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1/2
For every analytic function f in the unit disc U with £(0) = 0, the inequality ||Iflls = (Ln f[/ |f’(z)|2dxdy> is

proved. As a corollary it is shown that if 4{(z) denotes the least harmonic majorant of |z|* in a simply-connected

1/2
domain D in the complex plane with 0 € D, then the inequality £«(0) = <41”*axea(D)} holds. This gives a partially

affirmative answer to a conjecture presented by M. Sakai.
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1. Introduction

Let U = {|z| < 1} be the unit disc in the complex
plane. Let p be a positive number. For a function
# analytic in U, the H» norm ||f||» of f is defined by

1Al = {tim 5= [ lGePaeye. @D

Let H;»(z) denote the least harmonic majorant of
I£(2)I? in U. It is well-known {see, for example, the
page 28 of the standard textbook on H, spaces by P.
L. Duren®) that the following equality holds for any
f:

[1£1l, = {H/,(0)}"". 1.2)

The space of all functions f analytic in U for which
[fll; are finite is denoted by Hx(U) and called
Hardy classes. An analytic function ¢ in U with
le(2)l €1 for 2 € U is called an inner function if
llells = 1 (for some p or equivalently for any p). The
Dirichlet integral D(f) of f is defined by

D)=L [ [\ (2Paxdy,

where z = x+17y. By A(f) we denote the 1/x times
of the image area of f, that is,

AW = Larealr (V). (13)

Obviously, A(f) € D(f), and when D(f) < +oo
equality occurs in the inequality if and only if f is
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univalent in U.

From now on and throughout the present note,
let 7 denote an analytic function in U with 7(0) = 0.
In 1972, Alexander, Taylor and Ullman® proved the
following inequality holds for such 1 :

1A = AHYE (1.4)

Since then, various proofs of the inequality have
been given by many authors?%”, and it is known
that equality occurs in (1.4) if and only if f is a
constant multiple of an inner function. Here and
throughout the present note, “equality occurs”
means “the both sides are finite and equality
occurs.”

Recently Sakai'® considered related problems
of more general setting including higher dimen-
sional cases, and as a corollary to his main theorem,
he improved (1.4) to

1Al = AHV? (L5)

for 0 < p = 2+1/2, and he showed that when 0 < p
< 2+1/2 equality occurs in (1.5) if and only if f is a
constant multiple of an inner function. He also
conjectured that the inequality (1.5) would hold for
0< p=4.

In the present note, we show that the inequality

A, = D)2 (1.6)

holds for any p with 0 < p <4, where equality
occurs if and only if f(z) = cz with a constant c.
For the proof we use the expressions of ||f|lz and
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D(f) by the Taylor coefficients of f and an elemen-
tary inequality on sums of finite real numbers. As a
corollary, we see that when the image f(U) is
simply-connected Sakai’s conjecture mentioned
above is valid.

2. Dirichlet integrals

It is well-known that f is expressed as a power
series about 0 in U :

£@) = 3 ane" @.1)

Simple calculations show (see, for example, the
pages 8 and 108 of the Duren’s book® cited above)
that the H. norm ||fll: and the Dirichlet integral
D(f), respectively, of f are expressed by the
coefficients {an} :

Lemma 1.

rlky = 2 laal

Lemma 2.

D) = 3 nlaal

The following is an elementary inequality,
which is the restatement of Jensen’s inequality (see,
for example, the page 62 of Rudin’s book® on real
and complex analysis) for the convex function A(¢)
= {*, or which is a simple consequence of the
Schwarz inequality

Lemma 3. For any N real numbers x\, x2, "+,
xn, the inequality

N 2 N
(gx,> < Ng}lsz

holds, where equality occurs if and only if xy = x; =
© = xp.
Now we state our theorem and prove it:
Theorem. If f is an analytic function in U with
f(0) = 0, then the inequality

£, < D(A)V? (2.2)

holds for 0 < p =4, and equality occurs in the
inequality if and only if f(2) = cz with a constant
c.

Proof. Since ||/ll, is nondecreasing with p, it is
sufficient to prove the inequality for p = 4, that is

[IAls = D(HYA (2.3)

Set g(z) = {f(2)}? then we have from (2.1)

J— 84 p—

glz) = gz bn2",
with
bn = 2 asat

s+t=n

= a1@nt @2Qn-2tctanaas. (24)

On noting the definition (1.1) of H» norms and apply-
ing Lemma 1 to g, we see

{Allde = {llellzy*
= 3 Ik (25)

Applying Lemma 3 with x; = |a;an-;| for j = 1,2, ...,
n—1 and N = n—1, we obtain from (2.4)

|baf? < ( = |asat1)

s+t=n

2
’

s(n—1 % lasflal, (2.6)

for every integer #» = 2. For any positive integers s
and ¢, we see st 2 s+¢—1, since st—s—t+1=(s
—1)(¢t—1) =0, and hence n—1 < st if s+¢=n.
Therefore we see by (2.6)

6" = 3% stlasllacl. 2.7)

By combining (2.5) and (2.7) and using Lemma 2, we
obtain

7l = 3

=2 s+t=n

stlas®a.P

= D(f), 2.8)

which is nothing but the asserted inequality (2.2).

Next we prove the equality statement. Suppose
that a. + 0 for some £ > 1. Since £* > 2k—1, we
easily see that for » = 2k the inequality (2.7)
becomes a strict one, and hence so is (2.8). There-
fore, we see that if equality occurs in (2.2), then a.
= for £ = 2,3, ..., which means f(z) = cz with a
constant c.

Conversely, if f(z) = cz, the simple calcula-
tions show ||f]l, = Ic| and D(f) = |cl’>, and hence
equality holds in (2.2). This completes the proof of
the theorem.
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3. The least harmonic majorant of |z|°

Let D be a domain in the complex plane with 0
& D. By hy(z) we denote the least harmonic
majorant of |z|* in D, where we set kp(2) = +o0 if
|2|” admits no harmonic majorants in D.

The author” proved the inequality

h(0) = Lﬂ_area(D)

in order to give a proof of the Alexander-Taylor
-Ullman inequality (1.4). Sakai'® improved this to

hp(0) = {L”area(D)}m2

for0 < p=2+1/2.
As a corollary to our theorem, we obtain
Corollary 1. If D is simply-connected, then the
inequality

ho0) = {i”area(D)}m 3.1)

holds for 0 < p = 4. Equality occurs in (3.1) if and
only if D is a disc centered at 0.

Proof. We may assume that D is conformally
equivalent to U, since if otherwise area(D) = +oo,
Let g be a conformal map of U onto D with g(0) =
0. Then we easily see that 4,(g(2)) coincides with
the least harmonic majorant Hy.»{(2) of [g(2)I? in U,
and hence we obtain by noting (1.2)

llglls = Ra(0)"*. (3.2)
The univalency of g implies

D(g) = Alg) = —area(D). (3.3)
Applying the theorem to g, we have

liglls = D(g)" (3.4)

for 0 < p = 4. Combining (3.2), (3.3) and (3.4), we
obtain the asserted inequality (3.1).

From the equality statement of the theorem, we
see that equality occurs in (3.4), or equivalently in (3.
1), if and only if g(z) = cz with a constant ¢. This
is equivalent to the fact that D is a disc centered at
0.

Corollary 2. If f is an analytic function in U
with £(0) = 0 such that f(U) = D—E, where D is a
simply-connected domain and E is a closed set of
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area zero, then the inequality

1Ale = AU (3.5)

holds for 0 < p < 4. Equality occurs in (3.5) if and
only if f(2) = ce(z) with a constant ¢ and an inner
Sfunction ¢.

Proof. Let g be a conformal map of U onto D
with g(0) = 0, and set ¢(2) = g7'(f(2)). Then we
see f(z) = g(¢(z)), which means f is subordinate to
g. By Littlewood’s subordination principle (see, for
example, the page 10 of the Duren’s book®), we see

A = llglls. (3.6)
Applying the theorem to g, we see
ligll, = D(g)"* = A()"* = A(f)"* (3.7

for 0 < p < 4, since g is univalent and we assumed
that E is of area zero. Combining (3.6) and (3.7), we
obtain the asserted inequality (3.5).

Suppose that equality occurs in (3.5). Then,
equality occurs in both (3.6) and (3.7). By Ryff’s
theorem® on subordination for H, functions, the
equality in (3.6) implies that ¢ is an inner function.
From the equality statement of our theorem, we see
that the equality in (3.7) implies g(z) = ¢z and hence
f(2) = ce(z), with a constant ¢ and an inner func-
tion ¢.

Conversely, if f is of such a form, we see

flle = AV = lcl,

since any inner function assumes every point in U
possibly except for a set of capacity zero by a
theorem of Frostman (see, for example, the page 80
of the standard textbook® on bounded analytic
functions by J.B. Garnett), and a set of capacity zero
is evidently of area zero.

4. Concluding remarks

The inequality (1.6) does not holds for any p >
4. In fact, consider f(z) = z+ ¢z* with a constant c,
then we easily see by Lemma 2

D(f) = 1+2|c) 4.1

Next, in order to estimate ||f|l», let g(z) = f(2)/z =
1+ ¢z, which has no zeros in U for |c| < 1. There-
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fore, the branch ¢(z) of {g(2)}*”* with ¢(0) =1 is
well-defined in U/ and

#(z) = 1+§cz+---.
On noting (1.1) and Lemma 1, we see

WAl = Nglls = {llllt*”

2 1/p
:<1+%%MF+-~>

= l+%|cl2+-". “.2)

By comparing (4.1) with (4.2), we obtain
7l > D2,

if |c} is sufficiently small.

It is plausible that the inequality (3.5) or equiva-
lently (3.1) also holds generally for 0 < p < 4, but
we do not know as yet whether this is true or not.
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