified OC 1.00 0.055

3.5.4 Considerations on the convergence characteristics of the mod-

ified optimality criteria method

This subsection will consider mathematical proofs of the convergence properties of the

modified OC method. In providing a mathematical proof for the modified OC method, the

proof of the convergence property for Newton’s method was used as references[75, 76, 77].

First, the general equation of the modified OC method is shown as

ρ
(k+1)
⟨e⟩ = ρ

(k)
⟨e⟩

(
A

(k)
⟨e⟩

)(− ∂
∂ρ⟨e⟩

(
lnA

(k)
⟨e⟩

))−1

(3.38)

Taking the natural logarithm on both sides of Equation (3.38), it is obtained.

ln ρ
(k+1)
⟨e⟩ = ln ρ

(k)
⟨e⟩ +

(
− ∂

∂ρ⟨e⟩

(
lnA

(k)
⟨e⟩

))−1

lnA
(k)
⟨e⟩ (3.39)

Next, the residual ϵ
(k)
ρ between the density at k-th iterations ρ

(k)
⟨e⟩ and a certain solution ρ∗⟨e⟩

is defined as

ϵ(k)ρ = ρ
(k)
⟨e⟩ − ρ∗⟨e⟩ (3.40)

To simply the notation, lnA
(k)
⟨e⟩ is replaced by f , and the gradient of lnA

(k)
⟨e⟩ with respect to the

density ρ⟨e⟩ is also replaced by f ′. Taylor expansion of the functions f and f ′, respectively,

is calculated as

f
(
ρ∗⟨e⟩ + ϵ(k)ρ

)
= f

(
ρ∗⟨e⟩
)
+ ϵ(k)ρ f ′ (ρ∗⟨e⟩)+ 1

2
ϵ(k)ρ

2
f ′′ (ρ∗⟨e⟩)+ o

(
ϵ(k)ρ

3
)

(3.41)
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f ′ (ρ∗⟨e⟩ + ϵ(k)ρ

)
= f ′ (ρ∗⟨e⟩)+ ϵ(k)ρ f ′′ (ρ∗⟨e⟩)+ 1

2
ϵ(k)ρ

2
f ′′′ (ρ∗⟨e⟩)+ o

(
ϵ(k)ρ

3
)

(3.42)

where o is a term of higher order than the third order. Using Equations (3.41) and (3.42),

the second term of Equation (3.39) is expanded as

lnA
(k)
⟨e⟩

∂
∂ρ⟨e⟩

(
lnA

(k)
⟨e⟩

) =
f
(
ρ∗⟨e⟩ + ϵ

(k)
ρ

)
f ′
(
ρ∗⟨e⟩ + ϵ

(k)
ρ

)

=

f(ρ∗⟨e⟩)
f ′
(
ρ∗⟨e⟩

) + ϵ
(k)
ρ + 1

2
ϵ
(k)
ρ

2 f ′′(ρ∗⟨e⟩)
f ′
(
ρ∗⟨e⟩

) + o
(
ϵ
(k)
ρ

3
)

1 + ϵ
(k)
ρ

f ′′
(
ρ∗⟨e⟩

)
f ′
(
ρ∗⟨e⟩

) + 1
2
ϵ
(k)
ρ

2 f ′′′
(
ρ∗⟨e⟩

)
f ′
(
ρ∗⟨e⟩

) + o
(
ϵ
(k)
ρ

3
) (3.43)

Using the Maclaurin expansion of 1
1+x

, Equation (3.43) is re-expanded as

lnA
(k)
⟨e⟩

∂
∂ρ⟨e⟩

(
lnA

(k)
⟨e⟩

)
=

 f
(
ρ∗⟨e⟩

)
f ′
(
ρ∗⟨e⟩

) + ϵ(k)ρ + ϵ(k)ρ

2
f ′′
(
ρ∗⟨e⟩

)
2f ′ (ρ∗e)

+ o
(
ϵ(k)ρ

3
)

×

1−

ϵ(k)ρ

f ′′
(
ρ∗⟨e⟩

)
f ′
(
ρ∗⟨e⟩

) + ϵ(k)ρ

2
f ′′′
(
ρ∗⟨e⟩

)
2f ′
(
ρ∗⟨e⟩

)
+

ϵ(k)ρ

f ′′ (ρ∗e)

f ′
(
ρ∗⟨e⟩

)
2

+ o
(
ϵ(k)ρ

3
)

=
f
(
ρ∗⟨e⟩

)
f ′
(
ρ∗⟨e⟩

) + ϵ(k)ρ

1−
f
(
ρ∗⟨e⟩

)
f ′′
(
ρ∗⟨e⟩

)
f ′
(
ρ∗⟨e⟩

)2


+ϵ(k)ρ

2

−
f ′′
(
ρ∗⟨e⟩

)
2f ′
(
ρ∗⟨e⟩

) −
f
(
ρ∗⟨e⟩

)
f ′′′
(
ρ∗⟨e⟩

)
2f ′
(
ρ∗⟨e⟩

)2 +
f
(
ρ∗⟨e⟩

)
f ′′
(
ρ∗⟨e⟩

)2
f ′
(
ρ∗⟨e⟩

)3


+o
(
ϵ(k)ρ

3
)

(3.44)

When the function A⟨e⟩ converged to a certain solution, A⟨e⟩ is equal to one. Thus, when

lnA⟨e⟩ is equal to 0, f
(
ρ∗⟨e⟩

)
in Equation (3.44) becomes 0, and can be rewritten as

lnA
(k)
⟨e⟩

∂
∂ρ⟨e⟩

(
lnA

(k)
⟨e⟩

) = −ϵ(k)ρ

2
f ′′
(
ρ∗⟨e⟩

)
2f ′
(
ρ∗⟨e⟩

) + ϵ(k)ρ + o
(
ϵ(k)ρ

3
)

(3.45)
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Substituting Equation (3.45) into Equation (3.39), it is obtained

ln ρ
(k+1)
⟨e⟩ = ln ρ

(k)
⟨e⟩ +

f ′′
(
ρ∗⟨e⟩

)
2f ′
(
ρ∗⟨e⟩

)ϵ(k)ρ

2 − ϵ(k)ρ + o
(
ϵ(k)ρ

3
)

(3.46)

Transposing the first term on the right side of Equation (3.46) to the left side and back to

the true numbers, it is obtained

ρ
(k+1)
⟨e⟩

ρ
(k)
⟨e⟩

= exp

 f ′′
(
ρ∗⟨e⟩

)
2f ′
(
ρ∗⟨e⟩

)ϵ(k)ρ

2 − ϵ(k)ρ + o
(
ϵ(k)ρ

3
) (3.47)

Equation (3.47) organizes the k + 1-th variable on the left side and the k-th variable on the

right side. After that, subtracting both sides by a certain solution ρ⟨e⟩, it can be obtained

ρ
(k+1)
⟨e⟩ − ρ∗⟨e⟩ = ρ

(k)
⟨e⟩ · exp

 f ′′
(
ρ∗⟨e⟩

)
2f ′
(
ρ∗⟨e⟩

)ϵ(k)ρ

2 − ϵ(k)ρ + o
(
ϵ(k)ρ

3
)− ρ∗⟨e⟩ (3.48)

Using Equation (3.40), the left side of Equation (3.46) is expressed in term of k + 1-th

residuals ϵ
(k+1)
ρ , and the right side side prepared to be expressed in term of k-th residuals as

well.

ϵ(k+1)
ρ = ρ

(k)
⟨e⟩ · exp

 f ′′
(
ρ∗⟨e⟩

)
2f ′
(
ρ∗⟨e⟩

)ϵ(k)ρ

2 − ϵ(k)ρ + o
(
ϵ(k)ρ

3
)− ρ∗⟨e⟩

+ρ∗⟨e⟩ · exp

 f ′′
(
ρ∗⟨e⟩

)
2f ′
(
ρ∗⟨e⟩

)ϵ(k)ρ

2 − ϵ(k)ρ + o
(
ϵ(k)ρ

3
)

−ρ∗⟨e⟩ · exp

 f ′′
(
ρ∗⟨e⟩

)
2f ′
(
ρ∗⟨e⟩

)ϵ(k)ρ

2 − ϵ(k)ρ + o
(
ϵ(k)ρ

3
) (3.49)

Equation (3.49) is written as

ϵ(k+1)
ρ = ϵ(k)ρ · exp

 f ′′
(
ρ∗⟨e⟩

)
2f ′
(
ρ∗⟨e⟩

)ϵ(k)ρ

2 − ϵ(k)ρ + o
(
ϵ(k)ρ

3
)

+ρ∗⟨e⟩ ·

exp

 f ′′
(
ρ∗⟨e⟩

)
2f ′
(
ρ∗⟨e⟩

)ϵ(k)ρ

2 − ϵ(k)ρ + o
(
ϵ(k)ρ

3
)− 1

 (3.50)
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From the density constraint shown in Equations (2.4), (2.25) and (3.4), 0 ≤ ρ∗⟨e⟩ ≤ 1 holds.

That is, from inequality between the density ρ⟨e⟩ and a certain solution ρ∗⟨e⟩, the following

inequality holds for the residual ϵ
(k)
ρ .

−1 ≤ ϵ(k)ρ ≤ 1 (3.51)

From the above equation, o, which represents the term above the third power of ϵ
(k)
ρ , is

ignored because its influence is considered to be small. Thus, Equation (3.50) is weitten as

ϵ(k+1)
ρ = ϵ(k)ρ · exp

(
Fρ

(
ϵ(k)ρ

))
+ ρ∗⟨e⟩ ·

(
exp

(
Fρ

(
ϵ(k)ρ

))
− 1
)

(3.52)

where Fρ is as

Fρ

(
ϵ(k)ρ

)
=

f ′′
(
ρ∗⟨e⟩

)
2f ′
(
ρ∗⟨e⟩

)ϵ(k)ρ

2 − ϵ(k)ρ (3.53)

Next, the residual ϵ
(k)
ρ shown in Equation (3.51) is divided into

−1 ≤ ϵ
(k)
ρ < 0

(
if ρ

(k)
⟨e⟩ < ρ∗⟨e⟩

)
,

ϵ
(k)
ρ = 0

(
if ρ

(k)
⟨e⟩ = ρ∗⟨e⟩

)
,

0 < ϵ
(k)
ρ ≤ 1

(
if ρ

(k)
⟨e⟩ > ρ∗⟨e⟩

) (3.54)

• When −1 ≤ ϵ
(k)
ρ ≤ 0

First, from the first equation in Equation (3.54), ρ
(k)
⟨e⟩ < ρ∗⟨e⟩, the relationships shown in

Equations (3.55) to (3.57) hold.

Fρ

(
ϵ(k)ρ

)
=

f ′′
(
ρ∗⟨e⟩

)
2f ′
(
ρ∗⟨e⟩

)ϵ(k)ρ

2 − ϵ(k)ρ > 0

if
f ′′
(
ρ∗⟨e⟩

)
2f ′
(
ρ∗⟨e⟩

) ≥ 0

 (3.55)

ϵ(k)ρ · exp
(
Fρ

(
ϵ(k)ρ

))
< 0

(
if − 1 ≤ ϵ(k)ρ < 0

)
(3.56)

ρ∗⟨e⟩ ·
(
exp

(
Fρ

(
ϵ(k)ρ

))
− 1
)
> 0

if
f ′′
(
ρ∗⟨e⟩

)
2f ′
(
ρ∗⟨e⟩

) ≥ 0

 (3.57)
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From the first equation in Equation (3.54) and Equation (3.56), the left side of Equation

(3.52) and the first term on the right side of Equation (3.52) are negative. However, the

second term on the right side of Equation(3.52) does not have a fixed sign. If the second

term is positive, the following ineqality holds.

ϵ(k+1)
ρ ≥ ϵ(k)ρ · exp

(
Fρ

(
ϵ(k)ρ

))
(3.58)

Equation (3.58) expressed in absolute value is as

∣∣ϵ(k+1)
ρ

∣∣ ≤ ∣∣ϵ(k)ρ · exp
(
Fρ

(
ϵ(k)ρ

))∣∣ (
if Fρ

(
ϵ(k)ρ

)
≥ 0, −1 ≤ ϵ(k)ρ ≤ 0

)
(3.59)

When the second term is negative, all terms on the right and left sides of Equation (3.52)

are negative. Thus, since |a + b| ≤ |a| + |b| holds when a · b > 0, the following inequality

holds.

∣∣ϵ(k+1)
ρ

∣∣ ≤ ∣∣ϵ(k)ρ · exp
(
Fρ

(
ϵ(k)ρ

))∣∣+ ∣∣ρ∗⟨e⟩ · (exp (Fρ

(
ϵ(k)ρ

))
− 1
)∣∣(

if Fρ

(
ϵ(k)ρ

)
≤ 0, −1 ≤ ϵ(k)ρ ≤ 0

)
(3.60)

• When 0 ≤ ϵ
(k)
ρ ≤ 1

Next, the third equation in Equation (3.54), ρ
(k)
⟨e⟩ > ρ∗⟨e⟩, the relationships in Equations

(3.61) to (3.63) hold.

Fρ

(
ϵ(k)ρ

)
=

f ′′
(
ρ∗⟨e⟩

)
2f ′
(
ρ∗⟨e⟩

)ϵ(k)ρ

2 − ϵ(k)ρ < 0

if
f ′′
(
ρ∗⟨e⟩

)
2f ′
(
ρ∗⟨e⟩

) ≤ 0

 (3.61)

ϵ(k)ρ · exp
(
Fρ

(
ϵ(k)ρ

))
> 0

(
if 0 < ϵ(k)ρ ≤ 1

)
(3.62)

ρ∗⟨e⟩ ·
(
exp

(
Fρ

(
ϵ(k)ρ

))
− 1
)
< 0

if
f ′′
(
ρ∗⟨e⟩

)
2f ′
(
ρ∗⟨e⟩

) ≤ 0

 (3.63)

From the third equation in Equation (3.54) and Equation (3.62), the left side of Equation

(3.52) and the first term on the right side of Equation (3.52) are positive. However, as before,
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the second term on the right side of Equation (3.52) does not have a fixed sign. When the

second term is positive, all terms on the right and left sides of Equation (3.52) are positive.

Thus, since |a+ b| ≤ |a|+ |b| holds when a · b > 0, the following inequality holds.

∣∣ϵ(k+1)
ρ

∣∣ ≤ ∣∣ϵ(k)ρ · exp
(
Fρ

(
ϵ(k)ρ

))∣∣+ ∣∣ρ∗⟨e⟩ · (exp (Fρ

(
ϵ(k)ρ

))
− 1
)∣∣(

if Fρ

(
ϵ(k)ρ

)
≥ 0, 0 ≤ ϵ(k)ρ ≤ 1

)
(3.64)

If the second term is negative, the following ineqality holds.

ϵ(k+1)
ρ ≤ ϵ(k)ρ · exp

(
Fρ

(
ϵ(k)ρ

))
(3.65)

Equation (3.65) expressed in alsolute value is as

∣∣ϵ(k+1)
ρ

∣∣ ≤ ∣∣ϵ(k)ρ · exp
(
Fρ

(
ϵ(k)ρ

))∣∣ (
if Fρ

(
ϵ(k)ρ

)
≤ 0, 0 ≤ ϵ(k)ρ ≤ 1

)
(3.66)

The function exp
(
Fρ

(
ϵ
(k)
ρ

))
shown in Equations (3.59), (3.60), (3.64) and (3.66) are un-

known. In addition, the functions f ′
(
ρ∗⟨e⟩

)
and f ′′

(
ρ∗⟨e⟩

)
in the function Fρ, which is shown

in Equation (3.53), differ for each optimization problem. Thus, at the moment, further math-

ematical proof is difficult. If the relationship between the functions f ′
(
ρ∗⟨e⟩

)
and f ′′

(
ρ∗⟨e⟩

)
is known, it would be possible to derive more detailed convergence characteristics under all

condtions.



Chapter 4

Demonstration of numerical results by

uniaxial tensile testing

4.1 Numerical analysis for tensile testing

In this chapter, the results obtained by topology optimization for strain energy minimiza-

tion and von Mises stress minimization, as described in chapter 2 and chapter 3, are

evaluated using test to investigate actual mechanical properties. The methods for testing

the properties of materials are classified into the following three categories. The first is phys-

ical testing, including acoustic test, optical test, thermal test, electromagnetic test, X-ray

test, microscopic test, and pyrotechnic test. The second is mechanical testing, including

static strength test, dynamic strength test, hardness test, and surface roughness test. Fi-

nally, third is scientific testing, including chemical composition, trace analysis, and so on.

Thus, there are a number of testing methods[78]. Several validation experiments have been

reported on the results obtained by topology optimization, including topology optimization

for complex structures and topology optimization using a 3D printer[79, 80, 81]. Most of the

research reports focus on topology optimization for strain energy minimization in complex

models. In contrast, topology optimization for simple models and topology optimization

for von Mises stress minimization have not been reported. Thus, in this study, the results

of topology optimization are demonstrated using tensile testing, which is a typical test for

measuring the mechanical properties of materials in the mechanical field. Tensile testing is
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a static strength test in which a load is added in one direction. Thus, it is characterized

by eases of reproducibility and experimentation. The optimization problems of topology

optimization include the strain energy minimization and the von Mises minimization prob-

lems. Based on the results described in chapter 2 and chapter 3, the update equation

in topology optimization for strain energy minimization employs the modified OC method,

and the update equation in topology optimization for von Mises stress minimization employs

the MMN modified OC method. The strain energy minimization problem sums the entire

strain energy in the design domain Ω, also known as the stiffness maximization problem.

Thus, it is used to derive stiff structures. In contrast, the von Mises stress minimization

problem is aggregated by applying the p-norm to the von Mises stress in the design domain

Ω. Thus, elements with high value of von Mises stress are rated higher and elements with

low value are rated lower. Contrary to the strain energy minimization problem, it is not

uniformly evaluated. Therefore, the objective is to investigate which problem setup is more

appropriate for machine design by tensile testing. The formulation and computational flow

for each topology optimization can be found in chapter 2 and chapter 3, respectively.

Figure 4.1 shows the ISO6892-2 Annex B2, which is a specimen for tensile testing. The

hatched domain in Figure 4.1 is the domain where topology optimization is performed to

reduce weight. From the symmetry of calculation model, the domain filled in black, which

is the quarter model, is the design domain Ω. Figure 4.2 shows a quarter model, which is

a calculation model. Table 4.1 shows the calculation conditions of topology optimization

for tensile testing. The mesh size is 0.1 [mm] per side, and the material is A2017, which is

an aluminum alloy, for machinability. The calculation model is the plane stress because the

structure is thin in thickness relative to its width and high, as shown in Figure 4.1. Table

4.2 shows the volume rate of the design domain and minimization problem conditions for

tensile testing. Case 0 is the condition for the initial model with no weight reduction, and

Cases 7 to 9 are the conditions for the simply weight reduced specimen shown in Figure 4.3.

The function ϕ for a simply weight reduced specimen shown in Figure 4.3 is the diameter

calculated to satisfy the volume rate. In this chapter, topology optimization for strain energy
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minimization and von Mises stress minimization are performed. After that, tensile testing

is performed on tensile specimens based on the results of each topology optimization and

specimens simply reduced in weight, and the mechanical properties will be compared.
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Figure 4.1: Tensile specimen model.
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Figure 4.2: Quarter calculation model for tensile specimen.
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Table 4.1: Calculation conditions of topology optimization for tensile specimen.

Number of elements 40501

Number of nodes 40000

Penalization parameter for the SIMP method, ps 3.0

Penalization parameter for p-norm, p 6.0

Filter radius, R 0.125

Maximum number of iterations, kmax 175

Young’s modulus, E0 [Pa] 72.6× 109

Poisson ratio, ν 0.33

Table 4.2: Volume and minimization problem conditions for tensile specimen.

Case No.
Initial density

average, ρ̄0

Volume in

design domain, [%]
Minimization problem

0 - 100 Original model

1

2
0.8 80

Strain energy

Von Mises stress

3

4
0.6 60

Strain energy

Von Mises stress

5

6
0.4 40

Strain energy

Von Mises stress

7, 8, 9 - 80, 60, 40 Simple weight reduction
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Figure 4.3: Simply lightweight tensile specimen.

4.2 Results of topology optimization for strain energy

minimization and von Mises stress minimization

This section describes the results obtained by topology optimization for strain energy min-

imization and von Mises stress minimization, based on the calculation condition explained in

the previous section. Figures 4.4 to 4.9 show the results of topology optimization in Cases 1

to 6 shown in Table 4.2. Sub caption (a) of Figures 4.4 to 4.9 shows the density distribution,

(b) shows the distribution of the displacement in the same Y-direction as the load direction,

(c) shows the von Mises stress distribution, respectively. In addition, (b) and (c) eliminate

elements with density values less than 0.3. Even for the same volume rate, different settings

of performance function in the optimization problem obtained different density distributions.

In addition, for the same volume rate, no significant different was confirmed in the distribu-

tion of displacement in Y-direction shown in (b). However, the von Mises stress distributions

shown in Figures 4.4(c), 4.6(c) and 4.8(c) have higher von Mises stress distribution than one

for the same volume rate shown in Figures 4.5(c), 4.7(c) and 4.9(c). From the results shown

in Figures 4.4 to 4.9, compared to the results of topology optimization for strain energy
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minimization, the results of topology optimization for von Mises stress minimization are less

deformable and stronger. In other words, the von Mises stress minimization problem can

be used to optimize the design of high-stiffness and high-strength products. This trend can

be seen from the history of performance functions for strain energy and von Mises stress,

as shown in Figure 4.10, and their respective performance functions at final iteration, as

shown in Table 4.3. The value of the performance function for strain energy minimization

is W , and the value of performance function for von Mises stress minimization is J . The

values of W and J for the topology optimization in the Mises stress minimization problem

(Cases 2, 4, 6) are lower than the values of W and J for the topology optimization in the

strain energy minimization problem (Cases 1, 3, 5) for the same volume rate. Thus, although

there is a relationship between strain energy and von Mises stress, the topology optimization

for von Mises stress minimization provides the optimum solution for stiffness and strength.

However, the von Mises minimization problem described in chapter 3 is a non-self-adjoint

relationship problem, which requires solving the adjoint equation and has high calculation

cost. It is also difficult to determine which is better, since the density distribution may have

grayscale.

Table 4.3: Each performance function at final iteration for tensile testing specimen.

Case No.
Performance function for

strain energy minimization, W

Performance function for

von Mises stress minimization, J

1 1.44 109.61

2 1.42 66.90

3 1.97 90.71

4 1.92 85.98

5 3.32 154.38

6 3.01 124.45
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Figure 4.4: Result of topology optimization at final iteration for Case 1.
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Figure 4.5: Result of topology optimization at final iteration for Case 2.
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Figure 4.6: Result of topology optimization at final iteration for Case 3.
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Figure 4.7: Result of topology optimization at final iteration for Case 4.
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Figure 4.8: Result of topology optimization at final iteration for Case 5.
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Figure 4.9: Result of topology optimization at final iteration for Case 6.
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(a) When ρ̄0 = 0.8.
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(b) When ρ̄0 = 0.6.
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(c) When ρ̄0 = 0.4.

Figure 4.10: The history of each performance function for tensile specimen.
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4.3 Experimental method for uniaxial tensile testing

This section explains tensile testing[82] to examine the validity of the results obtained

by topology optimization. Figures 4.11 and 4.12 show the photographs of tensile testing

(Shimazu Servo Pulsar EHF-EB10[83]) and jig used in the tensile testing. In the preliminary

experiments, failure occurred at the fixed point when the specimen in Case 0, which is the

initial model with the highest strength, was performed to a tensile testing using the pin

fixation. Therefore, pin fixation was considered insufficient, and the method was changed

to a gripping fixation using the M6 bolts. To add a load in Y-axis direction, a hole was

drilled in the upper part of the jig to fix a pin so that tensile load would be applied on the

coaxial line. See Figure 4.11 for the fixation method using the jig. Figure 4.13 shows the

photograph of tensile specimens in Cases 0 to 9. The tensile specimens and jig shown in

Figures 4.12 and 4.13 were machined by wire electrical discharge machining (wire EDM).

However, because of the difficulty of wire EDM to faithfully reproduce the results of topology

optimization described in the previous section, some holes are not processed. Table 4.4 shows

the weight of each specimen and its average value. The number of tensile testing shall be

three. The tensile speed is set to elongate 50 [mm] per minute. Originally, strain gauges were

used in tensile testing, but since the density distribution obtained by topology optimization

differ from condition to condition, making it impossible to establish representative locations.

Therefore, the relationship between displacement and load and the points of failure are

investigated.
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Figure 4.11: Photograph of tensile testing machine.

Figure 4.12: Photograph of jig for tensile testing.
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(a) Case 0 (b) Case 1

(c) Case 2 (d) Case 3

(e) Case 4 (f) Case 5

(g) Case 6 (h) Case 7

(i) Case 8 (j) Case 9

Figure 4.13: Photographs of tensile specimen.
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Table 4.4: Tensile specimen masses.

Case No. Tensile specimen mass [g] Average mass [g]

0 24.51 24.38 24.39 24.43

1 23.37 23.34 23.54 23.42

2 23.37 23.36 23.37 23.37

3 22.59 22.48 22.52 22.53

4 22.55 22.55 22.56 22.55

5 21.42 21.47 21.50 21.46

6 21.73 21.73 21.71 21.72

7 23.27 23.28 23.17 23.28

8 22.16 22.15 22.15 22.15

9 21.02 21.03 21.02 21.02

4.4 Experimental results and discussion of uniaxial ten-

sile testing

This section discusses the experimental results and discussion of tensile testing. Figures

4.14 to 4.17 show the load-displacement diagrams with error bars for each of the same volume

rates. The horizontal axis in these figures represents the displacement in Y-direction, and the

vertical axis represents the load. First, the result of tensile testing on a model with a volume

rate 100% is presented. The error bars in Figure 4.14 confirms that the error is small and

the experiment is reproducible. Next, the results of tensile testing on a model with a volume

rate 80% are presented. The results of topology optimization for strain energy minimization

(Case 1) and the results of topology optimization for strain energy minimization (Case 2)

show no significant differences. However, the simple weight reduction model (Case 7) has

lower allowable load and plastic deformation at earlier times than the results obtained by
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topology optimization. Next, the results of tensile testing on a model with a volume rate

60% are presented. The results of topology optimization for strain energy minimization

(Case 4) show a higher allowable load than the results of topology optimization for strain

energy minimization (Case 3). However, similar to the result when the volume rate 80%,

the simple weight reduction model (Case 8) has lower allowable load and plastic deformation

at earlier times than the results obtained by topology optimization. Finally, the results of

tensile testing on a model with a volume rate 40% are presented. For this volume rate, the

aforementioned trend is pronounced: the results of topology optimization for strain energy

minimization (Case 6) show a higher allowable load than the results of topology optimization

for strain energy minimization (Case 5). In addition, the simple weight reduction model

(Case 9) has lower allowable load than the results obtained by topology optimization, and it

is immediately plastically deformed. From the load-displacement diagrams shown in Figures

4.14 to 4.17, the numerical data for load and displacement at break are summarized in

Table 4.5. From Table 4.5, it can be seen that the specimens for simple weight reduction

(Cases 7, 8, 9) have generally lower breaking loads. Moreover, the breaking loads of topology

optimization for von Mises stress minimization (Cases 2, 4, 6) are larger than the breaking

loads of topology optimization for strain energy minimization (Cases 1, 3, 5). In other words,

topology optimization for von Mises stress minimization is suitable to create a structure with

high strength. However, the setting of the von Mises stress minimization problem used in this

problem is not optimum. The reason is that the failed tensile specimens shown in Figure

4.18 indicate that the failure points are concentrated at the edges of the design domain.

Originally, it is appropriate for the tensile specimen to be centered as shown in Figure

4.18(a) as the breaking point of specimen. Moreover, aluminum alloy (A2017) has strong

ductile properties, which causes shear fracture, which breaks at an oblique angle. Similarly,

the results of topology optimization for strain energy minimization shown in Figures 4.18(b)

and 4.18(d) show that the break occurs near the center. On the other hand, the results of

topology optimization for von Mises stress minimization shown in Figures 4.18(c) and 4.18(e)

show that the break does not occur near the center. The fracture points are the same as
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the results for the specimen of simple weight reduction and occur at both ends. The cause

is considered to be the interference effect of stress concentration[84]. When multiple pores

exist in close proximity, mutual interference effects of stress concentration occur. Figures

4.19 and 4.20 show the interference effects of typical stress concentration[85]. Figure 4.19

shows the interference effect of increased stress concentration, and Figure 4.20 shows the

interference effect of decreased stress concentration. For a single circular hole model, the

stress concentration factor is known to be 3. However, when the holes are side-by-side with

respect to the load as shown in Figure 4.19, the stress concentration factor exceeds 3 when

the distances are close. Conversely, when the holes are aligned vertically with respect to

the load as shown in Figure 4.20, the stress concentration factor for the holes located away

from the load is less than 3. Since the stress concentration factor is higher for the holes near

the load, failure occurs from the edge of the design domain, as shown in Figures 4.18(c),

4.18(e) and 4.18(g). From this, it can be inferred that the topology optimization for von

Mises stress minimization (Cases 2, 4, 6) is causing an interference effects that increase stress

concentration, while the specimens of simple weight reduction (Cases 7, 8, 9) are causing

an interference effects that decrease stress concentration. Based on the above, it may be

possible to create stronger structures if topology optimization considering the interference

effects of stress concentration is performed.



Chap. 4 Demonstration of numerical results by uniaxial tensile testing 168

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 5 10 15 20 25

L
o

a
d

 [
N

]

Displacement [mm]

Case 0 (Original model)

Figure 4.14: Load–displacement in Y-direction graphs with error bars in the original model.
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Figure 4.15: Load–displacement in Y-direction graphs with error bars in the models with

80% volume.
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Figure 4.16: Load–displacement in Y-direction graphs with error bars in the models with

60% volume.
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Figure 4.17: Load–displacement in Y-direction graphs with error bars in the models with

40% volume.
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Table 4.5: Tensile testing results at break.

Case No. Average of displacements at break [mm] Average of breaking loads [N]

0 20.35 8485

1 5.99 6033

2 6.70 6190

3 5.68 4300

4 8.15 4875

5 4.30 2475

6 7.35 3150

7 4.46 4150

8 3.98 2475

9 2.65 1100
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(a) Case 0 (b) Case 1

(c) Case 2 (d) Case 3

(e) Case 4 (f) Case 5

(g) Case 6 (h) Case 7

(i) Case 8 (j) Case 9

Figure 4.18: Photographs of fractured tensile specimens.
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Figure 4.20: Interference effects that decrease stress concentration.



Chapter 5

Multi-objective topology optimization

5.1 Formulation of multi-objective optimization based

on the weighted sum method

This chapter discusses the topology optimization for multi-objective optimization combin-

ing strain energy minimization and von Mises stress minimization problems. The previous

chapters have been single-objective optimization. The aim of single-objective design is to

find an optimum solution to the problem. On the other hand, multi-objective optimization

is the optimization of multiple objective functions. Moreover, it is often more practical to

obtain several candidate solutions, which are the pareto optimum solutions, gradually refine

the design solution among them. A pareto solution is a solution that is as close as possible

to an ideal solution in a multi-objective optimization problem and has a difference balance

among the objective functions. Thus, one of the aims of multi-objective optimum design is

to obtain a pareto optimum solution or to perform a trade-off analysis between performance

functions. Methods for finding optimum solutions are classified as scalarization method,

interactive method, and evolutionary computation method[87]. The scalarization method

transforms the problem into a single-objective optimization problem in some way and uses

various optimization methods to obtain a pareto optimum solution. The method includes the

weighted sum method, weighted lp norm method, and compromise programming method. In

this chapter, the weighted sum method, which is the most basic of the scalarization method,
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is employed. A detailed description of the weighted sum method is given below. In the

interactive method, the designer assigns a desired level, which is the required value of each

performance function, to each performance function and solves the optimization problem to

obtain the pareto optimum solution. If the engineer does not satisfy the pareto optimum so-

lution, the interactive operation is repeated by changing the aspiration level and finding the

pareto optimum solution again. The method includes the reference point method, STEM,

and satisficing tradeoff method. While most scalarization methods find pareto optimum

solutions by adjusting weights, the interactive method finds satisfactory design solutions by

directly adjusting the aspiration level. Finally, evolutionary computation method is opti-

mization algorithm that mimic the process of biological evolution, and genetic algorithms

are well-known[88].

In this chapter, the topology optimization for multi-objective optimization is solved based

on the weighted sum method[89, 90], in which the performance functions of strain energy

minimization and von Mises stress minimization described in chapter 2 and chapter 3,

respectively, are multiplied by weights and summed to minimize the expended objective func-

tion. The stain energy minimization and von Mises stress minimization problems have some

kind of causal relationship, which is different from the general trade-off relationship. The

strain energy minimization problem shows very high convergence in numerical analysis, but

the strain energy is handled in actual design. In contrast, the von Mises stress minimization

problem has worse convergence in numerical analysis, but the von Mises stress is important

enough to be used as safety design guide in actual design. As shown in the previous chapter,

the results obtained by topology optimization for von Mises stress minimization is expected

to be stronger than the results obtained by topology optimization for strain energy mini-

mization. Thus, this chapter combines the numerical obtained by topology optimization for

strain energy minimization and the reliability of the performance of the actual design ob-

tained by topology optimization for von Mises stress minimization to obtain a better solution

for an optimum design. For optimum design, the modified OC method, which is the proposed

method, is employed. However, the modified OC method shown in chapter 3 is extremely
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show in updating. Therefore, a new positive definite-correspondence modified OC method

based on a map function is proposed. The details of the update equation are described in

the next section. This optimization problems consists of the following performance function

and constraint conditions. The expanded performance function shown in Equation (5.1) is

composed of the performance functions for strain energy minimization shown in Equation

(5.2) and von Mises stress minimization shown in Equation (5.3). The performance functions

for strain energy minimization shown in Equation (5.2) and von Mises stress minimization

shown in Equation (5.3) are the same as in Equation (2.1) shown in chapter 2 and Equa-

tion (3.1) shown in chapter 3. The governing equation, volume constraint, and density

constraint shown in chapter 2 and chapter 3 are employed as constraint conditions, and

shown in Equations (5.4) to (5.6).

minimize J =
w1

∥J1∥
J1 +

w2

∥J2∥
J2 = W1J1 +W2J2 (5.1)

J1 =
1

2

∑
e∈Ω

{
u⟨e⟩
}T [

K⟨e⟩
] {

u⟨e⟩
}

(5.2)

J2 =

(∑
e∈Ω

(
ρ⟨e⟩

1
2σVM ⟨e⟩

)p
V⟨e⟩

) 1
p

(5.3)

subject to [K] {u} = {f} (5.4)

V =
∑
e∈Ω

V⟨e⟩ρ⟨e⟩
Vtotal

− ρ̄0 ≤ 0 (5.5)

0 ≤ ρ⟨e⟩ ≤ 1 (5.6)

The sensitivity is obtained using a procedure similar to the formulation of topology opti-

mization shown in chapter 2 and chapter 3. Thus, duplicate content is omitted. To satisfy

the governing equation shown in Equation (5.4) and to minimize the performance function

shown in Equation (5.1), the Lagrange function J∗ is defined as

J∗ =
∑
e∈Ω

J∗
⟨e⟩

=
∑
e∈Ω

J⟨e⟩ +
{
λ⟨e⟩
}T ([

K⟨e⟩
] {

u⟨e⟩
}
−
{
f⟨e⟩
})

(5.7)
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where
{
λ⟨e⟩
}
is the Lagrange multiplier vector. The variate of the Lagrange function δJ∗

⟨e⟩

becomes 0, as shown in

δJ∗
⟨e⟩ =

{
∂J∗

⟨e⟩

∂λ⟨e⟩

}T {
δλ⟨e⟩

}
+

{
∂J∗

⟨e⟩

∂u⟨e⟩

}T {
δu⟨e⟩

}
+

∂J∗
⟨e⟩

∂ρ⟨e⟩
δρ⟨e⟩ = 0 (5.8)

As in the other optimizations, each term is calculated to be 0. First, the gradient of the

Lagrange function with respect to the Lagrange multiplier vector shown in the first term

is the same as the governing equation shown in Equation (5.4). Thus, the calculation is

omitted. Next, the gradient of the Lagrange function with respect to the displacement

vector shown in the second term is calculated as{
∂J∗

⟨e⟩

∂u⟨e⟩

}T

= W1

{
u⟨e⟩
}T [

K⟨e⟩
]
+W2G

1
p
−1ρ⟨e⟩

p
2σVM ⟨e⟩

p−1V⟨e⟩

{
∂σVM ⟨e⟩

∂u⟨e⟩

}T

+
{
λ⟨e⟩
}T [

K⟨e⟩
]

= {0}T (5.9)

where G is as

G =
∑
e∈Ω

(
ρ⟨e⟩

1
2σVM ⟨e⟩

)p
V⟨e⟩ (5.10)

Form Equation (5.9), the Lagrange multiplier vector
{
λ⟨e⟩
}
is obtained as

{
λ⟨e⟩
}T [

K⟨e⟩
]
= −W1

{
u⟨e⟩
}T [

K⟨e⟩
]
−W2G

1
p
−1ρ⟨e⟩

p
2σVM ⟨e⟩

p−1V⟨e⟩

{
∂σVM ⟨e⟩

∂u⟨e⟩

}T

(5.11)

The gradient of the von Mises stress with respect to the displacement vector is shown in

Equations (3.13) to (3.17). Finally, the gradient of the Lagrange function with respect to

the density shown in the third term is calculated as

∂J∗
⟨e⟩

∂ρ⟨e⟩
=

1

2
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u⟨e⟩
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2
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]
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{
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}
+
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]
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1
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p
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{
∂σVM ⟨e⟩

∂u⟨e⟩

}T

+ {λ}T
[
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]){∂u⟨e⟩

∂ρ⟨e⟩

}
=

1

2
W1

{
u⟨e⟩
}T ∂

[
K⟨e⟩

]
∂ρ⟨e⟩

{
u⟨e⟩
}
+

1

2
W2G

1
p
−1ρ⟨e⟩

p
2
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+
{
λ⟨e⟩
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(5.12)
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Next, an extended Lagrange function L is defined by considering the volume constraint shown

in Equation (5.5). Similar to the topology optimization for von Mises stress minimization,

offsets are made so that the sensitivity term is always negative, and the gradient of the

extended Lagrange function with respect to the density is calculated as

∂J∗
⟨e⟩

∂ρ⟨e⟩
+ Λ

V⟨e⟩

Vtotal

+ gmax − gmax = 0 (5.13)

where gmax is the offset function and is given as

gmax = max
e∈Ω

(
0,

∂J∗
⟨e⟩

∂ρ⟨e⟩

)
(5.14)

Expanding Equation (5.13) into the form of a function A⟨e⟩ used in the OC method and the

modified OC method, it is obtained as

A⟨e⟩ =

∂J∗
⟨e⟩

∂ρ⟨e⟩
− gmax

−
(
Λ

V⟨e⟩
Vtotal

+ gmax

)
=

∂J∗
⟨e⟩

∂ρ⟨e⟩
− gmax

−Λmod

(5.15)

where, Λmod is the modified extended Lagrange multiplier, which is obtained by the bisection

method. Due to the offset, the numerator and denominator shown in Equation (5.15) is

always negative and the function A⟨e⟩ is always positive. Therefore, the OC method and the

modified OC method can be employed.

5.2 Modified optimality criteria method based on map

function

This section derives a modified OC method based on a map function. When the MMN

modified OC method was applied to this problem for the exponent in the modified OC

method shown in Figure 5.1(a), the update speed was slow and the performance function

did not decreased. The difference between the OC method and the modified OC method is
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whether the exponent is a constant or a function. Thus, in the OC method, the weighting

factor is considered as a function Θ⟨e⟩ given element by element.

ρ
(k+1)
⟨e⟩ = ρ

(k)
⟨e⟩

(
A

(k)
⟨e⟩

)Θ(k)
⟨e⟩

(5.16)

In the MMN modified OC method, the function Θ⟨e⟩ takes the range from 0 to 1, so there

existed a case where no update was made for some elements in some iterations. In addition,

as shown in Figure 5.1(b), although overall updates were performed, the overall function Θ⟨e⟩

became smaller and updates became too gradual, resulting in a very slow update problem.

Therefore, as shown in Figure 5.1(c), a map function is used to map the range from a certain

value to 1 instead of from 0 to 1. Based on the above, the mapping-based modified OC

method is proposed, which incorporates the general concept of the map function used in

Arduino and other into the modified OC method.
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Figure 5.1: Image of function Θ distribution.
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The procedure is similar to the derivation of the modified OC method. First, the function

located at the weighting factor is obtained. By assuming that gmax is 0 when differentiated

by density, the function located at the weighting factor becomes

(
− ∂

∂ρ⟨e⟩

(
lnA

(k)
⟨e⟩

))−1

= −

 ∂2J∗
⟨e⟩

∂ρ⟨e⟩2

(k)

∂J∗
⟨e⟩

∂ρ⟨e⟩

(k)

− gmax


−1

(5.17)

The denominator in Equation (5.17) is calculated by using Equations (5.12) and (5.14). The

gradient of sensitivity with respect to the density shown in the numerator of Equation (5.17)

is obtained as
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(5.18)

Differentiating the governing equation shown in Equation (5.4) by the density, it is calculated

as

∂
[
K⟨e⟩

]
∂ρ⟨e⟩

{
u⟨e⟩
}
+
[
K⟨e⟩

]{∂u⟨e⟩

∂ρ⟨e⟩

}
= {0} (5.19)

The gradient of the Lagrange multiplier vector with respect to the density in Equation (5.18)

is an unknown. Thus, by differentiating the adjoint equation shown in Equation (5.11) by

density, the gradient of the Lagrange multiplier vector with respect to the density is obtained
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From Equations (5.19) and (5.20), Equation (5.18) is written as
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where the function of the gradient of the von Mises stress with respect to the displacement

differentiated by density is shown in Equations (3.29) to (3.33) In addition, instead of just

mapping, the map function is defined as follows to maintain the size of the update length

trend before mapping, as shown in Figure 5.2.

Θ
(k)
⟨e⟩ = Θ

(k)
min +

(
Θ(k)

max −Θ
(k)
min

)
·
θ
(k)
⟨e⟩ − θ

(k)
min

θ
(k)
max − θ

(k)
min

(5.22)
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Here, Θ
(k)
max, Θ

(k)
min, θ

(k)
max, and θ

(k)
min are the upper limit after mapping, the lower limit after

mapping, the maximum value before mapping, and the minimum value before mapping,

respectively. In addition, θ
(k)
⟨e⟩ is a function of the exponent in the modified OC method and

is shown in

θ
(k)
⟨e⟩ = −

∂ ¯J∗
⟨e⟩

∂ρ⟨e⟩

(k)

∂2J∗
⟨e⟩

∂ρ⟨e⟩2

(k)
(5.23)

Figure 5.2: Example of mapping function.

5.3 Flow of density-based topology optimization in multi-

objective optimization

This section described the flow of the density-based topology optimization in multi-

objective optimization for strain energy minimization and von Mises stress minimization.

The general flow of the optimization is the same as the flowchart for topology optimiza-

tion to minimize strain energy, shown in Figure 2.6 in the previous chapter. The detailed

procedure is as follows.

1. Input of the computation model and calculation conditions shown in next section.

2. The finite element analysis for linear elastic body is performed. The governing equation

shown in Equation (5.4) is used to obtain the displacement vector {u}.
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3. The extended performance function is calculated. Using the displacement vector {u}

obtained in the previous step, the performance functions shown in Equation (5.2) and

(5.3) are calculated.

4. If the judgement of convergence k < kmax is satisfied, the computation is finalized.

Otherwise, go to the next step.

5. The sensitivity, which is the gradient of the Lagrange function J∗
⟨e⟩ with respect to the

density ρ⟨e⟩, is calculated. From the adjoint equation shown in Equation (5.11), the

Lagrange multiplier vector {λ} is obtained. After that, using the Lagrange multiplier

vector {λ}, the sensitivity is calculated.

6. The sensitivity filter shown in Equation (2.72) is applied．

7. The density ρ⟨e⟩, which is the design variable, is updated. When using the OC method,

Equations (2.18) and (5.15) is employed, and when using the mapping-based modified

OC method, Equations (5.16) to (5.23) are employed. After updating, the number of

iterations is updated to the k + 1-th step and the process returns to step 2.

5.4 Calculation conditions of density-based topology

optimization in multi-objective optimization

This section described the calculation model and conditions used in this chapter. Multi-

objective topology optimization is performed to minimize the strain energy and von Mises

stress in steady problems. As with other topology optimizations, the MBB beam model

shown in Figure 5.3 is used to verify the dependence of the move-limit ρmove. Topology

optimization will then be performed for the gripper of the robotic arm, which works an

important role in the increasingly automated industry. The configuration of the robotic arm

and the calculation model of the gripper are shown in Figure 5.4. To assume an optimum

design of the gripper at the tip in Figure 5.4(a), a load is added assuming that it is completely
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fixed and the workpiece is gripped on the side as shown in Figure 5.4(b). The load is

uniformly distributed load of total load 100 [N]. The two dimensional models shown in

Figures 5.3 and 5.4(b) use a 4-node quadrilateral element and has a structural grid divided

by squares of 1 [mm] per side. Here, the topology optimization is performed when the move-

limit ρmove is set to 0.01, 0.10, and 1.00. The initial density in the design domain Ω is given

uniformly by ρ̄0. Similar to the hook model, the gripper model has the design domain Ω and

the non-design domain Ωnon. The non-design domain Ωnon is always updated so that the

density value is zero. ρmove = 0.01 is the problem setting for finding an optimum solution,

ρmove = 0.30 is the problem setting for a slightly larger setting, and ρmove = 1.00 is the

problem as without move-limit ρmove. Since this chapter is conducted in addition to the

study of changing the weight coefficient of the weighted sum method, five different ratios of

w1 to w2 are set: 1 : 5, 1 : 3, 1 : 1, 3 : 1, and 5 : 1. Table 5.1 shows the other calculation

conditions.

Figure 5.3: Computation model for MBB beam on two dimension in multi–objective opti-

mization problems.
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(a) Robotic arm. (b) Gripper model (calculation model).

Figure 5.4: Computation model for the gripper of robotic arm on two dimension in multi–

objective optimization problems.
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Table 5.1: Calculation conditions of topology optimization for multi–objective optimization

problems.

Model MBB beam Gripper

Number of elements 7500 9000

Number of nodes 7701 9211

Penalization parameter for p–norm, p 6.0 6.0

Penalization parameter for the SIMP method, ps 3.0 3.0

Initial density average, ρ̄0 0.25 0.50

Weighting factor for the OC method, η 0.75 0.75

Filter radius, R 1.25 1.25

Upper limit of the range after remapping, Θ
(k)
max 1.0 1.0

Lower limit of the range after remapping, Θ
(k)
min 0.1 0.1

Maximum number of iterations, kmax 400 1000

Young’s modulus, E0[Pa] 210× 109 210× 109

Poisson ratio, ν 0.3 0.3

5.5 Results and considerations of density-based topol-

ogy optimization in multi-objective optimization

5.5.1 Effect of move-limit on the results of density-based topology

optimization in multi-objective optimization

Based on the results of multi-objective topology optimization for strain energy minimiza-

tion and von Mises stress minimization in two dimensional MBB beam model, this section

confirms that the optimization results depend on the setting of the move-limit ρmove, even

when using the mapping-based modified OC method. Figures 5.5 to 5.9 show the density
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distributions at the final iteration when using the OC method and the mapping-based modi-

fied OC method with a different ratio of w1 and w2. From Figures 5.5 to 5.9, for any ratio of

weight coefficients, the density distribution obtained by topology optimization when using

the OC method is different depending on the value of the move-limit ρmove. On the other

hand, the density distribution obtained by topology optimization when using the mapping-

based modified OC method is significantly different depending on the value of the move-limit

ρmove. It was confirmed that the results are similar to the results of topology optimization for

strain energy minimization described in chapter 2 and the results of topology optimization

for von Mises stress minimization described in chapter 3. Thus, the update equation based

on the modified OC method does not require the weighting factor η, reducing the parame-

ter setting burden on engineers using topology optimization. Figures 5.10 to 5.14 show the

history of performance function for each weight coefficient ratio. Sub caption (a) in those

figures shows the history of performance function obtained by topology optimization when

using the OC method, and (b) shows the history of performance function obtained by topol-

ogy optimization when using the mapping-based modified OC method. From the history of

performance function obtained by topology optimization when using the OC method shown

in Figures 5.10(a) to 5.14(a), it can be confirmed that it converges to a certain value in all

analysis. However, when the move-limit ρmove is set to large value, the performance function

temporarily increases, resulting in an unstable performance function history. On the other

hand, the history of performance function obtained by topology optimization when using the

mapping-based modified OC method shown in Figures 5.10(b) to 5.14(b) confirms that it

steadily converges to a certain solution. Next, the difference in the normalized performance

function is checked using

Diff =

∣∣J (k) − J (k−1)
∣∣

J0
(5.24)

As well as the history of performance function, Figures 5.15 to 5.19 show the difference

in the normalized performance function obtained by topology optimization using the OC

method and mapping-based modified OC method when the weight coefficients are changed.
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For both methods, the difference does not become small after a certain number of iterations.

The result when using the OC method shown in Figures 5.15(a) to 5.19(a) show that the

difference is largest when the move-limit ρmove is set to 1.00. On the other hand, the result

when using the mapping-based modified OC method shown in Figures 5.15(b) to 5.19(b)

show that the difference is small even when the move-limit ρmove is set to 1.00. Thus, it

can be inferred that the convergence criterion may be smaller than that of the OC method.

However, since a uniform decreasing trend has not been obtained, it is difficult to set the

convergence criterion.
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(a) When using the OC method

(ρmove = 0.01).

(b) When using the mapping–based

modified OC method (ρmove = 0.01).

(c) When using the OC method

(ρmove = 0.10).

(d) When using the mapping–based

modified OC method (ρmove = 0.10).

(e) When using the OC method

(ρmove = 1.00).

(f) When using the mapping–based

modified OC method (ρmove = 1.00).

Figure 5.5: Density distributions at final iteration of multi–objective topology optimization

when w1 : w2 = 1 : 5 in the MBB beam model.
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(a) When using the OC method

(ρmove = 0.01).

(b) When using the mapping–based

modified OC method (ρmove = 0.01).

(c) When using the OC method

(ρmove = 0.10).

(d) When using the mapping–based

modified OC method (ρmove = 0.10).

(e) When using the OC method

(ρmove = 1.00).

(f) When using the mapping–based

modified OC method (ρmove = 1.00).

Figure 5.6: Density distributions at final iteration of multi–objective topology optimization

when w1 : w2 = 1 : 3 in the MBB beam model.



Chap. 5 Multi-objective topology optimization 191

(a) When using the OC method

(ρmove = 0.01).

(b) When using the mapping–based

modified OC method (ρmove = 0.01).

(c) When using the OC method

(ρmove = 0.10).

(d) When using the mapping–based

modified OC method (ρmove = 0.10).

(e) When using the OC method

(ρmove = 1.00).

(f) When using the mapping–based

modified OC method (ρmove = 1.00).

Figure 5.7: Density distributions at final iteration of multi–objective topology optimization

when w1 : w2 = 1 : 1 in the MBB beam model.
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(a) When using the OC method

(ρmove = 0.01).

(b) When using the mapping–based

modified OC method (ρmove = 0.01).

(c) When using the OC method

(ρmove = 0.10).

(d) When using the mapping–based

modified OC method (ρmove = 0.10).

(e) When using the OC method

(ρmove = 1.00).

(f) When using the mapping–based

modified OC method (ρmove = 1.00).

Figure 5.8: Density distributions at final iteration of multi–objective topology optimization

when w1 : w2 = 3 : 1 in the MBB beam model.
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(a) When using the OC method

(ρmove = 0.01).

(b) When using the mapping–based

modified OC method (ρmove = 0.01).

(c) When using the OC method

(ρmove = 0.10).

(d) When using the mapping–based

modified OC method (ρmove = 0.10).

(e) When using the OC method

(ρmove = 1.00).

(f) When using the mapping–based

modified OC method (ρmove = 1.00).

Figure 5.9: Density distributions at final iteration of multi–objective topology optimization

when w1 : w2 = 5 : 1 in the MBB beam model.
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(a) When using the OC method. (b) When using the mapping–based

modified OC method.

Figure 5.10: The history of performance functions for multi–objective topology optimization

when w1 : w2 = 1 : 5 in the MBB beam model.

(a) When using the OC method. (b) When using the mapping–based

modified OC method.

Figure 5.11: The history of performance functions for multi–objective topology optimization

when w1 : w2 = 1 : 3 in the MBB beam model.
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(a) When using the OC method. (b) When using the mapping–based

modified OC method.

Figure 5.12: The history of performance functions for multi–objective topology optimization

when w1 : w2 = 1 : 1 in the MBB beam model.

(a) When using the OC method. (b) When using the mapping–based

modified OC method.

Figure 5.13: The history of performance functions for multi–objective topology optimization

when w1 : w2 = 3 : 1 in the MBB beam model.
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(a) When w1 : w2 = 5 : 1. (b) When using the mapping–based

modified OC method.

Figure 5.14: The history of performance functions for multi–objective topology optimization

when w1 : w2 = 5 : 1 in the MBB beam model.

(a) When using the OC method. (b) When using the mapping–based

modified OC method.

Figure 5.15: Difference in normalized performance functions for multi–objective topology

optimization when w1 : w2 = 1 : 5 in the MBB beam model.
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(a) When using the OC method. (b) When using the mapping–based

modified OC method.

Figure 5.16: Difference in normalized performance functions for multi–objective topology

optimization when w1 : w2 = 1 : 3 in the MBB beam model.

(a) When using the OC method. (b) When using the mapping–based

modified OC method.

Figure 5.17: Difference in normalized performance functions for multi–objective topology

optimization when w1 : w2 = 1 : 1 in the MBB beam model.
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(a) When using the OC method. (b) When using the mapping–based

modified OC method.

Figure 5.18: Difference in normalized performance functions for multi–objective topology

optimization when w1 : w2 = 3 : 1 in the MBB beam model.

(a) When w1 : w2 = 5 : 1. (b) When using the mapping–based

modified OC method.

Figure 5.19: Difference in normalized performance functions for multi–objective topology

optimization when w1 : w2 = 5 : 1 in the MBB beam model.
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5.5.2 Effect of weight coefficients of weighted sum method on

topology optimization results

In the previous subsection, the effect of the move-limit ρmove on the results of topology

optimization in multi-objective optimization was investigated, and it was confirmed that the

move-limit ρmove is less dependent on the topology optimization when using the mapping-

based modified OC method. In this subsection, topology optimization when using the OC

method and the mapping-based modified OC method is performed for the gripper of the

robotic arm used in industry. Based on the results described in the previous subsection,

the move-limit ρmove is set to 0.01 when using the OC method, and it is set to 1.00 when

using the mapping-based modified OC method. The aim of this subsection is to check

how the values of performance function for strain energy minimization and von Mises stress

minimization change with the ratio of the weight coefficients w1 and w2 in the weighted

sum method. Figures 5.20 and 5.21 show the density distributions of topology optimiza-

tion using the OC method and the mapping-based modified OC method when the ratio of

the weight coefficients w1 and w2 is changed. Figures 5.20(a) and 5.21(a) show the density

distribution obtained by topology optimization with w1 : w2 = 1 : 5, where the empha-

sis is on von Mises stress minimization, followed by an increasing weight on strain energy

minimization more and more, and Figures 5.20(e) and 5.21(e) show the density distribution

obtained by topology optimization with w1 : w2 = 5 : 1, where the emphasis is on strain

energy minimization. Figures 5.20(c) and 5.21(c) show the density distribution obtained by

topology optimization with w1 : w2 = 1 : 1. The density distributions shown in Figures

5.20 and 5.21 show that when the emphasis is on von Mises stress minimization, there is a

grayscale in the density distribution, but when the emphasis is on strain energy minimiza-

tion, the grayscale is suppressed. No significant differences in results were observed between

the update methods. Although filter suppression has been the predominant method for

suppressing grayscale, it was found that the grayscale can be suppressed by performing a

multi-objective optimization problem combined with strain energy minimization. The topol-
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ogy optimization for strain energy minimization can be solved stably. Also, adjusting the

p in p norm for the von Mises stress minimization can also suppress grayscale. However,

smaller values of p should be avoided as much as possible because the property of weighting

elements with higher von Mises stress is diminished. Next, the displacement distribution

is confirmed. In the gripper model, the displacement in X-direction is dominant due to

the added load in X-direction. Therefore, Figures 5.22 and 5.23 show the distribution of

displacement in X-direction obtained by topology optimization when using the OC method

and the mapping-based modified OC method. Compared to the distribution of displacement

in X-direction for the case with emphasis on von Mises stress minimization shown in Fig-

ures 5.22(a) and 5.23(a), the distribution of displacement in X-direction for the case with

emphasis on strain energy minimization shown in Figures 5.22(e) and 5.23(e) has a smaller

distribution of maximum displacement. The trend was that the distribution of maximum

displacement decreased as the emphasis was placed on strain energy minimization. Next,

the von Mises stress distribution is confirmed. Figures 5.24 and 5.25 show the von Mises

stress distribution obtained by topology optimization when using the OC method and the

mapping-based modified OC method. Similar to the displacement distribution shown in

Figures 5.22 and 5.23, they show the von Mises stress distribution as weight coefficients are

changed. Similary, the von Mises stress distribution for the case with emphasis on strain

energy minimization shown in Figures 5.24(e) and 5.25(e) has fewer elements of maximum

von Mises stress than one with emphasis on von Mises stress minimization shown in Figures

5.24(a) and 5.25(a). From the distributions of displacement and von Mises stress shown in

Figures 5.22 and 5.25, the density distribution with numerous grayscale was found to have

more displacement and higher von Mises stress. The displacement and von Mises stress were

incorrectly evaluated due to grayscale, which is an intermediate material, and it can be as-

sumed that these values became high. Next, the history of performance function is confirmed.

Figure 5.26 shows the history of performance function obtained by topology optimization.

The history of performance function is displayed on the logarithmic horizontal axis. From

Figure 5.26, the history of performance function obtained by topology optimization when
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using the mapping-based modified OC method decreased more rapidly than one when using

the OC method. However, not all conditions decreased well, and in Figure 5.26(e), where

too much emphasis is placed on strain energy minimization, the performance function is

temporarily higher. The relationship between the performance functions of the normalized

strain energy minimization and normalized von Mises stress minimization is shown in Fig-

ure 5.28. From Figure 5.28, when the emphasis is on von Mises stress minimization, both

performance functions tend to be higher due to the presence of grayscale. This result can be

inferred from the distributions of displacement and von Mises stress shown in Figures 5.22

to 5.25. And it can be seen that results for w1 : w2 = 3 : 1 and w1 : w2 = 5 : 1 when the

emphasis is on strain energy minimization do not obtain significant differences. However, as

mentioned earlier, care must be taken in setting up the problem, because in Figure 5.26(e),

when too much emphasis is placed on strain energy minimization, the performance function

temporarily becomes high. In addition, as in the previous sub section, Figure 5.27 shows the

difference in the normalized performance function using Equation (5.24). In all conditions,

when the number of iterations k approaches the maximum number of iterations kmax, the

difference in the normalized performance function using the mapping-based modified OC

method is small. Finally, to investigate the cause of the remaining grayscale, the sensitivity

at the final iteration and the function Θ⟨e⟩ in the Mapping-based modified OC method are

investigated. As a representative example, topology optimization with weight coefficient

ratios w1 : w2 = 1 : 3 and w1 : w2 = 3 : 1 is discussed here. Figures 5.29 and 5.30 show the

sensitivity distribution at the final iteration obtained by topology optimization when using

the OC method and the mapping-based modified OC method. Although no significant dif-

ferences can be observed between update methods, the sensitivity distributions, as shown in

Figures 5.29(a) and 5.30(a), for the case where emphasis is placed on von Mises stress min-

imization show that even the grayscale elements have a sensitivity close to 0. On the other

hand, the sensitivity distributions shown in Figures 5.29(b) and 5.30(b), when emphasis is

placed on strain energy minimization, show greater than the sensitivity distribution shown

in Figures 5.29(a) and 5.30(a). Since sensitivity is a value that indicates whether further
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updates can be made, no grayscale reduction can be expected if the number of iterations is

increased. This is because the sensitivity is close to 0. Figure 5.31 shows the distribution of

the function Θ⟨e⟩ in the mapping-based modified OC method. Figure 5.31(a) shows that the

value of Θ⟨e⟩ is small even for the grayscale elements, and it is close to the upper limit for the

elements with low density values. In Figure 5.31(b), the function Θ⟨e⟩ is higher for elements

with low density values, but it is not an upper limit and the distribution is such that the

boundaries of the structure can be seen. From this, it can be said that proper incorporation

of the strain energy minimization problem leads to the suppression of grayscale.
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(a) When w1 : w2 = 1 : 5. (b) When w1 : w2 = 1 : 3. (c) When w1 : w2 = 1 : 1.

(d) When w1 : w2 = 3 : 1. (e) When w1 : w2 = 5 : 1.

Figure 5.20: Density distributions at final iteration of multi–objective topology optimization

when using the OC method in the gripper model.
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(a) When w1 : w2 = 1 : 5. (b) When w1 : w2 = 1 : 3. (c) When w1 : w2 = 1 : 1.

(d) When w1 : w2 = 3 : 1. (e) When w1 : w2 = 5 : 1.

Figure 5.21: Density distributions at final iteration of multi–objective topology optimization

when using the mapping–based modified OC method in the gripper model.
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(a) When w1 : w2 = 1 : 5. (b) When w1 : w2 = 1 : 3. (c) When w1 : w2 = 1 : 1.

(d) When w1 : w2 = 3 : 1. (e) When w1 : w2 = 5 : 1.

Figure 5.22: Distributions of displacement in the X-direction at final iteration of multi–

objective topology optimization when using the OC method in the gripper model.
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(a) When w1 : w2 = 1 : 5. (b) When w1 : w2 = 1 : 3. (c) When w1 : w2 = 1 : 1.

(d) When w1 : w2 = 3 : 1. (e) When w1 : w2 = 5 : 1.

Figure 5.23: Distributions of displacement in the X-direction at final iteration of multi–

objective topology optimization when using the mapping–based modified OC method in the

gripper model.
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(a) When w1 : w2 = 1 : 5. (b) When w1 : w2 = 1 : 3. (c) When w1 : w2 = 1 : 1.

(d) When w1 : w2 = 3 : 1. (e) When w1 : w2 = 5 : 1.

Figure 5.24: Von Mises stress distributions at final iteration of multi–objective topology

optimization when using the OC method in the gripper model.
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(a) When w1 : w2 = 1 : 5. (b) When w1 : w2 = 1 : 3. (c) When w1 : w2 = 1 : 1.

(d) When w1 : w2 = 3 : 1. (e) When w1 : w2 = 5 : 1.

Figure 5.25: Von Mises stress distributions at final iteration of multi–objective topology

optimization when using the mapping–based modified OC method in the gripper model.
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(a) When w1 : w2 = 1 : 5. (b) When w1 : w2 = 1 : 3

(c) When w1 : w2 = 1 : 1 (d) When w1 : w2 = 3 : 1

(d) When w1 : w2 = 5 : 1

Figure 5.26: The history of performance functions for multi–objective topology optimization

in the gripper model.
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(a) When w1 : w2 = 1 : 5. (b) When w1 : w2 = 1 : 3

(c) When w1 : w2 = 1 : 1 (d) When w1 : w2 = 3 : 1

(d) When w1 : w2 = 5 : 1

Figure 5.27: Difference in normalized performance functions for multi–objective topology

optimization in the gripper model.
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Figure 5.28: Relationship between the normalized strain energy performance function and

the normalized von Mises stress performance function.

(a) When w1 : w2 = 1 : 3. (b) When w1 : w2 = 3 : 1.

Figure 5.29: Sensitivity distributions at final iteration of multi–objective topology optimiza-

tion when using the OC method in the gripper model.
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(a) When w1 : w2 = 1 : 3. (b) When w1 : w2 = 3 : 1.

Figure 5.30: Sensitivity distributions at final iteration of multi–objective topology optimiza-

tion when using the mapping–based modified OC method in the gripper model.

(a) When w1 : w2 = 1 : 3. (b) When w1 : w2 = 3 : 1.

Figure 5.31: Distributions of function Θ⟨e⟩ at final iteration of multi–objective topology

optimization when using the mapping–based modified OC method in the gripper model.
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Conclusions

This study proposes and verifies a new update method that incorporates the OC method,

which is closely related to fully stressed method, and the Newton’s method, which is a fast

algorithm for nonlinear equation. The proposed modified OC method was employed for

topology optimization based on the density method. The FEM was used to discretize the

spatial direction. For numerical verification problems, topology optimization was performed

for three optimization problems: the self-adjoint relationship problem, non-self-adjoint rela-

tionship problem, and multi-objective optimization problem combining self-adjoint relation-

ship and non-self-adjoint relationship problems. In this thesis, the self-adjoint relationship

problem shown in chapter 2 is the strain energy minimization problem. And, the non-self-

adjoint relationship problem shown in chapter 3 is the von Mises stress minimization prob-

lem. Additionally, based on the results obtained by topology optimization for the self-adjoint

relationship and the non-self-adjoint relationship problems, tensile testing was performed as

a demonstration of optimization problem setup.

In chapter 2, a modified OC method that incorporates the concept of the Newton’s

method, which is known as a fast computation method for nonlinear equation, into the OC

method, which is often used in conventional density-based topology optimization was pro-

posed. As the verification problem in chapter 2, a topology optimization was performed to

minimize strain energy, which is a self-adjoint relationship problems. In topology optimiza-

tion for strain energy minimization in two dimensional steady problems, the differences in

the results obtained using the conventional OC method, the gradient method with first-order
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and second-order derivatives, and the proposed modified OC method are described. Topol-

ogy optimization when using the OC method and the gradient method with first-order and

second-order derivatives did not obtain an optimum density distribution as the setting value

of move-limit ρmove increased. On the other hand, topology optimization when using the

modified OC method obtained an optimum density distribution independent of the move-

limit ρmove. The move-limit ρmove when setting more than 1 is given to be the same when the

move-limit ρmove is not set. In addition, a tendency for the performance function to decrease

rapidly with in the initial number of iterations was obtained, and an optimum density dis-

tribution was obtained with a small number of iterations. Next, topology optimization for

strain energy minimization in three dimensional steady problems was performed based on

the results of topology optimization for strain energy minimization in two dimensional steady

problems. When the move-limit ρmove was set to a small value, a hollow-like structure was

obtained, and when it was set to a large value, a solid-like structure was obtained. Similarly,

a tendency for the performance function to decrease rapidly with in the initial number of iter-

ations was obtained, and an optimum density distribution was obtained with a small number

of iterations. In actual manufacturing, the structure obtained when the move-limit ρmove is

set to a large value is easier to manufacture. For topology optimization for strain energy

minimization in steady problems described in chapter 2, the modified OC method is simple

to represent and easy to implement. Additionally, topology optimization for strain energy

minimization in three dimensional dynamic oscillation problems was performed. Strain en-

ergy was replaced with work and divided into two cases, positive work and negative work, as

a positive work minimization problem and a negative work minimization problem. Similar to

the results for steady problems, a tendency for the performance function to decrease rapidly

with in the initial number of iterations was obtained, and an optimum density distribution

was obtained with a small number of iterations. The displacement waveforms of the struc-

ture obtained by topology optimization when using the modified OC method have a shorter

period than that obtained by topology optimization when using the OC method. From the

above, it can be said that the modified OC method is independent of the move-limit ρmove
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and the characteristic of obtaining a significant reduction in the performance function in the

initial number of iterations. Moreover, since the weighting factor η in the OC method is

given as a function, the modified OC method does not require the setting of the weighting

factor and the move-limit ρmove as described above. Therefore, the modified OC method is

an engineer-friendly method.

In chapter 3, a topology optimization was performed to minimize von Mises stress, which

is a non-self-adjoint relationship problems. The verification problems are two dimensional

and three diemensional steady problems. In the von Mises stress minimization problems,

in addition to the need to solve the adjoint equation, the exponent is negative value in the

modified OC method. Thus, it is difficult to find an optimum solution. As a countermeasure,

the MMN modified OC method was proposed, which incorporates the concept of a modified

Newton’s method that can handle negative value instead of Newton’s method. Similar to

chapter 2, the MMN modified OC method obtained a tendency for the performance func-

tion to decrease rapidly in the initial number of iterations, independent of the move-limit

ρmove. However, in this problem, it was difficult to reduce the number of iterations. The

reason for this is that even if the performance function converges to a certain value, there

are grayscale elements in a density distribution. Thus, it is difficult to set an appropri-

ate convergence judgment. To clarify the convergence characteristics of the modified OC

method, which is the proposed method, it refferd to the proof of the convergence property

for the Newton’s method. An attempt was made to clarify the convergence characteristics

for each conditions, assuming the conditions that can occur in the calculation. However,

as with typical convergence characteristics, they could not be clarified. At the moment,

formula expansion involves functions that depend on each optimization problem. Without

their clarification, mathematical proofs and expansions are difficult.

In chapter 4, tensile testing was performed to demonstrate the results obtained by topol-

ogy optimization. Based on the results obtained by topology optimization described in

chapter 2 and chapter 3, topology optimization for strain energy minimization and von

Mises stress minimization was performed for tensile specimens. Topology optimization for
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strain energy minimization employs the modified OC method, and topology optimization for

von Mises stress minimization employs the MMN modified OC method. The results obtained

by topology optimization for von Mises stress minimization have smaller performance func-

tions for strain energy minimization than that obtained by topology optimization for strain

energy minimization. Based on the density distribution obtained by topology optimization,

tensile specimens were machined by the wire electrical discharge machining. The results ob-

tained from the tensile experiments show that the tensile specimens based on the topology

optimization for von Mises stress minimization have higher strength than those based on the

topology optimization for strain energy minimization. However, the tensile specimens based

on topology optimization for von Mises stress minimization were broken from the edges of

the design domain, rather than near the center, where the failure point was. This may be

related to the interference effect of the stress concentration factor. Therefore, higher strength

structures may be obtained if topology optimization considering the interference effects of

stress concentrations can be performed.

In chapter 5, a multi-objective topology optimization was performed to minimize strain

energy and von Mises stress. In chapter 3, the MMN modified OC method was per-

formed. However, in chapter 5, the update speed of topology optimization when using the

MMN modified OC method is very slow, making updates impractical. Therefore, a new

mapping-based modified OC method was proposed. Similar to chapter 2 and chapter 3,

the mapping-based modified OC method obtained a tendency for the performance function to

decrease rapidly in the initial iterations, independent of the move-limit ρmove. Additionally,

the multi-objective topology optimization combining the strain energy minimization prob-

lem and the von Mises stress minimization problem had the effect of suppressing grayscale

within the density distribution. Grayscale suppression is generally addressed by improving

the filter method. However, some filters may lead to an increase in the value of perfor-

mance function and the number of iterations. Therefore, it can be said that multi-objective

topology optimization combining the strain energy minimization problem and the von Mises

stress minimization problem does not increase the value of the performance function while
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suppressing grayscale.

These research results show that the modified OC method developed in this study can be

applied to several optimization problems. For each optimization problem, it is not necessary

to set the weighting factor and the move-limit, which are arbitrary parameters that must be

set by the engineers. It also proved that the performance function decreases rapidly in the

initial number of iterations. Topology optimization using the proposed method was demon-

strated in tensile testing. Guidelines for setting up an optimization problem and advantages

of both optimization problems were clarified. In summary, the proposed method is a useful

alternative that reduces the number of arbitrary parameters to be set and significantly re-

duce the number of iterations. In addition, the proposed method can be employed for several

optimization problems, including topology optimization by other methods because it is an

update equation.
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Chapter A

Optimum design problem for stepped one

dimensional linear elastic body

In this appendix, a material property identification problem is performed for a stepped

bar, a one dimensional linear elastic body, that reaches a target deformation. The proposed

modified OC method is employed as the update equation. The aim of this problem is to

verify whether the same optimum solution can be searched for a simplified model when the

move-limit ρmove is changed. Thus, the values of this parameter used in the analysis have

no engineering significance. Figure A.1 shows a one dimensional linear elastic body, which

is a stepped bar composed of two members. This optimization problem is to identify the

Young’s modulus E1 and E2 for the overall deformation U to be the same as the target

deformation Û . Young’s modulus E1 and E2 are calculated by the SIMP method. Figure

A.1 is represented by a spring system as shown in Figure A.2. Thereafter, the optimum

design is performed for this model.



x
p1 u1

A1E1

l1 l2

A2E2
p2 u2

Figure A.1: One dimensional linear elastic body.

p1 u1
p2 u2

k2k1

Figure A.2: Two–degree–of–freedom spring system.

Equation (A.1) is the square of the residual between the overall deformation U and the

target deformation Û as the performance function, and Equation (A.2) is the force bal-

ance equation obtained by Figure A.2. In addition, Equations (A.3) and (A.4) are volume

constraint and density constraint similar to other optimization problems.

minimize J =
(
U − Û

)2
=
(
(u1 + u2)− Û

)2
(A.1)

subject to [K] {u} = {f} (A.2)

V =
1

Vtotal

(A1l1ρ1 + A2l2ρ2)− ρ̄0 ≤ 0 (A.3)

0 ≤ ρi ≤ 1 (i = 1, 2) (A.4)

Here, the stiffness matrix [K] of a stepped one dimensional elastic body is expressed as

[K] =

k1 + k2 −k2

−k2 k2

 =


E1A1

l1
+ E2A2

l2
−E2A2

l2

−E2A2

l2

E2A2

l2

 (A.5)



This optimization is also solved in the same way, using the adjoint variable method to

find an optimum solution. The gradient of the Lagrange function J∗ with respect to the

displacement is shown in{
∂J∗

∂u

}
= 2

(
U − Û

){∂U

∂u

}
+ [K] {λ} (A.6)

From Equation (A.6), the Lagrange multiplier vector {λ} is calculated as shown in

{λ} = 2
(
U − Û

)
[K]−1

{
∂U

∂u

}
(A.7)

Using the Langrange multiplier vector {λ}, the gradients of the Lagrange function J∗ with

respect to the densities ρ1 and ρ2 are obtained as

∂J∗

∂ρ1
= λ1

∂k1
∂ρ1

u1 (A.8)

∂J∗

∂ρ2
= λ1

(
∂k2
∂ρ2

u1 −
∂k2
∂ρ2

u2

)
+ λ2

(
−∂k2
∂ρ2

u1 +
∂k2
∂ρ2

u2

)
(A.9)

To employ the modified OC method as shown in Equation (2.83), it is necessary to find the

second derivative, which is the gradient of the sensitivity with respect to the density. The

gradient of the sensitivity with respect to the density is calculated as shown in

∂2J∗

∂ρi2
=

{
∂λ

∂ρi

}
∂ [K]

∂ρi
{u}+ {λ} ∂2 [K]

∂ρi2
{u}+ {λ} ∂ [K]

∂ρi

{
∂u

∂ρi

}
(A.10)

The gradients of the Langrange multiplier vector {λ} with respect to the densities ρ1 and ρ2

in the above equation is obtained as

{
∂λ

∂ρ1

}
=

 −4 ∂U
∂ρ1

k1+4(U−Û) ∂k1
∂ρ1

k1
2

−2 ∂U
∂ρ1

(k1+2k2)k1k2−2(U−Û)k1k2+2(U−Û)(k1+2k2)k2

(k1k2)
2

 (A.11)

{
∂λ

∂ρ2

}
=

 −4 ∂U
∂ρ2

k1
−2 ∂U

∂ρ2
(k1+2k2)k1k2−4(U−Û)k1k2+2(U−Û)(k1+2k2)k1

(k1k2)
2

 (A.12)

Table A.1 shows the calculation conditions for this optimization problem. The move-limit



ρmove is set to 1.0, 10−1, 10−2, 10−3 and 10−4, since there are only two members in the model.

Here, when the move-limit ρmove is set to 1.0, it is the same as if the move-limit ρmove is not

employed. The analysis is performed under two conditions. Case 1 is the analysis when the

parameters are set appropriately, and Case 2 is the analysis in which the target deformation

is the deformation when Young’s modulus are E1 = 6.2, E2 = 7.4 are used as the target

deformation values.

Table A.1: Calculation conditions for material property identification problem.

Case 1 Case 2

Cross–sectional area of member 1 / 2 , A1 / A2 4.0 / 1.0 4.0 / 1.0

Length of member 1 / 2 , l1 / l2 6.0 / 6.0 6.0 / 6.0

Load of member 1 / 2 , p1 / p2 0.0 / 3.0 0.0 / 3.0

Young’s modulus , E0 100.0 100.0

Initial density average, ρ̄0 0.5 0.4

Penalization parameter for the SIMP method, ps 3.0 3.0

Convergence criterion, εconv 1.0× 10−3 1.0× 10−3

Target deformation, Û 1.0 3.1

The results in this optimization problem are described. Figures A.3 and A.4 show the

histories of performance function for the material property identification problems that are

Cases 1 and 2, Table A.2 shows the Young’s modulus E1 and E2 obtained by the material

property identification problems. The X-axis in the history of performance function is dis-

played in logarithmic scale. The results of Case 1 will be reviewed. From Figure A.3, it

can be confirmed that the number of iterations decreases as the setting value of move-limit

ρmove is increased. The history of performance function when the move-limit ρmove is set to

1.0 was generally consistent with the history of performance function when the move-limit

ρmove is set to 0.1. Moreover, it can also be seen that the value of performance function is

convergence after decreasing. This result also tends to the Young’s modulus at convergence



shown in Table A.2. Table A.2 shows that, although there are some errors, they converge

to some extent at the same Young’s modulus. Next, the results of Case 2 will be reviewed.

As well as in Figure A.3, from Figure A.4, it can be confirmed that the number of iterations

decreases as the setting value of move-limit ρmove is increased. In addition, Case 2 aims to

find the optimum solution with E1 = 6.2 and E2 = 7.4 as the correct solution, and it can

be seend from Table A.2 that the optimum solution to be reached has been obtained. In

fact, Figure A.5 shows what the relationship between the density ratio and the performance

function looks like in the graph. From the volume constraint shown in Equation (A.3), the

total density is the same and can be expressed as a density ratio since they are two members.

The density ratio that is assumed to be the correct solution is marked in red in Figure A.5.

Since the initial density is given uniformly, the initial density ratio is 1. In optimization

with gradients, the step length must be small and the update must be gradual in order to

obtain an optimum solution consistently. If the step length is increased, there is a possiblity

of large deviations from an optimum solution or oscillation in a solution. However, the same

results are obtained in the proposed method even when the move-limit ρmove, which limits

the size of the step length, is increased, as shown in Table A.2 and Figure A.5. THe reason

for this is thought to be that the wighting factor η, which is the step length, is a function of

the number of iterations, allowing for appropriate updates at each iteration. Additionally,

as shown in Figures A.3 and A.4, it does not show large oscillation behavior even before

the convergence. Therefore, the proposed modified OC method is capable of obtaining the

same optimum solution with a significantly reduced number of iterations to reach an opti-

mum solution. In addition, it reduces the number of trials for numerical experiments, since

fewer parameters are needed for updating. The proposed method can be used in short-term

product development situations.



Figure A.3: The history of performance function for material property identification problem

(Case 1).

Figure A.4: The history of performance function for material property identification problem

(Case 2).



Table A.2: Results in material property identification problem.

Case 1 Case 2

Move-limit ρmove E1 E2 E1 E2

1.0 10.2721 24.6173　 6.1198 7.6114

10−1 10.2721 24.6173　 6.1198 7.6114

10−2 10.2722 24.6174　 6.1199 7.6108

10−3 10.2722 24.6175　 6.1199 7.6112

10−4 10.2722 24.6174　 6.1198 7.6117

Figure A.5: Graph of relationship between density ratio and performance function in Case

2.



Chapter B

Topology optimization when using the

steepest descent method

This appendix describes the result of topology optimization when using the steepest de-

scent method. The steepest descent method for this problem is shown in

ρ
(k+1)
⟨e⟩ = ρ

(k)
⟨e⟩ − αs

∂ ¯J∗
⟨e⟩

∂ρ⟨e⟩

(k)

+ Λ
∂V

∂ρ⟨e⟩

(k)

 (B.1)

where αs is the step length. As an example, topology optimization is performed for a two

dimensional cantilever beam model in the stran energy minimization problem described in

chapter 2. The computation model is the cantilever beam model shown in Figure 2.7(a),

and the calculation conditions are shown in Table 2.1. However, the convergence criterion

εconv should be set as small as 1.0 × 10−7. Additionally, to check the trend by the steepest

descent method, the maximum number of iterations kmax is set to 10000.

Figures B.1 and B.2 show the history of performance function and density distributions

obtained by topology optimization when using the steepest descent method. Figure B.2(a)

shows the density distribution when the move-limit ρmove is set to 0.01 and the step length

αs is set to 10−6. Figures B.2(b) to B.2(f) show the density distributions when the move-

limit ρmove is set to 1.00 and the step length αs is between 10−6 to 10−10. From Figure

B.2(a), a density distribution similar to that described in chapter 2 was obtained at 1298th

iteration. From Figure B.1, it can be confirmed that the performance function also continues

to decrease. However, the density distributions when the step length αs is set from 10−6 to



10−8 ash shown in Figures B.2(b) to B.2(d) is different from an optimum result. This can

also be seen from Figure B.1, where the value of the performance function is oscillating and

the analysis is not stable. The elements with a low density value will essentially be updated

as having no material. However, those elements have a higher sensitivity values at a certain

number of iterations, making the update unstable. If the step length is reduced in order to

supress this, the results are as shown in Figures B.2(e) and B.2(f), and it can be inferred that

a large number of iterations are required to find an optimum result. When using the steepest

descent method in topology optimization, it is necessary to adjust the step length when the

sensitivity value becomes high for elements with low values of the density mentioned above.

Additionally, it can also be seen that giving the step length as a constant is not useful in

this analysis.

Figure B.1: History of normalized performance function in the topology optimization for

strain energy minimization in the cantilever beam model when using the steepest descent

method.
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(b) When αs = 10−6 and ρmove = 1.00.
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(c) When αs = 10−7 and ρmove = 1.00.
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(d) When αs = 10−8 and ρmove = 1.00.
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(e) When αs = 10−9 and ρmove = 1.00.
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(f) When αs = 10−10 and ρmove = 1.00.

Figure B.2: Density distributions at final iteration when using the steepest descent method.



Chapter C

Calculation time for topology optimization

This appendix describes the calculation time of topology optimization performed in this

study for strain energy minimization and von Mises stress minimization. Subsystem A of

the supercomputer system ITO at Research Institute for Information Technology, Kyushu

University, was used for the analysis[91]. Table C.1 shows the specifications of subsystem A.

Tables C.2 to C.9 show the calculation time and number of iterations for each optimization

problem, respectively. In topology optimization for strain energy minimization shown in

Tables C.2 to C.7, no significant difference in calculation time per iteration was identified.

However, in topology optimization for von Mises stress minimization shown in Tables C.8 to

C.11, the calculation time increased for the same number of iterations due to the increased

computation required to find the exponents in the proposed method. It can be seen that

the proposed method takes longer calculation time per iteration than the OC method. In

contrast, the proposed method does not require the setting of parameters such as the move-

limit and weighting factor. In other words, the number of parametric study trials is reduced,

which in turn reduces the process time required for analysis for product development.



Table C.1: Specifications of subsystem A of super computer system ITO at Research Institute

for Information Technology, Kyushu University.

CPU
Intel Xeon Gold 6154 (Skylake-SP)

(3.0 GHz (Turbo 3.7 GHz), 18 core）× 2 / node

Theoretical peak performance 3,456 GFLOPS / node (Double Precision)

Amount of memory DDR4 192 GB / node

Amount of bandwidth 255.9 GB/sec / node

Table C.2: Calculation times of topology optimization for strain energy minimization in the

cantilever beam model for the two dimensional static problem.

Figure No. Update method Total time [sec] Iteration Time per iteration

2.10(a) OC 15.76 61 0.26

2.10(b) OC 56.43 200 0.28

2.11(a) Gradient 14.97 60 0.25

2.11(b) Gradient 2.58 10 0.26

2.12(a) Modified OC 19.23 69 0.28

2.12(b) Modified OC 12.83 44 0.29

*Gradient: Gradient method with first-order and second-order derivatives.



Table C.3: Calculation time of topology optimization for strain energy minimization in the

MBB beam model for the two dimensional static problem.

Figure No. Update method Total time [sec] Iteration Time per iteration

2.14(a) OC 37.15 74 0.50

2.14(b) OC 116.11 200 0.58

2.15(a) Gradient 36.68 74 0.50

2.15(b) Gradient 8.79 15 0.59

2.16(a) Modified OC 44.00 85 0.52

2.16(b) Modified OC 25.58 46 0.56

*Gradient: Gradient method with first-order and second-order derivatives.

Table C.4: Calculation time of topology optimization for strain energy minimization in the

cantilever beam model for the three dimensional static problem.

Figure No. Update method Total time [sec] Iteration Time per iteration

2.22 OC 73.69 57 1.29

2.23 Modified OC 58.87 43 1.37

Table C.5: Calculation time of topology optimization for strain energy minimization in the

MBB beam model for the three dimensional static problem.

Figure No. Update method Total time [sec] Iteration Time per iteration

2.27 OC 387.37 104 3.72

2.28 Modified OC 348.10 84 4.14



Table C.6: Calculation time of topology optimization for strain energy minimization in the

cantilever beam model for the three dimensional dynamic problem.

Figure No. Update method Total time [min] Iteration Time per iteration

2.30 OC 3810 54 71

2.31 Modified OC 4753 30 158

Table C.7: Calculation time of topology optimization for strain energy minimization in the

MBB beam model for the three dimensional dynamic problem.

Figure No. Update method Total time [min] Iteration Time per iteration

2.35 OC 8246 90 92

2.36 Modified OC 5720 31 185

Table C.8: Calculation time of topology optimization for von Mises stress minimization in

the MBB beam model for the two dimensional static problem.

Figure No. Update method Total time [sec] Iteration Time per iteration

3.6 OC 259.42 400 0.65

3.7 OC 243.93 400 0.61

3.8 OC 254.29 400 0.64

3.9 Modified OC 445.72 400 1.11

3.10 Modified OC 417.08 400 1.04

3.11 Modified OC 413.06 400 1.03



Table C.9: Calculation time of topology optimization for von Mises stress minimization in

the hook model for the two dimensional static problem.

Figure No. Update method Total time [sec] Iteration Time per iteration

3.14 OC 607.99 500 1.22

3.15 OC 746.14 500 1.49

3.16 OC 709.49 500 1.42

3.17 Modified OC 830.49 500 1.66

3.18 Modified OC 707.89 500 1.42

3.19 Modified OC 708.44 500 1.42

Table C.10: Calculation time of topology optimization for von Mises stress minimization in

the MBB beam model for the three dimensional static problem.

Figure No. Update method Total time [min] Iteration Time per iteration

3.28 OC 63 150 0.42

3.29 Modified OC 187 150 1.25

Table C.11: Calculation time of topology optimization for von Mises stress minimization in

the hook model for the three dimensional static problem.

Figure No. Update method Total time [min] Iteration Time per iteration

3.28 OC 641 150 4.27

3.29 Modified OC 1624 150 10.83
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