OPTIMAL POWER SYSTEM STABILIZATION VIA OUTPUT FEEDBACK
EXCITATION CONTROL

Hardiansyah®, Seizo FURUYA** and Juichi IRISAWA™**

This paper presents a modified optimal controller for an interconnected power system. The design method does not need the

specification of weighting matrices. The eigenvalues of electromechanical and exciter modes would be shifted to a pre-specified

vertical strip. For practical implementation, the proposed method designs using an optimal reduced order model whose state

variables are torque angles and speeds. The reduced order model retains their physical meaning and is used to design output

feedback controller that takes into account the realities and constraints of the electrical power systems. Effectiveness of this

controller is evaluated and examples, one machine infinite bus system and a multimachine system, are given to illustrate the

advantages and effectiveness of the proposed approach.
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1. Introduction

The poor damping of electromechanical oscillation
is symptomatic of intrinsic weaknesses in the
power system. In some interconnections the
situation is worsened by the growth of inter—utility
wheeling, which is dictated by the economical
constraints in modern power systems. These
factors combine to bring the typical operating
state closer than ever to the system stability
limits and to make the damping of electromechanical
oscillations a recurrent problem in the several
power systems. Since the introduction of new
control systems to the uncertain and multivariable
environment of complex power systems is a
slow process, which incurs a variety of risks,
the full utilization of existing power system
stabilizers (PSS) is essential for the enhancement
of overall system stability on the present level
of system development' ™.

Excitation control has received a great deal of
attention in the past and will receive increasing
attention in the future as major means to improve
the damping of a power system. The present
excitation control design is generally based on
the natural mechanical mode oscillation frequency

(s =jw.), without considering the damping of
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the machines. A more suitable technique in
which a complex frequency (s = o;+jw;) is
used has been developed®™, but the question of
determining the appropriate complex frequency
to use has not yet been solved.

Power system have been growing in size and
complexity with increasing interconnection between
systems. An increase in the damping of the
system response is desirable, not only because
it reduces the fluctuations in the controlled
variables and hence improving the quality of the
electric service, but mainly because this damping
is translated into an increase in the power
transmission stability limits. Higher stability
limits bring significant economic savings as the
need for the expansion of the transmission system
can be postponed.

Supplementary excitation control, commonly
referred to as PSS, has become an important
means to enhance the damping of low—frequency
oscillations in the range 0.5 to 2 Hz, i.e. dynamic
or steady-state stability of power systems' ”.
Considerable efforts have been placed on the
synthesis of power system stabilizer in multimachine
power systems®”.

The design of PSS can be formulated as an
optimal linear regulator control problem. However,
the implementation of this technique requires
the design estimators. This approach increases
the implementation cost and reduces the reliability
of the control system. These are the reasons

that a control scheme use only some desired



Hardiansyah * Seizo FURUYA - Juichi IRISAWA

state variables such as torque and speeds. Optimal
control theory has been widely used in industrial
applications. In recent years, the modal control
design has been used in power systems to shift
the dominant eigenvalues. Different methods
have been proposed to assign eigenvalues by
modifying the weighting matrix of the quadratic
performance index. Optimal and suboptimal
control strategies on the basis of linear system
theory using various system states and measurable
output as input to the controller have also been
attempted™ '".

Although the closed-loop system constructed
by using the optimal control theory has some
advantages, there are still many problems to
solve. One of the most serious is that it is
rather difficult to specify the control performance
described in terms of a quadratic performance
index. The weighting matrices usually would be
decided based on trial and error to give satisfactory
performance. It is difficult to determine the
weighting matrices of the performance index'.

This paper is presented for finding a linear
quadratic controller such that the optimal
closed—loop system has eigenvalues lying within
a vertical strip in the complex s—plane'™. Aiming
at improving system stability the design method
does not need the specification of the weighting
matrices. In this work, the desired positions of
the eigenvalues are achieved without convergence
problems. One basic difficulty of the state feedback
control is that it is usually impractical since
some of system states can not be measured. An
output feedback controller is preferred. The
output feedback gains are obtained from optimal
reduced order method”™ and strip eigenvalue
assignment™ .

These drawbacks can be avoided by using the
technique proposed in this papers. The optimal
reduced order models are used to design the
power system stabilizers and to pre-specify the
eigenstructure of the system. Study results
reveal that by using output feedback only, the
eigenvalues assignment based on the proposed
method is more stable than that based on the

former method™. This results from that the

output feedback gains that obtained from
transformation of the state feedback matrix can
be retain the physical meanings of the output

state.

2. Strip Eigenvalue Assignment

Consider a linear time—invariant controllable

system which is described in the state space by:
x(t)=Ax(t) +Bu(t) (1)
v(t)=Cx(t) (2)

where x(t), u(t), and y(t) are the nX1 state
vector, m X1 input vector, and p X1 output
vector, respectively. A, B, and C are constant
matrices of appropriate dimensions.

In the design of a conventionally optimal

control system, the control vector is given by
u(t)=—Kx(t) (3)

where K is the m X n state feedback control
matrix designed to minimize the following quadratic

performance index :
1 oo
J= o f (x"Qx+u"Ru)dt (4)

In eqn.() the weighting matrices Q and R are
nXn non-negative and m X m positive definite
symmetric matrices, respectively. The feedback
gain in eqn.(3) is K (=R7'B'P) with P being a
symmetric positive definite matrix, which is
solution of the following algebraic matrix Riccati

equation,
A"P+PA—PBR 'B"P+Q=0, 5)

and the eigenvalues of A—BK, denoted by
A{(A—BK), will lie in the open left half plane
of the complex s-plane.

In conventionally optimal system analysis, the
gain in eqn.(3) is designed by roughly selecting
weighting matrices according to physical reasoning.
Because of complexity, the matrices Q and R
are commonly chosen as diagonal matrices. The
eigenvalues of the closed-loop system are denoted
by AA—BK)=[2;, A2,y Am Amirr s Aol

In order to improve the system performance,

pei b A N S
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the eigenvalue 4, through 4. will be selected
and shifted to a desired region. To achieve this
results the weighting matrix R in the eqn.() is
set to be an identity matrix for equal weighting
of the m control inputs, and the weighting
matrix Q must be given previously.

In the above procedures, generally, the weighting
matrices Q and R must be given previously.
But in large power system, it is not easy to
determine those weighting matrices. The weighting
matrices usually are determined by trial and
error to obtain satisfactory performances. To
overcome this difficulty, a novel approach for
designing the optimal eigenvalues assignment
will be proposed in the following discussion.
The design method in this paper shifts the
closed-loop eigenvalues to a pre—specified vertical
strip without the need of weighting matrices.

Let (A,B) be the pair of the open-loop system
matrices in egn.(l) and h = 0 represent the
prescribed degree of relative stability. Then the
closed-loop matrix ACZA"BR"BT’I3 has all its
eigenvalues lying on the left side of the -h
vertical line as shown in Fig. 1(a), where the
matrix P is the solution of the following Riccati

equation™;
(A+hL)"P+P(A+hl,) —PBR'B'P+Q=0. (5

Note that in eqn.(6) with Q = 0,, the unstable
eigenvalues of A + hl, are shifted to their
mirror image positions with respect to the —h

vertical lie, which are the eigenvalues of the

s #5215 (1999)

closed-loop system matrix A..

Assume that h, and h; are two positive real
values to determine an open vertical strip of
[—h, , —h, ] on the negative real axis as shown
in Fig. (1b) and give an nXn matrix A=A+h,
1. The control law changed to be

u(t) =pKx(t) @)

with the feedback gain K=R'B'P. The matrix
P is the solution of the following modified Riccati

equation
A'P+PA—PBR 'B'P=0, ®)
The gain pis selected by

1 hz_h1 1

f 2 2.tr(AY) 2

hz*h1
tr(BK) (©)

- 1 ~

where tr(A")=)] 1 {=BKand 21(i=1,2,,n")
i=1

are the eigenvalues of A in the right half-plane

of the complex s—plane. The optimal closed-loop

system becomes
x(t)=(A— o BK) 0

Equation 9 consists of a set of eigenvalues
which lie inside the vertical strip of the [—h. ,
—h,] as shown in Fig. (1b). In egn.(8) for
equal weighting of the m control inputs, we
can let R be unity matrix. These solving the
Riccati eqn.(8) does not need a Q matrix, so it
is easy to design an optimal controller for power

system oscillation damping.
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3. Optimal Reduced Order Model

Since the reduced order model derived in
Ref.13 is used in the following study, the process
of evaluating the reduced order model is abbreviated
as follows without proof.

The reduced order model is the derived using
the following system whose first m variables are
the desired variables z, which are speeds and
torque angles in the proposed approach. The

similarity transformation T is obtained in Ref.13.

$=A%+Bu &
z=[I,,0]%
)
where
2=Tx
A=TAT"
B=TB
I.=mXm identity matrix

Assume that the eigenvalues of A are distinct,
this will actually be the case in the power system.

Let V. = [V,, V,,-, V.l where V, is the
right eigenvector of A associated with 4;. Let
W =V

A

Define ¢ =WX
Then
¢=A¢+Tu 0
z=D¢ 9
where

A=WAV= diagonal( 2., 45,-, A1)
r=wB
D =[L,,0]V

These equations can be arranged and written in

partition form as :

$=A ¢+ T )

$.=A.¢,+ I'u i

z=Dy¢,+D. 9. 9
where

A, contains modes to be retained

A: contains modes to be eliminated
Assume the reduced order system we are
sought to determine will be of the form as

follows :
; =Fz+Gu 19

The evaluation algorithm of F and G proposed

in Ref.13 are abbreviated as follows :
F=D,AD;’ @9

Let V. be the modal matrix associated with

eqn.(9.

Define
F=V.'FV. )
G=V.'G ey
C=V.' D, )
[=V.'DT, ey

Then
S=CA,—FC oz
A=—(F+F)" £
R=—AS 06

Let a;=2m+i,i=1,2,"',n—m.
Then A.=diagonal(a., az, ", & 0m)

The(i,j)™ element of the mxp matrix is given by

Rij

(Dij:
21*_}'“,

en

where the subscript*denotes complex conjugate.

A=A"'OD e9
Let K=T,+CTI, )
Then G=K+ AT, 60
And G=V.G 6y

4. Output Feedback Excitation Control
To avoid the drawback demonstrated in
the above section: we should use the optimal
reduced order model derived in Ref.13 to retain

the physical meanings of the output states which

R MR
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are also the entries in the strip eigenvalues
assignment we are interested in. By using the
reduced order model, the system in eqn.(l) can

be reduced to the following form :

X, =Ax.+B.u 62
where
X, € R™ state vector to be

retained consisting of
torque angles and speeds
in electric power system.
constant matrices of
reduced order model with
appropriate dimensions.
The control law can be written to the following

form :

*

w=—pKx. 83

with the feedback gain K,=R“'BIP. The matrix
P is solution of the following modified Riccati

equation

ATP+PA,—PB,RBTP=0 69
where Kr:AHrh;I. The gain pis selected by
using the expressions given in section 2.

Fig.2

regulator can be implemented by a PI controller.

AVref Y=
+ x=Ax+Bu

+ AVs=u

illustrates how the theory of the above

Fig.2 PI Stabilizer Design Formulated as an
Output Feedback Regulator Problem

5. Simulation Results

5.1 One Machine Infinite Bus System
To demonstrate correctness and effectiveness
of the proposed optimization technique, one

machine system in [22] is studied on a linearized

MEBE #2185 (1999)

model of generator unit including a voltage
regulator and exciter.

The state vector and output vector are chosen
to be

x =[AE,AEpAVAAVEA 6 Aw]” 69
y=[AdAw]” 66

A power system stabilizer (PSS) is designed
to increase the oscillation damping. An additional
damping signal is given to input circuit of the

voltage regulator. The system matrices are

—0.5517 0.1695 0 0 -0.306 O
0 0.1789 1.0526 0 0 0
A— -4205.5 O -20 -8000 -235.2 0
0 0.0045 0.0263 -1.0 0 0
0 0 0 0 0 377
-0.2779 0 0 0 -0.3055 0 |

T
0 08000 0 0 |

i
Iml

0
1

The eigenvalues of the system using control

schemes are computed and given in Table 1.

Table 1 System Eigenvalues

State Feedback

Control

Output Feedback

Open-Loop Control

—0.2349+j10.7928
—8.1295+j8.9752
—3.0952

—1.5487

—1.5000+j10.8083
—8.1295+j8.9752
—3.0952

—1.5487

—1.5279+j11.2671
—7.5890+j7.7019
—1.5695+j1.0141

The first two eigenvalues in Table 1 (the first
column) are called the electrome—chanical mode.
The damping ratio of this mode is 0.0217. It is
desired to have a damping ratio ranging from
0.1 to 0.5 [1—2], such that the system damping
is enough. It is expected to improve the damping
of this mode by output feedback. The results
are as follows :

—h, = —2.0;
= 0.8268

with state feedback control, the damping ratio

give —h, = —1.0

then 0

of the electromechanical is improved to be 0.1375.
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Whereas, using output feedback control, the
damping ratio of the electromechanical mode is
improved to be 0.1344. The state feedback and

output feedback gain are also given in Table 2.

Table 2 Feedback Gains

State Feedback Qutput Feedback
Ad 0.1949 0.1949
Aw 10.3110 10.3110
AE, 0.1782 -
AEu 0.0062 -
AVa 0.0003 -
AV 0.0001 —

From simulation results are shown (in Table 1)
that the previous eigenvalues with real part
greater than —1 have been shifted into the
vertical strip of [—2, —1] by output feedback
controller and the damping ratio is inside the
acceptable range [1—2].

The transient response of angular frequency
deviation following a 5 % change in the mechanical

torque of machine is shown in Fig. 3.

x10 *
1.5
— ~ — without control
1 —— OPCVS
—
3
jo)) SRR
= T A
ﬁT‘l:f\’ rl"\f\
B o Y
= .
]
=]

0 1 2 3 4 5 6 7 8

time (sec)

Fig.3 Transient Response of the Angular
Frequ-encies to a 5 % Change in the

Mechanical Torque of Machine .

5.2 Multimachine System
To assess the proposed method in the case of
multimachine system . The system shown in

the Fig. 4, taken from Ref.23, is studied.

Machinel @———F
Machine2 @

Fig.4 Multimachine System

A
iBEI B Load

The model given in Ref.23 is

;(:Ax+Bu

y=Cx 67

where

XT:[A (l)lA 51Ae;1Aem1A (I)QA 62A€%2Aem2]

—0.244 —0.9747 —0.1431 0 0O 0.0747 0.0041 0
377 0 0 00 0 (U]

0 —0.046 -0.455 0.244 0 0.046 0.13 O

0 -398.56 -19498.8 -50 0 398.58 -3967 O

0 0.178 -0.0433 0 -0.2473 -0.178 -0.146 0

0 0 0 0 376.99 0 0 0

0 0.056 0.1234 0 0 -0.0565 —0.3061 0.149
0 —677.39 -10234.22 0 0 677.78 -13364.16 -50

— T
B 000 250000000
- [ 000 0 00025000

For the system as shown in Fig. 4, the system
eigenvalues without control are tabulated in the
first column of Table 3. The first and the second
pairs of eigenvalues are electromechanical modes.
The minimal damping ratio of electromechanical
modes is 0.0092, that is not good enough. To
improve the system dynamic stability, those
modes should be shifted toward certain desirable

locations. In the eigenvalues assignment, if we

choose h, = 3.0 and h. = 3.5, the
electromechanical modes with absolute real parts
lesser than h, = 3.0, will be shifted to the

vertical strip of [—h,, —h,]J = [—3.5, —3.0].
The other modes will not be changed (see,
subsection 5.1). Two output feedback schemes
are compared : (1) reduced order model, and (2)

proposed method. The minimal damping ratio of

REERAEAF
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those modes is improved to be 0.2638, that is
inside the acceptable range [1—2]. It is shown
from Table 3, that the relative stability of the
proposed method is much better than optimal
reduced order model[23]. The feedback gains

are given in Table 4.

Table 3 System Eigenvalues

Reduced Order

Open—-Loop

Model

Proposed Method

—0.0904 +j9.8430
—0.0006

—0.2443
—25.1741+j67.8187

—0.6120+j10.2843
—1.9248+j1.9185
-23.3329+j67.2307
—24.9273+j29.8745

—3.2255+j11.7948
—2.8460+j2.8559
—22.1633%j66.7605
—22.3914+£j27.4017

—25.2329%j30.3073
Vertical strip in h, = 3.5 ; hy = 3.0

%10 ¢ Speed deviation of machine—1

proposed
—~— reduced
—
)
2,
N>
—
2
«
=
% ]
_10 I n n i
0 1 2 3 4 5
time (sec)
%10 ¢ Speed deviation of machine—2
- sed 4
4 T Teduced
jon] Lo
a e
=
[a\]
2 )
<
=
= )
©

0 1 2 3 4 5
time (sec)
Fig.5 Transient Response of the Angular

Frequencies to a 5 % Change in the

Mechanical Torque of Machine 1.

Table 4 Feedback Gains

Reduced Order Model Proposed Method

w U w Uy
Aw, 196.5413 32.4768 | 33.617 2.7059
Ad, 1.2387 0.1697 0.3545 0.0803
Aw: 59.4160 0.3957 5.2246 15.7479
Ad. 0.1028 .3081 0.0608 0.0849

o = 0.5216

The transient responses of the angular frequencies
to a5 % change in the mechanical torque of
machine 1 and machine 2 are shown in Fig. 5

and Fig. 6, respectively.

x10-* Speed deviation of machine—1
4 - v

proposed
~— -~ reduced
—~
=] .
\9 :'yl:‘. \ l‘\ '\[' roro- L
E AR
(]
= ]
[
o
—6 " . N R
0 1 2 3 4 5
time (sec)
%10 Speed deviation of machine—2
1 T ™ —r T
proposed
=~ == reduced
—~
j]
oh
N L N
N
2
<
=
[
el
71.5 " i i
0 1 2 3 4 5

time(sec)

Fig.6 Transient Response of the Angular
Frequencies to a 5 % Change in the

Mechanical Torque of Machine 2.
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6. Conclusions

An output feedback controller is designed to
increase the stability of interconnected power
system. The electromechanical modes can be
shifted to a pre-specified vertical strip without
effecting the other modes. The design method
is very simple and avoid the difficulty of choosing
weighting matrices.

The reduced order model retains the modes
that mostly affect some desired variables which
are usually the variable or measurable variables.
In this analysis these variables are torque angles
and angular frequencies (speeds). Starting with
the optimal reduced order model approach, the
algorithm for the designing output feedback
excitation controller is constructed. The values
of the feedback gains are calculated by using
strip eigenvalue assignment method. Results
from simulation show that the proposed controller
can effectively damp system oscillations under

disturbances.
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