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ABSTRACT 

 

Numerous studies have shown that, in steel truss bridges, corrosion is frequently found on the gusset plates 

which connect members, particularly where the plate connects to the upper flange of the lower chord member. 

The corrosion of gusset plate connections has been confirmed to decrease load-carrying capacity, and it can 

lead to the collapse of an entire bridge. Besides, attachment of stiffening plate and member replacement are 

among the conventional methods often applied to repair corroded structures. However, these repair works lack 

efficacy because of the heavy machinery and welding facilities required. Therefore, a simpler and more 

effective repair method for the corroded gusset plate connection is urgently needed. 

This study focuses on the following main objectives: 1) evaluating the remaining load-carrying capacity 

of the corroded gusset plate connection; 2) establishing a proper repair method for the corroded gusset plate 

connection; with main contents described as the following. 

Firstly, laboratory loading tests and FEM analyses were conducted using approximately half-scale models 

of real bridges on two different forms of corrosion of a critical gusset plate: the corrosion loss of the lower 

chord flange-to-gusset weld and the corrosion loss of the gusset plate thickness. This study then implemented 

parametric FEM analyses of the effects of the degree of corrosion on the remaining load-carrying capacity of 

the gusset plate connection with the model of specimen and a full-scale model of an actual bridge. Additionally, 

based on the results of the parametric FEM analysis in the cases with the corrosion loss of the gusset plate 

thickness, an evaluation method for determining the local buckling strength of the corroded section was 

proposed. 

Secondly, this study focused on investigating the effectiveness of repair method by using carbon fiber 

reinforced polymers (CFRP) for the corroded gusset plate connection. Loading tests were conducted with a 

model approximately 50% the size of an actual bridge and the degree of corrosion assumed to be approximately 

50% of the gusset plate thickness. Further, the loading tests were carried out with three parameters of the repair 

method including the area of the bonded CFRP sheets, the direction (45, 56, and 90&0 degrees) of bonded 

CFRP sheets, and the location of bonded CFRP sheets (out-side bonding and both-sides bonding). 

Thirdly, a nonlinear theoretical analysis method considering the peeling condition of CFRP sheets, and a 

nonlinear material condition of all members on the analytical model were established, for a steel plate bonding 
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a layer of CFRP sheet under uniaxial tensile loading. Moreover, after grasping the peeling mechanism of CFRP 

sheet from the proposed nonlinear theoretical analysis, FEM analyses were implemented on the repaired gusset 

plate connections to reproduce the obtained experimental results. Then, a parametric FEM analysis was carried 

out on the repaired connection by varying the number of bonding CFRP sheets, to clarify the appropriate 

number of CFRP sheets bonding into the corroded gusset plate. 

Finally, this study proposed a design method to repair the corroded gusset plate connection, after the 

effectiveness of the repair method using CFRP sheets was investigated. 

 

Key Words: Steel truss bridge, corroded gusset plate connection, FEA, remaining load-carrying capacity, 

repair method, CFRP sheets, design method, nonlinear theoretical analysis, FEA with CFRP sheets. 
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CHAPTER 1 

INTRODUCTION 

1.1. BACKGROUND AND PURPOSES 

The truss bridge is a popular type of bridges which primarily consists of a truss system with main members 

connected by gusset plates. The truss structure has been widely used nowadays; mainly because it is light in 

weight with large load-carrying capacity, and it owns a high in-plane-stiffness. Steel truss bridges have been 

applied early in the developed history of modern bridges worldwide as their efficient use of materials enabled 

lower construction costs. In the world, compared to the application of steel truss bridges to railroad / railway 

systems, the one applied to highway systems was generally not as early, quick, or crucial. According to 

statistics from International Database for Civil and Structural Engineering (IDCSE)1.1), most of steel truss 

bridges in the world were built in North America (46%). Plus, the growth of truss bridge amount focused on 

the period 1890s and 1940s. This is understood that the first period (1890s) coincides with the development of 

railway networks in North America and Europe, whereas the second period (1940s) is closely linked to the 

introduction of welding technology for steel bridge construction. Further, the existing steel truss bridges are 

classified according to construction time as shown in Fig. 1.11.1). When looking at Fig. 1.1, it can be seen that 

the existing steel truss bridges are considered extremely “old”, the ranges of ages are between 50 to over 100 

years, most of which were built in the period before 1950 (65.71%), and from 1950 to 1970 (13.78%). 

Moreover, numerous 100-year-old truss bridges remain in service today1.2), 1.3), and the number of over 50 - 

year- old steel truss bridges are predicted to increase significantly in the coming years. 

With such a considerable increase in old steel truss bridges, severe damage due to corrosion has become a 

serious problem. Many reports and researches have indicated that potential corrosion locations in steel truss 

bridges are frequently found on the gusset plate which connects main members of the steel truss bridge. The 

gusset plate connections of a truss bridge are considered to be a structurally critical component of the truss 

bridge system because they connect all main members. It has been clarified that the reduction in the load-

carrying capacity of a corroded gusset plate connection can lead to the collapse of the entire truss bridge. 
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Fig. 1.1 Classification of the age of existing steel truss bridges in the world1.1). 

   

Fig. 1.2 Frequently corroded locations on steel truss bridges. 

A typical example of this problem occurred in the USA in 2007, when the I-35W steel truss bridge1.4)-1.6) 

collapsed because of insufficient gusset plate thickness, resulting in a connection having a lower load-carrying 

capacity than necessary. In addition to this example, the Choshi truss bridge in Japan, which crossed the Tone 

River to connect between Chiba prefecture and Ibaraki prefecture, was dismantled completely in 2009 after 

nearly 50 years of service1.7), 1.8). This was because of a serious level of the corrosion damage found at its gusset 

plate connections, lower chord members, and diagonal members; even though several of Choshi truss bridge’s 

members were reinforced and replaced during its service life. From 2009 to 2012, a research cooperated by 

three main members of Tokyo Metropolitan University, Waseda University, and Public Works Research 

Institute (PWRI) in Japan was implemented to investigate the remaining load-carrying capacity of the corroded 

gusset plate connections, which were cut out from the aforementioned Choshi truss bridge1.7), 1.8). As a result, 

with an average-corroded-thickness of 23% pitting damage distributing evenly over the surface of its gusset 

plate, by using the loading test and FEM analysis, it was confirmed that the gusset plate connection reduced 

significantly in the load-carrying capacity by 25%1.7), 1.8). However, statistics inspected on real steel truss 

65.71%

13.78%

7.31%

13.20%

Very old

(before 1950)
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(1950-1970)
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(1970-1995)
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bridges indicated that corrosion is frequently found on the locations connecting the gusset plate to the upper 

flange of the lower chord member under the fatal forms (see Fig. 1.2) rather than the forms of evenly-

distributing corrosion. This fatal corrosion is simply because of the complex shape in this region, which readily 

accumulate debris and water. Therefore, evaluation of the effects of corrosion on the remaining load-carrying 

capacity of the gusset plate connection, with the corrosion location being between the gusset plate and the 

upper flange of the lower chord member, has become a critical subject of research. 

1.2. OBJECTIVES OF STUDY 

In this study, laboratory loading tests and FEM analyses were conducted using an approximately half-scale 

models of real bridges on two different forms of corrosion of a critical gusset plate: the corrosion loss of the 

welded connection between the gusset plate and the upper flange of the lower chord member in the compressive 

direction, and the corrosion loss of the gusset plate thickness. Both of the loading tests and the FEM analyses 

were carried out with the objectives of determining the deformation performance, failure behaviors, and the 

reduction rate in load-carrying capacity of the corroded gusset plate connection. Besides, this study conducted 

parametric analyses of the effects of the size of the corroded sections on the gusset plate using FEM, in order 

to determine the relationship between remaining capacity and the extent of dimensional reduction due to 

corrosion. Additionally, based on the results of the parametric FEM analysis of the cases with the corrosion 

loss of the gusset plate thickness, an evaluation method for determining the local buckling strength of the 

corroded section was proposed. 

On the other hand, the applicability of carbon fiber reinforced polymers (CFRP) as a material for repairing 

and strengthening aging or damaged structures is being intensively investigated worldwide, such as in the USA 

from the 1970s1.9) and Japan and China from the 1980s1.10). CFRP in sheet form is usually applied to repair and 

strengthen steel structures which reduce load-carrying capacity due to natural hazards, human errors, accidents, 

corrosion damages, and fatigue damage. Furthermore, CFRP sheet is also used to improve structures with 

reduced load-carrying capacity due to changing of the purposes of the structure utility. However, the 

application of CFRP sheet to steel structures for corrosion and fatigue factors gains the most in popularity. 

Numerous studies have already verified the effectiveness of using CFRP sheet to reinforce the corroded 

members; consisting of the members subjected to the axial stress such as the chord members of truss bridge 

and the lower flange of I-girder of steel bridges1.11)-1.13), and the members subjected to the reaction force 
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(compressive stress) such as the vertical stiffener at the supports of I-girder steel bridges1.11), 1.14)-1.16). In addition, 

recovering from the shear buckling strength of the corroded web in steel girder bridges by using CFRP sheet 

was also investigated1.11), 1.17), 1.18). However, to the best of our knowledge, up to date, there have been not any 

cases in which CFRP sheets are applied to the corroded gusset plate connections. 

Therefore, in order to establish a proper repair method for the corroded gusset plate connection, this study 

proposed the CFRP-sheet-based repair methods after investigating the effectiveness of using CFRP sheets as 

a repair material for the corroded gusset plate connections. 

1.3. THESIS OUTLINE 

This study focuses on the following main objectives: 1) evaluating the remaining load-carrying capacity 

of the corroded gusset plate connection; 2) establishing a proper repair method for the corroded gusset plate 

connection; with six chapters described as the following. 

Chapter 1 is the introduction which contains background knowledge, motivation, and objectives of this 

study. A comprehensive review of literature and a description of the scopes and method were expressed in this 

chapter. 

Chapter 2 is the conduction of laboratory loading tests and FEM analyses by using an approximately half-

scale models of actual bridges on two different forms of corrosion of a critical gusset plate: the corrosion loss 

of the welded connection between the gusset plate and the upper flange of the lower chord member in the 

compressive direction, and the corrosion loss of the gusset plate thickness. Both of the loading tests and the 

FEM analyses were carried out with the objective of determining the deformation performance, failure 

behaviors, and the reduction rate in load-carrying capacity of the corroded gusset plate connection. This chapter 

then implemented parametric FEM analyses of the effect of the degree of corrosion on the remaining load-

carrying capacity of the gusset plate connection with the model of specimen and the full-scale model of an 

actual bridge. Additionally, based on the results of the parametric FEM analysis of the cases with the corrosion 

loss of the gusset plate thickness, an evaluation method for determining the local buckling strength of the 

corroded section was proposed. 

Chapter 3 is the focus on investigating the effectiveness of repair method by using carbon fiber reinforced 

polymers (CFRP) for the corroded gusset plate connection. Loading tests were conducted with a model of 

approximately 50% the size of an actual bridge and the degree of corrosion assumed to be approximately 50% 
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of the gusset plate thickness. Further, the loading tests were carried out with three parameters of the repair 

method including the area of the bonded CFRP sheets, the direction (45, 56, and 90&0 degrees) of the 

bonded CFRP sheets, and the location of the bonded CFRP sheets (out-side bonding and both-sides bonding). 

Chapter 4 is the establishment of a nonlinear theoretical analysis method considering the peeling condition 

of CFRP sheet, and the nonlinear material condition of all member on the analytical model; for a steel plate 

bonding a layer of CFRP sheet under uniaxial tensile loading. Moreover, after grasping the peeling mechanism 

of CFRP sheet from the proposed nonlinear theoretical analysis, finite element analyses were implemented on 

the repaired gusset plate connection to reproduce the experimental results obtained in Chapter 3. Finally, a 

parametric analysis was carried out on the repaired gusset plate connection by varying the number of bonding 

CFRP sheets calculated from the equation of steel conversion, to clarify the necessary number of CFRP sheets 

bonding into the corroded gusset plate. 

Chapter 5 is the proposal of the design method to repair the corroded gusset plate connection, after the 

effectiveness of the repair method using CFRP sheets were investigated by conducting loading tests and FEM 

analysis in Chapter 3 and 4. 

Chapter 6 is an overall summary of the obtained results and proposed further research needed. 
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CHAPTER 2 

EVALUATION OF REMAINING LOAD-CARRYING CAPACITY  

OF CORRODED GUSSET PLATE CONNECTION 

2.1. INTRODUCTION 

Recently, numerous instances of severe corrosion damage to the gusset plate connections of steel truss 

bridges have been widely reported across the world, as shown in Fig. 2.1. The corrosion of gusset plate 

connections has been confirmed to decrease load-carrying capacity, and it can lead to the collapse of the entire 

bridge. In Chapter 2, the remaining load-carrying capacity of a corroded gusset plate connection was evaluated 

using load testing and finite element method (FEM) analysis. Two different types of gusset plate corrosion 

were investigated: the corrosion loss of the lower chord flange-to-gusset weld and the corrosion loss of the 

gusset plate thickness. The loading tests and FEM analyses were conducted on an approximately half-scale 

model of a real bridge. Corrosion effects were evaluated for an assumed disconnection of 50% of the weld 

length, and for the loss of 50% and 75% of the gusset plate thickness in a selected region. This chapter then 

implemented parametric FEM analyses of the effect of the degree of corrosion on the remaining load-carrying 

capacity of the gusset plate connection with the model of specimen and the full-scale model of an actual 

bridge. Finally, based on the results of the parametric FEM analysis in cases with corrosion loss of the gusset 

plate thickness, a method for evaluating the local buckling strength of the corroded section was proposed. 

         

Fig. 2.1 Frequently corroded locations on steel truss bridges. 
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Fig. 2.2 Specimen geometry. 
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Fig. 2.3 Loading frame. 

 

Table 2.1 Experimental parameters. 

h z (mm) t z  (mm)

1 N Without corrosion - - Link frame

2 W Welding corrosion - - Link frame

3 S Small cross-sectional corrosion 25 4 Link frame

4 L Large cross-sectional corrosion 50 6 Truss frame

No. Specimen Corrosion level
Dimension of Groove section

Test frame

 

 

    

(a) Specimen with simulated loss of weld                 (b) Specimen with simulated loss of cross-section 

Fig. 2.4 The specimens prior to the loading tests. 
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2.2. EXPERIMENTAL OVERVIEW 

2.2.1. Specimen shape 

The gusset plate specimens used in this study were monolithic with the chord members: the projected web 

plates of the lower chord members were projected to serve as the gusset plates. The dimensions of all members 

in the models were approximately 50% the size of those on the subject bridges (the S-truss-bridge (1974), the 

N-truss-bridge (1980), the T-truss-bridge (1983), and the K-truss-bridge (1985) in JAPAN used bolt-

ed-connections), which were chosen because of the severe corrosion damage found on their gusset plate 

connections. The length, width, and thickness of the model gusset plate connection were 1200 mm, 216 mm, 

and 8 mm, respectively, as shown in Fig. 2.2. The angle between the lower chord member and the two diagonal 

members connecting into the gusset plate was 56 degrees. Further, because the axial force of the diagonal 

members was much larger than that of the vertical member in the subject bridges and the existing bridges, the 

influence of the vertical members was omitted in the specimens. The loss of the weld between the flange plate 

and the gusset due to corrosion was represented by introducing a disconnection between the gusset plate and 

the upper flange of the lower chord member in the compressive direction (see Fig. 2.2(a)). The corrosion loss 

of the gusset plate thickness was represented as a cross-sectional loss by cutting a groove (called the 

“Groove”) of height hz and width tz at the location where the gusset plate connected to the upper flange of the 

lower chord member (see Fig. 2.2(b)). The base metal used in this study was SS400 steel with a yield stress of 

317 MPa and an elastic modulus of 200 GPa, determined from the mill sheet certificate and the tensile ex-

periments of the SS400 steel in the laboratory. 

Because of the limited capacity of the experimental equipment (only 3000 kN), the loading tests were 

conducted using two frames: a truss frame system and a link frame system with the size of the specimen used 

50% that of the actual bridges, as shown in Fig. 2.3. The dimensions of the members of the two frames were 

designed such that they would operate within their elastic phase during the loading test process. The length 

and height of the truss frame was 4000 mm and 1500 mm, respectively, and 1790 mm and 2000 mm, respec-

tively, for the link frame. The frame loading system was connected to the specimen using high-tension bolts 

through the connecting plates. 
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2.2.2. Experimental parameters 

The experimental parameters used in this study are shown in Table 2.1. With the basic aim of determining 

the deformation performance, failure behavior, and load-carrying capacity of the gusset plate connection, a 

loading test was first conducted on the connection without any simulated corrosion loss. Because the exces-

sive loss of section in the welded connection in the compressive direction of the gusset plate could lead to 

large out-of-plane deformation, a loading test was then conducted on a specimen with one-half of the 

flange-to-gusset weld removed, as shown in Fig. 2.4(a). To account for the failure behavior of corroded gusset 

plate thickness, approximately 50% and 75% of the gusset plate thickness was assumed to be corroded (see 

Fig. 2.4(b)) in two additional specimens. The 50% and 75% corrosion levels were simulated by introducing a 

Groove in the gusset plate of hz = 25 mm and tz = 4 mm, and hz = 50 mm and tz = 6 mm, respectively. 

In total, four specimens were tested: one control with no simulated corrosion loss (Specimen N), one 

simulating the loss of the flange-to-gusset weld (Specimen W), and specimens simulating small and large 

cross-sectional corrosion (Samples S and L). 

2.2.3. Measured items 

a) Strain gauge location 

The locations of the strain gauges are shown in Figs. 2.5, 2.6, and 2.7. Four single-element strain gauges 

were attached to the cross-section of each member of the truss frame and the link frame, in order to consider 

the effects of the two-axis bending moment and the axial force on them. Moreover, in order to determine the 

principal stress components on the cross-sectional loss part and the border line between the gusset plate and 

the lower chord; three-element 0o/45o/90o Rosette Stacked strain gauges were employed, as shown in Fig. 2.7. 

In the corroded cases, the strain gauges were attached to the inside and outside of the cross-sectional loss part. 

In addition, three-element 0o/45o/90o Rosette Stacked strain gauges were also used at the plate area underneath 

the compressive diagonal member, to grasp the buckling behavior, and single-element strain gauges were used 

for the other locations. 

b) Displacement measurement 

In each loading step, vertical and horizontal displacements were measured on the members of the truss 

frame and the link frame, and the bottom surface of gusset plate connection, as shown in Fig. 2.5 and Fig. 2.6. 

In addition, the out-of-plane displacement of the gusset plate was also measured at the two outside surfaces of 
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the gusset plate connection. These positions was labeled 7-1~7-6, as shown in Fig. 2.5 and Fig. 2.6. 

c) Loading method 

The loading tests were conducted in the laboratory using the link frame system for the intact Specimen N, 

the welding loss Specimen W, and the small cross-sectional loss Specimen S; and using the truss frame system 

for the large cross-sectional loss Specimen L. 
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Fig. 2.5 Measured items in the truss frame. 
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Fig. 2.6 Measured items in the link frame.                Fig. 2.7 Strain gauge locations in the gusset plate. 
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(a) Link frame                                                                    (b) Truss frame 

Fig. 2.8 Loading test condition. 
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(a) Link frame with welding loss                         (b) Truss frame with cross-sectional loss 

Fig. 2.9 Finite element analysis model. 

SHIMADZU experimental equipment with 3000 kN capacity was used to test all specimens. The formal 

loading test process was only carried out after finishing the repetition about two or three times for the loading 

test at the elastic phase of the material. The two bottom joints of the truss frame were placed onto the two 

Teflon plates to allow freedom for the slide bearing. The experimental environment is shown in Fig. 2.8. 

2.3. FINITE ELEMENT ANALYSIS OVERVIEW 

Finite element analysis (FEA) was conducted to reproduce the experimental results and observed failure 

behavior of the loaded gusset plate connections. The analysis software used in this study was DIANA 9.62.7). 

Slide Bearing Slide Bearing 
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2.3.1. Analysis model 

A three-dimensional geometric nonlinear analysis was implemented to model the gusset plate connections 

both with and without the simulated corrosion losses using a displacement load as shown in Fig. 2.9. The 

gusset plate connection and loading members were constructed of curved shell elements (the eight-node 

CQ40S and six-node CT30S) and the three-dimensional beam element (the two-node L13BE), respectively. In 

the case with the welding loss, the loss of the weld was modeled by introducing a disconnection as shown in 

Fig. 2.9(a). In cases with a Groove section, the Groove section itself was simulated using the solid brick 

element (the twenty-node CHX60) (see Fig. 2.9(b)). The sections connecting this solid element to the shell 

element were considered to be in the central plane of the cross-section of the gusset plate. The boundary 

conditions of the right and left support of the truss frame were simulated as a roller support and a pinned 

support, respectively. Furthermore, the movement of the right support of the truss frame was limited by the 

linear translation spring element (the two-node SP2TR), as shown in Fig. 2.9(b). The linear spring stiffness 

was determined as the average slope of the relationship between the load and displacement of the right support 

in the horizontal direction, as measured during the loading test with a value of approximately 24000 N/mm. 

With the major aim of focusing on the failure behavior, deformation performance, and strength of the 

gusset plate when corrosion damage occurred on the gusset plate, the dimensions of the specimens were de-

signed such that the failure conditions due to block shear, tensile fracture, and slippage of the gusset plate 

around high-tension bolts and the connecting plates would not appear during the loading tests. In addition, like 

the actual gusset plate connections on the subject bridges, to improve the eccentric bending moment, which 

could occur owing to the eccentricity between the original plane of the gusset plate and that of the flange of the 

diagonal member, four additional plates were attached to the outside of the gusset plate with their thickness 

similar to the thickness of the flange of the diagonal members, as shown in Fig. 2.4. Therefore, to enable easier 

simulation of the connecting sections between the gusset plate and the diagonal members, these connections 

were modeled as being monolithic. This means that the high-tension bolts were not modeled in the FEM 

analysis, and the gusset plate and the flange of the diagonal member was the same plane. The resolution of the 

finite element mesh in all of the models was 1 mm in the Groove section and 5 mm in all other members. 

Therefore, the total number of nodes and elements was 78223 and 27378, respectively, in the intact case, and 

101403 and 28476, respectively, in cases with cross-sectional loss. 
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2.3.2. Material and initial imperfection 

a)  Steel 

The stress-strain curve relationship of the SS400 steel used in this analysis was bilinear, in which the 

primary Young’s modulus was 200 GPa, and the secondary modulus after yield was E/100 = 2 GPa. The 

Poisson ratio was 0.3, the yield stress and tensile strength were 317 MPa and 436 MPa, respectively, as de-

clared on the mill sheet certificate. In addition, the yield stress and tensile strength of the SS400 steel were also 

reconfirmed through the tensile experiment in the laboratory. The Von Mises yield condition was applied to 

simulate the steel material, and geometric nonlinearity was considered. In this analysis, all members of the 

gusset plate connection were simulated as a multilinear material, and the loading members and connecting 

plates were considered to be elastic materials. 

b)  Initial imperfection (Initial deflection and residual stress) 

In this study, before conducting the loading test on all specimens, the initial deflection of the gusset plates 

was measured directly. The measured value indicated that the average inclination level of the gusset plates was 

approximately 1 mm, and the initial deflection shape was considered as the SIN-shape. Therefore, the initial 

deflection of the gusset plate was considered in all of the analysis models. The maximum initial deflection of 

the gusset plate was hw/K for the intact case N, the cross-sectional loss cases S, and L; and hg/K for the weld 

loss case W, as determined using Equations (2.1) and (2.2), respectively. 
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where, hw is the height of the gusset plate, hg is the height of the gusset plate connection, and K is a factor 

determining the maximum initial deflection. 

In addition, because the final failure shape of the experimentally tested specimens was asymmetric in the 

plane of the loading frame, asymmetry was also considered in the initial deflection of the gusset plate in this 

analysis. Finally, an additional 1 mm of inclination was added to the initial deflected shape of the gusset plate 

to reproduce conditions measured in the field, as presented at the beginning of this section. The complete 

initially deflected shape of the gusset plate can be seen in Fig. 2.10. 
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The residual stress distributions on each surface of the gusset plate connection and the diagonal members 

were considered as shown in Fig. 2.11. However, in this analysis, the effect of the residual stress on the 

loading frame members was ignored. The shape and amplitude of the residual stress were determined by 

reference to the Specifications for Highway Bridges (JSHB)2.8), with a stress of y for the tensile region and 

-0.25y for the compressive region. The width of the tensile and compressive stress portions on each surface of 

the gusset plate connection were calculated from the self-balanced condition of the stress in the cross-section. 

The initial deflection and the residual stress were input into the data file of the FEA models, which was 

used directly to implement the calculation. The displacement load was applied in 0.1-mm steps during the 

second phase of the analysis once the self-balanced condition of the residual stress was achieved. 
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Fig. 2.10 Initial deflection of the gusset plate.           Fig. 2.11 Residual stress distribution.  y: Yield stress 

Table 2.2 Analysis parameters. 

h z  (mm) t z  (mm)

N_ND - -

N500 - 500

N250 - 250

N150 - 150

N_NR - 250

N_R ○ 250

2 Welding corrosion - - - 250 Link frame

3 Small cross-sectional corrosion 25 4 - 250 Link frame

4 Large cross-sectional corrosion 50 6 - 250 Truss frame

W

S

L

Initial deflection

K (       ----------)
Test frame

Dimension of Groove section

Link frame

No. Corrosion level
Residual

stress
Case

1 N Without corrosion - -
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Fig. 2.12 Load-displacement relationship, subject to initial deflections of the gusset plate (Specimen N). 
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Unit: mm

           

Unit: mm

 

(a) N_ND                                                              (b) N500 

Unit: mm

           

Unit: mm

 

(c) N250                                                                  (d) N150 

Fig. 2.13 Contour drawing of the out-of-plane deformation of the Specimen N intact series 

(at maximum load). 

2.3.3. Analysis parameters 

The parameters used to evaluate the FEM analysis presented in this section are shown in Table 2.2. In the 

case of Specimen N, which had no simulated corrosion loss, in order to clarify the influence of the initial 

deflection of the gusset plate on the maximum load-carrying capacity and the deformation performance of the 

gusset plate connection, a parametric analysis was conducted on the parameter K in Equation (2.1) for de-

termining the initial deflection, in which the K factor was assigned values of 500, 250, and 150. The original 

case N_ND, in which the initial deflection was not considered, was also included in this parametric analysis. 

Note that the residual stress is commonly accepted to be a major influence on the load-carrying capacity and 

the load-displacement relationship of normal steel members under compressive force. To confirm the effects 

of this parameter, an additional analysis of the intact Specimen N was conducted with and without the effects 

of residual stress. 

As the main purpose of this section was to reproduce the experimental results and failure behavior of the 

gusset plate connection under the loading test, an FEM analysis of the three corroded specimens (W, S, and L) 

was conducted. The effect of the residual stress was not considered in these cases, and the K factor was taken 

with 250 for all three. 
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2.4. ANALYSIS RESULTS AND DISCUSSION 

As mentioned in Section 2, in order to reach the complete failure condition of the specimens with the 

limited capacity of the experimental equipment, the link frame and the truss frame were used to conduct the 

loading tests. Because of the difference in the loading frames, in this study, the following data from the ex-

perimental and analytical results were evaluated using the average axial force in the two diagonal members of 

either frame connecting directly to the specimen. 

2.4.1. Intact model (Specimen N) 

a) Influence of initial imperfection on maximum load 

To investigate the influence of initial imperfections on the maximum load and the load-displacement re-

lationship of the gusset plate connection under the FEM analysis, two parametric analyses were implemented 

by varying the initial deflection of the gusset plate and the residual stress in the gusset plate connection. 

Figure 2.12 depicts the relationship between load and vertical displacement at the highest point of the 

tensile link member of the link frame for the Specimen N test. In Fig. 2.12, the K factor in Equation (1) de-

termining the initial deflection of the gusset plate was varied, and the parametric analysis results were ob-

tained as follows. The enlarged view attached to Fig. 2.12 is provided to clarify the changes toward the end of 

the load-displacement curve. Based on the information shown in Fig. 2.12, when the initial deflection was 

changed, the initial stiffness of the gusset plate connection was completely unchanged. In fact, the 

load-displacement curve trend changed with initial deflection only in the phases immediately before and after 

achieving the maximum load, and the larger the initial deflection, the smaller the maximum load resisted by 

the gusset plate connection. However, the change in the maximum load was quite small. The out-of-plane 

deformation of each initial deflection case evaluated in the FEM parametric analysis is shown in Fig. 2.13, 

which depicts the deformation contours at maximum load. The out-of-plane deformation at the free edges of 

the gusset plate did not appear when the initial deflection was not considered in the case N_ND (Fig. 2.13(a)). 

However, in the cases where the initial deflection was considered, the largest out-of-plane deformation was 

observed at the free edges of the gusset plate, and this deformation decreased as the initial deflection decreased 

(Fig. 2.13(b), 2.13(c), and 2.9(d)). As before, this change was not considerable. 

Figure 2.14 illustrates the relationship between the load and vertical displacement at the highest point of 

the tensile link member, in the intact Specimen N tests, both with and without residual stress on the gusset 
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plate connection, as determined by the FEM analysis. Clearly, the inclusion of residual stress resulted in a 

slightly reduced gusset plate stiffness. However, there was almost no change in the maximum load carried by 

the gusset plate connection: the maximum load was 1735 kN without residual stress and 1731 kN with residual 

stress. This small difference is due to the limited size of the compressive stress regions of the gusset plate 

connection, and the small residual stress levels in these areas. 

From the FEM analysis results when the initial deflection of the gusset plate and the residual stress in the 

gusset plate connection were varied, it is confirmed that the initial imperfections had very little effect on the 

maximum load and the load-displacement relationship of the gusset plate connection. However, the 

out-of-plane deformation at the free edges of the gusset plate in all cases will not appear, if the initial deflec-

tion of the gusset plate is not considered. Therefore, in the FEM analysis of all following specimens, the K 

factor was taken as 250, and the residual stress was not considered. 
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Fig. 2.14 Load-displacement relationship, subject to residual             Fig. 2.15 Load-vertical displacement relationship, subject to 

stress on the gusset plate connection (Specimen N).                             the actual plate thickness (Specimen N). 
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Fig. 2.16 Load-bending strain relationship             (a) Underneath the diagonal member            (b) Free edge of the gusset plate 

(Specimen N)                                         Fig. 2.17 Out-of-plane deformation of plate area underneath diagonal member (N). 
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Unit: mm

 

Fig. 2.18 Analytical contours of out-of-plane deformation and physical deformation of Specimen N  

(at maximum load). 

b) Load-vertical displacement relationship 

With the basic aim of determining the deformation performance, failure behavior, and load-carrying ca-

pacity of the gusset plate connection, the loading test and FEM analysis of the intact Specimen N (without any 

simulated corrosion loss) were implemented. The relationship between load and vertical displacement at the 

highest point of the tensile link member of the link frame for Specimen N are shown in Fig. 2.15 to provide 

comparison between the analytical and experimental results. 

From the analysis, it is clear that the load-displacement curve begins to change at a load of 1226 kN (the 

buckling load) due to buckling of the plate region underneath the compressive diagonal member, a trend 

consistent with the behavior obtained in the experiment. Furthermore, the experimental and analytical initial 

stiffness of the gusset plate connection was almost in agreement. After overcoming the buckling load, the 

load-displacement curve of the analysis diverged slightly from the experimental result; however, the differ-

ence was quite small. The maximum load carried by the gusset plate connection was 1634 kN from the ex-

perimental result, and 1735 kN from the analytical result, a difference of approximately 6%. This difference is 

explained by the influence of the variations in the thickness of the actual gusset plate. The measured thickness 

of the actual gusset plates tested at the laboratory varied from 7.6 mm to 8 mm, as did the gusset plate used for 

Specimen N. As in Fig. 2.15, a gusset plate thickness of 7.6 mm and 7.8 mm in the analysis results in a 1% and 

4% difference in maximum load, respectively, compared to the experimental result. 

These comparisons confirm that the load-displacement curve and the maximum load provided by the an-

alytical result agreed well with those of the experimental result in the intact Specimen N case. 

c) Failure conditions 

The initial failure condition observed in the link frame tests of Specimen N was the buckling of the plate 
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region underneath the compressive diagonal member at a load of 1184 kN. This was confirmed by the rela-

tionship between the load and bending strain of this plate region, shown in Fig. 2.16. Furthermore, the 

load-carrying capacity of Specimen N reached the maximum value after large out-of-plane deformation oc-

curred both in this plate region and at the free edges of the gusset plate, due to buckling. 

The comparisons of the analytical results with the experimental results in Figs. 2.16 and 2.17 clearly 

demonstrate that the simulated and observed relationships of load-bending strain and out-of-plane defor-

mation in the plate region underneath the compressive diagonal member and at the free edges of the gusset 

plate in the compressive direction are consistent. The overall shape of the gusset plate connection is compared 

in Fig. 2.18: the out-of-plane deformation shown in the simulated contours is quite similar to the final shape of 

the experimental specimen after achieving maximum load. 

As a result of these comparisons, the failure behavior of the gusset plate connection observed in the 

loading test can clearly be accurately reproduced using an FEM analysis. 

2.4.2. Corroded models (Specimens W, S, and L) 

a) Load-vertical displacement relationship 

Damage resulting in the loss of some portions of the gusset plate is likely to reduce the load-carrying 

capacity of the gusset plate connection. Therefore, to clarify the relationship between damage and capacity 

reduction, loading tests and FEM analyses were conducted to evaluate the effects of two types of losses on the 

gusset plate: the loss of the flange-to-gusset weld and the loss of plate cross-section. The relationship between 

load and vertical displacement, determined by loading tests and FEM analyses of the weld loss Specimen W, 

and the small and large cross-sectional loss Specimens S and L, respectively, are shown in Fig. 2.19. The black 

dashed lines (1634 kN) indicate the load-carrying capacity of intact Specimen N, obtained by loading test and 

described in Section 2.4.1b. 

From the experimental results, the load-carrying capacities achieved by Specimens W, S, and L were 1547 

kN, 1303 kN, and 415 kN, respectively. This indicates that the loss of the weld in Specimen W resulted in a 

load-carrying capacity decrease of only 5.3% from that of the intact Specimen N. On the other hand, the 

cross-sectional loss simulated in Specimens S and L resulted in a decrease in load-carrying capacity of 20.3% 

and 74.6%, respectively, from that of the intact Specimen N. 

The relative impacts of weld loss and cross-section area reduction on the load-carrying capacity of the 
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gusset plate connection have thus been clarified by the experimental results: the corrosion loss of the 

flange-to-gusset weld had only a slight effect, while the corrosion loss of the gusset plate cross-section had a 

significant effect. 

The comparison of the experimental and FEM analysis results shown in Fig. 2.19 indicates consistent 

agreement between the two results. The load-displacement curve in the case of Specimen W begins to change 

at a load of 1200 kN as a result of the buckling of the plate area underneath the compressive diagonal member. 

In the case of Specimen S, the load-displacement curve begins to change at a load of 800 kN due to local 

buckling in the Groove section, and in the case of Specimen L, this occurs at a load of 240 kN due to shear 

buckling in the Groove section. 

The maximum load determined by the analysis was 1639 kN for Specimen W, 1334 kN for Specimen S, 

and 441 kN for Specimen L. The maximum loads determined by experiment and analysis for all specimens are 

compared in Fig. 2.20, in which it can be observed that the difference in maximum load between the analytical 

and experimental results was between -6% and -2%, indicating that the analytical model provides a high level 

of accuracy. The small differences observed can be mainly attributed to the influence of the varying thickness 

of the actual gusset plate, as described in Section 2.4.(1) b). 

b) Failure condition 

The results of the loading test conducted on Specimen W indicate that the initial failure condition was 

buckling in the plate region underneath the compressive diagonal member and near the lost portion of the weld 

at a load of 1200 kN. This load is determined from the relationship between the load and the bending strain of 

the plate region underneath the diagonal member shown in Fig. 2.21. The load-carrying capacity of Specimen 

W reached its maximum value after large out-of-plane deformation developed in the region underneath the 

compressive diagonal member as a result of buckling. Unlike in the intact Specimen N, Specimen W exhibited 

the largest out-of-plane deformations not only at the free edges of the gusset plate, but also in the region near 

the weld loss because losing the weld increased the effective buckling length in this area of the plate. Figure 

2.22 illustrates the relationship between the load and the out-of-plane deformation in the subject plate region, 

indicating that the analytical results are consistent with the experimental results. 

In the small cross-sectional loss Specimen S, local buckling initially appeared during the experiment in the 

Groove section under a load of 800 kN. This is understood to be the result of eccentricity due to the decreased 
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thickness of the Groove section, causing a significant increase in the bending moment in the compressive 

direction. This is illustrated by the relationship between the load and bending strain in the Groove section as 

shown in Fig. 2.23. Additionally, the next failure condition was marked by the appearance of buckling in the 

plate region underneath the compressive diagonal member at a load of 1200 kN, as determined by reference to 

the relationship between load and bending strain shown in Fig. 2.24. The final failure condition for Specimen 

S was the large out-of-plane deformation resulting from buckling in the plate region underneath the com-

pressive diagonal member, and shear fracture at the Groove section. The analytically and experimentally 

determined relationships of load-bending strain and out-of-plane deformation in this plate region and at the 

free edges of the gusset plate in compression are shown in Fig. 2.24 and 2.25, indicating that the analytical 

result is consistent with the experimental result. 

In the case of the large cross-sectional loss Specimen L, unlike Specimen S, shear buckling occurred at the 

Groove section. This is understood to be a result of the comparatively large height/thickness ratio of the 

Groove section, which reduced its shear buckling strength. The final failure in this case was the result of large 

deformation due to shear buckling and shear fracture. Figure 2.26 provides a comparison of the simulated 

contours describing the out-of-plane deformation and the residual deformation of the gusset plate connection 

specimens after the conclusion of the loading tests. In this figure, the white dashed-line indicates the weld loss 

and Groove section areas on the gusset plate. 

As a result, in the gusset plate with simulated corrosion loss of the weld, the largest out-of-plane defor-

mations appeared not only at the free edges of the gusset plate (as in the case of Specimen N), but also in the 

area of the corroded weld. In the gusset plates with simulated corrosion loss of plate cross-section, the failure 

behavior of the corroded gusset plate depended on the severity of the corroded section: local buckling was 

observed in the small corrosion case of Specimen S, while shear buckling was observed in the large corrosion 

case of Specimen L. Notably, the failure behavior of the corroded gusset plate connections observed in the 

loading test could be accurately reproduced using the FEM analysis. 

Moreover, from the results shown in Section 4, the influent level of not modeling the bolts of the con-

necting sections in the FEM analysis was confirmed to be inconsiderable through comparison of the analytical 

and loading test results: the difference in maximum load being between -6% and -2%, the same in the 

load-bending strain relationship, the load-out-of-plane deformation relationship and the physical deformation. 
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(a) Weld loss Specimen W                                  (b) Small cross-sectional loss Specimen S 

Fig. 2.19 Load-vertical displacement relationship (W, S, and L). 
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(c) Large cross-sectional loss Specimen L 

Fig. 2.19 Load-vertical displacement relationship          Fig. 2.20 Maximum load between FEA and EXP. 

(W, S, and L). 
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(a) Underneath the diagonal member                 (b) Free edge of the gusset plate 

Fig. 2.21 Load-bending strain relationship (W). Fig. 2.22 Out-of-plane deformation in plate region underneath diagonal member (W). 
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(a) Location A                                   (b) Location B                                    (c) Location C 

Fig. 2.23 Load-bending strain relationship of Specimen S. 
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(a) Underneath the diagonal member            (b) Free edge of the gusset plate 

Fig. 2.24 Load-bending strain relation (S).       Fig. 2.25 Out-of-plane deformation in plate region underneath diagonal member (S). 

Unit: mm

 

(a) Weld loss Specimen W 

Unit: mm

 

(b) Small cross-sectional loss Specimen S 

Unit: mm

 

(c) Large cross-sectional loss Specimen L 

Fig. 2.26 Analytical contours of out-of-plane deformation and physical deformation of the gusset plate  

(at maximum load). 

2.5. PARAMETRIC ANALYSIS 

Once the FEM analysis had been confirmed as accurate by comparison with the experimental results, two 

parametric FEM analyses were conducted to investigate the relationship between the remaining capacity of the 

corroded gusset plate connection and the degree of corrosion in the two forms evaluated. 
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2.5.1. Analysis parameters 

The loading tests and the FEM analysis conducted in Section 2.4 both concluded that the damage due to 

corrosion could lead to a reduction in the load-carrying capacity of the gusset plate connection. The most 

significant reductions were observed in the cross-sectional corrosion cases. The failure conditions of the 

cross-sectionally corroded region depended on the corrosion level, either manifesting as local buckling under 

a small degree of corrosion or as shear buckling under a large degree of corrosion. To obtain further infor-

mation on the remaining load-carrying capacity, failure behavior, and deformation performance of the gusset 

plate connection with even more severe corrosion, a parametric analysis was implemented by varying the 

degree of cross-sectional loss in the gusset plate. The analysis cases conducted are listed in Table 2.3, con-

sisting of remaining thickness of 87.5%, 75%, 62.5%, 50%, 43.75%, 37.5%, and 25% of the original gusset 

plate thickness. For each thickness, the height of the corroded section was evaluated for approximately 50% 

and 100% of the maximum height of the potentially damaged area, defined as 50 mm in this study. Note that 

the link frame model was applied in all these FEM analysis cases. 

An additional parametric FEM analysis was conducted by varying the length of the flange-to-gusset weld 

loss, detailed in the cases listed in Table 2.4, in which the length of the corroded weld was assumed to be 

either 50% or 100% of the length of the gusset plate, which was defined as 600 mm in this study. 

Table 2.3 Parametric analysis parameters for cross-sectional corrosion loss cases. 

t z  (mm) h z  (mm)

1 t87.5h50 50% 25

2 t87.5h100 100% 50

3 t75h50 50% 25

4 t75h100 100% 50

5 t62.5h50 50% 25

6 t62.5h100 100% 50

7 t50h50 50% 25 EXP

8 t50h100 100% 50

9 t43.75h50 50% 25

10 t43.75h100 100% 50

11 t37.5h50 50% 25

12 t37.5h100 100% 50

13 t25h50 50% 25

14 t25h100 100% 50 EXP

4

Dimension of Groove section
Note

87.5% 1

75% 2

Test frame

Link frame

43.75%

37.5%

25%

4.5

5

6

50%

362.5%

No. Case

Remaining thickness of

corroded section / 8 mm

(%)

Height of

corroded section / 50 mm

(%)

 

Table 2.4 Parametric analysis parameters for flange-to-gusset weld loss cases. 

No. Case Location of corroded weld
Length of corroded weld / 600 mm

(%)
Test frame Note

1 W50 Compressive direction 50% EXP

2 W100 Compressive direction + Tensile direction 100%
Link frame
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2.5.2. Results of parametric analyses 

a)  Load and vertical displacement relationship 

Figure 2.27 depicts the relationship between the applied load and vertical displacement of the gusset plate 

connection as the cross-sectional loss parameter was varied from remaining thicknesses of 87.5%, 75%, 

62.5%, 50%, 43.75%, 37.5%, to 25%. The inset diagram in each figure depicts an enlarged view of the initial 

stiffness of the gusset plate connection. When looking at Fig. 2.27, it is immediately obvious that for re-

maining thicknesses of 87.5%, 75%, 62.5%, and 50%, the initial stiffness of the gusset plate connection ex-

hibited nearly no change with the reduction rate in the range of 2% to 5%. However, for considerable 

cross-sectional losses (remaining thicknesses of 43.75%, 37.5%, and 25% of the plate), a significant decrease 

in the initial stiffness can be clearly observed with the reduction rate in the range of 9% to 13%. Moreover, in 

all cases with the cross-sectional loss, the load-displacement curve began to change after the first signs of 

failure appeared in the Groove section. The details of the observed initial failure condition in the Groove 

section in each case were as described in Section 2.5.(2)c). 

The relationships between load and vertical displacement of the gusset plate connection as the length of 

the flange-to-gusset weld loss was varied are shown in Fig. 2.28. As the enlarged view of the initial stiffness 

shown inset in Fig. 2.28 illustrates, there was almost no change in the initial stiffness of the gusset plate 

connection with the reduction rate of 3% to 5% as the length of the corroded weld increased. Additionally, the 

load-displacement curve of the gusset plate connection did not significantly change until buckling occurred in 

the plate region underneath the compressive diagonal member. 

The results of the FEM parametric analyses indicate that a significant reduction in the initial stiffness of 

the gusset plate connection occurs in cases when the thickness of the gusset plate has been reduced by more 

than 50%. In cases with less than 50% loss of thickness, there is no significant reduction in stiffness. Finally, 

there was no change observed in the initial stiffness of the gusset plate connection as the length of the corroded 

portion of the flange-to-gusset weld was increased. 

b)  Remaining load-carrying capacity 

The maximum loads determined using the parametric FEM analysis of the change in cross-sectional loss 

are shown in Fig. 2.29(a), in which the horizontal axis and vertical axis depict Pmax/P
0

max and the remaining 

thickness (%), respectively. In this figure, Pmax and P0
max are the maximum load carried by the cross-sectional 
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loss case and the maximum load of the intact Specimen N, respectively. As shown in Fig. 2.29(a), the loss of 

the gusset plate cross-section significantly decreased the load-carrying capacity of the gusset plate connection. 

For both Groove section heights evaluated, the relationship between Pmax/P
0
max and the remaining thickness 

rate were approximately linear, while the value of Pmax/P
0
max exhibited a sharp decrease when the failure 

condition in the Groove section changed from local buckling to shear buckling. 

For the same remaining thickness, as the height of the Groove section was increased, a reduction in the 

maximum capacity of the gusset plate connection was only notable for cases in which local buckling appeared 

in the Groove section, while only a slight reduction was observed for cases in which shear failure or shear 

buckling occurred in the Groove section. The final failure of the gusset plate in cases failing by shear buckling 

was due to shear failure (i.e., insufficient shear strength) of the Groove section, which is independent of the 

height of the cross-sectional loss. On the other hand, the final failure of the gusset plate in cases failing by local 

buckling in the Groove section was due to the large out-of-plane deformation that appeared in the plate region 

underneath the compressive diagonal member. 

The parametric FEM analysis determined that as the length of the corroded flange-to-gusset weld in-

creased, the maximum loads were as shown in Fig. 2.29(b), which reveals that the loss of the weld only 

slightly reduced the load-carrying capacity of the gusset plate connection, in the range of 5% to 7%. This is 

understood to be a result of the compressive strength of the diagonal member, which determines the 

load-carrying capacity of the gusset plate connection, and thus depends greatly on the dimensions and strength 

of the free edges of the gusset plate in the compressive direction. Obviously, the behavior of these free edges 

was not at all affected by the loss of the flange-to-gusset weld. 

c)  Failure condition 

Figure 2.30 shows the contours of the residual out-of-plane deformation of the gusset plate connection as 

the degree of cross-sectional loss was varied. The results obtained from the FEM analyses confirmed that the 

initial failure condition of the gusset plate occurred in the Groove section in all cases. For the cases with a 

Groove height of 25 mm (50% of the maximum damaged section height), local buckling appeared in the 

Groove section when the remaining plate thickness was greater than 50% of the original (see Figs. 

2.30(a1)-2.30(d1)). For the cases with a Groove height of 50 mm (100% of the maximum damaged section 

height), local buckling in the Groove section was observed when the remaining thickness was greater than 
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37.5% of the original (see Figs. 2.30(a2)-2.30(e2)). In all these cases, at the peak load value the gusset plates 

failed from large out-of-plane deformation due to the buckling in the plate region underneath the compressive 

diagonal member and at the free edges of the gusset plate. 

In the other cases, the initial failure condition of the gusset plates was observed to be shear failure or shear 

buckling in the Groove section (see Figs. 2.30(e1)-2.30(g1), and 2.30(f2)-2.30(g2)), and at their peak 

load-carrying capacity the gusset plates failed from large deformation of the Groove section due to shear 

failure. 

The contours describing the out-of-plane deformation of the gusset plates at maximum load as the length of 

the flange-to-gusset weld loss was increased can be seen in Fig. 2.31. The FEM analysis indicates that in all 

cases, the initial failure condition region underneath the compressive diagonal member, nearest to the lost 

weld, and the final failure condition was large out-of-plane deformation in the plate region nearest to the lost 

weld, and at the free edges of the gusset plate. The size of the region exhibiting large out-of-plane deformation 

near the lost weld can be observed to increase considerably as the length of the weld loss increased. 
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(a) Remaining thickness of 87.5%                            (b) Remaining thickness of 75% 
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(c) Remaining thickness of 62.5%                                 (d) Remaining thickness of 50% 

Fig. 2.27 Load-displacement relationship as the cross-sectional loss parameter is varied. 
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(e) Remaining thickness of 43.75%                                (f) Remaining thickness of 37.5% 
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(g) Remaining thickness of 25% 

Fig. 2.27 Load-displacement relationship as the cross-sectional loss parameter is varied. 
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Fig. 2.28 Load-displacement relationship as the flange-to-gusset weld loss parameter is varied. 
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Fig. 2.29 Relationship between corrosion loss and remaining load-carrying capacity. 
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Unit: mm
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(a1) t87.5h50                                                            (a2) t87.5h100 

Unit: mm

     

Unit: mm

 

(b1) t75h50                                                                   (b2) t75h100 

Unit: mm

     

Unit: mm

 

(c1) t62.5h50                                                          (c2) t62.5h100 

Unit: mm

     

Unit: mm

 

(d1) t50h50                                                                (d2) t50h100 

Unit: mm

     

Unit: mm

 

(e1) t43.75h50                                                             (e2) t43.75h100 

Fig. 2.30 Analysis contours of out-of-plane deformation as the cross-sectional loss is varied  

(at maximum load). 
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Unit: mm

     

Unit: mm

 

(f1) t37.5h50                                                           (f2) t37.5h100 

Unit: mm

     

Unit: mm

 

(g1) t25h50                                                          (g2) t25h100 

Fig. 2.30 Analysis contours of out-of-plane deformation as the cross-sectional loss is varied  

(at maximum load). 

 

Unit: mm

     

Unit: mm

 

(a) W50                                                                                        (b) W100 

Fig. 2.31 Analysis contours of out-of-plane deformation as the length of the flange-to-gusset weld loss 

is varied (at maximum load). 

2.5.3. Remaining load-carrying capacity under the full-scale model of a real bridge 

In this Section, in order to grasp further information on the remaining load-carrying capacity, failure be-

havior, and deformation performance of the actual gusset plate connection with the cross-sectional corrosion; 

an additional parametric analysis was conducted under the full-scale model of a real bridge. The dimension of 

the actual gusset plate connection in this parametric analysis was larger 2 times than that of the model of 

specimens. The analysis cases implemented are listed in Table 2.5, including the thickness of the corroded 

section being 12.5%, 25%, 37.5%, 50%, 62.5%, and 75% of the original gusset plate thickness. Moreover, for 

each thickness, the height of the corroded section was evaluated for about 50% and 100% of the maximum 

height of the potentially damaged area, defined as 100 mm in this Section. 



Chapter 2: Evaluation of remaining load-carrying capacity of corroded gusset plate connection                               . 

35 

 

Table 2.5 Parametric analysis parameters for cross-sectional corrosion loss cases  

under the full scale model of a real bridge. 

h z  (mm) t z  (mm)

1 N - - - -

2 S12.5 12.5% 2

3 S25 25.0% 4

4 S37.5 37.5% 6

5 S50 50.0% 8

6 S56.25 56.3% 9

7 S62.5 62.5% 10

8 S75 75.0% 12

9 L12.5 12.5% 2

10 L25 25.0% 4

11 L37.5 37.5% 6

12 L50 50.0% 8

13 L56.25 56.3% 9

14 L62.5 62.5% 10

15 L75 75.0% 12

50% 50

100% 100

No. Case

Height of

corroded section / 100 mm

(%)

Thickness of corroded

section / 16 mm

(%)

Dimension of Groove section Shape of

Groove section
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(a) The dimensions of Specimen                                   (b) The dimensions of the actual model 

Fig. 2.32 Remaining load-carrying capacity curve, normalized to the horizontal shear yield strength of the 

intact gusset plate. 

The maximum loads obtained from the parametric FEM analysis of the change in cross-sectional loss level 

are shown in Fig. 2.32, in which the horizontal axis and vertical axis illustrate the remaining thickness rate (%) 

and Pmax/Py, respectively. Figure 2.32(a) described the remaining load-carrying capacity curve obtained from 

Section 2.5.2(b) with the dimensions of Specimen, and Fig 2.32(b) provided the remaining load-carrying 

capacity curve with the dimensions of the actual gusset plate connection. In these figures, Pmax and Py are the 

maximum load carried by the cross-sectional loss cases and the horizontal shear yield strength of the intact 

gusset plate, respectively. In addition, the horizontal shear yield strength of the intact gusset plate was cal-

culated by using the following equation (2.3). 
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1 1
2

3 3
y y g yP A bL        (2.3) 

where, y is the yield stress of the steel, Ag is the cross-sectional area of the gusset plate. 

As shown in Fig. 2.32(b) with the dimensions of the actual gusset plate connection, the remaining 

load-carrying capacity curves were approximately linear, while the value of Pmax/Py exhibited a sharp decrease 

when the failure condition in the corroded section changed from local buckling to shear buckling. Moreover, 

for the cases with the dimensions of the actual gusset plate, the remaining load-carrying capacity curves 

normalized to the horizontal shear yield strength of the intact gusset plate is completely the same with that of 

the cases with the dimensions of specimens obtained from Section 2.5.2(b). Therefore, by using the remaining 

load-carrying capacity curves, normalized to the horizontal shear yield strength of the intact gusset plate; the 

load-carrying capacity of corroded gusset plate connection on real bridges can be effectively determined. In 

addition, the results of the parametric analysis in this Section also indicated that the failure condition on the 

actual gusset plate agreed completely with that of the gusset plate connection under the dimensions of the 

specimen. 

2.6. EVALUATION EQUATION FOR LOCAL BUCKLING STRENGTH 

2.6.1. Proposed evaluation equation 

This section proposes an evaluation method for determining the local buckling strength of the plate region 

underneath the compressive diagonal member in cases of the corrosion loss of the gusset plate thickness. For 

the specimens tested in the experiments, the diagonal members were connected to the gusset plate using bolts 

through the connecting plates. Therefore, the effective width of the buckling plate area was determined in 

accordance with the Whitmore method2.10) (Fig. 2.33(a)). The local buckling strength of the plate region with 

the cross-sectional corrosion was then calculated from three component fixed-end-columns (l01, l02, and l03) 

with the sudden change in cross-section, as shown in Fig. 2.33(b). In this evaluation method, the eccentricity 

of the cross-sectional loss section and the initial deflection of the local buckling plate region is neglected. 

Thus, the buckling load condition of each “component column” with sudden change in cross-section can be 

described by Equation (2.4). 

   1
1 1 2 2

2

tan tan 0l l


 


 
  

 

    (2.4a) 



Chapter 2: Evaluation of remaining load-carrying capacity of corroded gusset plate connection                               . 

37 

 

22

11

/

/

EIP
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






      (2.4b) 

where, E is the elastic modulus of steel; l1 and l2 are the length of the plate region without and with corrosion, 

respectively; and I1 and I2 are the moment of inertia of the plate region without and with corrosion, respec-

tively (see Fig. 2.33(b)). 

The process of calculating the local buckling strength of the plate region underneath the compressive 

diagonal member is as shown in the flowchart in Fig. 2.34. More specifically, it is described as follows. 

In Step 1, the effective buckling length (l01, l02, and l03) of each component column was calculated by using 

the local buckling strength (P1, P2, and P3) of each component column, calculated using Equation (2.4a). Then, 

in Step 2, the slenderness ratio c of the plate region in which the local buckling occurred was determined as 

the average value of the three component slenderness ratios, by Equation (2.5b). 

The slenderness ratio is determined by: 
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   (2.5a) 

3

321 ccc
c





      (2.5b) 

where, I01, I02, and I03 are the moment of inertia of each component column; rs1, rs2, and rs3 are the radius of 

gyration of each component column; c1, c2, and c3 are the slenderness ratio of each component column; and 

y is the yield stress of the steel. 

Finally, the local buckling strength of the compressive plate area was determined using the standard 

buckling equations specified in Japanese Design code2.8) (JSHB) with the previously calculated slenderness 

ratio value, as shown in Equation (5). 

averageycr AP                                  ( 2.0c )                        (2.6a) 

averageyccr AP  )545.0109.1( -                                 ( 0.12.0  c )              (2.6b) 

averagey

c

cr AP 
 2773.0

1


                                 (

c0.1 )                        (2.6c) 
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where, Aaverage is the average cross-sectional area of the plate. 

2.6.2. Calculated result and discussion 

The details of the process used to calculate the local buckling strength of the plate region underneath the 

compressive diagonal member with cross-sectional corrosion are shown in Table 2.6 and Table 2.7. To 

confirm the accuracy of the proposed evaluation method, the local buckling strength value obtained from the 

parametric FEM analyses, the loading tests, are also listed in Table 2.7. Further, a comparison of the local 

buckling strength predicted by the loading test and analysis and by the proposed calculation is shown in Fig. 

2.35(a). To evaluate the differences between the proposed calculation method and a method using another 

standard buckling strength curve, another set of results, calculated with AASHTO, was included, as shown in 

Fig. 2.35(b). The information shown in Fig. 2.35 indicates that when using the buckling strength curve ob-

tained by JSHB, the difference in strength between the calculated and observed results was in the range of 

-10% to 0% on the safe side, indicating that the proposed calculated result had a high level of accuracy. 

However, when using the buckling strength curve of AASHTO, the difference in strength between the cal-

culated and observed results was in the range of -10% to +10%, with only some of the results on the safe side. 

This is due to the fact that for the same slenderness ratio, the value of the buckling strength given by the 

strength curve in JSHB is typically lower than that given by AASHTO, as shown in Fig. 2.36. Therefore, to 

safely evaluate the local buckling strength of the compressive plate area, the use of the standard buckling 

strength curve given by JSHB is strongly preferred. 

Figure 2.37 illustrates the calculated local buckling strength of the cross-sectionally corroded section 

using the proposed method for various corrosion heights and remaining thicknesses. In this figure, the shear 

strength of the cross-sectionally corroded section is expressed by the value of the shear yield strength. It is 

immediately obvious that for both corrosion heights, the intersections between the local buckling strength 

curve and the shear yield strength line are consistent with the point at which the mode of failure of the 

cross-sectionally corroded section (obtained in Section 2.5.2 c)) changes from local buckling to shear buck-

ling. This demonstrates that using the relationship between the local buckling strength curve and the shear 

yield strength line can effectively determine the change in the failure condition of a corroded gusset plate 

cross-section. 
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(a) Local buckling plate area             (b) A column with fixed ends 

Fig. 2.33 Local buckling underneath the compressive diagonal. 
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End
 

Fig. 2.34 Flowchart of process for calculating the local buckling strength. 

 

Table 2.6 Calculating the local buckling strength of the three component columns of the gusset. 

Column 1 75 25 45.0 30.0 8 4 6.4 218 9301 1163 200000 4757 1412

Column 2 148 25 118.0 30.0 8 4 7.2 218 9301 1163 200000 6747 385

Column 3 44 25 44.0 0.0 8 8 8.0 218 9301 9301 200000 9301 37934

Column 1 75 25 45.0 30.0 8 8 8.0 218 9301 9301 200000 9301 13056

Column 2 148 25 118.0 30.0 8 8 8.0 218 9301 9301 200000 9301 3353

Column 3 44 25 44.0 0.0 8 8 8.0 218 9301 9301 200000 9301 37934

t 1

(mm)
Case

l 01, 02 and 03

(mm)

h z

(mm)

l 1
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l 2
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t 2
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t average
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4
)
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4
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E
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4
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Table 2.7 Calculating the local buckling strength of the plate region  

underneath the compressive diagonal member. 

CAL FEM EXP

Column 1 81.5 1.8 0.56

Column 2 185.9 2.1 1.14

Column 3 22.0 2.3 0.12

Column 1 37.5 2.3 0.21

Column 2 74.0 2.3 0.41

Column 3 22.0 2.3 0.12

                                  (i  = 1~3)Case
                  (i  = 1~3)

                  (mm)

r si (i  = 1~3)

(mm)

t50h50 0.61 1569 775

A average

(mm
2
)

P cr (kN)

820 800

N 0.24 1744 1079 1226 1184

c
01 y i
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l
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(a) Calculated using JSHB                                         (b) Calculated using AASHTO 

Fig. 2.35 Calculated (CAL), analytical (FEM), and experimental (EXP) local buckling strengths. 
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Fig. 2.36 Standard buckling strength curve.     Fig.2.37 Changed point of failure condition of the corroded section. 

2.7. CONCLUSION 

This study evaluated the effects of two different forms of gusset plate corrosion on the load-carrying ca-

pacity of the gusset plate connection: the loss of the flange-to-gusset weld and the loss of the gusset plate 

cross-section. Loading tests performed in the laboratory and an FEM analysis were conducted on an existing 

bridge configuration using an approximately half-scale model. The gusset plate connections were tested for 

50% and 75% corrosion of the gusset plate thickness, and 50% corrosion of the length of the flange-to-gusset 

weld in compression. This study then conducted parametric FEM analyses by changing the size of the cor-

roded sections to verify the relationship between the remaining load-carrying capacity and corrosion levels 

with the model of specimen and the full-scale model of an actual bridge. Finally, based on the results of the 

parametric FEM analysis of cases with the corrosion loss of the gusset plate thickness, an evaluation method 

for determining the local buckling strength of the corroded section was proposed. The results obtained from 

this study are summarized as follows: 

(1) The reduction in the load-carrying capacity of the gusset plate connection resulting from corrosion was 
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determined using the experimental results. Specifically, only a slight reduction in the load-carrying capacity 

was observed in the case of flange-to-gusset weld corrosion, while significant reduction in capacity was ob-

served in the case of cross-sectional corrosion. 

(2) The experimental results revealed that in the case of flange-to-gusset weld corrosion, large out-of-plane 

deformation appeared not only at the free edges of the gusset plate, but also in the area of the corroded weld. In 

cases with cross-sectional corrosion, local buckling was observed to be the failure mechanism of a plate with a 

small degree of corrosion and shear buckling was verified as the failure mechanism of a plate with a large 

degree of corrosion. 

(3) The deformation performance, failure behavior, and load-carrying capacity of the gusset plate connec-

tion observed in the loading tests was reproduced with high accuracy using an FEM analysis in all cases. 

(4) The results of the parametric FEM analyses confirmed that there was a significant reduction in the initial 

stiffness of gusset plate connections in cases of corroded gusset plates with less than 50% of the original 

thickness remaining. Corroded gusset plates with greater than 50% remaining thickness showed little change 

in stiffness. No change was observed in the initial stiffness of the gusset plate connection when the length of 

the flange-to-gusset weld corrosion was extended. 

(5) Based on the results of the parametric FEM analysis, as the dimensions of the corroded sections were 

increased, the load-carrying capacity of the gusset plate connection decreased. Specifically, for each 

cross-sectional corrosion height evaluated, the load-carrying capacity of the gusset plate connection exhibited 

nearly the same linear decrease with the increasing thickness of the cross-sectional corrosion of the section. 

Furthermore, the load-carrying capacity of the gusset plate connection was found to sharply drop when there 

was a change in the failure condition of the corroded section. Only a slight reduction in capacity, in the range 

of 5% to 7%, was found as the length of the flange-to-gusset weld corrosion increased from 50% to 100% of 

the gusset plate width. 

(6) The parametric FEM analysis results revealed that under the effects of cross-sectional corrosion, local 

buckling in the corroded section occurred in cases with more than 50% of the original gusset thickness re-

maining for a corrosion height of 25 mm (50% of the potential corroded section), and in cases with more than 

37.5% of the original gusset thickness remaining for a corrosion height of 50 mm (100% of the potential 

corroded section). Shear failure or shear buckling in the corrosion section was observed in the other cases. In 
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cases of flange-to-gusset weld corrosion, large out-of-plane deformation was observed in the area near the 

corroded weld during failure. 

(7) The parametric analysis results with the dimensions of the actual gusset plate connection indicated that 

the load-carrying capacity of corroded gusset plate connection on real bridges can be effectively determined, 

by using the remaining load-carrying capacity curves, normalized to the horizontal shear yield strength of the 

intact gusset plate. In addition, the failure behavior and the deformation performance of the actual gusset plate 

connection agreed completely with that of the gusset plate connection under the dimensions of the specimen. 

(8) In this study, it was proposed that the local buckling strength of the cross-sectionally corroded section 

was evaluated as a column with suddenly changing cross-section properties. The calculated result obtained 

from this proposed evaluation method was on the safe side in the range of -10% to 0% when compared to the 

results of the FEM analysis and loading tests. 

(9) Using the proposed method to evaluate the local buckling strength of the cross-sectionally corroded 

section, it was confirmed that the relationship between the local buckling strength curve and the shear yield 

strength line can be used to easily determine the failure conditions of a cross-sectionally corroded section. 
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CHAPTER 3  

EXPERIMENTAL STUDY ON REPAIR METHOD  

USING CFRP SHEETS 

3.1. INTRODUCTION 

In steel truss bridges, several severe damage due to corrosion at gusset plate connection has been widely 

reported. The reduction of the load-carrying capacity of the gusset plate connection is confirmed to lead to the 

collapse of the entire truss bridge. Attachment of stiffening plate and member replacement are among the 

conventional methods often applied to repair corroded structures. However, these repair works lack efficacy 

because of the heavy machinery and welding facilities required. Therefore, a simple and effective repair 

method for the corroded gusset plate connection is urgently needed. In order to overcome this problem, 

Chapter 3 focused on investigating the effectiveness of repair method by using carbon fiber reinforced pol-

ymers (CFRP) for the corroded gusset plate connection. CFRP sheets are used as the repair material for the 

corroded gusset plate connection because of its light weight, high strength, and superior durability. Loading 

tests were conducted with a model approximately 50% the size of an actual bridge and the degree of corrosion 

assumed to be approximately 50% of the gusset plate thickness. Further, the loading tests were carried out with 

three parameters of the repair method: including the area of the bonded CFRP sheets, the direction (45 de-

grees: the direction of principal stress on the gusset plate, 56 degrees: the direction of the diagonal member, 

and 90 & 0 degrees: the direction resisting the horizontal shear stress on the corroded section) of the bonded 

CFRP sheets, and the location of the bonded CFRP sheets (out-side bonding and both-sides bonding). This 

Chapter established a proper repair method for the corroded gusset plate connection. The improvement rate of 

the strength of the corroded gusset plate and the effectiveness of the proposed repair methods were evaluated 

by using the obtained load-testing results. 
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Table 3.1 Properties of CFRP sheet and steel.                     Table 3.2 Properties of putty and resin. 

CFRP (FTS-C8-30) Steel (SS400)

Elastic modulus (GPa) 640 200

Tensile strength (MPa) 2430 -

Yield stress (MPa) - 317

Poisson’s ratio 0.3 -

Design thickness (mm) 0.143 -

Density (g/cm
3
) 2.1 7.86      

Polyurea

putty
Resin

Groove section

 putty

Amount of coating (g/m
2
) 1000 1000 -

Coating thickness (mm) 0.8 0.85 -

Young’s modulus (MPa) 54.7 2533 4021

Density (g/cm
3
) 1.25 1.17 1.53

 

 

Table 3.3 Experimental parameters. 

h z  (mm) t z  (mm)

1 N - - - - No repair -

2 S - - No repair -

3 S1_45 Out side
9 outer

(each direction)

4 S2_45 Both sides
4 inner + 5 outer

(each direction)

5 S1_56 Out side
9 outer

(each direction)

6 S2_56 Both sides
4 inner + 5 outer

(each direction)

7 S2_90

90
o
 & 0

o

(The direction resisting the

horizontal shear stress of the

corroded section)

Both sides
4 inner + 5 outer

(each direction)

Number of

CFRP

(layer)

25 4

45
o

(The direction of principal

stress on the gusset plate)

56
o

(The direction of the diagonal

member)

The location of

bonding

CFRP sheets

No. Specimen

Dimension of Groove

section
The area of
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The direction of

bonding CFRP sheets
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3.2. EXPERIMENTAL OVERVIEW 

3.2.1. Specimen shape 

The specimens used in this study were of the monolith-type, denoting that the projected web-plates of the 

lower chord member were employed as a gusset plate. In addition, these models were approximately 50% the 

size of the real bridge. Further, their dimensions were decided with respect to the shape of real truss bridges on 

which corrosion damage of the gusset plate connection had been found. The length and width of the gusset 

plate connection and the thickness of gusset plate were 1200 mm, 216 mm, and 8 mm, respectively (Fig. 3.1). 

Moreover, the cross-sectional loss part owing to corrosion was expressed by cutting a groove (called the 

“Groove”) at the location connecting the gusset plate and the lower chord member, with height hz and width tz. 

The loading tests were conducted in the laboratory with the link frame system for all specimens, as shown in 

Fig. 3.1(a). The frame loading system was connected to the specimen using bolts through the connecting 

plates. In addition, only the specimen was changed after finishing the loading test; the frame of the loading 

system was kept for the ensuing test. 

3.2.2. Properties of the materials 

a) Steel and CFRP sheet 

The mechanical properties of CFRP sheet and the steel used in this study are listed in Table 3.1. SS400 

steel was used as a base metal. Its yield stress is 317 MPa and elastic modulus is 200 GPa, as determined based 

on the mill sheet certificate. The employed FTS-C8-30 CFRP, in sheet form, is lightweight (2.1 g/cm3), has a 

large tensile strength (2430 MPa), and is durable in harsh environments. In particular, the FTS-C8-30 CFRP 

sheet has an elastic modulus that is 3.2 times higher than that of the steel. Further, the design thickness of 

CFRP sheet is 0.143 mm. These mechanical values were used directly in the design to determine the number of 

CFRP layers used in this study. 

b) Putty and resin 

Table 3.2 lists the mechanical properties of polyurea putty and resin. In this study, to maximize the ef-

fectiveness of the proposed method using CFRP sheets, and prevent delamination of CFRP layers under large 

deformations such as buckling, polyurea putty with a low elastic modulus (54.7 MPa) and high elongation 

(300%-500%) was inserted between the steel and CFRP sheet. Moreover, the epoxy-type putty filled the 

cross-sectional loss part of the groove, with a coating amount that accorded with the amount of loss of the 
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gusset plate thickness. 

3.2.3. Experimental parameters 

The experimental parameters in this study are shown in Table 3.3. With the basic aim of grasping the de-

formation performance, failure behavior, and load-carrying capacity of the gusset plate connection, a loading 

test onto the intact case without the cross-sectional loss part was conducted. The level of corrosion in this 

study was assumed to be approximately 50% of the gusset plate thickness, with the dimensions of the Groove 

section being hz = 25 mm, tz = 4 mm. In the corroded case, in order to consider the effectiveness of using the 

CFRP bonding method, loading tests were conducted for the repaired and non-repaired cases. For the bonding 

method, the loading tests were conducted with three parameters: including the area of the bonded CFRP sheets 

(see Table 3.3, Fig. 3.2, and Fig. 3.3); the direction of the bonded CFRP sheets (45 degrees: the direction of 

principal stress on gusset plate, 56 degrees: the direction of the diagonal member, 90&0 degrees: the direc-

tion resisting the horizontal shear stress on the Groove section); and the location of the bonded CFRP sheets 

(out-side bonding and both-sides bonding). In addition, with the aim of considering a simpler method of 

bonding CFRP sheets onto the cross-sectional loss part, this study proposes two CFRP bonding methods, 

both-sides and outside bonding, as shown in Fig. 3.2 and Fig. 3.3. In the both-sides bonding method, CFRP 

sheets are bonded to the outside and inside of the gusset plate. At the inside, CFRP sheets were connected 

continuously to the upper flange of the lower chord member by an R-shape (R50). Space created by this 

R-shape was filled with the epoxy-type putty. In the outside bonding method, CFRP sheets are bonded only to 

the outside of the gusset plate. 

Therefore, seven specimens were tested: one intact specimen (Specimen N), one corroded specimen 

without repair (Specimen S), two specimens (S1_45, S2_45) with the bonded CFRP direction of 45 degrees, 

two specimens (S1_56, S2_56) with the bonded-CFRP direction of 56 degrees, and one specimen (S2_90) 

with the CFRP sheets of the 90&0-direction bonding in both sides of the gusset plate. The specimens were 

named according to the corrosion level: No corrosion, Small corrosion, abbreviated N, S, respectively. The 

numbers following the names are the face numbers of the bonded CFRP sheet, the direction of bonding CFRP 

sheets, respectively. 
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(a) No Repair                                   (b) Outside bonding                    (c) Both-sides bonding 

Fig. 3.2 The specimens before loading test. 
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(c) S2_90 

Fig. 3.3 The CFRP bonding methods on the corroded gusset plate. 
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Fig. 3.4 Process bonding CFRP sheets. 

1200

1180

1520

500

610

Loading

L1

L2

L3

D1

D2

2000

7-1,4

7-2,5

7-3,6

5-2,5

5-3,6

5-1,4

80 80

L1_1 L1_2
100 100

100

100L2_1

L2_2

L2_3 L2_4

Unit: mm

Three-element Rosette Stacked 

 Strain Gauges

Single-element Strain Gauges

In-plane Displacement 

Measurement

6-3

6-2

6-1

1-V

2-H

3-H 5-V

4-V

Out-of-plane Displacement

Measurement

 

300

200

0E2 D2 C2 B2 A21

E1 D1 C1 B1 A1

DL CL BL

V
D

H

Unit: mm

Three-element Rosette Stacked Strain Gauges

Single-element Strain Gauges
Displacement Measurement

2
Zh

2
Zh

CG1

CG2
CG3

Groove

CFRP

 

Fig. 3.5 Measured items in the link frame.           Fig. 3.6 Strain gauge locations in the gusset plate. 

3.2.4. Determining the number of CFRP sheets 

For the CFRP bonding method, this study considered the direction of principal stress on the gusset plate 

(45 degrees) through the experimental result and finite element method (FEM) analysis of the case without 

the cross-sectional loss; the direction of the diagonal member (56 degrees); and the direction resisting the 

horizontal shear stress on the corroded section (90 & 0 degrees). Therefore, the direction of CFRP sheets was 

interwoven at an angle of 45 degrees in cases of S1_45, S2_45; at an angle of 56 degrees in cases of S1_56, 

S2_56; at an angle of 90 & 0 degrees in case of S2_90; for each direction (in terms of compression and ten-

sion). The current manual related to the CFRP bonding standard3.12) states that the development length of the 

outermost layer of the CFRP sheet should be more than 200 mm. Further, in order to avoid stress concentration 
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on the top of each CFRP layer, creating a shift amount of more than 10 mm (about 14 mm for the 45 degrees 

direction of CFRP) was necessary. However, this method was very difficult to implement in this study prac-

tically, because the length of CFRP sheets was limited by the bolts connecting the gusset plate to the diagonal 

members. Therefore, in this study, on the outside of the gusset plate, CFRP sheets were bonded from the areas 

around the diagonal members, and was extended to the edge of the welding part of the lower chord member. 

With this bonding method, although the development length of CFRP sheets on the upper side was insuffi-

cient, the CFRP bonding process became easier. Moreover, the shift length at the top of each CFRP layer was 

not implemented. Therefore, delamination between CFRP sheets and the gusset plate need to be clarified from 

the experimental results. 

In the cases of bonding of CFRP sheets into the inner side of the gusset plate (both-sides bonding), the 

length of CFRP sheets also started from the areas around the diagonal member, extended to the upper flange of 

the chord member, and then connected between the gusset plate and the flange with an R-shape (R50), as 

shown in Fig. 3.3(a2) (b2) and (c). At this connection, CFRP sheets were extended continuously to the areas of 

the opposite diagonal member. The epoxy-type putty was used to fill the cross-sectional loss part. In the case 

of the same number of CFRP sheets, the bonding process of the both-sides bonding method usually requires 

much more time than that of the out-side bonding method. This is because the inside of a gusset plate has a 

complex shape. However, there was no major problem during this bonding process. The bonding process was 

completed as planned. 

In this study, as a basic design method, the number of CFRP sheets had to be determined so that the cor-

roded thickness of the gusset plate could be recovered as a healthy thickness. Therefore, the number of CFRP 

layers for each direction (in terms of compression and tension) was calculated such that the layers bonded to 

be thicker than the thickness reduced by the cross-sectional loss, which was calculated using the steel equiv-

alent thickness of the CFRP sheet using Equation (1). The thickness of CFRP sheet of layer 1 was converted to 

that of steel by 0.143 (mm)  640 (GPa) / 200 (GPa) = 0.458 (mm), where 0.143 (mm), 640 (GPa), and 200 

(GPa) are the design thickness, Young’s modulus of CFRP sheet, and Young’s modulus of steel. 

Equation used to determine the number of CFRP sheets:  

cf cf s sdE t n E t         (3.1) 

where, Ecf is the elastic modulus of CFRP sheet; tcf is the thickness of a CFRP sheet; n is the necessary number 
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of CFRP sheets; Es is the elastic modulus of the steel; and tsd is the thickness of the cross-sectional loss part of 

the steel. 

For example, in the case having a cross-sectional loss part of 50% of the gusset plate thickness, with tZ = 4 

mm, the necessary number of CFRP layers for each direction with the outside bonding method was 4 mm / 

0.458 mm = 9 layers. For both-sides bonding, these nine layers were divided evenly between the inside and the 

outside. In this case, four layers were bonded on the inside and five layers were bonded on the outside, because 

CFRP sheet bonding on the outside is easier than that on the inside. This was calculated similar to the case 

with loss part 75% of the gusset plate thickness. This means that the total number of CFRP layers was 6 mm / 

0.458 mm = 13 layers, and there were six and seven layers on each side, respectively. 

In the CFRP sheet bonding process, the first layer was for the direction of tension or compression, and the 

second layer for the other direction. This means that the first direction of the gusset plate bonded with the 

CFRP sheet was able to be tension or compression. This is because the first direction, which was bonded with 

CFRP sheet, did not affect the effectiveness of the repair method. The third and fourth layers were a repeat of 

the first layer and the second layer, respectively. 

3.2.5. Process bonding CFRP sheets 

Figure 3.4 depicts the construction plan and the process bonding CFRP sheets to construct smoothly and 

secure the required performance. For the detail of the process bonding CFRP sheets is described as the fol-

lowing3.12). 

(a) Surface preparation 

Firstly, existing painting and rust on the surface should be removed by appropriate preparation methods 

such as blasting or disk sanding. Secondly, smears should be removed by using the organic solvent to keep the 

surface clean. Note that a built-up portion of welding should not be chipped off by a disk sander since it may 

damage the welded part. 

(b) Application of the primer 

Primer is applied to prevent corrosion after surface preparation, upgrading the bonding ability between the 

steel member and the CFRP sheets. The primer should be applied immediately after surface preparation, and 

after removal of rust and smear if they appear. The primer should not be applied when the surface of the steel 

is wet because the primer ingredient is only curable at warmer, drier temperatures. In principle, when the 
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temperature is lower than 50C or humidity is higher than 85% on a rainy day, the primer should not be applied. 

(c) Surface smoothing 

Flatten uneven or pitted areas by using the resin putty after application of the primer, since flatness in-

fluences the bonding capability. Apply the resin putty. When covering a corner portion (inner curve), mold 

into an arch-like shape. Surface smoothing should be carried out after confirming the primer is dry to the 

touch. Other required steps such as surface cleaning, temperature, and humidity are same as the step of “Ap-

plication of the primer”. 

(d) Application of the primer for highly expansive elastic putty 

Apply the primer for highly expanse elastic putty on the surface of the steel member and smoothing agent 

to secure their bond after achieving initial hardening of the smoothing agent. Other required conditions are 

same as the step of “Application of the primer”. 

(e) Application of the highly expansive elastic putty 

Confirm the primer is dry to the touch and apply the highly expansive elastic putty. Keep the thickness of 

the putty by design and as even as possible to obtain required repairing effect. Other required conditions are 

same as the step of “Application of the primer”. 

(f) Application of the CFRP sheets 

Place the CFRP sheets accordingly and set it in the direction required by design after the putty gains initial 

hardening. Other required conditions are same as the step of “Application of the primer”. 

3.2.6. Measured items 

a) Strain gauge location 

The locations of the strain gauges are shown in Figs. 3.5, and 6. Four single-element strain gauges were 

attached to the cross-section of each member of the link frame, in order to consider the effects of the two-axis 

bending moment and the axial force on them. Moreover, in order to determine the principal stress components 

on the cross-sectional loss part and the border line between the gusset plate and the lower chord; three-element 

0o/45o/90o Rosette Stacked strain gauges were employed, as shown in Fig. 3.6. In the non-repaired cases, the 

strain gauges were attached to the inside and outside of the cross-sectional loss part. In the bonding cases of 

CFRP sheet, the strain gauges were attached to the inside of the cross-sectional loss part (steel), and to the 

outside of the CFRP sheet (Fig. 3.6). In addition, three-element 0o/45o/90o Rosette Stacked strain gauges were 
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also used at the plate area underneath the compressive diagonal member, to grasp the buckling behavior, and 

single-element strain gauges were used for the other locations. 

b) Displacement measurement 

In each loading step, vertical and horizontal displacements were measured on the members of the truss 

frame and the link frame, and the bottom surface of gusset plate connection, as shown in Fig. 3.5. In addition, 

the out-of-plane displacement of the gusset plate was also measured at the two outside surfaces of the gusset 

plate connection. These positions was labeled 7-1~7-6, as shown in Fig. 3.5. 

3.2.7. Loading method 

The loading tests were conducted in the laboratory with the link frame system for all specimens. This 

frame system was connected to the specimen by using bolts through the connecting plates. Further, only the 

specimen was changed after finishing the loading test, and the frame system was kept for the ensuing test. 

SHIMADZU experimental equipment with 3000 kN capacity was used to test all specimens. The formal 

loading test process was only carried out after finishing the repetition about two or three times for the loading 

test at the elastic phase of the material. 

3.3. RESULTS AND DISCUSSION 

3.3.1.  Improved effectiveness for maximum load 

The maximum loads collected from the experiments are shown in Table 3.4. The max load reduction rate 

of the specimens was calculated as the difference between the average axial force of the two diagonal mem-

bers of the frame of the cases with cross-sectional loss, and that of the case without cross-sectional loss, as in 

Equation (3.2). The improvement rate was taken as the difference in the average axial force of the two di-

agonal members between the repaired specimen and the non-repaired specimen, as in Equation (3.3). 

Determining the max load reduction rate. 

0

max max
1 0

max

(%)
P P

R
P

-
      (3.2) 

where, Pmax is the average axial force of the two diagonal members in the non-repaired case at the max load; 

and P0
max is the average axial force of the two diagonal members in the intact case N at the max load. 
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Determining the max load improvement rate. 

max max
2

max

(%)
P P

R
P

 -
      (3.3) 

where, P’max is the average axial force of the two diagonal members of the repaired case at the max load; and 

Pmax is the average axial force of the two diagonal members in the non-repaired case at the max load. 

From the information in Table 3.4, the load-carrying capacity of the non-repair case S reduced signifi-

cantly compared to the intact case N by 20.3%. Furthermore, in the repaired cases bonding CFRP sheets in the 

direction of 45 degrees and 56 degrees, their load-carrying capacity increased only slightly, with improvement 

rates of 0.3% to 11.1%. This is because the peeling failure between CFRP sheets and the gusset plate occurred 

under the large out-of-plane deformation of buckling, which occurred at the plate area underneath the diagonal 

member of the gusset plate connection and the free edge of the gusset plate. Moreover, with the bonded 

CFRP-sheet direction of 45 degrees and 56 degrees, the effectiveness of CFRP sheets resisting the horizontal 

shear stress of the Groove section, which decided the final load-carrying capacity of the corroded gusset plate 

connection, is not considerable. Meanwhile in the case of S2_90, by bonding CFRP sheets in the direction of 

90 degrees, its load-carrying capacity recovered to that of the intact case with the improvement rate of 19.7%. 

This is understood that bonding CFRP sheets with the purpose of increasing the horizontal shear strength of 

the Groove section significantly increased the final load-carrying capacity of the corroded gusset plate con-

nection. 

From the experimental results, the reduction of the load-carrying capacity of the gusset plate connection 

owing to the corrosion is clarified. Further, the proposed repair method by bonding CFRP sheets in the di-

rection of 90 degrees recovered the load-carrying capacity of the corroded gusset plate connection. 
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Table 3.4 Maximum load and improvement rate. 

The direction

of bonding

CFRP sheets

The area of bonding

CFRP sheets

The location

of bonding

CFRP sheets

Number of CFRP

(layer)

1 N 1634 - -

2 S 1303 20.3 -

3 S1_45 1448 - 11.1 Out side
9 outer

(each direction)

4 S2_45 1348 - 3.5 Both sides
4 inner + 5 outer

(each direction)

5 S1_56 1314 - 0.8 Out side
9 outer

(each direction)

6 S2_56 1387 - 6.4 Both sides
4 inner + 5 outer

(each direction)

7 S2_90 1560 - 19.7 90
o
 & 0

o Both sides
4 inner + 5 outer

(each direction)

CFRP bonding method

No. Specimen

Maximum

load

(kN)

Maximum

load

 reduction rate

 R 1(%)

Maximum load

improvement

rate

R 2(%)

45
o

56
o

No repair

No repair

 
 

Table 3.5 Strength of gusset plate connections (AASHTO). 

N S

1a - Shear fracture strength of bolts P ru 2897 -

1b - Block shear rupture strength of bolts P ru 3203 -

2a - Cross section yielding strength of gusset plate

       at the closest bolt part
P gy 2221 -

2b - Net section fracture resistance

       of gusset plate at the closest bolt part
P gu 2881 -

3 - Block shear rupture strength in tension P gbs 2415 -

4a - Cross section yielding strength of diagonal member P dy 2184 -

4b - Net section fracture strength of diagonal member P du 2734 -

5 - Compressive strength

     (Buckling at the plate area underneath diagonal member)
P gcr 1131 -

6 - Shear fracture strength of gusset plate V gsy 1581 791

Limit State of Gusset Plate Connection
Loading value (kN)

 

The process calculating the strengths of the gusset plate connection is described in APPENDIX. 
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(a) CFRP of 45 degrees                  (b) CFRP of 56 degrees                  (c) CFRP of 90 & 0 degrees 

Fig. 3.7 Load-Vertical displacement relation. 
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(a) CFRP of 45 degrees                 (b) CFRP of 56 degrees                (c) CFRP of 90 & 0 degrees 

Fig. 3.8 Load-Out-of-plane deformation relation. 

3.3.2.  Improved effectiveness for deformation 

a) Load and vertical displacement relation 

The strength of the gusset plate connection was determined as the resistance ability of the gusset plate to 

compression, shear, and tension. In this study, calculating the strength of the gusset plate connection was 

conducted by using the load rating guidance for bolted and riveted gusset plates in truss bridges, as suggested 

by AASHTO3.20). In particular, the buckling strength (compressive strength) at the plate area underneath the 

diagonal member of the gusset plate connection was calculated by referring to ref. 3.21. This calculation 

process is described in APPENDIX. In addition, the strength of the gusset plate connection is summarized in 

Table 3.5. 

The relations between load and vertical displacement at the highest point of the tensile link member of the 

link frame in all specimens are shown in Fig. 3.7. The red and blue dashed lines in Fig. 3.7 express the 

compressive strength and shear fracture strength of the gusset plate connection, which are summarized in 

Table 3.5. In the non-repaired specimens S with the corrosion level of 50% of the gusset plate thickness, there 

was almost no change of the initial stiffness. Further, in the repaired cases, buckling at the plate area under-

neath diagonal member occurred at the load of approximately 1100 kN in the specimens of S1_45 and S2_45, 

in which the CFRP sheets were not added to the free edges of the gusset plate; and at the load of approximately 

1200 kN in the specimens of S1_56, S2_56, and S2_90, in which the CFRP sheets were added to the free edges 

of the gusset plate (this point is clarified in Section 3.3.4). The vertical displacement of the specimens in-
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creased linearly until buckling occurred at the diagonal member. After overcoming the buckling load, the 

load-displacement curve trend changed. 

As a result, there was virtually no change in the initial stiffness of the case with the corrosion level of 50% 

of the gusset plate thickness. 

b) Load and out-of-plane deformation relation 

The relations between the load and out-of-plane deformation on the central point of the gusset plate are 

shown in Fig. 3.8. In Fig. 3.8, the out-of-plane deformation of the intact case N is large only in the phase with 

virtually maximum load. This is due to the influence of large deformation induced by buckling at the plate area 

underneath the compressive diagonal member.  

In the non-repaired case S, the out-of-plane deformation is large. This is because of the influence of the 

local buckling at the Groove section. However, with the proposed methods bonding CFRP sheets, its 

out-of-plane stiffness increased substantially, and local buckling is prevented at the Groove area. This is 

clearly seen through the out-of-plane deformation of Cases S1_45, S2_45, S1_56, S2_56, and S2_90, as 

shown in Fig. 3.8. These results confirm that the proposed CFRP bonding methods are able to recover the 

out-of-plane stiffness of the corroded gusset plate. 

3.3.3.  Improved effectiveness for eccentricity moment on the corroded section 

Figure 3.9 shows the relations between the load and strain on the inner surface of the Groove section in the 

diagonal direction in all of specimens without and with repair. From the information of Fig 3.9, in the 

non-repaired case S, the strain on the inner surface of the Groove section in the diagonal direction is large. 

This is understood to be the result of eccentricity due to the decreased thickness of the Groove section, causing 

a significant increase in the bending moment in the compressive direction. Furthermore, in the outside bonding 

cases of S1_45 and S1_56, because of the eccentric nature of the cross-sectional loss part, the strain of the loss 

part has reached a large value even under a low loading value. However, by bonding CFRP sheets to both-sides 

of the gusset plate in the cases of S2_45, S2_56, and S2_90; the bending moment in the compressive direction 

of the Groove section due to the eccentricity was improved considerably compared to the cases (S1_45, and 

S2_56) bonding the CFRP sheets to only outside of the gusset plate. This information was clarified through the 

relation between the load and the strain on the inner surface of the Groove section repaired, as shown in Fig. 

3.9. 
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As a result, the repair methods bonding CFRP sheets into both-sides of the corroded gusset plate are able to 

improve the bending moment in the compressive direction of the corroded section owing to the eccentricity. 

3.3.4.  Failure condition 

Figure 3.10 shows the residual deformation of the specimens after the loading test, and Table 3.6 lists all 

of the failure conditions on the gusset plate in each case in order. In the intact case N with the link frame, the 

first failure condition was buckling at the plate area underneath the diagonal member from 1100 kN. This was 

clarified through the relation between the load and the bending strain of the plate area underneath the com-

pressive diagonal member, as shown in Fig. 3.11(a). On the other hand, the load causing buckling in this plate 

area was similar to the non-repaired case S; and the repaired cases S1_45, and S2_45 (see Fig. 3.11(b) and (c)), 

in which CFRP sheets were not attached to the area around the diagonal member. Further, the load-carrying 

capacity of the intact case N reached the maximum value after the large out-of-plane deformation occurred at 

the plate area underneath the compressive diagonal member owing to buckling. 

In the non-repaired case S, local buckling appeared at the Groove section for 801 kN. This is understood to 

be as a result of eccentricity, due to the decreased thickness of the Groove section, which caused a significant 

increase in the bending moment in the compressive direction of the Groove section. This point clarified 

through the relation between the load and bending strain on the Groove section, as shown in Fig. 3.12. The 

final failure condition in this case was the shear fracture at the Groove section. 

On the other hand, using CFRP sheets bonding method increased the out-of-plane stiffness of the gusset 

plate. Consequently, in all of the repaired cases, local buckling on the Groove section did not occur. Moreover, 

by bonding CFRP sheets to both sides of the gusset plate in the cases of S2_45, S2_56, and S2_90; the bending 

moment in the compressive direction of the Groove section due to the eccentricity was improved considerably 

compared to the cases (S1_45, and S2_56) bonding CFRP sheets to only outside of the gusset plate. This 

information was clarified through the relation between the load and the strain on the inner surface of the 

Groove section, as described in Section 3.3.3. 

In cases added CFRP sheets to the area around the diagonal member such as cases of S1_56, S2_56, and 

S2_90; the plate area underneath the diagonal member was reinforced by CFRP sheets, so the buckling load on 

this area was grown up by 10%, compared to the cases of S1_45, and S2_45. 
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Figure 3.13 shows the relations between load and von Mises stress on the outermost CFRP sheet of the 

locations, in which the first delamination between CFRP sheet and the gusset plate occurred. The first de-

lamination appeared at the Groove section for specimens S1_45 and S2_45; at the areas around the diagonal 

members for specimens S1_56, S2_56 and S2_90. In Fig. 3.13, the red horizontal line indicates the load 

(delamination load), which caused delamination between CFRP sheets and the gusset plate. The delamination 

load was determined at the loading value, with the stress on the outermost CFRP sheet substantially lower. The 

delamination load was approximately equal to the max load in each case. This confirms that the delamination 

occurred between CFRP sheets and the gusset plate, the load-carrying capacity of the specimens could not 

increase beyond that point. In short, although the low elastic putty material was applied, delamination oc-

curred between CFRP sheets and the gusset plate. Specifically, under the large out-of-plane deformation of the 

free edge of the gusset plate during compression and the very large out-of-plane stiffness of CFRP sheets, 

deformation of the putty layer exceeded its plastic limit. Therefore, CFRP sheets and the gusset plate were 

rapidly delaminated. The final status in all of the repaired cases was the delamination of CFRP sheets and 

shear fracture at the Groove section. 
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(a) S1_45 and S2_45                                                   (b) S1_56, S2_56, and S2_90 

Fig. 3.9 Load-Strain relation on the inner surface of the Groove section in the diagonal direction. 
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Table 3.6 Summary of failure conditions on the gusset plate. 

No. Specimen

Local

buckling at

Groove

section

(kN)

Buckling at

the plate area

underneath diagonal

member

(kN)

Delamination between

CFRP sheet and

the gusset plate

(kN)

Final failure condition

Maximum

load

(kN)

The area

bonding CFRP

sheets

1 N - 1100 -
Large out-of-plane

deformation
1634 -

2 S 801 1086 - 1303 -

3 S1_45 - 1080 1386 1448

4 S2_45 - 1096 1329 1348

5 S1_56 - 1205 1224 1314

6 S2_56 - 1196 1250 1387

7 S2_90 - 1184 1450 1560

Shear fracture

at Groove section
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(a) Intact specimen N                             (b) Specimen S                                (c) Specimen S2_45 
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(d) Specimen S1_56                           (e) Specimen S2_56                          (f) Specimen S2_90 

Fig. 3.11 Load-bending strain relation at the plate area underneath the diagonal member. 
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(a) Location A                                   (b) Location B                                    (c) Location C 

Fig. 3.12 Load-bending strain relationship of Specimen S. 
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(a) Specimen S1_45                                              (b) Specimen S2_45 
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(c) Specimen S1_56                                               (d) Specimen S2_56 
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(e) Specimen S2_90 

Fig. 3.13 Load-Von Mises stress on CFRP sheet. 

3.4. CONCLUSION 

This study proposed the repair methods using carbon fiber-reinforced polymer (CFRP) for corroded gusset 

plate connections after investigating their effectiveness, with three parameters: including the area of the 

bonded CFRP sheets; the direction (45 degrees: the direction of principal stress on the gusset plate, 56 

degrees: the direction of the diagonal member, 90 & 0 degrees: the direction resisting the horizontal shear 
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stress on the corroded section) of the bonded CFRP sheets; and the location of the bonded CFRP sheets 

(out-side bonding and both-sides bonding). Evaluations were conducted by implementing the five bonding 

methods with CFRP sheets, and evaluating the improvement rate of the load-carrying capacity of the corroded 

gusset plate. Loading tests in the laboratory with a model approximately 50% the size of the actual bridge, and 

the degree of corrosion assumed approximately 50% of the gusset plate thickness, were conducted. The results 

obtained from this study are summarized as the following: 

(1) The reduction of the load-carrying capacity of the gusset plate connection due to the corrosion level of 

50% of the gusset plate thickness, is clarified with the reduction rate of 20.3%. 

(2) The proposed repair methods using CFRP sheets were able to improve the load-carrying capacity of the 

corroded gusset plate connection with the improvement rate in the range of 0.8% to 19.7%. While, the method 

bonding CFRP sheets in the direction of 90 degrees recovered the load-carrying capacity of the corroded 

gusset plate connection to virtually the same as that of the intact case. This is understood that the method 

bonding CFRP sheets with the direction of 90 degrees achieved the better effectiveness in resisting the hor-

izontal shear stress of the corroded section, which decided the final load-carrying capacity of the corroded 

gusset plate connection, compared to other methods. 

(3) The experimental results provided that there was virtually no change in the initial stiffness of the gusset 

plate connection with the corrosion level of 50% of the gusset plate thickness. However, the significant in-

crease of the out-of-plane deformation of the corroded gusset plate was seen because the local buckling on the 

corroded section occurred. This is understood to be as a result of eccentricity, due to the decreased thickness of 

the corroded section. On the other hand, by using the proposed repair methods, the out-of-plane deformation of 

the corroded gusset plate connection was prevented completely. Therefore, in all of the repaired cases, local 

buckling on the corroded section did not occur. 

(4) For all of the proposed repaired methods; in the both-sides bonding methods, the bending moment in the 

compressive direction of the corroded section due to eccentricity was improved considerably compared to the 

out-side bonding methods. 

(5) In the repair methods added CFRP sheets to the area around the diagonal member of the gusset plate 

connection; the plate area underneath the diagonal member was reinforced by CFRP sheets, so the buckling 

load on this area was grown up by 10%, compared to the other methods. 
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APPENDIX: CALCULATING STRENGTH OF GUSSET PLATE CONNECTION (AASHTO) 

In this study, calculation of the strength of the gusset plate connection was conducted by using the load 

rating guidance of the gusset plate, as suggested by AASHTO3.20). In particular, the buckling strength (com-

pressive strength) at the plate area underneath the diagonal member of the gusset plate connection was cal-

culated in accordance with ref. 3.21. The limit state of the gusset plate and the diagonal members of the gusset 

plate connection were assumed as follows, and shown in Fig. 3.14. This calculation process is shown in Table 

3.7. 

1) Strength of fasteners in compression, tension 

2) Cross-section yielding or net section fracture resistance of gusset plate 

3) Block shear rupture strength in tension 

4) Cross-section yielding or net section fracture strength of diagonal member 

5) Compressive strength 

6) Shear fracture strength  

Lower Chord

1 – Strength of fasteners in 

compression and tension

3 – Block shear rupture 

strength in tension
2 – Cross-section yielding 

or net section fracture 

resistance of gusset plate

4 – Cross-section 

yielding or net section 

fracture strength of 

diagonal member

6 – Shear fracture strength

5 – Compressive strength

Diagonal memberDiagonal member

 

Fig. 3.14 Limit state of the gusset plate connection. 
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Table 3.7 Calculating the strength of the gusset plate connection (AASHTO). 

N S

f u : Tensile strength of bolt (M20(F10T)) (MPa) 1100 1100

A r :  Cross-sectional area of bolt (f  = 22) (mm
2
) 380.1 380.1

n:  The number of shear planes 6 6

P ru : Shear fracture strength of bolts (kN) 2897 2897

ΣL c :  Clear distance between holes (mm) 438 438

t:  Thickness of gusset plate (mm) 8 8

f u :  Tensile strength of gusset plate (SS400)                       ---- (MPa) 457 457

P ru :  Block shear rupture strength of bolts (kN) 3203 3203

L e :  Whitmore width (mm) 438.0 438.0

t:  Thickness of gusset plate (mm) 8 8

A e :  Gross cross-sectional area of

       Whitmore effective width of gusset plate (mm
2
)

3503.7 3503.7

f y :  Yield strength of gusset plate (SS400) (MPa) 317 317

P gy :  Cross-section yielding strength

       of gusset plate at the closest bolt part
(kN) 2221 2221

L e :  Whitmore width (mm) 438.0 438.0

t:  Thickness of gusset plate (mm) 8 8

A s :  Net cross-sectional area

      of Whitmore effective width of gusset plate                    - (mm
2
)

3151.7 3151.7

f u :  Tensile strength of gusset plate (SS400) (MPa) 457 457

P gu :  Net section fracture resistance

         of gusset plate at the closest bolt part                 - (kN)
2881 2881

A tn :  Net cross-sectional area along

       the plane resisting tension stress (mm
2
)

464 464

A tg :  Gross cross-sectional area along

       the plane resisting tension stress (mm
2
)

640 640

A vn :  Net cross-sectional area along

       the plane resisting shear stress (mm
2
)

3808 3808

A vg :  Gross cross-sectional area along

       the plane resisting shear stress (mm
2
)

5920 5920

f y :  Yield strength of gusset plate (SS400) (MPa) 317 317

f u :  Tensile strength of gusset plate (SS400) (MPa) 457 457

P gbs :  Block shear rupture strength in tension (kN) 2415 2415

A g :  Gross cross-sectional area of diagonal member (mm
2
) 5983 5983

f y :  Yield strength of gusset plate (SM490Y) (MPa) 365 365

P dy :  Cross-section yielding strength of diagonal member (mm
2
) 2184 2184

A s :  Net cross-sectional area of diagonal member (mm
2
) 5983 5983

f u :  Tensile strength of gusset plate (SM490Y) (MPa) 457 457

P du :  Net section fracture strength of diagonal member (kN) 2734 2734

L 0:  Width of diagonal member (mm) 80 80

t:  Thickness of gusset plate (mm) 8 8

A 0:  Gross cross-section area of diagonal width (mm
2
) 640 640

I g :  Moment of inertia (mm
4
) 3413.3 3413.3

r s :  Radius of gyration about the plane of buckling (mm) 2.3 2.3

L c :  The distance from center of the width of diagonal end

       to the edge of the closest adjacent member (mm)
159.1 159.1

b :  effective length factor 0.65 0.65

l :  The column slenderness ratio 0.6 0.6

f y :  Yield strength of gusset plate (SS400) (MPa) 317 317

P gcr 1:  Local buckling at unbraced area underneath diagonal (kN) 405.8 405.8

A 1:  Cross-sectional area of 1 free edge section (mm
2
) 1375.7 1375.7

A 2:  Cross-sectional area of 2 free edge section (mm
2
) 2063.5 2063.5

P gy 1:  Cross-section yielding strength of free edge area (kN) 362.8 362.8

P gy 2:  Cross-section yielding strength of free edge area (kN) 362.8 362.8

P gcr :  Compressive strength (kN) 1131 1131

A g :  Gross cross-sectional area

       along the plane resisting shear stress (mm
2
)

4800 2400

f y : Yield strength of gusset plate (SS400) (MPa) 317 317

V
0

gsy :  Shear fracture strength of gusset plate (kN) 1757 878

2b - Net section fracture resistance

       of gusset plate at the closest bolt part

3 - Block shear rupture strength in tension

4a - Cross-section yielding strength

       of diagonal member

4b - Net section fracture strength

        of diagonal member

5 - Compressive strength

     (Buckling at the area underneath diagonal

member)

6 - Shear fracture strength of gusset plate

Limit state of gusset plate connection Structural parameters
Calculated value

1a - Shear fracture strength of bolts

1b - Block shear rupture strength of bolts

2a - Cross-section yielding strength

       of gusset plate at the closest bolt part

tnuvgygbs AfAfP 
3

1

gydy AfP 

sudu AfP 
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222

111

021

01

sin

sin
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CHAPTER 4 

FINITE ELEMENT ANALYSIS OF GUSSET PLATE CONNECTION 

BONDING CFRP SHEETS 

4.1. INTRODUCTION 

The applicability of carbon fiber-reinforced polymers (CFRP) as materials for repairing and strengthening 

aging or damaged structures is being intensively investigated worldwide, typically for example in the USA 

from the 1970s, or in Japan and China from the 1980s. CFRP in sheet form is usually applied to repair and 

strengthen steel structures which have reduced load-carrying capacity due to natural hazards, human errors, 

accidents, corrosion damages, and fatigue damage. In particular, to maximize the effectiveness of repair and 

reinforcement methods using CFRP sheets, and to prevent the peeling failure of CFRP layers under large 

deformations such as buckling, polyurea putty with a low elastic modulus (54.7 MPa) and high elongation 

(300%-500%) is usually inserted between steel members and CFRP sheet. Therefore, it is clear that maximum 

strength of steel members repaired or reinforced is often determined by the peeling failure of the interface 

between structural member and CFRP sheet. For this reason, in order to perform the most effective repair and 

reinforcement; it is necessary to grasp the mechanical behavior, the peeling mechanism and the peeling strength 

of adhesion layer inserted between steel member and CFRP sheet. However, previous studies proposed linear 

theoretical analysis to determine the peeling strength of adhesion layer by calculating the principal stress on 

adhesion layer, and there is no study in which nonlinear analysis has been mentioned. Moreover, even in finite 

element analysis, modeling is difficult because the thickness of CFRP sheets and adhesive layer are so thin. 

There is almost no research on an analysis method that fully considers the orthotropic material properties of 

CFRP sheets and material model (shear direction and normal direction) of adhesion layer. 

Therefore, Chapter 4 established a nonlinear theoretical analysis method considering the peeling condition 

of adhesion layer, and the nonlinear material condition of all members on an analytical model; for a steel plate 

bonding a layer of CFRP sheet under uniaxial tensile loading. Moreover, after grasping the peeling mechanism 

of adhesion layer from the proposed nonlinear theoretical analysis, finite element analyses were implemented 
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on the repaired gusset plate connection to reproduce the experimental results obtained in Chapter 3. Finally, a 

parametric analysis was carried out on the repaired gusset plate connection by varying the number of bonding 

CFRP sheets calculated from the equation of steel conversion, to clarify the necessary number of CFRP sheets 

bonding into the corroded gusset plate. 

4.2. THEORETICAL ANALYSIS 

4.2.1. Differential equation 

a) Analytical object 

As the first premise of nonlinear theoretical analysis method, this study used a steel plate (see Fig. 4.1) 

bonding only one layer of CFRP sheet under uniaxial tensile loading, to determine the mechanical behavior, 

the peeling mechanism and the peeling strength of adhesion layer inserted between steel plate and CFRP sheet. 

In this analytical object, the width of CFRP sheet was taken at the same that of steel plate. In addition, the 

direction of CFRP sheet bonded was matched with that of the applied force. Further, as a base metal, a normal 

type of steel was used in this study. 

            

Fig. 4.1 Analytical object                            Fig. 4.2 Modeling (1/4 model). 

(Steel plate bonding a layer of CFRP). 

              

(a) Steel (-)              (b) CFRP sheet (-)         (c) Adhesion layer (-) 

Fig. 4.3 Constitutive models of materials. 
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b) Modeling 

The calculated model is described as a quarter model of the CFRP-sheet-bonded steel plate (see Fig. 4.2); 

and considered the nonlinear material model of steel, CFRP sheet, and adhesion layer as shown in Fig. 4.3. 

Here, as a bonding constitution rule, it is generally assumed that the material model of adhesion layer is 

considered by the relationship between shear stress and relative displacement, as shown in Fig. 4.3(c). 

Additionally, the elastic modulus of adhesion layer is smaller by two orders of magnitude than that of steel and 

CFRP sheet, hence the stress of adhesion layer is assumed only shear stress, and steel plate and CFRP sheet is 

assumed only tensile stress. 

In Fig. 4.2; ts, h, and tcf are the thickness of steel plate, adhesion layer, and CFRP sheet, respectively; L is the 

length of the original area bonding CFRP sheet; b is the width of steel plate and CFRP sheet; sn is the stress 

at the top location of steel plate, in which CFRP sheet is not bonded; s, , and cf are the axial stress of steel 

plate bonding CFRP sheet, the shear stress of adhesion layer, and the axial stress of CFRP sheet, respectively; 

and  is the relative displacement between steel plate and CFRP sheet in infinitesimal region dx. 

In Fig. 4.3; y, y, Es1, and Es2 are the yield stress, the yield strain, the primary Young’s modulus and the 

secondary modulus after yield of steel, in that order; cft, cft, and Ecf are the tensile strength, the strain at the 

tensile strength, the primary Young’s modulus of CFRP sheet, respectively; y, y, and u are the shear strength, 

the relative displacement at the shear strength, the relative displacement at the peeling stage of adhesion layer, 

respectively. 

c) Relationship between stress and strain 

When considering a location in the direction along the length of steel plate, with the coordinate being x; 

the relationship between stress and strain on steel plate and CFRP sheet, and the relationship between shear 

stress and relative displacement on adhesion layer are described as the following. 

 

   

1

1 2 2

s
s s y

s

s
s s y s s y

du
E
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E E E
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 


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
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where, x is the coordinate in the direction along the length of steel plate; us and ucf are the displacement of steel 

plate, and CFRP sheet, respectively; and  is the relative displacement between steel plate and CFRP sheet in 

the infinitesimal region dx. 

From Fig. 4.2, when considering the balance condition of force in the infinitesimal region dx, the balance 

equations are obtained as the following. 

0
2

s st d

dx
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          (4.4) 

0
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          (4.5) 

d) Differential equation 

By implementing some basic transformations on Equations (4.4) and (4.5) together with the material 

properties of Equations (4.1)-(4.3); the differential equations described the mechanical behavior of steel plate, 

CFRP sheet and adhesion layer were obtained as Equations (4.6) and (4.7). Moreover, as a basic theoretical 

method, by solving Equations (4.6) and (4.7) under the corresponding boundary conditions; the relative 

displacement and the shear stress of adhesion layer are able to be found at each loaded step. 
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Fig. 4.4 The peeling mechanism of CFRP sheet. 

 

 

Fig. 4.5 Flowchart of calculation process. 
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0 t y  

Level of relative 

displacement

Step 1

(Completely 

linear 

stage)

t

t u 

Step 2

(Softening 

stage)

Step 3

(Peeling 

stage)

Case 1: 

Completely linear of Adhesion

 & Elastic of Steel
（The length of softening area of adhesion = 0)　

(The length of plastic area of steel = 0）

（Solve the differential equation (4.6a))

Case 2: 

Completely linear of Adhesion

 & (Elastic + Plastic) of Steel
（The length of softening area of adhesion = 0)　

(The length of plastic area of steel < L）

（The differential equation (4.6a) & (4.6b))

Case 3: 

Completely linear of Adhesion

 & Completely plastic of Steel
（The length of softening area of adhesion = 0)　

(The length of plastic area of steel = L）

（The differential equation (4.6b))

Case 1: 

Completely linear of Adhesion

 & Elastic of Steel
（The length of softening area of adhesion = 0)　

(The length of plastic area of steel = 0）

（Solve the differential equation (4.6a))

Case 4: 

Softening stage of Adhesion

 & Elastic of Steel
（The length of softening area of adhesion > 0)　

(The length of plastic area of steel = 0）

（The differential equation (4.6a) & (4.7a))

Case 5: 

Softening stage of Adhesion

 & (Elastic + Plastic) of Steel
（The length of softening area of adhesion > 0)　

(The length of plastic area of steel < L）

（The differential equation (4.6a) & (4.7a) & (4.7b))

Case 6: 

Softening stage of Adhesion

 & (Elastic + Plastic) of Steel
（The length of softening area of adhesion > 0)　

(The length of plastic area of steel < L）

（The differential equation (4.6a) & (4.6b) & (4.7b))

Case 7: 

Softening stage of Adhesion

 & completely plastic of Steel
（The length of softening area of adhesion > 0)　

(The length of plastic area of steel = L）

（The differential equation (4.6b) & (4.7b))

y t u   

Set the peeling area lp = 0

Calculation of the stage fully satisfied peeling condition

 (The differential equation (4.6) & (4.7))

Step 4

(Develop 

Peeling 

damage)

t u 

Table 4.1 Cases implemented in calculated program. 

 

Note: 

+ In case 5: e sl l  

+ In case 6: e sl l  

Elastic Elastic + Plastic Completely plastic

Linear Case 1 Case 2 Case 3

Softening Case 4 Case 5 + Case 6 Case 7

Steel

Adhesion
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4.2.2. Calculation process 

In terms of calculation process, this study has referred to the calculation process of linear analysis of Prof. 

KAMIHARAKO4.1). According to the study of Prof. KAMIHARAKO, a theoretical analysis was proposed to 

simulate bonding and peeling behavior of continuous fiber sheet (CF sheet), with a model of concrete bonding 

a layer of CF sheet. In Prof. KAMIHARAKO’s study, it is assumed that concrete member was the complete 

rigid body, and CF sheet worked only at the linear phase of material. In addition, the constitutive model of 

material on adhesion layer was taken as the relationship between shear stress and relative displacement. This 

study developed the calculation process of Prof. KAMIHARAKO by considering the nonlinear material 

properties of all members on the analytical object. 

The peeling mechanism of CFRP sheet on the analytical object of this study is shown in Fig. 4.4. In this 

analytical object, the peeling damage occurs when the maximum value of the relative displacement on adhesion 

layer exceeds the value of u of adhesion material. Further, this maximum value is reached at the location of 

the top of the fixing section of bonded CFRP sheet. Therefore, to simplify the process of calculation, the 

applied load type is the relative displacement. This means that the calculation process in the proposed 

theoretical analysis is conducted by gradually increasing the relative displacement of t at the top of the fixing 

section of CFRP sheet (see Fig. 4.4). 

In Fig. 4.4, L, lf, and lp are the length of the original area bonding CFRP sheet, the length of fixing area of 

CFRP sheet, and the length of peeled area of CFRP sheet, respectively; ls, and le are the length of the elastic 

area on steel plate, and the length of linear area on adhesion layer, respectively; t is the relative displacement 

applied to the top of the fixing section of CFRP sheet. 

Based on the level of the applied relative displacement and the material model of adhesion layer, the 

calculation program is classified into the four stages; including the completely linear stage, softening stage, 

peeling stage, and the developing stage of peeling damage of adhesion layer. Furthermore, Table 4.1 lists all 

cases implemented in the calculated program, and Fig. 4.5 shows the flowchart of this program. The stress and 

strain values on steel plate, CFRP layer, and adhesion layer were obtained by solving the differential conditions 

(4.6) and (4.7), along with the corresponding boundary conditions. Additionally, at each step of the applied 

relative displacement load, the calculation program is stopped if the stress on CFRP layer is greater than the 

tensile strength of CFRP sheet. Further, the content of each stage in the calculation program is described in the 
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details as the following. 

In step 1 ( 0 t y   ): the mechanical behavior of adhesion layer along the length of CFRP sheet behaves 

in the completely linear. In this stage, the mechanical behavior on steel plate is classified into three potential 

cases; including elastic (Case 1), elastic + plastic (Case 2), and completely plastic (Case 3) (see Table 4.1). 

In step 2 ( y t u    ): there is a part of adhesion layer nearest the top of the fixing location of CFRP sheet 

which reaches a softening condition. In this stage, the mechanical behavior on steel plate comprises of three 

potential cases; including elastic (Case 4), elastic + plastic (Case 5 + Case 6), and completely plastic (Case 7) 

(see Table 4.1). 

In step 3 ( t u  ): the mechanical properties of adhesion layer fully satisfy the peeling condition, and 

begin to develop the peeling damage at the top of the fixing location of CFRP sheet. In this stage, the 

mechanical behavior on steel plate is also considered with three potential cases; including elastic (Case 4), 

elastic + plastic (Case 5 + Case 6), and completely plastic (Case 7) (see Table 4.1). 

In step 4 ( t u  ): in order to express the progress of peeling damage on CFRP sheet, after the peeling 

condition is fully satisfied in step 3, the length of peeling and fixing areas are newly set, and the same 

calculating procedure as in step 3 is repeated. Furthermore, the calculation is ended when the length of the set 

fixing area of CFRP sheet becomes so short, or it is impossible to solve the differential equations (4.6) and 

(4.7). 

In each step of the calculating procedure, the equations used in all of the seven potential cases are 

summarized as the following. 
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A) Step 1 ( 0 t y   ) 

(a) In case of ( )s yL  : (Case 1) 

 

Fig. 4.6 Stress constitution in Case 1. 

Stress constitution on each member in Case 1 is shown in Fig. 4.6. 

 Differential equation (4.6a): 
2

2

1

( ) 2 1
( ) 0

y

s s cf cf y

d x
x

dx E t E t






 
   
 
 

 

If 1

1

2 1 y

s s cf cf yE t E t






 
  
 
 

, then equation (4.6a) is 
2

12

( )
( ) 0

d x
x

dx


   

 Solution of differential equation (4.6a): 1 1

1 2( )
x x

x C e C e
 




   

 Boundary condition: 0 (0) 0x    ; ( ) tx L L     and ( ) 0cf L   

Equation expressed the stress, strain, and relative displacement on steel plate, CFRP sheet, and adhesion 

layer are shown as the following: 

01 1( ) sinh( )x C x         (4.8a) 

01 1( ) sinh( )
y

y

x C x


 


       (4.8b) 

 0 1 1( ) cosh( ) cosh( )cf cfx C x L         (4.8c) 

 0 1 1( ) cosh( ) cosh( )cf cf cfx E C x L        (4.8d) 

0 1 0 1( ) cosh( ) cosh( )s s cfx C x C L         (4.8e) 

1 0 1 1 0 1( ) cosh( ) cosh( )s s s s cfx E C x E C L        (4.8f) 

( )s sP t L b         (4.8g) 

where, 01

1sinh( )

tC
L




 , 0

1 1sinh( )

y t
cf

y cf cf

C
t E L

 

  

 
  
 
 

, 0 1

1 1sinh( )

y t
s

y cf cf

C
t E L

 


  

 
  
 
 

. 

PSteel Plate

Adhesion layer

CFRP sheet

Linear area

Nonlinear area 

x0

L
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(b) In case of ( )s yL  : (Case 2 + Case 3) 

(b.1) Case 2 ( 0 sl L  ) 

 

Fig. 4.7 Stress constitution in Case 2. 

Stress constitution on each member in Case 2 is shown in Fig. 4.7. 

 Plastic area of steel plate ( sl x L  ) 

 Differential equation (4.6b): 
2

2

1

( ) 2 1
( ) 0

y

s s cf cf y

d x
x

dx E t E t






 
   
 
 

 

If 2

2

2 1 y

s s cf cf yE t E t






 
  
 
 

, then equation (4.6b) is 
2

22

( )
( ) 0

d x
x

dx


    

 Solution of differential equation (4.6b): 2 2

1 2( )
x x

x C e C e
 




   

 Boundary condition: ( ) tx L L     and ( ) 0cf L  ; 

 Condition of convergence calculation: ( )s s yl   

Equations expressed the stress, strain, and relative displacement on steel plate, CFRP sheet, and adhesion 

layer are shown as the following: 

2 2

1 2( )
x x

x C e C e
 




        (4.9a) 

 2 2

1 2( )
y x x

y

x C e C e
 





        (4.9b) 

 2 2

0 2 1 2 1( )
x x

cf cfx C C e C e k
 




        (4.9c) 

 2 2

0 2 1 2 1( )
x x

cf cf cf cfx E C C e C e E k
 




       (4.9d) 

  2 2

0 2 2 1 2 1( )
x x

s cfx C C e C e k
 

 


        (4.9e) 

    2 2

1 2 2 0 2 2 1 2 2 1( )
x x

s s s y s cf sx E E E C C e C e E k
 

  


        (4.9f) 

PSteel Plate

Adhesion layer

CFRP sheet

Linear area

Nonlinear area 

x0

1 2

sl

L



Chapter 4: Finite element analysis of gusset plate connection bonding CFRP sheets                      

 

78 

 

( )s sP t L b         (4.9g) 

 Elastic area of steel plate ( 0 sx l  ) 

 Differential equation (4.6a): 
2

12

( )
( ) 0

d x
x

dx


   

 Boundary condition: 0 (0) 0x    ; 1 2( ) ( )s s sx l l l    , 1 2( ) ( )cf s cf sl l  , and 

1 2( ) ( )s s s sl l   

Equations expressed the stress, strain, and relative displacement on steel plate, CFRP sheet, and adhesion 

layer are shown as the following: 

 1 1

3( )
x x

x C e e
 




       (4.10a) 

 1 1

3( )
y x x

y

x C e e
 





        (4.10b) 

 1 1

0 1 3 2( )
x x

cf cfx C C e e k
 




        (4.10c) 

 1 1

0 1 3 2( )
x x

cf cf cf cfx E C C e e E k
 




        (4.10d) 

  1 1

3 0 1 1 2( )
x x

s cfx C C e e k
 

 


         (4.10e) 

  1 1

1 3 0 1 1 1 2( )
x x

s s cf sx E C C e e E k
 

 


        (4.10f) 

where, 0 1

1

y

cf

y cf cf

C
E t



 

 
  
 
 

, 0 2

2

y

cf

y cf cf

C
E t



 

 
  
 
 

, 

           2 21 1

1 1 1 1

2 2

2 sinh cosh 2 sinh coshs sL l L l

s s s sD e l l e l l
  

   
 

  
   

       
      

, 

   2 1

1 1 1

2

2 sinh coshsl

t s sD e l l
 

  



 

   
  

, 

   2 1

2 1 1

2

2 sinh coshsl

t s sD e l l
 

  


 
   

  

, 

3 2 tD   , 

1
1

D
C

D
 , 2

2

D
C

D
 , 3

3

D
C

D
 , 
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2 2

1 0 2 1 2

L L

cfk C C e C e
    

 
,  2 2

2 0 2 1 2 1 3 0 1 12 coshs sl l

cf cf sk C C e C e k C C l
 


    

 
. 

(b.2) Case 3 ( 0sl  ) 

 

Fig. 4.8 Stress constitution in Case 3. 

Stress constitution on each member in Case 3 is shown in Fig. 4.8. 

 Differential equation (4.6b): 
2

22

( )
( ) 0

d x
x

dx


    

 Boundary condition: 0 (0) 0x    ; ( ) tx L L    , and ( ) 0cf L   

Equations expressed the stress, strain, and relative displacement on steel plate, CFRP sheet, and adhesion 

layer are shown as the following: 

   01 2sinhx C x         (4.11a) 

 01 2( ) sinh
y

y

x C x


 


       (4.11b) 

    0 1 2 2( ) cosh coshcf cfx C x L         (4.11c) 

    0 1 2 2( ) cosh coshcf cf cfx E C x L        (4.11d) 

   0 1 2 0 1 2( ) cosh coshs s cfx C x C L        (4.11e) 

     1 2 2 0 1 2 2 0 1 2( ) cosh coshs s s y s s s cfx E E E C x E C L         (4.11f) 

( )s sP t L b         (4.11g) 

where, 
 

01

2sinh

tC
L




 , 

 
0 1

2 2sinh

y t
cf

y cf cf

C
t E L

 

  
  , 

 
0 1 2

2 2sinh

y t
s

y cf cf

C
t E L

 


  

 
  
 
 

. 

 

 

PSteel Plate
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B) Step 2 + Step 3 ( y t u    ) 

(a) In case of ( )s yL  : (Case 4) 

 

Fig. 4.9 Stress constitution in Case 4. 

Stress constitution on each member in Case 4 is shown in Fig. 4.9. 

 Softening area of adhesion layer ( el x L  ) 

 Differential equation (4.7a):  
2

2

1

( ) 2 1
( ) 0

y

u

s s cf cf u y

d x
x

dx E t E t


 

 

 
    
   

 

If 1

1

2 1 y

s s cf cf u yE t E t




 

 
   

   

, then equation (4.7a) is  
2

12

( )
( ) 0u

d x
x

dx


      

 Solution of differential equation (4.7a):  1 1 2 1( ) cos( x) C sin( x)ux C        

 Boundary condition: ( ) tx L L    , and ( ) 0cf L  ; ( )e e yx l l     

Equations expressed the stress, strain, and relative displacement on steel plate, CFRP sheet, and adhesion 

layer are shown as the following: 

 1 1 2 1( ) cos( x) C sin( x)ux C            (4.12a) 

 1 1 2 1( ) cos( x) C sin( x)
y

u y

x C


  
 

  


    (4.12b) 

 1 1 1 2 1 1sin coscf ocfC C x C x k            (4.12c) 

 1 1 1 2 1 1sin coscf cf ocf cfE C C x C x E k           (4.12d) 

  1 1 1 1 2 1 1sin coss ocfC C x C x k              (4.12e) 

  1 1 1 1 1 2 1 1 1sin coss s ocf sE C C x C x E k             (4.12f) 

( )s sP t L b         (4.12g) 

PSteel Plate

Adhesion layer

CFRP sheet

Linear area

Nonlinear area 

x0

1 2

L
el
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 Linear area of adhesion layer ( 0 ex l  ) 

 Differential equation (4.6a): 
2

12

( )
( ) 0

d x
x

dx


   

 Boundary condition: 0 (0) 0x    ; ( )e e yx l l    , and 1 2( ) ( )s e s el l   

 Condition of convergence calculation: 1 2( ) ( )cf e cf el l   

Equations expressed the stress, strain, and relative displacement on steel plate, CFRP sheet, and adhesion 

layer are shown as the following: 

 1 1

3( )
x x

x C e e
 




        (4.13a) 

 1 1

3( )
y x x

y

x C e e
 





        (4.13b) 

 1 1

3 0 1 2( )
x x

cf cfx C C e e k
 




        (4.13c) 

 1 1

3 0 1 2( )
x x

cf cf cf cfx E C C e e E k
 




        (4.13d) 

  1 1

3 0 1 1 2( )
x x

s cfx C C e e k
 

 


         (4.13e) 

  1 1

1 3 0 1 1 1 2( )
x x

s s cf sx E C C e e E k
 

 


        (4.13f) 

( )s sP t L b         (4.13g) 

where, 0 1

1

y

cf

y cf cf

C
E t



 

 
  
 
 

, 
 

0 1

1

y

cf

u y cf cf

C
E t



  

 
   
 
 

,  

         1 1 1 1 12sinh cos sin cos sine e eD l L l l L         
 

, 

         1 1 1 12sinh sin sine u t e u yD l l L           
 

, 

         2 1 1 12sinh cos cose u y u t eD l L l           
 

, 

       3 1 1 1 1cos sin cos siny e eD L l l L         
 

, 

1
1

D
C

D
 , 2

2

D
C

D
 , 3

3

D
C

D
 ,    1 0 1 1 1 2 1sin coscfk C C L C L      

 
, 

         2 0 1 1 1 1 2 1 1 3 0 1 1 1sin cos 2 coshcf e e cf ek C C l C l k C C l             
 

. 
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(b) In case of ( )s yL  : (Case 5 + Case 6 + Case 7) 

(b.1) Case 5 ( e sl l L  ) 

 

Fig. 4.10 Stress constitution in Case 5. 

Stress constitution on each member in Case 5 is shown in Fig. 4.10. 

 Plastic area of steel plate, and softening area of adhesion layer ( sl x L  ) 

 Differential equation (4.7b):  
2

2

2

( ) 2 1
( ) 0

y

u

s s cf cf u y

d x
x

dx E t E t


 

 

 
    
   

 

If 2

2

2 1 y

s s cf cf u yE t E t




 

 
   

   

, then equation (4.7b) is  
2

22

( )
( ) 0u

d x
x

dx


      

 Solution of differential equation (4.7b):  1 2 2 2( ) cos( x) C sin( x)ux C        

 Boundary condition: ( ) tx L L    , and ( ) 0cf L   

Equations expressed the stress, strain, and relative displacement on steel plate, CFRP sheet, and adhesion 

layer are shown as the following: 

 1 2 2 2( ) cos( x) C sin( x)ux C            (4.14a) 

 1 2 2 2cos( x) C sin( x)
y

u y

C


  
 

  


     (4.14b) 

 2 1 2 2 2 1( ) sin( x) C cos( x)cf ocfx C C k           (4.14c) 

 2 1 2 2 2 1( ) sin( x) C cos( x)cf cf ocf cfx E C C E k          (4.14d) 

  2 2 1 2 2 2 1( ) sin( x) C cos( x)s ocfx C C k             (4.14e) 

    1 2 2 2 2 1 2 2 2 2 1( ) sin( x) C cos( x)s s s y s ocf sx E E E C C E k              (4.14f) 

PSteel Plate
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x0
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( )s sP t L b         (4.14g) 

 Elastic area of steel plate, and softening area of adhesion layer ( e sl x l  ) 

 Differential equation (4.7a):  
2

12

( )
( ) 0u

d x
x

dx


      

 Boundary condition: 3 2( ) ( )s s sx l l l    , 3 2( ) ( )cf s cf sl l  , and 3 2( ) ( )s s s sl l   

 Condition of convergence calculation: ( )s s yl   

Equations expressed the stress, strain, and relative displacement on steel plate, CFRP sheet, and adhesion 

layer are shown as the following: 

 3 1 4 1( ) cos( x) C sin( x)ux C            (4.15a) 

 3 1 4 1cos( x) C sin( x)
y

u y

C


  
 

  


     (4.15b) 

 1 3 1 4 1 2( ) sin( x) C cos( x)cf ocfx C C k           (4.15c) 

 1 3 1 4 1 2( ) sin( x) C cos( x)cf cf ocf cfx E C C E k          (4.15d) 

  1 1 3 1 4 1 2( ) sin( x) C cos( x)s ocfx C C k             (4.15e) 

  1 1 1 3 1 4 1 1 2( ) sin( x) C cos( x)s s ocf sx E C C E k            (4.15f) 

 Elastic area of steel plate, and linear area of adhesion layer ( 0 ex l  ) 

 Differential equation (4.6a): 
2

12

( )
( ) 0

d x
x

dx


   

 Boundary condition: 0 (0) 0x    ; 1( )e e yx l l    , 2 ( )e yl  , and 

1 2( ) ( )s e s el l   

 Condition of convergence calculation: 1 2( ) ( )cf e cf el l   

Equations expressed the stress, strain, and relative displacement on steel plate, CFRP sheet, and adhesion 

layer are shown as the following: 

 1 1

5( )
x x

x C e e
 




         (4.16a) 
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 1 1

5

y x x

y

C e e
 





         (4.16b) 

 1 1

1 5 3( )
x x

cf ocfx C C e e k
 




        (4.16c) 

 1 1

1 5 3( )
x x

cf cf ocf cfx E C C e e E k
 




        (4.16d) 

   1 1

1 1 5 3( )
x x

s ocfx C C e e k
 

 


         (4.16e) 

   1 1

1 1 1 5 1 3( )
x x

s s ocf sx E C C e e E k
 

 


        (4.16f) 

where, 0 1

1

y

cf

y cf cf

C
E t



 

 
  
 
 

, 
 

0 1

1

y

cf

u y cf cf

C
E t



  

 
   
 
 

, 
 

0 2

2

y

cf

u y cf cf

C
E t



  

 
   
 
 

, 

     1 1 1 1sin cot coss e sq l l l      , 

 
 

 
1

2

1

sin

sin

s

u y

e

l
q

l


 




 


, 

     1
3 1 1 1

2

sin cos cots s eq l l l


  



     
 

, 

 
 

 
1

1
4

2 1

cos

sin

s

u y

e

l
q

l


 

 


  

 
, 

   1 2 3 2cos sins sD q L l q L l        
   

, 

        1 1 2 3 2 2 2 3 1 4cos sin sin . .u t s sD q l q l L q q q q           
 

, 

        2 2 2 3 1 4 3 2 1 2cos . . cos sinu t s sD L q q q q q l q l           
 

, 

     3 2 2 4 2cos sinu t s sD q L l q L l             
   

, 

1
1

D
C

D
 , 2

2

D
C

D
 , 3

3

D
C

D
 , 

 
   4 3 1

1

1
cos

sin
u y e

e

C C l
l

  


   
 

, 
1 1

5
e e

y

l l
C

e e
 







, 

   1 2 1 2 2 2sin cosocfk C C L C L      
 

, 

       2 2 1 2 2 2 1 1 3 1 4 1sin cos sin cosocf s s ocf s sk C C l C l k C C l C l               
   

, 
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       3 1 1 3 1 4 1 2 5 1 1 1sin cos 2 coshocf e e ocf ek C C l C l k C C l             
 

. 

(b.2) Case 6 (
s el l L  ) 

 

Fig. 4.11 Stress constitution in Case 6. 

Stress constitution on each member in Case 6 is shown in Fig. 4.11. 

 Plastic area of steel plate, and softening area of adhesion layer ( el x L  ) 

 Differential equation (4.7b):  
2

22

( )
( ) 0u

d x
x

dx


      

 Boundary condition: ( ) tx L L    , and ( ) 0cf L   

Equations expressed the stress, strain, and relative displacement on the steel plate, CFRP sheet, and 

adhesion layer are shown as the following: 

 1 2 2 2( ) cos( x) C sin( x)ux C            (4.17a) 

 1 2 2 2cos( x) C sin( x)
y

u y

C


  
 

  


     (4.17b) 

 2 1 2 2 2 1( ) sin( x) C cos( x)cf ocfx C C k           (4.17c) 

 2 1 2 2 2 1( ) sin( x) C cos( x)cf cf ocf cfx E C C E k          (4.17d) 

  2 2 1 2 2 2 1( ) sin( x) C cos( x)s ocfx C C k             (4.17e) 

    1 2 2 2 2 1 2 2 2 2 1( ) sin( x) C cos( x)s s s y s ocf sx E E E C C E k              (4.17f) 

( )s sP t L b         (4.17g) 
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 Plastic area of steel plate, and linear area of adhesion layer ( s el x l  ) 

 Differential equation (4.6b): 
2

22

( )
( ) 0

d x
x

dx


    

 Boundary condition: 2 ( )e e yx l l    , 3( )e yl  , and 
2 3( ) ( )s e s el l   

 Condition of convergence calculation: 2 3( ) ( )cf e cf el l   

Equations expressed the stress, strain, and relative displacement on steel plate, CFRP sheet, and adhesion 

layer are shown as the following: 

2 2

3 4( )
x x

x C e C e
 




        (4.18a) 

 2 2

3 4( )
y x x

y

x C e C e
 





        (4.18b) 

 2 2

0 2 3 4 2( )
x x

cf cfx C C e C e k
 




        (4.18c) 

 2 2

0 2 3 4 2( )
x x

cf cf cf cfx E C C e C e E k
 




       (4.18d) 

  2 2

0 2 2 3 4 2( )
x x

s cfx C C e C e k
 

 


        (4.18e) 

    2 2

1 2 2 0 2 2 3 4 2 2( )
x x

s s s y s cf sx E E E C C e C e E k
 

  


        (4.18f) 

 Elastic area of steel plate, and linear area of adhesion layer ( 0 sx l  ) 

 Differential equation (4.6a): 
2

12

( )
( ) 0

d x
x

dx


   

 Boundary condition: 0 (0) 0x    ; 1 2( ) ( )s s sx l l l    , 1 2( ) ( )cf s cf sl l  , and 

1 2( ) ( )s s s sl l   

 Condition of convergence calculation: ( )s s yl   

Equations expressed the stress, strain, and relative displacement on steel plate, CFRP sheet, and adhesion 

layer are shown as the following: 

 1 1

5( )
x x

x C e e
 




         (4.19a) 

 1 1

5

y x x

y

C e e
 





         (4.19b) 
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 1 1

1 5 3( )
x x

cf ocfx C C e e k
 




        (4.19c) 

 1 1

1 5 3( )
x x

cf cf ocf cfx E C C e e E k
 




        (4.19d) 

   1 1

1 1 5 3( )
x x

s ocfx C C e e k
 

 


         (4.19e) 

   1 1

1 1 1 5 1 3( )
x x

s s ocf sx E C C e e E k
 

 


        (4.19f) 

where, 0 1

1

y

cf

y cf cf

C
E t



 

 
  
 
 

, 0 2

2

y

cf

y cf cf

C
E t



 

 
  
 
 

, 
 

0 2

2

y

cf

u y cf cf

C
E t



  

 
   
 
 

 

   
   

2 2

1

2 2

sin sin

cot cot

u yu t

e

e

L l
C

L l

  

 

 




 


 
, 

   
   

2 2

2

2 2

cos cos

tan tan

u yu t

e

e

L l
C

L l

  

 

 




 


 
,  

           2 21 1

1 1 1 1

2 2

2 sinh cosh 2 sinh coshe s e sl l l l

s s s sD e l l e l l
  

   
 

  
   

       
      

, 

   2 1

1 1 1

2

2 sinh coshsl

y s sD e l l
 

  



 

   
  

, 

   2 1

2 1 1

2

2 sinh coshsl

y s sD e l l
 

  


 
   

  

, 

3 2 yD   , 1
3

D
C

D
 , 2

4

D
C

D
 , 3

5

D
C

D
 , 

   1 0 2 1 2 2 2sin coscfk C C L C L      
 

, 

        2 2

2 0 2 2 1 2 2 2 1 0 2 2 3 4sin cos e el l

cf e e cfk C C l C l k C C e C e
 

   
           

   
, 

     2 2

3 0 2 2 3 4 2 5 0 1 1 12 coshs sl l

cf cf sk C C e C e k C C l
 

  
      

 
. 

 

 

 

 

 



Chapter 4: Finite element analysis of gusset plate connection bonding CFRP sheets                      

 

88 

 

(b.3) Case 7 ( 0sl  ) 

 

Fig. 4.12 Stress constitution in Case 7. 

Stress constitution on each member in Case 7 is shown in Fig. 4.12. 

 Plastic area of steel plate, and softening area of adhesion layer ( el x L  ) 

 Differential equation (4.7b):  
2

22

( )
( ) 0u

d x
x

dx


      

 Boundary condition: ( ) tx L L    , and ( ) 0cf L   

Equations expressed the stress, strain, and relative displacement on steel plate, CFRP sheet, and adhesion 

layer are shown as the following: 

 1 2 2 2( ) cos( x) C sin( x)ux C            (4.20a) 
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     (4.20b) 

 2 1 2 2 2 1( ) sin( x) C cos( x)cf ocfx C C k           (4.20c) 

 2 1 2 2 2 1( ) sin( x) C cos( x)cf cf ocf cfx E C C E k          (4.20d) 
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( )s sP t L b         (4.20g) 

 Plastic area of steel plate, and linear area of adhesion layer ( 0 ex l  ) 

 Differential equation (4.6b): 
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 Condition of convergence calculation: 1 2( ) ( )cf e cf el l   

Equations expressed the stress, strain, and relative displacement on the steel plate, CFRP sheet, and 

adhesion layer are shown as the following: 

2 2

3 4( )
x x

x C e C e
 




        (4.21a) 

 2 2

3 4( )
y x x

y

x C e C e
 





        (4.21b) 

 2 2

0 2 3 4 2( )
x x

cf cfx C C e C e k
 




        (4.21c) 

 2 2

0 2 3 4 2( )
x x

cf cf cf cfx E C C e C e E k
 




       (4.21d) 
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0 2 2 3 4 2( )
x x
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 

 


        (4.21e) 
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1 2 2 0 2 2 3 4 2 2( )
x x

s s s y s cf sx E E E C C e C e E k
 
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

        (4.21f) 
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Fig. 4.13 Calculated model of example. 

Table 4.2 Material properties of steel, CFRP sheet, and adhesion layer. 

 
 

 

Fig. 4.14 Finite element analysis model of steel plate bonding a CFRP sheet. 

 

Fig. 4.15 Load – relative displacement relationship. 
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Steel plate                     CFRP sheet                   Adhesion layer 

(a) At the load of 100 kN  

(behaving the linear stage for all of members) 

   

Steel plate                     CFRP sheet                   Adhesion layer 

(b) At the load of 178.6 kN  

(behaving elastic + plastic stage for steel plate, and linear stage for adhesion layer) 

   

Steel plate                     CFRP sheet                   Adhesion layer 

(c) At the load of 182.9 kN  

(behaving elastic + plastic stage for steel plate, and linear + Softening stage for adhesion layer) 

   

Steel plate                     CFRP sheet                   Adhesion layer 

(d) At the load of 183.825 kN 

(behaving elastic + plastic stage for steel plate, and fully satisfied peeling condition on adhesion layer) 

Fig. 4.16 Comparison of stress distribution between FEA and CAL. 
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4.2.3. Example and discussion 

a) Calculated model 

In the example, the calculated model and the mechanical properties of all of members are shown in Fig. 

4.13 and Table 4.2, respectively. The length and thickness of steel plate were 400 mm and 9 mm, respectively; 

and 400 mm and 0.143 mm, respectively, regarding CFRP sheet. In this calculated model, the width of CFRP 

sheet was taken at the same that of steel plate with 60 mm. CFRP sheet was bonded to steel plate by using an 

adhesion layer with the thickness of 0.517 mm. Moreover, SS400 steel was used as a base metal. The stress-

strain curve relationship of the SS400 steel used in this calculated model was bilinear, in which the primary 

Young’s modulus was Es1 = 2x105 MPa, and secondary modulus after yield was Es2 = Es1/100 = 2000 MPa. The 

Poisson ratio was 0.3, the yield stress was 317 MPa. The employed FTS-C8-30 CFRP, in sheet form, is 

lightweight (2.1 g/cm3), has a large tensile strength (2430 MPa), and is durable in harsh environments. In 

particular, the FTS-C8-30 CFRP sheet has an elastic modulus that is 3.2 times higher than that of the steel with 

the elastic modulus of 6.4x105 MPa. Turning to the adhesion layer, its shear strength y, relative displacement 

y at shear strength, and relative displacement u at peeling stage were 4.3 MP, 0.15 mm, and 0.34 mm, 

respectively. By using the proposed method of the nonlinear theoretical analysis; the stress, strain of steel plate, 

CFRP sheet and adhesion layer on the model of example were obtained. 

b) Finite element analysis 

In order to confirm the accuracy of the proposed nonlinear theoretical method, a two-dimensional 

geometric nonlinear FEM analysis was implemented with a quarter model of the steel plate bonding a CFRP 

layer, using a distribution load as shown in Fig. 4.14. Steel plate and CFRP sheet were constructed of plane 

stress element (the eight-node CQ16M in DIANA analysis software). Moreover, adhesion layer was simulated 

by using the interface element (CL12I element in DIANA analysis software). The boundary conditions are 

considered on two symmetrical sides, with a fixed perpendicular direction, and free in the other direction, as 

shown in Fig. 4.14. The resolution of the finite element mesh was 2 mm for the direction along the length of 

model. Further, division of the thickness of steel plate and CFRP sheet was taken as 10 divisions. As the default, 

the division of the interface element, which simulated adhesion layer was 1 division. All of mechanical 

properties applied to the FEM model were taken as values listed in Table 4.2. In addition, the material model 

of adhesion layer in the normal direction was considered to be completely hard. The Von Mises yield condition 
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was applied to simulate the steel material, and geometric nonlinearity was considered. 

c) Calculated results of proposed method 

The relationship between load and relative displacement at the top of the fixing location of CFRP sheet is 

shown in Fig. 4.14, to provide a comparison between the FEM analytical and proposed theoretical analytical 

results. From the proposed theoretical analysis, it is clear that the load-relative displacement curve begins to 

change at a load of 171 kN (initial plastic load) because the stress on a part of steel plate reached to plastic 

condition. Meanwhile at this load level, CFRP sheet and adhesion layer still work at the linear stage. This trend 

is consistent with the behavior obtained in the FEM analysis. Furthermore, the FEM analytical and theoretical 

analytical initial stiffness of steel plate bonding CFRP sheet is in complete agreement. After overcoming the 

initial plastic load, the load-relative displacement curve is gradually bent until appearing the peeling damage 

at the top of the fixing location of CFRP sheet, under a load of 183.825 kN. Moreover, load value of steel plate 

bonding CFRP is almost no change after occurring peeling damage on CFRP sheet. All of the trend described 

above are exactly the same as those obtained in the FEM analysis. 

Figure 4.16 described the stress distribution of steel plate, CFRP sheet, and adhesion layer; which obtained 

in the proposed theoretical analysis and FEM analysis; at the load of 100 kN, 178.6 kN, 182.9 kN and 183.825 

kN. From Fig. 4.16, the stress of CFRP sheet is so small compared to its tensile strength during the loading 

process. Further, the comparison of the CAL and FEA results shown in Fig. 4.16 indicates consistent agreement 

between both results. Under the load value of 100 kN, the mechanical behavior on all of members of the 

calculated model is linear stage (see Fig. 4.16(a)). At the load of 178.6 kN, a part of steel plate on the calculated 

model reached to plastic condition, while the stress of adhesion layer is still smaller than its shear strength (see 

Fig. 4.16(b)). At the load of 182.9 kN, the plastic area on steel plate is extended, and a part of adhesion layer 

reached to softening condition (see Fig. 4.16(c)). Then, when the applied relative displacement value continues 

to increase to the value of u = 0.34 mm, the peeling damage of CFRP sheet begin to appear at the load of 

183.825 kN. This also means that the peeling strength of CFRP sheet is determined when the shear stress of 

adhesion layer at the top of the fixing location of CFRP sheet reaches to the value of zero (see Fig. 4.16(d)). 

In this example, the peeling load of the calculated model is 183.825 kN. 

As a result, the mechanical behavior of steel plate, CFRP sheet, and adhesion layer could be evaluated 

accurately by using the proposed theoretical analysis. Additionally, the peeling strength of the calculated model 
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in the proposed method is determined when the shear stress of adhesion layer at the fixing location of CFRP 

sheet reaches to the value of zero. 

In short, in Section 4.2, for the steel member bonding a layer of CFRP sheet in uniaxial-tensile-stress 

condition; it was possible to accurately evaluate the peeling strength and the mechanical behavior of steel plate, 

CFRP sheet, and adhesion layer, by developing the nonlinear theoretical analysis. In future, it will be necessary 

to develop the nonlinear analysis method for the steel plate with multilayered CFRP sheet under uniaxial 

loading and bending. Moreover, in order to reproduce the peeling failure of CFRP sheets under the environment 

of FEM analysis, the use of the interface element is strongly preferred to simulate adhesion layer, in which the 

peeling failure occurred. 

   

(a) Outside bonding                          (b) Both-sides bonding 

Fig. 4.17 Finite element analysis model of corroded gusset plate connection bonding CFRP sheets. 

      

Fig. 4.18 Element types used for simulation. 
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Table 4.3 Element types and material types used for simulation. 

 

Table 4.4 Material properties of steel, and adhesion layer for simulation. 

 

Table 4.5 Material properties (orthotropic) of CFRP sheet for simulation. 

 

           

(a) Model for normal direction              (b) Model for shear direction 

Fig. 4.19 Constitutive model of material for interface element (Polyurea putty layer). 

Member Element type Material

Gusset plate

Diagonal member

Lower chord member

Groove section
Solid element

(CHX60)

Connecting plates
Curved shell element

(CQ40S)
Elastic (Steel)

Adhesion layer
Solid element

(CHX60)
Elastic

CFRP sheets
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(CQ40S & CT30S)
Orthotropic

Putty layer
Interface element
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Groove section putty
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(L13BE)
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Curved shell element
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Multilinear (Steel)

Steel (SS400) Adhesion (Resin) Groove section putty

Young's modulus          (MPa) 2 x 10
5 2533 4021

Poisson's ratio 0.3 0.38 0.38

Yield stress                    (MPa) 317  

Tensile strength (MPa) 436  

Second-order modulus (MPa) 2000  

Young's modulus x-direction (MPa) 640000

Young's modulus y-direction (MPa) 2412.5

Young's modulus z-direction (MPa) 2412.5

Poission's ratio xy 0.3

Poission's ratio yz 0.3

Poission's ratio zx 0.3

Shear modulus xy                    (MPa) 927.9

Shear modulus yz                     (MPa) 927.9

Shear modulus zx                    (MPa) 866.9

CFRP sheet

(FTS-C8-30)

where, x is the main working direction of CFRP sheet.
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4.3. FINITE ELEMENT ANALYSIS 

After grasping the peeling mechanism of CFRP sheets from the proposed nonlinear theoretical analysis, 

finite element analyses were implemented on the repaired gusset plate connection to reproduce the 

experimental results obtained in Chapter 3. 

4.3.1. Analysis model 

A three-dimensional geometric nonlinear analysis was conducted to simulate the corroded gusset plate 

connection bonding CFRP sheets, using a displacement load as shown in Fig. 4.17. All of the element types 

used for simulation of the gusset plate connection with are shown and listed in Fig. 4.18 and Table 4.3. In 

which, the gusset plate, diagonal member, lower chord member, and connecting plates were constructed of 

curved shell elements (the eight-node CQ40S and six-node CT30S). The Groove section itself was modeled 

by using the solid brick element (the twenty-node CHX60). Further, the sections connecting this solid element 

to the shell element were considered to be in the central plane of the cross-section of the gusset plate. The 

dimensions of the members of the loading link frame were designed such that they would operate within their 

elastic phase during the loading test process. Therefore, the members of loading frame were simulated using 

the three-dimensional beam element (the two-node L13BE). As the result obtained in the loading tests 

conducted in Chapter 3, it is confirmed that peeling failure of the gusset plate connection bonding CFRP sheets 

occurred only on the polyurea putty layer, which was inserted between the steel members and the first layer of 

CFRP sheets. Hence, this polyurea putty layer, in which peeling damage appeared, was simulated by using the 

interface element (CQ48I element). Further, adhesion layers, which was used to bond CFRP sheets together, 

were constructed of the solid brick element (the twenty-node CHX60). In addition, CFRP sheets were modeled 

using curved shell elements (the eight-node CQ40S and six-node CT30S). Moreover, to enable easier 

simulation of the connecting sections between the gusset plate and the diagonal members, these connections 

were modeled as being monolithic. This means that the high-tension bolts were not modeled in the FEM 

analysis, and the gusset plate and flange of the diagonal member was the same plane. 

The resolution of the finite element mesh in all of the models was 1 mm for the Groove section and 5 mm 

in other members. The division of the thickness of steel plate and adhesion layers was taken as 10 divisions. 

As the default, the division of the interface element (CQ48I element), which simulated polyurea putty layer 

was 1 division. Therefore, the total number of nodes and elements was approximately 498547 and 208888, 
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respectively, in cases with outside bonding, and 502906 and 209508, respectively, in cases with both-sides 

bonding. 

4.3.2. Material 

The mechanical properties of steel, adhesion layer, and CFRP sheets used in the simulation are listed in 

Table 4.4 and Table 4.5. The stress-strain curve relationship of the SS400 steel used in this analysis was 

bilinear, in which the primary Young’s modulus was 200 GPa, and the secondary modulus after yield was 

E/100 = 2 GPa. The Poisson ratio was 0.3, the yield stress and tensile strength were 317 MPa and 436 MPa, 

respectively, as declared on the mill sheet certificate. In addition, the yield stress and tensile strength of the 

SS400 steel were also reconfirmed through the tensile experiment in the laboratory. The Von Mises yield 

condition was applied to simulate the steel material, and geometric nonlinearity was considered. In this 

analysis, all members of the gusset plate connection were simulated as a multilinear material, and the loading 

members and connecting plates were considered to be elastic materials. 

Adhesion layers and the epoxy-type putty, which filled the cross-sectional loss part of the Groove, were 

considered elastic materials with the material information shown in Table 4.4. This is because, during the 

process of the loading tests, there was no damage to these locations. The employed FTS-C8-30 CFRP, in sheet 

form, is lightweight (2.1 g/cm3), and has a large tensile strength (2430 MPa). Among all of the simulated 

models of the gusset plate connections bonding CFRP sheets, CFRP sheets were considered as an orthotropic 

material, with a primary elastic modulus of 640 GPa, and the other modulus of 2412.5 MPa. All of the material 

information related to CFRP sheets is listed in Table 4.5. 

On the other hand, in order to reproduce the peeling failure between the gusset plate and CFRP sheets at 

the polyurea putty layer, this putty layer was modeled using the interface element of CQ48I in the analysis 

models. Further, as basic material properties of the interface element of CQ48I, its material model was 

considered by the relationship between stress and relative displacement in the two directions: including normal 

direction and shear direction. Moreover, by conducting the material tests of the polyurea putty in the laboratory, 

its material models for normal direction and shear direction are shown in Fig. 4.19. 
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(a) Case of S1_45                               (b) Case of S2_45 

    

(c) Case of S1_56                               (d) Case of S2_56 

 

(e) Case of S2_90 

Fig. 4.20 Load-Vertical displacement relationship. 
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(a) Case of S1_45 

 

 

 
 

 

(b) Case of S2_45 

Fig. 4.21 Analytical contours of out-of-plane deformation and physical deformation of the corroded gusset 

plate connection bonding CFRP sheets. 
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(c) Case of S1_56 

 

 

 
 

 

(d) Case of S2_56 

Fig. 4.21 Analytical contours of Von Mises stress and physical deformation of the corroded gusset plate 

connections bonding CFRP sheets. 
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(e) Case of S2_90 

Fig. 4.21 Analytical contours of Von Mises stress and physical deformation of the corroded gusset plate 

connections bonding CFRP sheets. 

 

Fig. 4.22 Maximum load-the number of bonding CFRP sheets relationship. 

4.3.3. Analysis results and discussion 

The relationships between load and vertical displacement at the highest point of the tensile link member of 

the link frame in all of the repaired cases, are shown in Fig. 4.20. The black dashed lines (1634 kN) indicate 

the load-carrying capacity of intact Specimen N, obtained by loading test and described in Chapter 2. From 

the FEM analytical results, it is confirmed that the load-displacement curves begin to change due to the 

buckling of the plate area underneath the diagonal member; at the load of approximately 1100 kN in the cases 

of S1_45 and S2_45, and at the load of approximately 1200 kN in the cases of S1_56, S2_56, and S2_90. 
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These trends were consistent with the behavior obtained in the experiment. Furthermore, the experimental and 

analytical initial stiffness of the repaired gusset plate connections was almost in agreement. After overcoming 

the buckling load, the load-displacement curves diverged slightly from the experimental results. 

The maximum load determined by analysis was 1459 kN for Specimen S1_45, 1490 kN for Specimen 

S2_45, 1327 kN for Specimen S1_56, 1532 kN for Specimen S2_56, and 1586 kN for Specimen S2_90. Based 

on this information, it can be observed that the difference in maximum load between -10% and -1%, indicating 

that the analytical model provides a high level of accuracy. The small differences observed can be mainly 

attributed to the influence of the mechanical properties of the polyurea putty layer, as clarified in many of the 

existing studys4.1), 4.25)-4.27). The comparisons described above confirm that the load-displacement curve and the 

maximum load provided by the analytical results agreed with those of the experiment results in all of the 

corroded gusset plate connections bonding CFRP sheets. 

The overall shape of the gusset plate connections bonding is compared in Fig. 4.21: the deformation shown 

with the Von Mises distribution under the simulated contours was quite similar to the final shape of the 

experimental specimens after achieving maximum load. Specifically, the locations appeared the peeling failure 

were observed at the compressive free edges and the Groove section in tensile direction in cases of S1_45, and 

S2_45; at the compressive free edges and the area underneath the tensile diagonal member in case of S1_56, 

S2_56, and S2_90. As a result of these comparisons, the failure behavior of the corroded gusset plate 

connection bonding observed in the loading test can also clearly be accurately reproduced using an FEM 

analysis. 

4.4. PARAMETRIC ANALYSIS 

Once the FEM analysis had been confirmed as accurate by comparison with the experimental results, a 

parametric FEM analysis was conducted to investigate the relationship between the number of bonding CFRP 

sheets and the load-carrying capacity of the repaired gusset plate connection in the case of S2_90 (both-sides 

bonding, direction of CFRP sheets of 90 degrees). In this parametric analysis, the number of bonding CFRP 

sheets was varied from 25% to 175% of the number of CFRP sheets (9 layers) calculated by using Equation 

(4.1) of the steel conversion. This means that the number of CFRP sheets in the parametric analysis was 

changed from 3 layers to 16 layers. 
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cf cf s sdE t n E t         (4.1) 

where, Ecf is the elastic modulus of CFRP sheet; tcf is the thickness of a CFRP sheet; n is the number of CFRP 

sheets; Es is the elastic modulus of the steel; and tsd is the required thickness of the cross-sectional loss part of 

the gusset plate. 

The maximum loads, which are determined by using the parametric analysis of the change in the number 

of bonding CFRP sheets, are shown in Fig. 4.22, in which the vertical axis and horizontal axis depict Pmax/P
0

max 

and the number of bonding CFRP sheets (%), respectively. In this figure, Pmax and P0
max are the maximum loads 

carried by the parametric analysis and the maximum load of case S2_90. As shown in Fig. 4.22, there is almost 

no change in the maximum load of the repaired gusset plate connection, when bonding over 75% of the 

calculated number of CFRP sheets. This is because when the number of bonding CFRP sheets is increased, the 

shear stress concentration at the top of the locations of bonding CFRP sheets is larger. Therefore, it is easy to 

occur the peeling failure in cases bonding so much of CFRP layers. As a result, for the safety, Equation (4.1) 

of the steel conversion is strongly preferred to determine the necessary number of CFRP sheets. 

4.5. CONCLUSION 

In short, this study proposed a nonlinear theoretical analysis method for a steel plate bonding a layer of 

CFRP sheet under uniaxial tensile loading, to determine the peeling strength and the mechanical behavior of 

adhesion layer. In this theoretical analysis, the peeling condition of CFRP sheet and the nonlinear material 

condition of all members on an analytical model were considered. Moreover, after the peeling mechanism of 

CFRP sheet was clarified clearly by the nonlinear theoretical analysis, finite element analyses were carried out 

on the repaired gusset plate connection to reproduce the load testing results obtained in Chapter3. In addition 

to the reproduced FEM analysis, a parametric analysis was implemented on the repaired gusset plate 

connection by varying the number of bonding CFRP sheets calculated from the equation of steel conversion, 

to clarify the necessary number of CFRP sheets bonding into the corroded gusset plate. The results obtained 

from this study are summarized as follows: 

(1) Under the uniaxial-tensile-stress condition, it is possible to accurately evaluate the peeling strength and 

the mechanical behavior of adhesion layer, by proposing the nonlinear theoretical analysis. 

(2) In order to reproduce the peeling failure of CFRP sheets under the environment of FEM analysis, the use 



Chapter 4: Finite element analysis of gusset plate connection bonding CFRP sheets                      

 

104 

 

of the interface element is strongly preferred to simulate adhesion layer, in which the peeling failure occurs. 

(3) By simulating the polyurea putty layer using the interface element, and CFRP sheets using the orthotropic 

material in models of FEM analysis; the load-carrying capacity, failure behavior, and deformation performance 

of the repaired gusset plate connection in the loading tests are reproduced. 

(4) For the safety, the equation of the steel conversion is strongly preferred to determine the necessary 

number of CFRP sheets. 
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CHAPTER 5  

DESIGN METHOD FOR CORRODED GUSSET PLATE CONNECTION 

5.1. INTRODUCTION 

The applicability of carbon fiber reinforced polymers (CFRP), in sheet form, as a material for repairing 

and strengthening corroded steel structures is being intensively investigated worldwide5.1), because of its light 

weight, high strength and superior durability. Numerous studies have already verified the effectiveness of using 

the CFRP sheets to reinforce the corroded members; specifically, the members subjected to axial stress such 

as the chord members of the truss bridge and the lower flange of I-girder steel bridges5.1), 5.2), and the members 

subjected to reaction force (compressive stress) such as the vertical stiffener at the supports of I-girder steel 

bridges5.1), 5.3). In addition, recovering from the shear buckling strength of the corroded web in steel girder 

bridges by using the CFRP sheets was also investigated5.1), 5.4). However, to the best of our knowledge, up to 

date there have been no cases in which CFRP sheets are applied for the corroded gusset plate connections. This 

chapter proposed a design method to repair the corroded gusset plate connection, after the effectiveness of the 

repair method using CFRP sheets were investigated by conducting loading tests and FEM analysis in Chapter 

3 and Chapter 4. 

Table 5.1 Material properties of CFRP sheets. 

 

Table 5.2 Primer quality standards. 

 

Tensile strength

(MPa)

Elastic modulus

(GPa)

Fiber mass per unit area

(g/mm
2
)

High-strength 3400 245 200 ~ 600

2900 390

2400 450

540

640

Steel 400 ~ 570 200 -

Intermediate modulus

High modulus 1900

300

Item Standard value Testing method

Tensile strength 29 N/mm
2
 or more JIS K 7161

Tensile shear strength 9.8 N/mm
2
 or more JIS K 6850

Steel bond strength 1.5 N/mm
2
 or more (23/50

o
C) JIS A 6909

Glass transition temperature 70
o
C or more JIS K 7121
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Table 5.3 Smoothing agent quality standard. 

 

Table 5.4 Impregnation adhesive resin. 

 

Table 5.5 Primer for highly expansive elastic putty. 

 

Table 5.6 Highly expansive elastic putty. 

 

5.2. DESIGN METHOD 

5.2.1. Used materials5.1) 

This section described the mechanical properties of all materials used in the design method to repair 

corroded gusset plate connections, including carbon fiber reinforced polymers (CFRP) sheet, primer, 

smoothing agent, impregnation adhesive resin, primer for highly expansive elastic putty, and highly expansive 

elastic putty. 

a) Carbon fiber reinforced polymers (CFRP) sheet 

The Carbon fiber reinforced polymer (CFRP) sheets are classified on the aspects of strength, flexibility, 

and fiber mass per unit area, as shown in Table 5.1. In general, the carbon fiber sheets with high-strength are 

Item Standard value Testing method

Tensile shear strength 9.8 N/mm
2
 or more JIS K 6850

Steel bond strength 1.5 N/mm
2
 or more (23/50

o
C) JIS A 6909

Compressive elastic modulus 1500 N/mm
2 JIS K 7181

Glass transition temperature 70
o
C or more JIS K 7121

Item Standard value Testing method

Tensile strength 29 N/mm
2
 or more JIS K 7161

Tensile shear strength 9.8 N/mm
2
 or more JIS K 6850

Steel bond strength 1.5 N/mm
2
 or more (23/50

o
C) JIS A 6909

CFRP tensile strength 1900 N/mm
2
 or more (23/50

o
C) JIS A 1191

Glass transition temperature 70
o
C or more JIS K 7121

Item Standard value Testing method

Blend viscosity Less than 2000 Pa・s Type-B viscometer

Steel bond strength 1.5 N/mm
2
 or more (23/50

o
C) JIS A 6909

Glass transition temperature .70
o
C or more JIS K 7121

Item Standard value Testing method

Tensile strength 8 N/mm
2
 or more JIS K 7161

Tensile elastic modulus 55 N/mm
2
 or more, less than 75 N/mm

2 JIS K 7161

Elongation 300% or more, less than 500% JIS K 7161

Steel bond strength 1.5 N/mm
2
 or more (23/50

o
C) JIS A 6909

Glass transition temperature .-15
o
C or more JIS K 7121
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widely used when the high tensile strength is required for the upgrades such as a seismic reinforcement of 

reinforced concrete piers. When the reduction of stress and/or deflection level under regular loads (without 

seismic force) is required, the number of layers could be minimized by using the high modulus carbon fiber. 

The repair method proposed in this study is intended to improve the load-carrying capacity of the corroded 

gusset plate with cross-sectional loss by preventing local buckling and resisting the horizontal shear stress of 

the corroded section. It is confirmed by previous evaluation tests that using the high modulus CFRP sheet 

could reduce the number of layers, which becomes advantageous for the reduction of costs and duration of 

application; therefore, the high modulus CFRP sheet is specified as a standard fiber material in this study. The 

required value of elastic modulus is set to 640 GPa or more that is the highest among high modulus CFRP 

sheets to commercially available, and materials with this value were used for the past evaluation tests. 

b) Primer 

The primer is applied to the steel surface to secure sufficient bonding strength between steel members and 

CFRP sheets, creating a composite material. In the proposed repair method, epoxy resin is specified as a 

standard primer, its quality standards being based on the strengths of different primers used by past evaluation 

tests. Primer quality standards are shown in Table 5.2. When using other resins as an alternative primer, the 

quality of the resin should be confirmed by the necessary tests. Because the steel bonding strength depends on 

the secure adhesion of each interlayer (for example, between the primer and steel surface or smoothing agent), 

it should be examined after all necessary layers are applied, except for the protective layer and coating. 

c) Smoothing agent 

Flatten uneven or pitted areas by using the resin putty after the application of the primer, since flatness 

influences the bonding capability. Apply the resin putty. When covering a corner portion (inner curve), mold 

into an arch-like shape. Surface smoothing should be carried out after confirming the primer is dry to the touch. 

Material properties of smoothing agent quality standard is shown in Table 5.3. 

d) Impregnation adhesive resin 

The carbon fiber sheet could be well performed at a required strength and elastic modulus as a composite 

material (CFRP) consisting of carbon fiber and resin. The adhesive resin ensures its steel bonding strength, 

and tensile and joint strength as CFRP. The material properties of the impregnation adhesive resin are shown 

in Table 5.4. 
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Fig. 5.1 Design method for corroded gusset plate connection. 

e) Primer for highly expansive elastic putty 

The primer for highly expansive elastic putty shall has capability to ensure the bonding between the putty 

and both of the steel and the smoothing agent with sufficient strength of bonding to both the steel and the 

smoothing agent to create composite structure. The material properties of primer for highly expansive elastic 

putty are shown in Table 5.5. 

f) Highly expansive elastic putty 

The highly expansive elastic putty is capable of bonding steel plate to CFRP in order to perform the 

required reinforcing effects without debonding, even if the steel plates are subjected to high stress or out-of-

plane deformation due to local buckling. The material properties of highly expansive elastic putty are shown 

in Table 5.6. 

5.2.2. Design method 

This Section proposed a design method to repair the corroded gusset plate connection, after the 

effectiveness of the repair method using CFRP sheets were investigated by conducting loading tests and FEM 

analysis in Chapter 3 and Chapter 4 (see Fig. 5.1). Specifically, the direction of bonding CFRP sheets, the area 

of bonding CFRP sheets, and the location of bonding CFRP sheets are decided by using results obtained in 

Chapter 3. Furthermore, the necessary number of CFRP sheets is decided by using the results obtained in 

Chapter 3 and Chapter 4. The details of each item in the proposed repair method are expressed as the following: 

(1) The object gusset plate connection in the design method of this study is of the monolith-type, denoting that 

the projected web-plates of the lower chord member are employed as a gusset plate. The direction of 

bonding CFRP sheets is interwoven at an angle of 90 & 0 degrees compared to the axis of the lower chord 

members. This is understood that the method bonding CFRP sheets with the direction of 90 degrees 

achieved better effectiveness in resisting the horizontal shear stress of the corroded section, which decided 
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CFRPGroove
Zt

Zh

CFRP

(Fiber direction: 90&0) 
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the final load-carrying capacity of the corroded gusset plate connection. 

(2) The necessary number of CFRP layers for each direction (in terms of compression and tension) is 

calculated such that the layers bonded to be thicker than the thickness reduced by the cross-sectional loss, 

which is calculated using the steel equivalent thickness of the CFRP sheet using Equation (5.1). 

cf cf s sdE t n E t         (5.1) 

where, Ecf is the elastic modulus of CFRP sheet; tcf is the thickness of a CFRP sheet; n is the necessary number 

of CFRP sheets; Es is the elastic modulus of the steel; and tsd is the required thickness of the cross-sectional 

loss part of the gusset plate. 

(3) The required thickness tsd of the cross-sectional loss part for the repaired steel gusset plate should be larger 

than the thickness of the cross-sectional loss part due to corrosion. Moreover, the remaining thickness of 

the corroded gusset plate should satisfy the following conditions. 

- The corroded gusset plate connection needs to be repaired if its remaining thickness is less than the 

value calculated based on the provisions of “Design Manual for Road Bridges II 13.3.2”5.5). 

- Dead load which load acted on the steel member prior to the application of CFRP supported by the 

existing cross-section of the gusset plate. 

- Live load and dead load which acts on the steel member after the application of CFRP supported by 

the composite cross-section of the gusset plate and CFRP sheets. 

(4) CFRP sheets are bonded to the outside and inside of the corroded gusset plate, with the same number of 

CFRP sheets. Inside of the gusset plate, CFRP sheets is connected continuously to the upper flange of the 

lower chord member by an R-shape (R50) (see Fig. 5.1). 

(5) The area bonding CFRP sheets to the gusset plate must be over 5 mm from the edge of the other members. 

Further, CFRP sheets must also be added to the locations around the diagonal members and the free edges 

of the gusset plate (see Fig. 5.1). 

5.3. CONCLUSION 

Based on the efficacy of the repair method using CFRP sheets by conducting loading tests and parametric 

FEM analysis (in Chapter 3 and Chapter 4), a design method is proposed to repair the corroded gusset plate 

connection. Additionally, the details and the mechanical properties of all the applied materials are described in 

the proposed design method.  
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CHAPTER 6 

CONCLUSION AND FURTHER RESEARCH 

6.1. CONCLUSION 

Numerous studies have shown that in steel truss bridges, corrosion is frequently found on the gusset plates 

which connect members, particularly where the plate connects to the upper flange of the lower chord member. 

The corrosion is simply caused due to the complex shapes in this region, which readily accumulate debris and 

water. The corrosion of gusset plate connections has been confirmed to decrease load-carrying capacity, and it 

can lead to the collapse of the entire bridge. Therefore, it has come to a critical subject of research to evaluate 

the remaining load-carrying capacity of gusset plate connections, accounting for the corroded section of the 

gusset plate. As a matter of fact, the attachment of stiffening plate and member replacement are some of the 

traditional methods which are often applied to repair corroded structures. However, these repair works lack 

efficacy because of the heavy machinery and welding facilities required. Therefore, a simple and effective 

repair method for the corroded gusset plate connection is urgently needed. 

This study focuses on the following main objectives: 1) evaluating the remaining load-carrying capacity 

of the corroded gusset plate connection by using loading tests and FEM analyses; 2) establishing a proper 

repair method for the corroded gusset plate connection using CFRP sheets. The results obtained from this study 

are summarized as follows: 

In chapter 2, loading tests performed in the laboratory and an FEM analysis were conducted on an existing 

bridge configuration using an approximately half-scale model. The gusset plate connections were tested in 

cases of 50% and 75% corrosion of the gusset plate thickness, and 50% corrosion of the length of the flange-

to-gusset weld in compression. This study then conducted parametric FEM analyses by changing the size of 

the corroded sections to verify the relationship between the remaining load-carrying capacity and corrosion 

levels with the model of specimen and the full-scale model of an actual bridge. Additionally, based on the 

results of the parametric FEM analysis of the cases with the corrosion loss of the gusset plate thickness, an 

evaluation method for determining the local buckling strength of the corroded section was proposed. The 

primary results of this chapter could be summarized as follows. 
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 Based on the loading tests and FEM parametric analysis, as the dimensions of the corroded sections 

were increased, the load-carrying capacity of the gusset plate connection decreased. Specifically, for 

each cross-sectional corrosion height evaluated, the load-carrying capacity of the gusset plate 

connection exhibited nearly the same linear decrease with the increasing thickness of the cross-

sectional corrosion of the section. Furthermore, the load-carrying capacity of the gusset plate 

connection was found to sharply drop when there was a change in the failure condition of the corroded 

section. Only a slight reduction in capacity, in the range of 5% to 7%, was found as the length of the 

flange-to-gusset weld corrosion increased from 50% to 100% of the gusset plate width. 

 The parametric analysis results with the dimensions of the actual gusset plate connection indicated 

that the load-carrying capacity of corroded gusset plate connection on real bridges could be effectively 

determined, by using the remaining load-carrying capacity curves, normalized to the horizontal shear 

yield strength of the intact gusset plate. In addition, the failure behavior and the deformation 

performance of the actual gusset plate connection agreed completely with that of the gusset plate 

connection under the dimensions of the specimen. 

 This study proposed an accurate method to evaluate the local buckling strength of cross-sectional 

corrosion section, and to determine the change in the failure condition of the corroded section (from 

local buckling to shear buckling). 

 

In chapter 3, this study focused on investigating the effectiveness of repair method by using carbon fiber 

reinforced polymers (CFRP) for the corroded gusset plate connection. Loading tests were conducted with a 

model of approximately 50% the size of an actual bridge and the degree of corrosion assumed to be 

approximately 50% of the gusset plate thickness. Further, the loading tests were carried out with three 

parameters of the repair method including the area of the bonded CFRP sheets, the direction (45, 56, and 90 

& 0 degrees) of the bonded CFRP sheets, and the location of the bonded CFRP sheets (out-side bonding and 

both-sides bonding). The primary results of this chapter could be summarized as follows. 

 In the proposed repair method of CFRP sheets with the direction of 90 degrees, the load-carrying 

capacity of the corroded gusset plate connection recovered to that of the intact gusset plate connection. 

This is understood that the method bonding the CFRP sheets with the direction of 90 degrees achieved 
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a better effectiveness in resisting the horizontal shear stress of the corroded section, which decided the 

final load-carrying capacity of the corroded gusset plate connection, compared to other methods. 

 The significant increase of the out-of-plane deformation of the corroded gusset plate was seen because 

the local buckling on the corroded section occurred. This is understood to be as a result of eccentricity, 

owing to the decreased thickness of the corroded section. However, by using the proposed repair 

methods, the out-of-plane deformation of the corroded gusset plate connection was prevented 

completely. Therefore, in all of the repaired cases, local buckling on the corroded section did not occur. 

 For all of the proposed repaired methods, in the both-sides bonding methods, the bending moment in 

the compressive direction of the corroded section due to eccentricity was improved considerably 

compared to the out-side bonding methods. 

 In the repair methods added the CFRP sheets to the area around the diagonal member of the gusset 

plate connection, the plate area underneath the diagonal member was reinforced by the CFRP sheets; 

therefore, the buckling load on this area grew up by 10%, compared to the other methods. 

 

In chapter 4, this study established a nonlinear theoretical analysis method considering the peeling 

condition of CFRP sheet, and the nonlinear material condition of all member on the analytical model; for a 

steel plate bonding a layer of CFRP sheet under uniaxial tensile loading. Moreover, after grasping the peeling 

mechanism of CFRP sheet from the proposed nonlinear theoretical analysis, finite element analyses were 

implemented on the repaired gusset plate connection to reproduce the experimental results obtained in Chapter 

3. Finally, a parametric analysis was carried out on the repaired gusset plate connection by varying the number 

of bonding CFRP sheets calculated from the equation of steel conversion, to clarify the necessary number of 

CFRP sheets bonding into the corroded gusset plate. The primary results of this chapter could be summarized 

as follows. 

 In uniaxial-tensile-stress condition, it is possible to accurately evaluate the peeling strength and the 

mechanical behavior of adhesion layer, by developing the nonlinear theoretical analysis. 

 In order to reproduce the peeling failure of CFRP sheets under the environment of FEM analysis, the 

use of the interface element is strongly preferred to simulate adhesion layer, in which the peeling 

failure occurred. 

 By simulating the polyurea putty layer using the interface element, and CFRP sheets using the 
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orthotropic material in models of FEM analysis; the load-carrying capacity, failure behavior, and 

deformation performance of the repaired gusset plate connection in loading tests are reproduced 

 For the safety, the equation of the steel conversion is strongly preferred to determine the necessary 

number of CFRP sheets in the repair method using CFRP sheets. 

 

In chapter 5, this study proposed a design method to repair the corroded gusset plate connection, after the 

effectiveness of the repair method using CFRP sheets were investigated by conducting loading tests and FEM 

analysis in Chapter 3 and Chapter 4. The primary results of this chapter could be summarized as follows. 

 The object gusset plate connection is monolithic with the chord member. 

 The direction of bonding CFRP sheets is interwoven at an angle of 90 & 0 degrees compared to the 

axis of the lower chord members. 

 The CFRP sheets are bonded to the outside and inside of the gusset plate, with the same number of 

CFRP sheets. Inside of gusset plate, CFRP sheets in connected continuously to the upper flange of the 

lower chord member by an R-shape (R50). 

 The area bonding CFRP sheets into the gusset plate must be over 5 mm from the edge of the other 

members. Further, CFRP sheets must also add to the locations around the diagonal members and the 

free edges of the gusset plate. 

 The equation is used to determine the number of CFRP sheets for each direction. 

cf cf s sdE t n E t         (6.1) 

where, Ecf is the elastic modulus of CFRP sheet; tcf is the thickness of a CFRP sheet; n is the necessary number 

of CFRP sheets; Es is the elastic modulus of the steel; and tsd is the thickness of the cross-sectional loss part of 

the steel. 

 The required thickness tsd of the cross-sectional loss part for the repaired steel gusset plate should be 

larger than the thickness of the cross-sectional loss part due to corrosion. Moreover, the remaining 

thickness of the corroded gusset plate should satisfy the following conditions. 

 The corroded gusset plate connection needs to be repaired if its remaining thickness is less than 

the value calculated based on the provisions of “Design Manual for Road Bridges II 13.3.2”. 

 Dead load which load acted on the steel member prior to the application of CFRP supported by 
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the existing cross-section of the gusset plate. 

 Live load and dead load which acts on the steel member after the application of CFRP supported 

by the composite cross-section of the gusset plate and CFRP sheets. 

 

6.2. FURTHER RESEARCH 

This study attempts to address as many objectives related to the corroded gusset plate connection in steel 

truss bridges as possible. This study aims at consistently evaluating the remaining load-carrying capacity of 

the corroded gusset plate connection, and establishing a proper repair method for the corroded gusset plate 

connection. However, within the framework of this study, there are still some issues to be further investigated. 

Those are as the following: 

In chapter 2 with the evaluation for the load-carrying capacity of the corroded gusset plate connection, the 

author recommends a need to clarify the remaining capacity of corroded gusset plate connection with the 

various shapes of connection and the various angle of diagonal member, and to investigate the influences of 

corroded gusset plate connection on the capacity of an entire bridge. 

In chapter 3, investigating the effectiveness of repair method using CFRP sheets, the author recommends 

a need to conduct further parametric FEM analyses for the repair method bonding CFRP sheets with some 

parameters such as area bonding CFRP sheets, direction bonding CFRP sheets, and anchoring length of CFRP 

sheets. 

In chapter 4, the nonlinear theoretical analysis, the author recommends a need to develop the nonlinear 

theoretical analysis method for the steel plate with multilayered CFRP sheets under uniaxial loading and 

bending; and the analytical object being able to fully consider the material model (shear direction and normal 

direction) of adhesion layer. 

In chapter 5, the proposed design method repairing the corroded gusset plate connection, the author 

recommends a need to clarify the maximum thickness of the cross-sectional loss part due to corrosion, which 

can be repaired by using the proposed method. In other words, it will be necessary to investigate the maximum 

number of CFRP sheet can be bonded to the corroded gusset plate. 
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