Microscopic Equations of Solidification
Process of Multicomponent Alloy*

Teruyoshi UMEMURAx*

The purpose of the present paper is 1o establish a system of equations which describes the
growing process of every crystal in mold,

In the first place, regarding the fact that many crystals of various phases grow and move
in the liquid phase during solidification, the conservative equations of mass, heat and mo-
mentum have been derived on the phase boundary between liquid and crystals as well as in
the phases,

In the second place, the derived equations were discussed from the point of a boundary
value problem. Thereafter it has been found that the system requires the equations of the
reaction rates and the continuity of temperature on the phase boundary other than conserva-
tive equations. Accordingly, the equations of reaction rates have been derived for every com-
ponent of alloy after Jackson who treated a binary solid sclution.

The present system of equations were compared with the various equations used by previ-
ous workers on solidification, and it was made clear that almost all of them can be derived
by intreducing additional assumptions to the present system of equations.

NOMENCLATURE S : surface and area
C : concentration & : surface element vector
Cp : specific heat T : temperature
Di : diffusion coefficient of component i t:time
k : enthalpy per unit mass . u : displacement vector
I': unit tensor V : region and its volume
J : flux vector (or tensor) ¥ : velocity of motion (convection)
K : thermal conductivity X : quantity of conservation, defined for unit )
ks, ; : equilibrium distribution coefficient of com- volume
ponent i £ ¢ viscosity
Li/1 : latent heat that forms phase j from phase I g density
N: number of phases @ : stress tensor \
n, 7' : number of components ?F'{/ ! : reaction rate of component i at the interface
n¢ + number of unknown variables where phase j forms from phase T
nz : number of necessary boundary conditions (Superscript) 7 (=1, II,.--N) : names of phases
n : unit normal vector of surface (positive di- {Subscript) i (=1,2,-n) : names of components -
rection: toward liquid phase) o : heat

P ' pressure m . momentum

Ri#/1 : velocity of growth of phase j toward phase I

r : position vector I. INTRODUCTION

r : velocity of movement . .
The last and presnt centuries have seen succesive

* Received 6th February, 1980 studies conducted to analyze alloy solidification proc-
** Technological University of Nagaoka (Nagaoka} esses depending upon the theory of heat transferty~»,
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Fig. 1 Schematic representation of solidification process of alloy in a mold

Also, analytical studies based on the theory of
mass transfer have been made frequently since the
the work by Tiller et al.#, revealing various features
of the solidification of alloys.®® Furthermore,
in recent years, analytical investigations have been
pursued from the viewpoints of both heat and mass
transfer.?~" Meanwhile, the study of solidification
with particular reference to phase diagrams has
shifted from the domains of equilibrium solidification
toward elucidation of non-equilibrium solidification,
with the rates of reaction also taken into concidera-
tion, ™10 !

The solidification of an alloy is a process in which
a large number of crystals grow simultaneously in a
mold. This, however, has not yet been elucidated
by any analysis. In addition, the growth of each
individual crystal is evidently a reaction process
caused by the temperature and concentration around
it; however, the mechanism in which the reaction
and heat and mass transfer couple with each other
has not yet been clearly understood.

Nowadays, castings, ingots, etc. are produced in
great quantities. In order to improve the production
techniques, analyses have been carried out with the
introduction of various models and assumptions. A
correct recognition of the process of polycrystal

growth and the coupling mechanism of the three

2

things, i. e, heat and mass transfer and phase change
reactions, would be fundamental for setting up these
models and assumptions.

This paper presents a system of equations called
herein “microscopic equations” in view of their
function of describing the process in which individual

eyrstals grow to form a microscopic structure,

II. THE MODEL OF ALLOY SOLIDIFICATION
PROCESSES

Fig.1 diagrammatically illustrates th process of
solidification of an alloy. Generally, as shown in
diagram(a), a solid portion, liquid portion and solid-
liquid mixture appear in the mold. the solid-liquid
mixture is enlarged in diagram(b). As shown in
this diagram, in the liquid phase(I) there exist such
phases as dendritic solid solutions (II) and eutectics
(III), or isolated solids (IV) and gas bubbles (V).
They generally move in the liquid phase. Heat and
mass transfer takes place both in each phase existing
here and across its boundary, and can therefore be
subjected to formulation by deriving two separate
groups of eguations, namely, equations which govern
the internal transfer {phase interior equations) and
equations which govern the transfer across the
boundary (phase boundary equations). In this way,

a boundary value problem of multiple regions is set

— BRI

up |
eact
thes

catis

reg:

a88C

€Oon

bou
and
gro
difi
and
thu
bou
of

nei;

adv

TII.

cier
ver
pre
to

req

hea

nar

tak

for

nov




Microscopic Equations of Solidification Process of Multicomponeﬁt Alloy

up by treating as one region the space occupied by
each phase in the diagramatic illustration. Since
these phases and crystals which form in the solidifi-
cation process are as small as several pm to several
mm in size, the solidification of an alloy can be
regarded as a multiregion boundary value problem
associated with a very large number of regions.
The boundary, interface of each region, is moved
by the motion and growth of the phase. The motion
is caused by the stress exerted from the interface,
gravity, and other external forces, while the growth
is governed by the temperature and concentration
produced at the interface as a result of heat and
mass transfer, More particularly, the chemical i:oten-
tials determined by the interfacial temperature and
concentration govern the growth, The latent heat
and solute let out along with the growth of the
boundary, of course, influence the temperature and
and concentration fields. This in turn affects the
growth rate through the chemical potentials. Soli-
dification proceeds under the condition in which heat
and mass transfer and phase change reactions are
thus coupled together. Furthermore, the multiregion
boundary value problem suggests that the growth
of crystal naturally influences the growth of the
neighboring crystals, and such succeesive influences

advance the over-all solidification of casting.

III. PRINCIPLE AND ASSUMPTIONS USED
FOR DERIVATION OF MICROSCOPIC EQU-
ATIONS

The following principle and assumptions are suffi-
cient to derive the system of equations which go-
verns the alloy solidification system discussed in the
preceding section, povided that this does not apply
to the matters concerning the derivation of the later
required equations of phase change reaction rates.

First, we apply the principle of conservation of
heat, of mass and of momentum. However, in ordi-
nary solidification, kinetic energy is negligible as
compared Wwith thermal energy. So, this paper also
takes this standpoint

The assumptions reguired next are expressions
for the fluxes of heat, mass and momentum. It is

now assumed that, for heat, Fourie’s law,

e 25 (1980) —

Jo=K grad T+ phv, (1
holds and that, for the mass of every component as
solute, Fick's diffusion law,

Ji=—p Digrad Ci+pC:iV, ()
holds. It is also assumed that the flux of moment-
um can be expressed in the general form

Jo=—0+pVV {3)
where & is a stress teensor which can be expressed
as one of various functions of wvelocity of meotion,
displacement, etc. according to the dynamic propert-
ies of the phase concerned (Newtonian fluid, elastic
subatance, plastic substance, visco-elastico-plastic sub-
stance, etc.). For example, liquid, gas, or the like
can be regarded substantially as a Newtontan fhuid.
Then, we have

o= grad V— (wg—d:'vV—F o L (4)

It is also assumed here that the physical values Dy,
K, 1, and p are all known as functions of temperat-

ure concentration pressure, etc.

1V, GENERAL CONSERVATIVE PHASE INTE-
RIOR EOUATIONS AND CONSERVATIVE
PHASE BOUNDARY EQUATIONS

Conservative equations concerning heat and mass
transfer as phase interior equations have already
been well known. However, no report has ever
disclosed any systematic examination of what types
of equations are available as conservative phase bo-
undary equations, With this in mind, we are ahout
to derive conservative phase boundary equations in
terms of a general quantity of conservation Xi, cov-
and its flux Ji,

ering heat, mass, etc, First, as is

well konwn, the conservative phase interior epua-

tions may be written in the formi®

ax/ .\

atiz—dw 54 (5}
where i stands for the general quantity, i=0 for
heat, i=1, 2, 3....... n for solvent, stlute 2, solute 3,

. solute n respectively, and i=m for momentum,
while the superscript letter j (=1, 1I, III, ...... N)
represents phase numbers, and generally j=I for
liquid.

Let us now derive the conservative phase boundary

equations. For this purpose, we consider a point r
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Fig. 2 Movement vector of a crystal in motion
and growth.

on the boundary (interface) of a crystal which gro-
ws while moving as shown in Fig. 2. The point
r gets to r+r after the lapse of unit time. Since
every point on the phase boundary moves in such a
manner, the whole phase can be considered to cha-
nge in shape and position as shown by dotted line
in Fig, 2. If the point r is growing at a velocity
R#I and moving at ¥/, then
F=Ri/14 Vi, (6)

In this case, the principle of conservation can be
applied around the point r by taking a small zone of
space V around the point as shown in Fig. 3. V
consists of a portion V7 included in the phase j and
2 portion V7 included in the phase 1. We now denote
the boundary of V¢ by &, the boundary of V¢ by
87, and the boundary portion hetween the adjoining
Vi and V7 by 8i77, First, we treat the whole of V
in terms of conservation. The increase of the guan-
tity concerned within V in unit time is equal to the
sum of incoming flows across the boundary of V.

S0, we can write,

L[l xav e fxias)=— [

Vi v Si
+{[72ds) 7
s )
Next, considering the same Lalance for each of Vr
and V7 and applying the formula (5} and the diver-

gence theorem, we obtain

Fig. 3 Conservation in the vincity of interfacial
position r.

S [

Vi Vi Sisr
= —HJg vds+ H (XIF—J7) -ds,
SJ' SJ'/I

(8)
2 xiav-=[[ai-as—{{ x;p—7)
ot
Vi 5t Sisr
{9)
The sum of the left sides of the expressions (8) and
(9) is the left side of the expression (7). Substituting
and rearranging, therefore, we have
“ W —d = (XI— X7y F)-ds=0. g
Sisr
The volume of V taken around the point r can arb-
itrally be reduced. Eventually we have
U0 - (X XD Hen=0, a
This is the wanted set of general conservative pha-
se boundary epuations. The positive sense of the

vector direction is toward phase I {from phase j.

V. MICROSCOPIC EOUATIONS OF HEAT AND
MASS TRANSFER

The microscopic equations can be obtained by
substituting concrete conservation quantiies of heat,
mass and mnmentum into the general conservative
equaticns of the foregoing section. That is, as quan-
tities corresponding to the quantity of conservation

X!, pthi, p/C) and p/vs are taken for heat,, mass

— REBHEAFERE



Microscopic Equations of Solidification Process of Multicomponent Alloy

Table 1 Derived equations of heat and mass transfer for

microscopic solidification of n-component-alloy.

conservation L

phase interior equations ‘ phase boundary equations
b : of C';?}g{:div Ki grad TV ‘ {Ki grad Ti—-K! grad T+
H a
eat : — 9 Cp Viegrad T4 (1) —p? LI/ IR/} en=0 ®)
e ‘ _g-t_(pf €= div(pi D! grad C! | {—p? D! grad Cl-t p? D' grad €' — (! C!
mass 1=2Z~n R
—pi C ¥ @ | —erChH Risti—pt CIVI—FD}en=0 (6)
mass (total) %ﬂi: —div (piVi) (@) {(pr—pd) Rii—pl (VI-¥D}-n=0 (7)
. ,ﬂ%’:dw oi— (piViegrad) Vi | {~git ol _Pi,, (of— pr) RiF 1R/ 1)
momentum K (1) =0 o ®

and momentum, respectively. Also, we apply the

relations (1) - (3) to J7. Upon substitution into the
equations (3) and {1 and rearrangement, we can der-
ive the system of equations shown in Table I, using
the following and other relations.

Ahi
T =G

definition of specific heat ‘

definition of concentration l

> Ci=y,
i=1

iD{ grad Ci=0

i=1
Lj/[:hj_kl,
The equations (1) and (2) in Table | correspond to

defnition of diffusion !

difinition of latent heat J

the well known equation of heat conduction with
convection and that of diffusion respectively, while
the eguations (3) and {4) correspond to the equation
of continuity and that of motion in hydrodynamics,
both being also well known, In the expression {4),
external force KJ such as gravity is also involved.
Of the phase boundary equations, those represented
by (3) and (6) have so far been frequently used in
solidification analyses. The expression (7), which
has also been used in certain cases, governs the co-
nvection due to solidification shrinkage. The expr-
ession (8) is not found in the earlier literature. This
formula expresses that, if there is a density difference
between two phases, different stresses act on the
phase boundary during growth.

In the system of equations listed in Table 1,

unknown variables to be solved as functions of time

TRoTdEas 2 5 (1880)

and position are T4, C/ (i=2~n), V/, o/ and R/1.

Vi. PHASE BOUNDARY EQUATIONS TO BE

ADDED

Let us examine the conditions under which the
unknown variables of the system of equations in
Table 1 can be determined as the solution of the
multiregion boundary value problem of N regions (j
=I~N).

First, as to the phase interior equations {1)—(4),
the number of the independent equations coincides
with that of the unknown variables. -In this sense,
for

there are sufficient conditions

determining
the solution, What matters, however, is the relation
between the number of the phase boundary equations
and that of the independent variables, and the equa-
tions (5}—(8) given only by the conservation relations
cannot provide a sufficient number of boundary
conditions. So, we now examine how many phase
boundary equations are lacking and how they should
be given.

For example, the analysis of the solidification of a
pure metal as a Stefan problem employs, in addition
to the formula {3) in Table 1, two independent phase
boundary conditions as TY=T/=melting point.1»
Also, in the analysis of the solidification of a solid
solution as a diffusion problem, as Tiller et al.® did,
we assume the growth velocity R//7 is known (this
assumption uncouples heat transfer from mass tran-

sfer) and add phase boundary equations of the type
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CI/Cl=k,, i (equilibrium distribution coefficients).
More such examples induce the following general
statement:

If the boundary between two phases for which
there holds such a system of second order differential
equations as the equations (1) and {2) in Table! has
ny unknown variables in all, the number of indepen-
dent boundary equations required to solve this bou-

ndary value problem is given by

(772 when the boundary growth veloeity‘-{

is known
np= 1

t

A
#s+1: when the boundary growth ve]o-J @
\ city is unknown.

We now assume that a solid solution of n com-
ponents grow from a liquid phase of the n compo-
nents. Then, for the phase boundary, the unknown
variables included in the equations (1} and (2) in Ta-
ble 1are T4, T, C! {i=2~n), and €] {i=2~n), their
total number being 2n {on the assumption that, in
this case, ¥/ and ¥/ are independently determined
by the system of equations (3}, {4), (7) and (8)). Th-
erefore, a general system in which the growth velo-
city is unknmown reqguires (2n-+1) phase boundary
equations. The equations (5) and (6), however, give
only n conditions, The remaining conditions must
be givn by something other than the principle of
conservation,

Baker et al.!® regard the continuity of temperature
at the phase boundary as a basic condition. This is
also a condition employed in all analyses of Stefan
problems which have been carried out up to the
present, and may be written as

Ti=TI. i)

The number of the remaining phase bounbary
conditions is (2n+1})—n-—1=n.

We now presuppose that these conditions should
be given by equations of reaction rates. Jackson re-
gards the reaction of solidification of a n-component
solid solution'as the assemblage of independent phase
change reactions of individual n components.!® The
derivation of conecrete equations of reaction rates
from this standpoint will be achieved in another
paper.

However, we here assume that, from this stand-

point, we have derived the mass of component i
subjected to phase change per unit area of the phase
boundary in unit time, ¥7/*, Then, it must be em-
phasized that this is related to the amount of mass
transfer as follows:

Wt“"(C{, Cf, T = {p/C}R:/1+ Dips grad Clyen (3

) (i=1~n)

The n relations represented by this expression (18
are the wanted phase boundary equations. The right
side of the formula (9 can be obtaind by caleu-
lation on the premise that, in Fig. 3, the amount of
phase change is the difference between the mass
increase in V/ in unit time and the amount of efflux
from the boundary S/ of V7. The left-side reaction
rate expression generally becomes a function of the
temperature on the phase houndary and the concent-

rations of both phases.

Next, we consider the case in which a solid
solution of n' (n’<’n) components {orms from a n-
component liquid phase. The number of unknown
variables is my=n+n", and the equations (&) and (6}
iy Table 1 give n boundary conditions. (The equa-
tions {6) are made to hold by placing CI=0 for the
components unrelated with the solid solution.) The
equation (14 holds as it is. So, the remaining
number is (n+n"+1}—n—1=nr'. If, therelore, equa-
tions of the from (3 are given for n' components
(i=1~n"), they make up sufficient conditions. In
short, in the case of the formation of a solution of
less components, no special consideration is reguired
in the application of the derived equations,

Next, we consider the case in which n’-component
compounds form from a n-component liquid phase.
Since the concentration of the compound phase is
fixed, the equations (2) in Table 1 are unnecessary,
and the unknown variables are T4, TY and C! (i=
2~m); thus, ay=n+1.
(5) and (6) in Table 1 and the equation (4 in the

I this case also, the equations
text hold as they are. Accordingly, the number of
the remaining boundary equations is (a+1+1) —n—
1=1.

requires one equation of reaction rate.

In short, the reaction of conpound formation
This rate
equation can be determined as follows, by consider-

ing that the formula 43 holds for a rate-determin-
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Table 2 Microscopic equations for pure metals

'1 phase interior equations

phase boundary equations

conservation of

o C;%=div Kt grad TV

{K+ grad Ti— K7 grad T¢

heat E —pd C; Vi-grad T/ (1) —pf LitiR#/ D en=0 (4)
conservation of | el _ div oIV @ {Cot—pHRi/1— o1 (V7
mass ‘ at e —¥N}er=0 (5)
conservation of : p-’%? =div g/~ (p'V/+ grad) V7 | {—g/tar- p;’ (p/—pD) R/ 1R/ T}
o

momentum +ij; @ =0 ()
ki.ugtic or tlier- ‘ Ti="Tr @)
modynamical re- * o

quirement I Y2/1=piRi/1en (8

ing component among the »’ components.

Since Cf. are fixed for compounds, the expression
(3 reduces to
irt

G

=piRi‘in (]

We now assume that W;/Iof each component is a
quantity determined independently of the other com-
ponents by reaction kinetics. Then, the left side of
the formula {§ should have different values for
the individual components, whereas the right side
has a fixed value irrespective of each component.
This can be reasonably explained by considering
that only !lf:.” of a certain rate-determining compo-
nent is determined independently by reaction kinetics,
while the reaction rates ?lf'jnof the other components
lower,following that of the rate-determining compo-
nent.

It is therefore necessary to examine which com-
ponent is the rate-determining. To do so, we

first obtain, for all components, the values of

?Fi” which are kinetically determined, and subse-
quently compare the resulting values of ¥7/7/Ci,

Then, the component having the smallest absolute
value is the rate-determining one. In short, in the
case of the formation of compounds, the formula(l5)
applied to the thus found rate-determining component

becomes the phase boundary equation.

VII. DISCUSSION

A system of eguations has thus been established

PR es 2 4 (19800 —

to describe the process of growth of polyerystals of
an alloy in a mold, The growth reaction expression
W:” included in the equation system will be ex-
pressed in concrete forms in another paper.

First, we examine by this equation svstem how
heat and mass transfer and phase change reactions
are coupled. We begin by rewriting the equation
system for a pure metal (#=1). Then we have the
equations shown in Table 2.In this equation system,
the unknown variables to be solved are 79, T¥, ¥4,
Vi, 04,07, and R#/I, none of which can be solved
independently of the others. If, however, we let pf
=p7, the phase boundary formula (5} can be rewrit-
ten as F7=F¥7, thus having no relation to R+/1. Then,
the equattons (2}, {3), (5) and (6) in Table 2 consti-
tute a equation system for determining V7. V7, &4, and
@1 (or pressure p), while the remaining equations(1),
(4), (7) and (8) make up another equation system
for determining 1Y, TV and R:!/Z. That is, the mass
transfer system is unconpled from the heat transfer
system. This means in terms of physics that since

there there occurs no

is no density diffference,
convection due to solidification shrinkage, with the
velocity determined regardless of solidlfication. The
temperature distribution is influenced by convection
velocity according to the formula {1) in Table 1.
However,V can be treated as‘ a known value, so that
we do not say that they are coupled.

Next, we turn to a binary solid solution (m=2).
The microscopic equations which hold in this case

are the equations in Table 2, the eguations (2} and
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(6)in Table 1, and the equation (13 (i=2) in the text.
In this system of equations, all are coupled. How-
ever, if the densiry can be assumed to have no
relation to temperature or concentration and we can
let p/=ps, then there is an independent equation
system for the velocity just as in the case of a pure
metal. In the remaining equation system, the tem-
perature, concentrations and growth velocity are
coupled. By solving this system, the interfacial tem-
berature, concentrations and growth velocity can be
determined at the same time, It is therefore also
possible to ascertain by calculation how the relation
between the temperature and concentrations deviates
from the equilibrium phase diagram. The details of
the calculation will be presented in a separate report.
We here examine how earlier analytic methods have
accomplished the required uncoupling.

Except for one case”, no mass transfer analysis
has been made with a system of equations including
those of reaction rates. The previous analyses have
taken the viwpoint that, for the interfacial tempera-
ture and concentrations, the relations between equili-
brium temperature and concentrations on the phase
diagram,

C,/ Ci=ko,» : equilibrim distribution

coefficient a7
Ci= Ci(¥) : concentration on liquidus
line 8

hold. If we ignore the formula (5 and take the
relations (7 and (8, the number of the boundary
conditions surely meets the formula {13), so that
we can obtain the solution. Nevertheless, we
cannot avoid the physical contradiction that the
interface is growing under the equilibrium conditions
On the other hand, if we use the formula 13,
¥4/ becomes zero when the relations 19 and (8 hold.
Hence the expression {15 reduces to
{CI R+ D! grad Cil - n=g k)
Adding up to # (i=1~n), according to the defini-
tions (12}, we obtain
Ri‘r« p=y, &0
The growth velocity of the interface thus becomes
zero automatically.
There has been no reported case of analyzing the

solidification process of a solid solution of three or

more component. If, however, we try to make such
analysis without using any reaction rate efuations,
there arises the need for setting up three or more
independent boundary conditions instead of the set
of equations (5. These conditions are difficult to
derive from the phase diagram in the same manner
That is, the
method which has so far been used for the binary

as in the case of the binary system.

system is difficult to apply extensively to the system
of thrree or more components, and the handling of

the formula (5 derived herein seems natural,
YIII CONCLUSION

(1) As evidenced ahove, the process of solidification
of an alloy composed of multicomponent multi-
phase polycrystals can be formulated as a multi-
region bouudary value problem in which heat
and mass transfer and the phase change reaction
are multually coupled,

(2) The system of equations derived herein descrides
the process of formation of a microstructure of
alloy by solidification, and can be applied not
only to solidification processes including the
formation of solid solutions but also to those
involving the formation of compounds.

(3) We can derive the equation system used in pre-
vious analytical works, by introducing additional
assumptions into the present system of micro-
scopic equations,

Concrete forms of the reaction rate exression in-
cluded in the system of microscopic equations deriv-
ed herein will be reported in a separate paper. The
details of an -analysis of solidification phenomena
with the use of this equation system will also be
separately reported.
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