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Abstract 

For last three decades, Friction Stir Welding (FSW), one of the solid-sate joining 

processes, has been widely applied in aerospace, shipbuilding, automotive, and railway 

industries. The FSW technology can be applied for the alloys those are difficult to be 

welded by normal fusion welding process, and it enables to produce dissimilar metals 

joints. These aspects might attract the large number of publications that has investigated 

welding parameters, welding defects, microstructure, residual stress, etc. with main 

purpose is to improve the mechanical properties of the FSWed joints. The weldability of 

the FSWed T-lap joints was investigated in literature. In spite of these, few publications 

have been achieved success in the improvement of the strength of the joints. The 

formation of some undesirable defects such as tunnel, oxide line, kissing bond, etc. 

might be responsible for these problems. Among these defects, the kissing bonds were 

too difficult to be improved by applying only traditional single-pass, especially at the 

retreating side (RS) in the FSW process. These results might be more pronounced in the 

failure under cyclic loadings. However, there is very limited knowledge from this aspect. 

The aim of this work is to improve interface morphology and analyze the fracture 

behavior of the FSWed T-lap joints, those make platform for the improvement of the 

mechanical properties of the joints. For this purpose, a dissimilar metals T-lap joint 

between AA7075 and AA5083 was fabricated. The first attention was put on the 

fundamental formations of welding interface between the skin and stringer parts. The 

effect of welding parameters on the interface morphology and the strength of the joints 

was explored. Based on obtained results, a new method was proposed to upgrade the 

interface morphology of the joints. Here, the attention was put on the influences of 

reversed metal flow and tool offset on the interface morphology. The failure behavior of 

the improved T-lap joints was also investigated under cyclic loading with focusing on 

the role of the kissing bonds (KBs) orientation. In addition, such a new concept that the 

interface is modeled by an equivalent crack has been proposed to make the analysis of 
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the fracture behavior of the FSWed T-lap joints. Finite Element Analysis (FEA) is also 

applied to more quantitatively understand this failure. The prediction of crack direction 

under stringer-directional loading test was also presented in this work. 

The experimental results showed that the formations of interface with some 

defects, e.g. hook, kissing bond, and bonding line defects were found under various 

welding conditions. Here, increasing the welding rate or decreasing the probe length 

might reduce the hook defect size which played the significant role in the mechanical 

properties of the joints; however, these changes might lead to the formation of the 

bonding line defects. The kissing bond defects were produced at the two corner fillets 

under all the welding conditions. This means that they were independent of the welding 

parameters. The gap between tool probe and die may be reason for the formation of the 

kissing bond defects. The defects seem to be too hard to be minimized by applying only 

single-pass FSW. The welding rate of 100 mm/min and the probe length of 3.7 mm 

were chosen as the available welding regimes to make platform for the improvement of 

the dissimilar FSWed T-lap joints. 

The quality of the interface morphology was significantly improved due to the 

application of the double-pass FSW induced by tool offset and reversed metal flow. By 

this new method, the defect size and the effective bonded width were improved without 

the insignificant change in welding temperature and hardness profile. Noting that, the 

best interface morphology of the joints was obtained by offsetting the tool probe toward 

advancing side (AS) with the distance of 0.8 mm. Particularly, the joint efficiency was 

reached approximately 90% in comparison with the strength of AA5083 base metal 

under the optimized condition. The above results were suitably interpreted by the tool 

position and asymmetric metal flow during the double-pass FSW process. It is also 

found that the gap distance between probe and die kept a key role in the interface 

formation. 

The failure behavior of the optimized dissimilar T-lap joints was largely 

investigated under cyclic loading. The experimental results showed that the fatigue life 

of the joints was lower than that of the base alloys in both the skin and stringer loading 

tests. In the skin loading tests, the fatigue crack predominantly initiated at the weld toe. 

The visible result showed that the KB-closing at the interfaces during testing process 

might lead to the stress concentration at two weld toes. Regarding the stringer loading 

tests, however, the fatigue crack initiations was dominantly found in the interface of the 
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KBs, and then propagated obliquely to the skin AA5083 under mix-mode failure. Here, 

the KB interfaces were comfortably delaminated to form two crack shapes that might 

play an important role in the failure behavior of the T-lap joints. 

In order to understand the present experimental results in systematically, a 

simplified fracture mechanics model was proposed via introducing a new parameter; 

“geometrical resistance factor of defects (GRFD)”. Here, the AA7075/AA5083 

interface is represented by an equivalent defect or crack which is subjected to the 

corresponding equivalent stress intensity factor (SIF), and the increase in defect size is 

expressed by decrease in the GRFD, resulting in reduction in the allowable stress. The 

advantage of the double-pass FSW process could be rationalized by the GRFD 

parameter, which was also supported by the FEA. These works suggested that the 

optimization of the FSW can be achieved by minimizing the defect size, by increasing 

the GRFD, and by increasing the interface strength those can be attained by the change 

in the welding conditions via the control of metal flow in the FSW process. 
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Chapter 1 

Introduction 

 

A brief introduction to challenge in fabricating T-joint configuration by traditional 

fusion welding is presented in this chapter. The basic knowledge and advantages of 

Friction Stir Welding (FSW) technology are exhibited. The limitation of the weldability 

of the FSWed T-joints in literature is highlighted. Based on literature inspections, the 

role of some defects on the mechanical properties of the FSWed joints is indicated. 

Finally, the objectives and dissertation outline of this work are indicated. 
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1.1 Advanced Aluminum Alloys and Challenges in Fusion Welding 

1.1.1 Advanced aluminium alloys 

Aluminum alloys are one of the light metals that are widely applied in the 

structural components such as the shipbuilding, automotive, railway, and aerospace 

industries [1]. The high strength to weight ratio, good hot formability, and good 

corrosion resistance are considered as the best properties of them [2-7]. Two advanced 

aluminum alloys that contained the highest strength and the best corrosion resistance are 

AA7075 and AA5083, respectively. 

AA7075 is one of the heat treatable aluminum alloys that respond to strengthening 

by heat treatment. The major elements of AA7075 include zinc, magnesium, and cooper. 

The precipitation of Mg2Zn and Al2CuMg phases derives a high strength [8]. Due to the 

high strength, it has specially high reaction to natural age hardening that makes it a great 

selection for a number of aircraft structure, military vehicles, bridges, etc [5,6,9]. 

Moreover, this alloy is sensitive to welding temperature [10]. So, welding of this alloy 

can reduce the strength of the joints. The enhancement in the strength properties in these 

alloys depends on age-hardening phenomena [6,7]. One of the other limitations of this 

alloy is difficulty to apply fusion welding technology because it is extremely sensitive 

to solidification cracking [11]. 

In contrast, AA5083 is one of the non-heat treatable aluminum alloys that respond 

to strengthening by cold working or strain hardening. It exhibits the best property of 

corrosion resistance to salt-water and the marine atmosphere, moderate mechanical 

properties and a high fatigue fracture resistance [12]. Dissimilar to AA7075, this alloy 

can weld well by traditional fusion welding without hot cracking phenomenon. Due to 

the good properties, it is used for the production of welded components for shipbuilding 

and railway vehicles, structure panels and platforms for boats and trains, storage tanks, 

pressure vessels, etc. [5,7,12]. 

1.1.2 Challenges in fusion welding technology 

Fusion welding technology is well known as one of the common methods to join 

metal. It is widely applied in welding techniques for many various materials. Some 

methods are known as arc welding, gas welding, radiant energy welding, and resistance 

welding, etc. In these methods, the materials are heated to a melting temperature before 
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they are diffused each other [13]. It is true that these techniques are generally difficult to 

apply for the light metal alloys. For example, the joint of titanium alloys produced 

conventional welding method frequently occur porosity, hot cracking, distortion, and 

high residual stress [14-17]. A similar result was also found in the joins of magnesium 

alloys [18-22]. These undesirable defects were almost formed in the fusion welding of 

aluminum alloys and were investigated by many researchers [22-31]. Specially, the 

solidification cracking of aluminum alloys of 7xxx and 2xxx series are more susceptible 

than that of other series [24,32-34]. This result might be related to high solidification 

temperature, coefficient of thermal expansion, shrinkage stresses, and tendency to form 

low-melting constituents [24]. Consequently, the mechanical properties of the joints 

might be drastically reduced by these defects [35-37]. 

In addition, one of the greatest challenges in fusion welding lies at dissimilar 

joints that have been applying widely in many manufacturing fields. Here the best 

characteristics of dissimilar materials are optimized for various purposes [38]. However, 

the success of dissimilar joints can be affected strongly by the differences in melting 

temperature, the thermal conductivity, and the electrochemical potential of the different 

materials. As a result, a brittle intermetallic compounds may be formed along interface, 

resulting in reducing the strength of the joints [39]. In spite of that, the difficulties 

associated with conventional welding can be improved by the solid-state joining process 

that has been broadly applied in near decades. 

1.2 Potential Friction Stir Welding Technology in Manufacturing 

Process 

1.2.1 Background about Friction Stir Welding (FSW) 

Friction Stir Welding (FSW) that was invented by The Welding Institute (TWI) in 

1991 is one of the solid-state welding technologies [40]. This technique uses frictional 

heat induced by rotating tool to weld materials. It means that the welding temperature 

during FSW process is lower than the melting temperature of base materials [41-44]. 

The schematic diagram of the FSW process is shown in Figure 1-1. Here, a non-

consumable welding tool involves probe and shoulder, those are specially designed, is 

applied to insert into workpieces [41]. Due to the rotational welding tool, the frictional 

heating was generated to soften the metal. Thereby, the material can move around tool 

probe to mix and bond each other under the solid-state [41,45-51]. In order to create 
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reasonable heat input, controlling the welding parameters in terms of welding speed, 

rotational speed, tool geometry, etc. played important role during the FSW process. So, 

the influences of these parameters on heat input [52-57], microstructure, and the 

mechanical properties [58-69] of the joints were noticed in the former researches. 

 

Figure 1-1 Schematic diagram of the FSW process. 

The FSW has been considered as one of the advanced technologies in the near 

decades [41]. Unlike the conventional welding methods, the FSW do not use filler metal, 

cover gas or flux that may cause environmental pollution [41,42]. Thereby, the FSW is 

considered as green technology and environmental friendliness [41,70]. Due to low 

welding temperature, furthermore, the joints were obtained with a low distortion [70,71], 

low residual stress [72-74], and fine microstructure [37,75-81]. Consequently, the joint 

efficiencies might be reached larger than 90% compared to the base strengths that were 

applied for different materials such as aluminum [82-85], magnesium [86-89], copper 

[90-92], steel [93,94], and titanium alloys [95-98]. Based on these findings, the FSW 

technology has been commercially employed in a large amount of various industries 

such as automotive, shipbuilding [99-101], high-speed train manufacturing [99,101], 

aerospace [102], and railway [101,103]. 
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1.2.2 Friction Stir Welding of dissimilar metal joints 

In recent years, the structural weight and material saving are one of the great 

interesting of manufacturers, especially in aerospace industry [104,105]. The 

applications of lightweight alloys and dissimilar metal joints are considered as two of 

the solutions to approach these goals. However, it is not easy to attain a good dissimilar 

metal joint by utilizing traditional fusion welding technique [106]. Because of 

significant difference in material properties and welding temperature may produce the 

interfaces with brittle intermetallic compound characteristics that reduce the strength of 

joints [107-110]. Unlike the traditional fusion welding, the low welding temperature and 

special mechanism formation of the FSW may produce sound dissimilar metal joints 

between aluminum alloys and some other metals such as titanium alloys [111-113], 

copper alloys [114,115], or steels [116,117]. 

The FSW of dissimilar aluminum alloys was early investigated in literature [118-

121]. Recently, the combination of a non-heat treatable aluminum alloy 5083 (known as 

an excellent corrosion resistance) and a heat treatable aluminum alloy 7075 (known as a 

high strength and light density) was noted. These results showed that the high efficiency 

of a defect-free but-joint might be obtained about 87-100% in comparison with the base 

strength [66,122,123]. This means that the application of the FSW technology can 

substitute the conventional method as fusion welding and rivet to join these alloys. In 

spite of this, the success of the FSWed lap-joints of two alloys has not been verified in 

literature. 

1.2.3 Application of T-joints and its weldability by FSW technology 

1.2.3.1 Application of T-joint configuration 

The T-joints composed stringer and skin plates is one of the common junctions in 

the structures of railway tankers, aircraft wing-box and ship panel [42,124]. Particularly, 

in order to decrease the weight of structure, the structural panel plate that was widely 

used in hull structure of ship was combined between longitudinal bars (stringer) and 

shell plate (skin) as shown in Figure 1-2 [125-127]. It is well known that the maximum 

stress in the stringer is much higher than that in the skin under bending load. In addition, 

the skin covers outside and contacts directly to the seawater environment. So, the 

stringer is often designed as strong web while the skin is a light plate. A reasonable 

combination of dissimilar joint with high durability for stringer and good corrosion 
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resistance for skin may be suitable for these kinds of structures. It is well known that 

non-heat treatable aluminum alloy 5083-H116 possesses an excellent corrosion 

resistance and commonly applied in shipbuilding. Meanwhile heat treatable aluminum 

alloy 7075-T651 possesses a highest strength and light density but it is difficult to apply 

fusion welding [5]. The success in combination between these alloys is platform for 

producing plate panel structure employed in shipbuilding industry. 

 

Figure 1-2 (a) Hull structure of ship [126] and (b) plate panel in ship structure [127]. 

1.2.3.2 Weldability of FSWed T-joints in literature 

The application of fusion welding technologies to fabricate the T-joints was 

investigated in some earlier researches [37,128,129]. In spite of these, the strength of 

the joints was low due to the undesirable occurrence of porosity, coarse microstructure 

grain, and lack of wetting. Moreover, this technology is too difficult to employ for   

aluminum alloys of 7xxx and 2xxx series [23,32-34]. 

The weldability of the similar and dissimilar FSWed T-joints has been early 

investigated in literature [130,131]. Recently, there are three common methods used to 

fabricate the FSWed T-joints, i.e. T-butt joint, T-lap joint, and T-fillet joint, as seen in 

Figure 1-3. Among these methods, the T-lap joint is considered as the fastest and 

simplest methods [41]. In addition, the application of this method is more convenient 

for producing large structural panels in transportation (Figure 1-4) [132]. 

From above overviews, it seems that the most special attentions from the former 

researchers have been focused on the FSWed T-lap joints [133-142]. However, the 

strength of the joints in these researches was not satisfactory. To improve the T-lap joint 

efficiency, the influences of some FSW parameters such as welding and rotational 

speeds [133-135,137], and welding tool [136,137] as well as the metal flow [138,139] 

have been explored. In spite of these changes, the T-lap joint efficiency has still been 
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low, especially in stringer loading test, as presented in Table 1-1 and Figure 1-5. This 

result is due to the undesirable formation of some defects in the T-lap joints. As shown 

in Figure 1-6, the frequent presences of tunnel, oxide line, and kissing bond defects 

(KBs) might degrade the strength of the joints. The formation of the KBs at two corner 

fillets, especially at retreating side (RS) seems to be too difficult to eliminate in 

comparison with other defects. Some authors applied the T-fillet joints that penetrated 

tool probe into two corner fillets to eliminate this kind of defects [140-142]. Despite this 

method is a suitable solution, it is too difficult to employ widely in manufacturing 

process because of complex welding tool and clamping fixture. Recently, Feistauer and 

co-worker applied the second FSW pass that was the same direction of rotational tool 

but the opposite welding direction with first welding pass to minimize the KBs [143]. 

Consequently, the KBs size was impressively decreased and significantly improved the 

strength of the T-lap joints. From these works, it is clearly that the welding interface 

might be kept a key role in the strength of the FSWed T-lap joints. In spite of this, the 

formation of welding interface in terms of the KBs and bonding characteristics in both 

single- and double-pass welding has not been understood in these works. 

 

Figure 1-3 Common FSWed T-joint configurations: (a) T-butt joint, (b) T-lap joint, and 

(c) T-fillet joint. 

 

Figure 1-4 Large structural panels in transportation [132]. 
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Table 1-1 Previous researches on FSWed T-lap joints. 

Skin Stringer Joint efficiency 
References 

Materials Thickness Materials Thickness Loading 
along skin 

Loading along 
stringer 

AA2024 2.3 mm AA7075 2.8 mm N/A 72% [130] 

AA2198 3.0 mm AA6056 6.0 mm 63% 61% [131] 

AA6061 3.0 mm AA6061 3.0 mm 75% 55% [133] 

AA6013 2.5 mm AA6013 2.5 mm 68% 53% [134] 

AA6082 3.0 mm AA6082 3.0 mm 56% N/A [135] 

AA5083 3.0 mm AA5083 3.0 mm 87% N/A [137] 

AA6082 3.0 mm AA6082 3.0 mm 50% N/A [137] 

AA5083 6.0 mm AA5083 6.0 mm 88% 53% [143] 

 

Figure 1-5 Comparison about joint efficiency between loading along skin and stringer in 

literature. 

 

Figure 1-6 Cross-sections of FSWed T-lap joints in literature [133,143]. 
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1.3 Classification and Role of Defects in Mechanical Properties of 

FSWed Joints  

1.3.1 Classification of weld defects in FSW process 

Despite the FSW technology has many advantages in producing the good joint; it 

does not always make defect free joints [144]. The selection of optimal welding 

parameters to obtain a defect free and high strength of the joints is a challenge in the 

FSW process. This means that some internal defects fluently appear inside the joints. 

The appearance of natural oxide film on the surfaces of materials can lead to the 

formation of a discontinuous, wavy line after welding those often refer to as the weld 

defects [145]. However, the classification of these defects is not clearly established and 

unified in the literature [145]. For example, it has been mentioned to as zigzag line 

[146-148] (Figure 1-7(a)), joint line remnant (JLR) [145,149,150], lazy S [151,152], or 

kissing bond (KB) [153-155]. Moreover, some defects formed in the FSW lap-joint 

have been referred to as hook [156] (Figure 1-7(b)), kissing bond [143] (Figure 1-6), or 

cold lap defects [157]. 

In this research, welding interface with some dark lines was found along interface. 

Dark line seems to be remnant of initial interface, but its fragmentation degree might be 

not same. This result might lead to difference in the bonding strength of interface. With 

the aim for improving interface morphology, the classification and notation of defects 

will be carried out based on the fragmentation degree of initial interface that seems to be 

relationship to the location of interface, as illustrated in Figure 1-8. Here, the interface 

locates outside stirred zone is referred to as kissing bond defects that were also 

mentioned in literature [133,134,137]. The interface locates inside the SZ with hook 

geometry is referred to as a hook defects that are often observed in the FSWed lap-joint 

[156,157]. The other interface located inside the SZ with oxide film is referred to as 

bonding line defects. A cavity is also found in the SZ at advancing side (AS) is denoted 

as tunnel defects. These defects will be discussed in the next chapter. 

 

Figure 1-7 Geometry of (a) zigzag line [146] and (b) hook defects in the joints [156]. 
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Figure 1-8 Classification of defects in FSWed T-lap joints in this work. 

1.3.2 Effects of defects on mechanical properties of FSWed joints  

The low strength of the FSWed joints had a big contribution of some internal 

defects those were formed inside the joints. These defects might decrease up to 50% of 

joint efficiency [133,134,143]. So, the effect of the weld defects on the failure behavior 

of the FSWed joints have been one of the attractive issues with respect to researchers 

[145,150,153-157]. Several papers showed that the crack path might appear along the 

KBs in some welding regimes [154,155]. The fatigue life of joints contained the KBs 

was 21-43 times smaller than that of the joints without the KBs [155]. However, Kadlec 

et al. [153] found that a big size of the KBs was insignificant influence on the strength 

of the joints compared to flawless. 

The significant effect of defects on the strength of the FSWed T-lap joints was 

found in literature [133-139,143]. The low strength of the joint had the big contribution 

of tunnel, kissing bond or bonding line defects [133,134,137,143]. Especially in 

applying load along stringer part, most of the defects affected the strength of the joins, 

resulting in reduction in joint efficiency, compared to applying load along skin part 

(Table 1-1). So, minimizing or eliminating the defects is one of the vital problems in 

fabricating the FSWed T-lap joints to advance the mechanical properties. 
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1.4 Objectives of this Dissertation 

The main goal of this work is to investigate the interface morphology and fracture 

behavior of the FSWed dissimilar metal T-lap joints of aluminum alloys, those make 

platform for the improvement of the mechanical properties of the joints. In order to 

approach these goals, the primary work is to fabricate the FSWed T-lap joints between 

AA7075-T651 (denoted as AA7075) and AA5083-H116 (denoted as AA5083) to reveal 

the fundamental formation of welding interface between skin and stringer parts. The 

initial attention was put on how to produce a good interface by controlling the FSW 

parameters to minimize or eliminate the defects formed along interface. The reduction 

in the strength of the joints by these defects was discussed. Based on these findings, an 

advanced method was suggested to improve the interface morphology and the 

mechanical properties of the T-lap joints. Thereafter, the fracture behavior of the 

optimized joints was largely explored under cyclic loading in both skin and stringer 

tests. In order to clarify the present experimental results in systematically, a simplified 

fracture mechanics model was also proposed via introducing a new parameter; 

“geometrical resistance factor of defects (GRFD)”. The role of interface morphology in 

terms of the size and orientation of the defects in the fracture behavior of the joints was 

addressed. A prediction of crack direction under stringer fatigue test was presented.  

1.5 Dissertation Outline 

The interface morphology and the fracture behavior of the FSWed T-lap 
dissimilar metal joints between AA7075 and AA5083 have been investigated in this 
work. Dissertation is arranged in six chapters as following: 

Chapter 1: The challenge of the traditional fusion welding technologies is 
highlighted. A background about FSW technique and its weldability in dissimilar joints 
and T-lap joints is summarized. The effect of defects on the mechanical properties of 
the FSWed joints is given. 

Chapter 2: Dissimilar metal T-lap joint between two aluminum alloys AA7075 
and AA5083 is fabricated by traditional single-pass FSW. The fundamental formation 
of welding interface between skin and stringer parts affected by welding parameters in 
terms of welding speed and tool geometry is investigated in this chapter. The effect of 
some undesirable defects formed along interface on the strength of the joints is 
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addressed. Based on these findings, the some available parameters are selected to make 
platform for the improvement of the dissimilar FSWed T-lap joints. 

Chapter 3: The improvement of the interface morphology and mechanical 
properties of the dissimilar T-lap joints between AA7075 and AA5083 is carried out by 
applying double-pass FSW. The special attention is put on the effects of reversed metal 
flow and tool offset on the formation of the interface morphology in terms of the kissing 
bond defects and effective bonded width. The performance of the joints is evaluated by 
both skin and stringer tensile tests. The local deformation of the joints is shown by 
applying a digital image correlation (DIC) system that is connected to the tensile test 
machine. The formation mechanism of welding interface in this new method is 
obviously discussed in this chapter. 

Chapter 4: The fracture behavior of the dissimilar FSWed T-lap joints between 
AA7075 and AA5083 that is optimized in Chapter 3 is investigated under cyclic loading 
in both skin and stringer tests. The fatigue life and fatigue crack initiation of the joints 
are indicated. The fracture morphology of the specimens under the skin and stringer 
tests was observed by means of scanning electron microscopy (SEM). The effect of 
kissing bonds in terms of the orientation and bonding strength on the fatigue life and 
fatigue crack initiation of the joint are addressed. 

Chapter 5: The effect of interface geometry on fracture behavior of the FSWed 
T-lap joints under skin and stringer tests is explored in this chapter. In order to consider 
the unified treatment for the present experimental results, a simplified fracture 
mechanics model is proposed via introducing a new parameter; “geometrical resistance 
factor of defects (GRFD)”. Here, the AA7075/AA5083 interface is presented by an 
equivalent defect or crack which is subjected to the corresponding equivalent stress 
intensity factor (SIF). The roles of the interface geometries in terms of the size and 
orientation of the defects on the GRFD parameter are addressed. The Finite Element 
Analysis (FEA) is applied to elucidate the failure behavior of the T-lap joints. In 
addition, the crack direction under mixed mode failure is predicted by the Maximum 
Tangential Stress (MTS) criterion. 

Chapter 6: Conclusions derived from this work and suggestions for future work 
are exhibited to end of this dissertation. 
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Chapter 2 

Fundamental Formation of Interface Morphology and Mechanical 

Properties of Dissimilar Metal T-lap Joints between AA7075 and 

AA5083 by Single-pass Friction Stir Welding 

 

The main aim of this chapter is to investigate dissimilar metal T-lap joints 

between AA7075 and AA5083 by employing traditional single-pass Friction Stir 

Welding (FSW). The fundamental formation of welding interface between skin and 

stringer parts affected by welding speed and probe length is explored. Here, the special 

attention is concentrated on the formation of some undesirable defects along interface. 

The influences of these defects on the mechanical properties of the joints are evaluated. 

The quantifications of defects of interface affected by welding parameters are shown. 

Some available welding parameters are proposed to make platform for the improvement 

of the dissimilar FSWed T-lap joints in the next chapter. 
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2.1 Introduction 

The welding and rotational speeds are two of the important FSW parameters that 

significantly affected heat input during the welding process [1,2]. They are key factors 

to advance the strength of the FSWed joints which has been successfully reached in 

literature [3-7]. In addition, the strength of the joints is strongly induced by the 

geometry of welding tool [8-10]. Especially in the FSWed lap joints, the optimal probe 

length was considered as one of the important aspects for improving lap interface due to 

the change in the metal flow [11-13].  

The weldability of the FSWed T-lap joints has been investigated in the literature 

from different aspects such as welding parameters [14-17], welding tool [18,19], and 

material flows [20,21]. The major aim of these works was to upgrade the strength of the 

joints. However, most of the efficiency of the T-lap joints was significantly low, 

especially in loading along stringer part. This result might be due to the undesirable 

formation of some defects along interface such as hook, bonding line, and kissing bond 

defects those were affected by the asymmetric material flows during the FSW process 

[14,15,18]. It is clear that a good interface without defects can bring about a high 

performance of the T-lap joints. So, understanding formation mechanism and role of 

these types of defects on the FSWed T-lap joints is key factor in the improvement of the 

strength of the joints. 

The first goal of this work is to understand clearly the FSWed T-lap dissimilar 

metal joints between AA7075 and AA5083. The special focus is concentrated on the 

formation of welding interface in terms of undesirable defects. In addition, the role of 

them in the mechanical properties of dissimilar T-lap joints is explored. The effect of 

welding parameters on the quantification of defects of the interface is also considered. 

Therefrom, the available welding condition is selected to make platform for minimizing 

or eliminating these defects from the joints. 

2.2 Effect of Welding Speed 

2.2.1 Experimental procedure 

In order to produce advanced panel structure with main T-joint configuration that 

was presented in previous Chapter, two dissimilar metals were used in this work; 

aluminum alloys of 7075-T651 (denoted as AA7075) for the stringer and 5083-H116 
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(denoted as 5083) for the skin plate with the dimensions of 300×50×8.2 mm and 

300×150×3.0 mm, respectively. The chemical compositions and mechanical properties 

of them are shown in Table 2-1 and Table 2-2, respectively. The T-lap joint 

configuration is illustrated in Figure 2-1(a). Before welding process, the contact surface 

was polished by abrasive SiC paper to limit the effect of oxide layers on joint quality. 

The welding speed was arranged from 50 to 200 mm/min and the rotational speed 

was kept constant at 400 rpm. A simple conical probe was designed detail, as illustrated 

in Figure 2-1(b). The probe axis alignment was kept at a constant with the tilt angle of 

2.0o to the vertical direction. The tool shoulder penetrated into the surface of skin plate 

with the depth of 0.2 mm that was determined before the FSW process. All of samples 

in this work were no post-weld and analyzed after welding process about one month.  

The specimen for the investigation of microstructures was cut perpendicular to 

welding direction. Then, all of them were ground and polished by water abrasive SiC 

paper and alumina, respectively to achieve mirror surfaces before etching with Kroll’s 

reagent (2%HF, 6%HNO3(30%), 92% water) for 10s. Optical microscope, scanning 

electron microscope (SEM), and Energy Dispersive X-Ray Spectroscopy (EDS) were 

employed to clarify the formation of some defects in the joints. 

Two types of tests were carried out to assess the strength of the T-lap joints; one is 

the tensile test along the skin part (denoted as “skin tensile test”, Figure 2-2(a)) and the 

other is along the stringer part (denoted as “stringer tensile test”, Figure 2-2(b)). 

According to that, the skin specimen was prepared via ASTM E08 standards [22] where 

a part of stringer is still remaining by the length of 8.0 mm (Figure 2-2(a)). A jig made 

of steel material was used to support for the stringer tensile test (Figure 2-2(b)). The 

local bonding strength along the interface was evaluated by some miniature specimens 

those were extracted from the different locations of the joints, as demonstrated in Figure 

2-3(a). Specimen geometry and loading process are displayed in Figures 2-3(b) and 2-

3(c), respectively. All of these tests were executed under a speed of 1.0 mm/min at room 

temperature. 

Table 2-1 Chemical compositions (wt%) of AA5083 and AA7075. 

Compositions Si Fe Cu Mn Mg Cr Zn Ti Al 
AA5083 0.4 0.4 0.1 0.4-1.0 4.0-4.9 0.05-0.25 0.25 0.15 Bal. 
AA7075 0.5 0.7 1.2-2.0 0.3 2.1-2.9 0.18-0.40 6.1 0.2 Bal. 
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Table 2-2 Mechanical properties of AA5083 and AA7075. 

Mechanical 
properties 

Yield strength 
(MPa) 

Ultimate tensile strength 
(MPa) 

Shear strength 
(MPa) 

Vicker hardness 
(HV) 

AA5083 260 320 180 95 

AA7075 520 570 320 180 

 

Figure 2-1 (a) Schematic view of T-lap joints and (b) detail geometry of welding tool. 

 

Figure 2-2 Global evaluation of T-lap joints by (a) skin and (b) stringer tensile tests. 

 
Figure 2-3 (a) Evaluation of local interface bonding strength, (b) miniature specimens 

were extracted from the sites [A] through [E], and (c) test system for loading process. 
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2.2.2 Results and discussion 

2.2.2.1 Cross-section of T-lap joints 

Figures 2-4(a) and 2-4(b) show the macrostructures on the cross-sections of the 

specimens produced by the welding speed of 50 and 200 mm/min, respectively. Here, 

interface morphology was strongly affected by some typical kinds of defects those were 

found depending on the welding conditions: kissing bond (KB), hook, and bonding line 

defects. These defects seem to be remnant of initial interface that were fragmented 

during FSW process with not same degree. This result might lead to difference in the 

bonding strength of interface. This result might be related to the location of interface, as 

presented in Figure 2-4. Hereinafter, the characteristics and formation mechanisms of 

these defects are given as following; 

 

 

Figure 2-4 Macrostructures on the cross-section of specimens produced by welding 

speed of (a) 50 mm/min and (b) 200 mm/min. 
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 (a) Tunnel defect: A representative tunnel defect at the welding rate of 200 

mm/min is shown Figure 2-4(b). The formation of this type of defects was originated by 

non-filling materials during the FSW process. They were pronounced in advancing side 

(AS), and located at the transition zone between stirred zone (SZ) and thermo-

mechanically affected zone (TMAZ). It is worthy to note from Figures 2-5(a-c), the 

tunnel defects might be eliminated at the low welding speeds (from 50 to 100 mm/min) 

but appeared at the higher welding speeds of 150 and 200 mm/min (Figures 2-5(d,e)). 

These results might be related to the low flow of plasticized metal that was affected by 

heat input during the FSW process [15,18,23,24]. 

 

 

Figure 2-5 Interface morphology of T-lap joints affected by various welding speeds. 

 



Chapter 2. Fundamental formation of interface morphology and mechanical properties of dissimilar 
metal T-lap joints between AA7075 and AA5083 by single-pass FSW 

Submitted in partial fulfilment of the Dr. Eng. Course in Mat. Sci. at NUT                               31 

(b) Hook defect: The hook defect seems to be a feature in the FSWed lap-joints 

observed as a joint line uplifted. Here, it predominantly initiated in the retreating side 

(RS) and had tendency towards the weld center of the joints under low welding speed 

(Figure 2-6(a)). As shown in Figures 2-5(a,b), the hook defect was formed at 50 and 75 

mm/min, respectively. It is worth to note that a small dark line was observed along the 

hook defects as oxide layer (Figure 2-6(c)). This type of defects in the FSWed T-lap 

joints might be minimized by growing the welding speed. In fact, it was disappeared at 

the high welding speed of 150 and 200 mm/min, as seen Figure 2-5(c-e). A sound weld 

without the tunnel and hook defects was achieved at 100 mm/min (Figure 2-5(c)). 

The formation mechanism of the hook defects can be induced by metal flow, as 

indicated in Figure 2-7. Here, the noteworthy conjunction of two metal flows that was 

observed as a “Lazy S” was produced by shoulder-driven material and probe-driven 

material. While the shoulder-driven metal flow was induced by the rotation of tool 

shoulder, the probe-driven material depended on the stirred efficiency of probe. This 

phenomenon was also observed by some researchers [25,26]. As shown in Figure 2-7, 

the initial interface is pushed upward by the vertical material flow which is induced by 

tool probe at the low welding speed. The move of shoulder-driven material flow 

unwittingly lugs interface into the welded center at the same time. Consequently, the 

hook defects remarkably increased both the height and length.  

 

Figure 2-6 (a) Hook defect produced by welding speed of 50 mm/min and (b) oxide 

layer along hook defects. 
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Figure 2-7 Illustration of formation of hook and kissing bond defects in T-lap joints at 

welding speed of 50 mm/min. 

(c) Kissing bond defect: Unlike other defects, the kissing bond defects (KBs) 

were found at two corner fillets at both the RS and AS sides under all of the welding 

regimes. As presented in literature, it is a typical type of defects with little or no 

metallic bonding [27,28]. This type of defects often occurs outside the stirred zone 

where the materials are in close touch although they have not formed a chemical or 

mechanical bond. Figure 2-5 displays the geometries of the KBs which were 

asymmetric through centerline under all welding conditions. Here, the geometry of the 

KBs in terms of direction angle () and size at the RS and AS was significantly different 

by the change in the welding speed (Figure 2-5(a-1) through Figure 2-5(e-1) and Figure 

2-5(a-2) through Figure 2-5(e-2), respectively). These features may be driven by the 

asymmetric material flows during the FSW process.  

A large dark line was detected along the KBs and examined by means of Energy 

Dispersive X-Ray Spectroscopy (EDS). It was found that a large amount of oxygen 

concentrated along the KBs at both the RS and AS (Figure 2-8). This result means that 

oxide layer might be hardly extruded in this work, as case by some researchers [24,27-

29]. The lack of stirred action during the welding process might be reason for this defect 

formation. In fact, the positions at corner fillets beyond tool probe (Figure 2-7) did not 

get stirring action, resulting in the KBs formation. 
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Figure 2-8 Distribution of oxygen along KBs measuring at (a) RS and (b) AS (as 

marked in Figures 2-5(e-1,2), respectively). 

 

(d) Bonding line defect: Unlike the KBs, the bonding line defects were formed 

along the welding interface in the stirred zone (Figure 2-4), where experienced severely 

plastic deformation during the welding process. The low stirred efficiency of probe 

might be reason for this defect formation. Note that the oxide layer along the bonding 

line defects (Figures 2-9(b-d)) seems to be discontinuous and thinner than that along the 

KBs (Figures 2-9(a,e)), as compared between Figures 2-8 and 2-10. Furthermore, the 

formation of oxide layer along bonding interface was heterogeneous and depended 

strongly on the welding speeds. As shown in Figure 2-11, the bonding line defects 

appeared more common at the high welding speed that generated low heat input. This 

reason might lead to the low efficiency in breaking the oxide layer on the surfaces of the 

interface. This result might affect the erratic distribution of the local bonding strength 

along interface, and will be documented in the next section. A background of the 

formation of the bonding line defects might be closely related to heat input between the 

two joining materials, induced by stirring action of welding tool [18]. This may be 

significant under such a condition that the horizontal oxide layer in original interface is 

not easy to be removed from the FSWed T-lap joints.  
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Figure 2-9 (b-d) Bonding line defects along bonding interface compared to (a,e) KBs at 

welding speed of 100 mm/min. 

 

Figure 2-10 (a) SEM image and (b) EDS spectrum with inserting oxygen mapping 

around the bonding line defects. 

 

Figure 2-11 Bonding line defects produced under various welding conditions measured 

at center bonding interface. 



Chapter 2. Fundamental formation of interface morphology and mechanical properties of dissimilar 
metal T-lap joints between AA7075 and AA5083 by single-pass FSW 

Submitted in partial fulfilment of the Dr. Eng. Course in Mat. Sci. at NUT                               35 

2.2.2.2 Role of welding speed on defect formation 

The effect of welding speed on the formation of four types of defects in T-lap 

joints is quantitatively summarized in Figure 2-12. Here, the defect sizes were directly 

measured based on oxide film on the cross-section of the specimens by means of the 

optical microscope. In addition, the difference in the bonding strength of defect 

interfaces would lead to the dissimilar fracture surface. The size of defects can be 

determined based on these differences by means of the SEM. The results showed that 

the welding speed significantly impacted the defect formations. The tunnel and bonding 

line defects were drastically changed by controlling welding speed. According to that, 

these types of defects might be minimized by decreasing the welding speed. In contrast, 

increasing the welding rate is useful to reduce hook defects size. However, the KBs 

which formed under all welding conditions were insensitive to welding speed. It seems 

that the specimen produced at the welding rate of 100 mm/min showed the best 

interface with small defect size. The presence of the hook and the KB defects can 

decrease the effective bonded width that affected the strength of the T-lap joints. 

 

Figure 2-12  Influence of welding speed on the formation of each type of defect in T-lap 

joints. 
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2.2.2.3 Mechanical properties of T-lap joints 

(a) Hardness distribution: The influence of the welding speed on the hardness 

profile of the T-lap joints along skin plate are shown in Figure 2-13(a). It is found that 

there is insignificant difference in hardness value under various welding conditions. 

Note from the experimental data in Figure 2-13, the soft zone with lower hardness was 

formed around the jointed area. The width of soft zone tended to be narrowed down 

with increasing welding speed. This result might be affected by heat input that depended 

on the welding parameters. The longitudinal hardness profile along the stringer is 

depicted in Figure 2-13(b). The lowest hardness value of 95 HV was found on the 

AA7075 side at area apart from 10.0 mm the upper surface of the skin plate. The type of 

heat affected zone (HAZ) was more pronounced with decreasing the welding rate, or 

specific heat input.   

 

 

Figure 2-13 Effect of welding speed on hardness maps of (a) skin and (b) stringer plates. 
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(b) Local bonding strength: The local bonding strength along the interface of the 

T-lap joints by the welding rate of 50 mm/min is measured in Figure 2-14, where the 

testing process is demonstrated in Figure 2-3. It is clear that the maximum tensile 

strength was heterogeneous. The strength at position [E] with the presence of the KBs 

was nearly zero. The bonding strength at hook position (as denoted [A]) was higher than 

that at the KBs site. However, it was much lower than the strength of [B], [C], and [D] 

sites those were the bonding interface. These results showed that the effects of the KBs 

and hook defects on the bonding strength was the most harmful. Furthermore, the local 

bonding strength at the RS (denoted [B]) was more dominant than that at other sites, 

which location fracture was took place at the HAZ with the lowest value hardness, as 

seen in Figure 2-13(b). The asymmetry of metal flow during the FSW process might 

bring about this result. The influence of welding parameters on the local bonding 

strength along the interface extracted from the site [C] is presented in Figure 2-15. It is 

found that the welding condition which could minimize the bonding line defects 

reached the highest tensile strength (compare Figure 2-15 with Figure 2-11); it was 

taken by the welding speed of 50 mm/min. 

 

Figure 2-14 Local bonding strengths along interface with inserting fracture locations at 

welding speed of 50 mm/min. 
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Figure 2-15 Effect of welding parameters on the bonding strength of interface 

measured at center. 

(c) Tensile strength of global T-lap joint: Figure 2-16(a) displays the comparison 

of the different stress-strain curves of the global T-lap joints under the skin tensile test 

with various welding conditions. It is worthy to note that most of these curves 

overlapped each other in elastic deformation regime. However, they are significant 

differences after the yield strength. As presented in Figure 2-16(b), the ultimate tensile 

strength was raised with increasing the welding speeds from 50 to 100 mm/min, and 

then deeply reduced at 200 mm/min. The highest tensile strength and rupture strain of 

the specimen under the skin test was approximate 290 MPa and 12%, respectively, 

which was attained at 100 mm/min. According to that, the joint efficiency was about 

90% compared to the strength of AA5083 base alloy. These results might relate to the 

defect formation during the FSW process. Similarly to the stress-strain curve in the skin 

tensile test, the load-displacement curves under the stringer test were also significantly 

affected by welding rate (Figure 2-17). Noting that there was an optimum welding rate 

by which the maximum stringer strength was attained; it was by 100 mm/min. 
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Figure 2-16 Mechanical properties of the full size joint by the skin test. (a) Stress-strain 

curves and (b) maximum ultimate tensile strength and rupture strain. 
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Figure 2-17 Mechanical properties of the full size joint by the stringer test. (a) Load-

displacement curves and (b) maximum load and displacement at maximum load. 

(d) Role of defects on mechanical properties of T-lap joints: the fracture location 

and fractography of the specimens under the skin tensile test is presents in Figure 2-18. 

Three typical modes of failure were observed; those were denoted by FT1, FT2, and 

FT3, respectively. In the FT1 mode, the fracture took place at the hook defects region 

that was pronounced in the joints at the low welding rates of 50 and 75 mm/min 
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associating with smooth fracture surface (Figures 2-18(d,g)). The joints failed by this 

mode showed the low strength (Figure 2-16(b)). In the FT2 mode, on the other hand, the 

fracture was nucleated around the HAZ area (Figure 2-18(b)) where the hardness value 

is the lowest, as shown in Figure 2-13(a). Consequently, the highest strength was found 

with fracture surface associated with the ductile dimples mode (Figures 2-18(e,h)). This 

type of mode was realized at the welding rate of 100 mm/min. The role of the tunnel 

defects was clear in the FT3 mode; these were significant under the high welding speed 

(Figures 2-18(c,f,i)). It is worthy to note that in all cases the bonding line defects seems 

to have insignificant effect on the skin tensile test.  

Regarding the stringer tensile test, two main modes; denoted by FT4 and FT5, 

were observed as shown in Figures 2-19(a) and 2-20(a), respectively. The mode FT4 

that was found in the welding rates of 50 and 75 mm/min was stimulated not only by the 

hook defects but also by the KBs. These defects degraded the strength and increased 

displacement of the joints, as shown in Figure 2-17. Based on local bonding strength 

along interface shown in Figure 2-14, this failure can be initiated at the KBs in both the 

AS and RS sides in which the bonding strength was the lowest, and then propagated 

along the hook defects before rupture. From the microscopic aspect shown in Figures 2-

19(b-e), the fracture morphologies were heterogeneous with some of them revealed 

ductile fracture, the others did brittle fracture. Meanwhile, the bonding line defects were 

considered as main reason for the failure of FT5 mode that cracked along interface 

(Figure 2-20(a)). This kind of failure was found at the higher welding speeds. Figures 2-

20(c-o) show the difference in fracture surface at various positions, as marked in Figure 

2-20(b). Some trench-likes with a large number of oxygen were more dominant at the 

AS compared to the RS. This might lead to the lower bonding strength at the AS in 

comparison with the RS, as indicated in Figure 2-14. A large number of dimple on the 

fracture surface indicated ductile failure in this mode. 

Based on these observations, the role of each type of defects in the mechanical 

properties of the T-lap joints is summarized in Table 2-3. Since the welding speed of 

100 mm/min took the highest strength, the selection of the welding condition which can 

minimize the hook defects size must be the most effective. 
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Figure 2-18 Failure behavior of specimens under skin tensile test in T-lap joints. (a-c) 

fracture location and (d-i) corresponding fractographies. 

 

Figure 2-19 (a) Fracture location and (b-e) fractography of FT4 at welding rate of 50 

mm/min. 

 

Figure 2-20 (a) Fracture location and (b-o) fractography of FT5 at welding rate of 100 

mm/min. 
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Table 2-3 Summary influence of defects on failure of T-lap joints. 

Type of test Skin tensile test Stringer tensile test 
Modes of failure FT1 FT2 FT3 FT4 FT5 
Tunnel defect   ◯   
Hook defect ◯   ◯  
Kissing bond defect △   △ △ 
Bonding line defect     ◯ 

 No effect ◯ Major effect △ Minor effect 

2.3 Effects of Probe Length 

2.3.1 Experimental procedures 

In this section, the dissimilar T-lap joints were still produced by applying single-

pass FSW induced by four various probe lengths. Note that, in order to limit the 

formation of hook defects at the RS found in previous section, the geometry of welding 

tool and die was designed again, as presented at Figure 2-21(a). Here, four welding 

tools were same non-thread cylinder probe but different probe length. The probe 

geometries and detail dimensions are illustrated in Figure 2-21(b) and Table 2-4, 

respectively. The probe axis alignment was set at a constant with the tilt angle of 2.0o. 

The shoulder penetration into the surface of skin plate was set up at the depth of 0.2 mm 

during the FSW process. Based on previous work, the skin and stringer plates were 

welded at a welding rate of 100 mm/min and rotational speed of 400 rpm. The 

performance of the T-lap joints was also carried out with two types of tests as presented 

in first section (Figure 2-2).  

 
Figure 2-21 (a) Schematic diagrams of FSWed T-lap joints and (b) tool probe geometry. 
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Table 2-4 Main dimensions of various probes. 

Dimension of probe Probe 1 Probe 2 Probe 3 Probe 4 

Probe length, L (mm) 3.0 3.2 3.4 3.7 

Shoulder diameter (mm) 24.0 

Probe diameter (mm) 8.5 

2.3.2 Results and discussion 

2.3.2.1 Cross-section of T-lap joints 

The representative macrostructure on the cross-section of the T-lap joints 

produced by the various probe lengths is displayed in Figure 2-22. Here, the images of 

welding interface defined as boundary between two materials formed after the FSW 

process were observed. There were three typical types of defects along welding 

interface were detected: hook, kissing bond (KBs), and bonding line defects. It seems 

that the size and geometry of these defects significantly depended on the various probe 

lengths. 

The microstructure of cross-section produced by Probe 4 is shown in Figure 2-23. 

The locations of welding zone and the defects were indicated in Figure 2-23(a). Here, 

the KBs were formed in two corner fillets (Figure 2-23(d)). In other words, they were 

outside stirred zone (SZ). In contrast, the hook defects were a joint line uplifting 

originated from the RS to SZ (Figure 2-23(b)). These types of defects were identified 

due to the continuous dark line of oxide layer along interface. Meanwhile, the bonding 

line defects were observed at the SZ along interface that was produced by shorter probe 

length. The discontinuous dark line of oxide layer was the characteristic of this defect, 

as shown in Figure 2-23(e). A perfect interface without oxide layer produced by longer 

probe was referred to as “bonding interface” in this work (Figure 2-23(c)). 
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Figure 2-22 Representative images of macrostructure of cross-section of T-lap joints 

produced by (a) Probe 1, (b) Probe 2, (c) Probe 3, and (d) Probe 4. 

 

Figure 2-23 Microstructure of cross-section of T-lap joints produced by Probe 4: (a) 

cross-section, (b) geometry of hook defects and KBs at RS, (c) bonding interface at 

center, (d) geometry of KBs at AS, and (e) bonding line defects at center marked in 

Figure 2-22(a).     

2.3.2.2 Role of probe length on defect formation 

In order to evaluate quantitatively the influence of probe length on the defect 

formations, the sizes of them were directly measured on the specimens based on oxide 

layer and fracture surface, and shown in Figure 2-24. It is worthy to note that the hook 

and bonding line defects were significantly affected by probe length. Here, increasing 

the length of tool probe would lead to reduction in the size of bonding line defects but 

this increased the formation of hook defects, resulting in reducing the width of bonding 

interface. Dissimilar to hook and bonding line defects, the KBs seem to be independent 

of the probe length. The insignificant change in the KBs size indicated this postulation. 
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On other words, the FSWed interface was strongly susceptible with the change in probe 

length that related to the penetration of probe into the stringer plate. The probe 

penetration into workpieces is illustrated in Figure 2-25 and is expressed as following: 

T = d + Lcos - (R-r)sin     (1) 

s = T - t       (2) 

where T, t, d, L, R, r, s and  is determined in Figure 2-25. The calculated results 

showed that increasing probe length would lead to growth in probe penetration into the 

stringer, as shown in Figure 2-26. It is noted that the probe with 3.0 mm of length seems 

to be not enough to produce a stirring action along the stringer part. In this case, the 

welding interface might be formed by severe thermal deformation during the FSW 

process. This means that the lack of stirring action along the interface was reason for the 

formation of oxide layer (Figure 2-23(e)), resulting in low bonding strength. In addition, 

the interface was not pulled up by vertical flow, as illustrated in Figure 2-27(a). 

Consequently, the hook defects were not formed in this case [11,30,31].  

Figure 2-27(b) illustrates the penetration of probe length of 3.7 mm into the 

stringer part. It is clear that using longer probe allows penetration to further exceed the 

initial interface between the skin and stringer parts. As a result, the stirring action 

strongly happened along interface during the FSW process, resulting in the formation of 

a sound bonding interface without oxide layer, as shown in Figure 2-23(c). This means 

that a high bonding strength might be reached at the interface. It is worthy to note from 

Figure 2-27(b), a hook defect was significantly formed at the RS. This is the result of 

pulling up interface caused by vertical and horizontal flows [32,33]. In all cases, the 

probe length was not main reason for the KBs formation. Minimizing this type of 

defects will be carried out in the next chapter. 
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Figure 2-24 Effect of probe lengths on size of defect and bonding interface. 

 

 

Figure 2-25 Schematic for determining probe penetration into workpieces. 
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Figure 2-26 Effect of probe lengths on probe penetration. 

 

 

Figure 2-27 Schematic illustration of material flow produced by (a) probe length of 

3.0 mm and (b) 3.7 mm in FSW process. 
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2.3.2.3 Mechanical properties of T-lap joints 

(a) Tensile strength under skin tensile test: The representative stress-strain 

curves under skin tensile test are presented in Figure 2-28(a). It is worthy to note that 

the curves nearly overlapped each other but difference in maximum stress and rupture 

strain. The application of different probe lengths did not affect the yield strength of 

samples that was attained about 130 MPa. However, there were significant differences 

in the maximum tensile strength and rupture strain, as presented in Figure 2-28(b). Here, 

the tensile strength and rupture strain of the joints lightly raised with growing the probe 

lengths from 3.0 mm to 3.4 mm, and then deeply reduced at 3.7 mm. The highest value 

was attained approximately 290 MPa of the tensile strength and 11% of the rupture 

strength at the probe length of 3.4 mm. In this case, the joint efficiency was reached 

about 90% in comparison with the AA5083 base alloys. 

Figure 2-29 shows the fracture location of the specimens. It can be seen that two 

typical modes of failure were detected; those were FT1 and FT2. Here, the fracture 

location of the specimens in FT1 originated from the KBs at the AS, then propagated 

and failed at the “Lazy S”, as shown more clearly in Figure 2-30(a). This type of 

fracture was pronounced at the short probes of 3.0 mm and 3.2 mm. The oxide layer that 

was found along at the “Lazy S” might be reason for degrading the strength of the joints, 

as shown in Figure 2-30(d). The fracture surface of this mode is displayed in Figure 2-

30(f) associating with smooth facet, not much dimples could be observed in this region. 

On the other hand, the fracture was nucleated from the hook defects in the FT2 

mode, as shown in Figure 2-30(b). This mode was realized at the probe lengths of 3.4 

mm and 3.7 mm. The highest strength in this mode was detected with fracture surface 

associated with the ductile dimples, as seen in Figure 2-30(g). It seems that the fracture 

at the hook defects in this type of mode had relationship to effective skin thickness 

(EST) that is defined as minimum distance from interface of defects to the top face of 

skin part. As presented in Figure 2-31, increasing the probe length led to reduction in 

the EST, especially in the RS, resulting in fracture at the hook defects. Noting that, in 

all cases the bonding line defects seem to do not affect the strength of the joint under the 

skin tensile test.  
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Figure 2-28 Mechanical properties of skin tensile test: (a) Stress-strain curves and (b) 

maximum tensile strength and rupture strain. 

 
Figure 2-29 Fracture location of specimens produced by various probe lengths under 

skin tensile test. 
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Figure 2-30 Two types of fracture: (a) Cracked “Lazy S”, (b) cracked at hook defects, 

(c-e) microstructure at KBs, hook defects and “Lazy S”, and (f,g) fracture surface of 

FT1 and FT2, respectively. 

 

Figure 2-31 Effect of probe lengths on effective skin thickness. 
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(b) Tensile strength under stringer tensile test: The load-displacement curves of 

the specimens under the stringer tensile test are shown in Figure 2-32(a). Here, the 

curves of the specimens produced by the probe lengths of 3.0 and 3.2 mm were nearly 

similar. A same result was also obtained by applying the probe lengths of 3.4 and 3.7 

mm. The quantitative evaluation of the influence of the probe length on the strength of 

the T-lap joints under stringer tensile test is displayed in Figure 2-32(b). It is clear that 

increasing the length of probe expressively improved the tensile strength of the joints. It 

seems that the reasonable probe length was ranged from 3.4 to 3.7 mm those were 

attained the high strength of the joints. However, the highest joint efficiency was low 

about 67% compared to the BM AA5083. 

Three main failure modes were observed under the stringer tensile test, denoted 

by FT3, FT4, and FT5, as presented in Figure 2-33. The type of FT3 was observed in 

the short probe lengths of 3.0 mm and 3.2 mm. The welding joints failed by this mode 

brought about the low strength (Figure 2-32(b)). In contrast, the FT5 mode, that was 

found at the probe length of 3.7 mm, initiated from the KBs, then propagated and 

cracked the skin plate at the end of the hook defects. A mixed-crack of FT3 and FT5 

modes was detected in FT4 produced by the probe length of 3.4 mm. Here, the crack 

originated at two KBs, then moved along interface and finally ruptured at the skin plate. 

It seems that the bonding strength of center interface was stronger than that of other 

sites.  

The bonding line defects were considered as main reason for these failures. In 

order to evaluate quantitatively this postulation, the bonding strength of interface 

produced by various probe lengths was investigated. Here, a miniature specimen 

extracted from original sample was applied, as presented in Figure 2-34(a) and Figures 

2-35(a-d). It is clear that using longer probe increased the bonding strength of the 

interface (Figure 2-34(b)). As shown in Figures 2-35(e-h), the probe length had the 

weighty effect on the formation of the bonding line defects. Applying the probe length 

of 3.7 mm eliminated oxide layer from the interface, resulting in reaching the highest 

bonding strength. The fracture location of miniature specimen is evidence for this result 

(Figures 2-35(i-m)). 

From the microscopic aspect shown in Figure 2-36, the fracture morphologies 

were heterogeneous under the various probe lengths. Fracture surface produced by the 
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probe lengths of 3.0 and 3.2 mm was observed as smooth facet with some trenches that 

indicated a weak bonding strength (Figures 2-36(a,b,d,e)). In contrast, arc-shaped 

stripes [34] that were caused by probe penetration were occurred on fracture surface 

produced by the probe length of 3.4 mm (Figures 2-36(c,f)). The fracture morphologies 

with some dimples showed as ductile fracture mode. 

 

         

Figure 2-32 (a) Load-displacement curves and (b) maximum load and displacement at 

rupture under stringer tensile test. 
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Figure 2-33 Fracture location of specimens produced by various probe lengths under 

stringer tensile test. 

 

Figure 2-34 (a) Location of miniature specimen extracted from original samples and (b) 

effect of probe lengths on bonding strength of interface. 

 

Figure 2-35 (a-d) Specimens before testing, (e-h) microstructure along interface, and (i-

m) fracture location of specimens produced by various probe lengths. 
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Figure 2-36 (a-c) Macro- and (d-f) micro-morphology of fracture surface of specimens 

produced by various probe lengths. 

2.4 Interface Morphology Affected by Welding Parameters 

As presented in previous sections, the interface morphology was significantly 

changed with increasing or decreasing welding speed as well as probe length, especially 

in the RS. In order to make platform for quantitative assessment about these influences 

on the strength of the T-lap joints, the quantification of defects at the AS and RS was 

investigated as following: 

2.4.1 Quantification of defects affected by welding speed 

The quantification of defects of the interface is defined as in Figure 2-37. The 

effect of the welding speed on these parameters is shown in Figure 2-38(a) at the RS 

and Figure 2-38(b) at the AS. It is clear that the parameters at the RS were more 

sensitive to the welding speeds than that at the AS, especially in the low value of the 

welding speed. As mentioned in previous section, the formation of the hook defects at 

the low welding speed led to significant reduction in the effective skin thickness (t), or 

effective ligament ratio (t/T) (Figure 2-38(c)), and increase in the projected length a. 

The effect of these parameters on the strength of the T-lap joints will be discussed in 

Chapter 5. 
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Figure 2-37 Define some parameters of quantification of defects. 
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Figure 2-38 Effect of the welding speeds on quantification of defects at (a) the RS, (b) 

the AS, and (c) effective ligament ratio, t/T. 

2.4.2 Quantification of defects affected by probe length 

The effect of the probe length on the quantification of defects is shown in Figure 

2-39(a) at the RS and Figure 2-39(b) at the AS. It is similar to the effect of the welding 

speed, the parameters at the AS seem to be insensitive to the probe length, compared to 

the RS. The formation of the hook defects at the RS with the long probe might be 

reason for this change. Here, increasing the probe length would lead to significant 

increase in the projected length a, bonding angle , and reduction in effective ligament 

ratio (t/T) (Figure 2-39(c). The influence of these parameters on the strength of the T-

lap joints will be discussed in Chapter 5. 
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Figure 2-39 Effect of the probe lengths on quantification of defects at (a) the RS, (b) AS, 

and (c) effective ligament ratio, t/T. 
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2.5 Chapter Summary 

The dissimilar metal T-lap joints between AA5083 and AA7075 were fabricated 

by traditional single-pass FSW. The fundamental formation of the interface morphology 

and the mechanical properties of the joints were investigated. The following 

conclusions were reached: 

(2-1) The welding speed and probe length were two of the important variables to 

control interface morphology that had close relation to the formation of some 

defects. Here, the increase in the welding speed or reduction in the probe length 

could contribute to decrease the hook defect size. However, these changes would 

lead to increase in the formation of the bonding line defects that reduced the 

bonding strength of the interface. 

(2-2) The kissing bond defects seem to be too hard to be eliminated by applying only 

traditional single-pass welding. The gap between tool probe and die may be 

reason for the formation of this defect. 

(2-3) The good interface morphology of the T-lap joints with small defect size was 

found at the welding speed of 100 mm/min. In this case, the joint efficiency 

under the skin tensile test might be reached about 90% compared to AA5083 

base alloy. However, the strength of the joints under the stringer tensile test was 

not satisfactory. 

(2-4) The quantification of defects of the interface at the AS seems to be insensitive to 

welding parameters, compared to the RS. The formation of the hook defects at 

the RS can be reason for these results. The influence of these parameters on the 

strength of the T-lap joints will be discussed in Chapter 5. 

(2-5) It seems that the application of traditional single-pass FSW is too hard to 

improve the interface morphology of the T-lap joints. This issue will be dealt 

with by a new method in next chapter. Based on the findings in this chapter, the 

welding speed of 100 mm/min and the probe length of 3.7 mm were chosen as 

two of the basic parameters in the improvement of the interface morphology and 

mechanical properties of the FSWed T-lap joints that were carried out in Chapter 

3. 
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Chapter 3  

Improvement of Interface Morphology and Mechanical Properties 

of Dissimilar Metal T-lap Joints between AA7075 and AA5083 by 

Double-pass Friction Stir Welding 

 

From Chapter 2, it is obviously that the control of welding interface is a vital role 

in improving the strength of the FSWed T-lap joints. However, the application of 

traditional single-pass FSW with change in welding parameters seems to be unable to 

eliminate/or minimize absolutely the defects. The aim of this chapter is to improve the 

interface morphology and the strength of the dissimilar FSWed T-lap joints between 

AA7075 and AA5083. For this purpose, the double-pass FSW induced by reversed 

material flow and tool offset is applied as a new method. The effect of this method on 

the interface morphology and the mechanical properties of the T-lap joints is 

investigated in this chapter. 
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3.1 Introduction 

The weldability of the dissimilar FSWed T-lap joints between AA7075 and 

AA5083 by traditional single-pass welding has been evaluated in Chapter 2. The effects 

of some FSW parameters on the T-lap joints characteristics have been investigated to 

improve the joint efficiency from the viewpoints of welding speed [1-5], tool geometry 

[6,7], and metal flow [8,9]. In spite of these works, the T-lap joint efficiency has still 

been unsatisfactory, especially in the stringer loading test. This result is due to the 

formation of some undesirable defects in the joints.  

As presented in Chapter 2, three main types of defects were formed along 

interface; i.e. kissing bond, hook, and bonding line defects, those directly degraded the 

mechanical properties of the T-lap joints. Controlling welding parameters was unable to 

eliminate these defects at the same time. Although the formation mechanism of these 

defects was different, all of their bonding strength was low due to the occurrence of 

oxide layer along the interface. In order to be simple show, hereafter they will be 

referred to as the kissing bond defects (as denoted by KBs), as presented by Jolu et al. 

[10] and Feistauer et al. [11]. 

Some researchers applied double-pass welding as one of solutions in order to 

eliminate this KBs. Use of double-passes with stationary shoulder to insert the tool 

probe into two corner fillets of the T-lap joints seems to be effective to eliminate the 

KBs [12-14]. However, this method is difficult to be widely applied for the T-joints 

because of being complex in fabrication process. Feistauer et al. [11] tried to use the 

second-pass welding by keeping the similar the FSWed rotational tool direction but the 

reserved welding direction. Consequently, the size of the KBs was significantly reduced. 

The aim of this chapter is to improve the interface morphology and the strength of 

the dissimilar FSWed T-lap joints between AA7075 and AA5083. For this purpose, the 

special attention was put on the effects of both the reversed material flow and the tool 

offset induced by the double-pass welding on the interface characteristics. 
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3.2 Experimental Procedure 

3.2.1 Fabrication of FSWed T-lap joints 

In this work, the skin (AA5083) and stringer (AA7075) plates were prepared in 

the dimensions of 300×150×3.0 mm and 300×50×8.2 mm, respectively. Based on 

Chapter 2, the welding tool with a cylinder probe had the shoulder diameter of 24.0 mm 

was chosen to fabricate the dissimilar T-lap joints (Figure 3-1(a)). The detail dimension 

of the welding tool is summarized in Figure 3-1(b) and Table 3-1. The probe axis 

alignment was kept at a constant with the tilt angle of 2.0o to the vertical direction. The 

tool shoulder penetrated into the surface of skin plate with the depth of 0.2 mm that was 

determined before the FSW process. All of samples in this work were no post-weld and 

analyzed after welding process about one month. Based on the Chapter 2, the welding 

speed and rotational speed were chosen by 100 mm/min and 400 rpm, respectively 

through this work. 

In general, the welding temperature and material flow during FSW process are 

often unstable near the starting location. This can affect the quality of the joint at 0.8 

mm of tool offset. In order to improve this issue, the rate of probe penetration into the 

base metal was applied at the low value of 5 mm/min with the dwell time of 5 s before 

welding. These factors might increase the stability of metal flow near the starting 

location. 

The T-lap joints were fabricated by applying double-pass FSWed method that 

combined between a tool offset and reversed metal flow. Here, the tool offset which the 

welding tool was located at an eccentric position to the centerline of the T-joints for 

both the first- and second-pass FSWs is demonstrated in Figure 3-2(a). The offset 

interval was considered as the experimental variable in this work; those had distances 

from 0.0 to 1.0 mm toward both the advancing side (denoted as plus value “+”) and 

retreating side (denoted as minus value “-”), as illustrated in Figures 3-2(b-d). In 

addition, the second-pass FSW was the same welding direction but reversed tool 

rotation with the first-pass welding, as schematically displayed in Figure 3-2(a). So this 

implies, after the second-pass FSW, a new advancing side (denoted as RS1/AS2) and 

retreating side (denoted as AS1/RS2) were formed at retreating side (denoted as RS1) 

and advancing side (denoted as AS1) of the first-pass welding, respectively.  
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Table 3-1 Welding tool geometry and investigated location. 

Tool geometry (mm) Representative locations for investigation (mm) 

 
Shoulder 

Concave 
shoulder  Probe Probe 

length Offsetting to RS Center Offsetting to AS 

24.0 5o 8.5 3.7 -0.8 -0.4 0.0 0.4 0.8 
 

 
Figure 3-1 (a) Schematic view of FSWed T-lap joints and (b) dimension of welding tool. 

 

Figure 3-2 (a) Schematic diagrams of tool offset and reversed metal flow and the 

positions of welding tool at offsetting (b) -0.8 mm, (c) 0.0 mm, and (d) 0.8 mm. 

3.2.2 Process analysis 

It is well known that the temperature history provides an important knowledge to 

evaluate the performance of the FSW process. So, it was monitored by the K-type 

thermocouples inserted into two corner fillets at the multiple sites of offsetting, as 

indicated in Figures 3-2(a,c). The performance of the FSWed T-lap joints at each site 
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was evaluated from the multiple aspects in terms of the size of kissing bonds, 

microstructure characteristic, hardness profile, and tensile strength. A special focus was 

paid to the effects of the reversed metal flow and tool offset on these measurements. 

Here, the hardness map was measured along the centerline of the skin and stringer 

plates by means of micro Vickers indenter under the load of 200 gf for the hold time of 

10 s. The tensile strengths were evaluated by two types of tensile tests under a strain 

rate of 1.0 mm/min; one is the tensile test with loading direction along the skin part, 

following the ASTM E08 [15] (Figure 3-3(a), denoted as “skin tensile test”), and the 

other is along the stringer part (Figure 3-3(b), denoted as “stringer tensile test”) with the 

support of a jig made of steel material. The local deformation behavior of the joints was 

evaluated by applying a digital image correlation system (DIC) that was connected to 

the tensile testing machine. The strain map was recorded during the testing process. 

 

Figure 3-3 Evaluation of T-lap joints: (a) skin and (b) stringer tensile tests. 

3.3 Experimental Results 

3.3.1 Temperature during FSW process 

Figure 3-4(a) displays the temperature history at the AS and RS for both first- and 

second-pass FSWs according to the Figure 3-2 method. It seems that the insignificant 

difference in peak temperature was found under the current welding conditions. Here, 

the peak value at the AS was about 450oC while that at the RS was slightly lower than 

that at the AS by about 20oC (Figure 3-4(b)). The disparity in peak temperature might 

be caused by asymmetric metal flow that created different temperature fields during the 

FSW process [11,16]. Based on above results, the effects of reversed or multiple metal 

stirring and the tool offset on the welding temperature were insignificant in this work. 
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Figure 3-4 (a) Temperature history at the AS and RS of first- and second-pass welding at 

tool offset of 0.0 mm and (b) peak temperature under various distances of tool offset. 

3.3.2 Effects of reversed metal flow and tool offset on microstructure of interface 

3.3.2.1 Effect of reversed metal flow 

The effect of the reversed tool rotation to the primary FSW process on the welding 

interface feature is shown in Figure 3-5 for the case of the tool offset of 0.0 mm. Here, 

the welding interface can be postulated as boundary between skin and stringer plates 

after the welding process. It can be seen that two types of bonding were achieved along 

the welding interface; i.e. an interface associating with oxide layer referred to as kissing 

bond defects (KBs), and other interface without oxide layer referred to as bonding 

interface, as shown in Figure 3-6. Note that the welding interface produced by the 

single-pass FSW was associated with pronounced the KBs at the RS1 (Figure 3-5(a)). The 

application of double-pass welding with the reversed tool rotation significantly changed 

the interface morphology in both the KBs and bonding interface (Figure 3-5(b)). 
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The sizes of the KBs and bonding interface were measured on the basis of the size 

of oxide layer to quantitatively evaluate welding interface. The results are summarized 

in Figures 3-7(a,b) in terms of the curve length of the KBs and the effective bonded 

width (denoted as W), respectively in the single- and double-pass FSW. It is found from 

Figure 3-7(a) that the application of the double-pass welding dramatically reduced the 

KBs size at the RS1 (corresponding to the RS1/AS2). By this way, the effective bonded 

width between the skin and stringer was significantly improved, as seen in Figure 3-

7(b). This phenomenon may be attributed by reversing successfully metal flow, as 

suggested by Figure 3-5(b) and will be discussed again in the next section. 

 

Figure 3-5 Macrostructure of welding interface produced by (a) single- and (b) double-

pass FSWs at offsetting 0.0 mm. 

 

Figure 3-6 Microstructures of KBs and bonding interface produced by (a,b) single- and 

(c,d) double-pass FSWs at offsetting 0.0 mm.    
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Figure 3-7 Effect of reversed material flow on (a) curve lengths of KBs and (b) effective 

bonded width produced by single- and double-pass FSWs. 

3.3.2.2 Effect of tool offset 

Despite the KBs significantly decreased due to applying reversed metal flow 

method, they had remained large size in two corner fillets about 1.6 mm (Figure 3-7(a)). 

In other words, the bonding interface was not satisfactory in this method. So, a 

combination between reversed metal flow and tool offset was applied to advance 

interface morphology. Figure 3-8 shows the representative images of macro- and micro-

structures of welding interface produced by the double-pass FSW under the various 

direction and distances of tool offset. It is worthy to note that the morphology of 

welding interface was significantly changed upon these changes. Here, the geometry of 

the KBs tended upward from the two corner fillets, and then moved deeply into welded 

center by offsetting the tool probe toward the RS, as seen Figures 3-8(a,b). This 

phenomenon might be harmful to the strength of the FSWed T-lap joints and will be 
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discussed in the next section. In contrast, the KBs were significantly minimized because 

of offsetting tool toward the AS (Figures 3-8(c,d)), especially in offsetting 0.8 mm, as 

shown in Figures 3-8(d-1) and 3-8(d-2). Furthermore, the material welded interface 

seems to be mixed better when the tool probe was offsetted to the AS. As shown in 

Figure 3-8(f), the mixture of two aluminum alloys was observed along the bonding 

interface. This result can bring about the higher bonding strength of interface compared 

to that of interface without mixing two materials (Figure 3-8(e)). 

 

  

 

Figure 3-8 (a-d) Macro- and (e,f) micro-structures of welding interface produced under 

various distances of tool offsets. 
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The curve length of the KBs and the value of effective bonded width were directly 

measured on the specimens to quantitatively evaluate this method in the improvement 

of the welding interface characteristic, as shown in Figure 3-9. It is found that although 

the volume of probe penetration into two corner fillets was symmetrical through the 

centerline of the T-lap joints, the tendencies of both KBs and bonding interface sizes 

were opposite. Here, increasing the distance of tool offset toward the RS seems to 

increase the curve length of the KBs, whereas the KBs were impressively decreased by 

offsetting the tool to the AS. Another worthy finding is that the curve length of the KBs 

at the RS1/AS2 was longer than that at the AS1/RS2 in all cases. From above these 

results, it can be concluded that the welding interface was successfully improved due to 

applying both tool offset of 0.8 mm and reversed metal flow that created small KBs size 

compared to method without tool offset (Figure 3-7). 

 

Figure 3-9 Effect of tool offset on the curve length of KBs and effective bonded width. 
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3.3.3 Mechanical properties of FSWed T-lap joints 

3.3.3.1 Microhardness profile 

The effect of the double-pass induced by reversed metal flow and the tool offset 

on the hardness profile along the skin and stringer plates of the FSWed T-lap joints is 

shown in Figures 3-10(a) and 3-10(b), respectively. It seems that the hardness 

distribution along skin of the RS and AS was reversed by offsetting tool (Figure 3-

10(a)). This result might be concerned to the reversed welding temperature between the 

AS and RS, resulting from two factors. Firstly, the temperature in the AS is higher than 

that in the RS, as seen in Figure 3-4. Secondly, the reversed tool rotation, or reversed 

metal flow was applied in the double-pass regimes. It is also interesting that the 

microhardness map along the stringer seems to be insensitive to the welding conditions 

(Figure 10(b)). The hardness value inside and around welded zone was lower than that 

of the base alloys. 

 

 

Figure 3-10 (a) Effect of various welding conditions on hardness profile along skin 

parts.  
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Figure 3-10 (b) Effect of various welding conditions on hardness profile along stringer 

parts.  

3.3.3.2 Tensile test 

The representative stress-strain curves of the specimens produced by various 

welding conditions under the skin tensile test are shown in Figure 3-11(a). It is worthy 

to note that the tensile strength and the rupture strain were significantly improved by 

employing the double-pass FSW, especially upon offsetting toward the AS (Figure 3-

11(b)). According to that, the maximum stress and rupture strain of the joints were 

attained by about 290 MPa (90% joint efficiency) and 12%, respectively when the tool 

probe was set up by 0.8 mm. In contrast, this efficiency was only reached approximately 

75% as offsetting toward the RS. 

The representative load-displacement curves under the stringer tensile test are 

displayed in Figure 3-12(a). Unlike the skin tensile test, most of these curves were 

discontinuous associating with “pop-in” phenomenon, except the case when the tool 

offset was set up by 0.8 mm. Similarly to the skin tensile test, the strength of the T-lap 

joints under stringer tensile test was expressively improved but the displacement at 

rupture was reduced as employing the double-pass FSW by offsetting toward the AS, as 

shown in Figure 3-12(b). These results might be attributed by the formation of the KBs, 

and will be discussed in the next section.     
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 Distribution of local bonding strength along interface produced by offsetting 0.8 

mm is shown in Figure 3-13. Minimizing the KBs size led to the high strength of 

adhesive interface, that was higher than that of the base alloy AA5083. Noting that, the 

fracture location of mini specimen was at the heat affected zone (HAZ) of the stringer 

Figure 3-14 where had low hardness value (Figure 3-10(b)). 

 

 

Figure 3-11 Strength of the joints under the skin tensile test: (a) nominal stress-strain 

curves and (b) maximum nominal stress and rupture strain.   
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Figure 3-12 Strength of the joints under the stringer tensile test: (a) load-displacement 

curves and (b) maximum load and displacement at rupture. 
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Figure 3-13 Local bonding strength distributed along interface produced by offsetting 

0.8 mm. 

 

Figure 3-14 Fracture location of miniature specimens along interface produced by 

offsetting 0.8 mm. 

3.3.4 Interface morphology affected by double-pass FSW and tool offset 

3.3.4.1 Quantification of defects affected by double-pass FSW 

The effect of double-pass on the quantification of defects of interface that are 

defined as in Figure 3-15(a) are shown in Figure 3-15(b) for the AS and Figure 3-15(c) 

for the RS. It seems that the change in the parameters at the AS is insignificant in 
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comparison with the RS. Here, the application of double-pass remarkably reduced the 

projected length a. 

 

 

Figure 3-15 (a) Define some parameters of quantification of interface and effect of 

double-pass on these parameters at (b) AS and (c) RS. 

 

3.3.4.2 Quantification of defects affected by tool offset 

The effect of distance of tool offset on the quantification of defects of the 

interface that are defined as in Figure 3-16(a) are shown in Figure 3-16(b) for the 

RS1/AS2 and Figure 3-16(c) for the AS1/RS2. There is similar tendency in these 

parameters at the RS1/AS2 and AS1/RS2. Here, the projected length a and the height h 

were decreased with increasing the distance of tool offset toward the AS. In this case, 

the effective skin thickness t was significantly improved with the best value 

corresponding to offsetting 0.8 mm. The influence of these parameters on the strength 

of the T-lap joints will be discussed in Chapter 5. 
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Figure 3-16 (a) Define some parameters of quantification of interface and effect of tool 

offset on these parameters of interface at (b) RS1/AS2 and (c) AS1/RS2. 
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3.4 Discussion  

3.4.1 Role of kissing bond defects on failure behavior of FSWed T-lap joints 

Figure 3-17 shows the DIC strain maps of specimen under skin tensile test. It 

seems that the distribution of strain was inhomogeneous along specimens. The strain 

mainly concentrated around the KBs at the AS1/RS2 (Figure 3-17(a)) and the HAZ 

region at the RS1/AS2 (Figure 3-17(b)) in which the final cracked took place. The 

existence of the KBs had big contribution to the failure of specimens produced by the 

tool offset of -0.8 mm. This postulation was more clearly understood in Figure 3-17(b) 

that the size of the KBs was minimized by offsetting the tool probe toward the AS with 

0.8 mm of distance. These results are summarized in Figure 3-18, from different aspects 

in terms of the effective bonded width (as denoted by W), effective skin thickness (as 

denoted by tAS and tRS), and effective ligament ratio (as denoted by t/T) those are 

defined as illustrated in Figure 3-18. The application of tool offset towards the AS 

would lead to the larger values of both W, tAS, tRS, and t/T resulting in higher tensile 

properties, as shown in Figures 3-13 and 3-14. In other words, the quality of the T-lap 

joints strongly depends on some appropriate methods to enable to minimize the size of 

the KBs which had little and bonding strength [17,18].  

The effect of the KBs on stringer tensile test is shown in Figure 3-19. It can be 

seen that the load-displacement curve of the specimen offsetted by -0.8 mm possessed 

the “pop-in” phenomenon, corresponding to three stages. Here, the “pop-in” 

phenomenon might be related to the kissing bond cracking. Then, the first load drop 

related to the specimen was fractured in the AS1/RS2. Finally, the second load drop 

related to the specimen was completely fractured in the RS1/AS2. In contrast, the load-

displacement curve of the specimen offsetted by 0.8 mm was smooth without pop-in. In 

this case, the KBs were mostly eliminated, resulting in the higher tensile strength. The 

size of the KBs measured based on oxide line from the cross-section of specimen before 

the tensile test is compared with that was measured from the fracture surface. There is 

good agreement between these values, as shown in Figure 3-20. This means that the 

KBs size played an imperative role in the fracture behavior of the FSWed T-lap joints. 

Figure 3-21 shows the representative fractography of specimen produced by the 

tool offset of -0.8 mm after the rupture. Two zones can be identified on the fracture 
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surface, i.e. KBs zone and bonding interface zone (see in Figures 3-21(a-c)). Here, the 

fracture surface in the KBs region displayed a smooth facet (Figure 3-21(d)) while the 

remaining region associated with the ductile dimples mode (Figure 3-21(e)). 

 

Figure 3-17 Strain maps of specimens produced by (a) offset -0.8 and (b) 0.8 mm from 

DIC measurement under skin tensile test. 

 

Figure 3-18 Effect of distances of tool offset on the effective skin thickness t, effective 

bonded width W, and effective ligament ratio t/T. 
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Figure 3-19 Relationship between load-displacement curve and fracture location of 

stringer tensile test. 

 

Figure 3-20 Quantitative comparison in some values of kissing bond size measured 

based on fracture surface and oxide layer. 
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Figure 3-21 Fracture morphology of specimen produced by offset -0.8 mm. 

3.4.2 Formation of kissing bond defects in during FSWed T-lap joints 

Following the references [8,19], the material flow in a single FSW process can be 

shown in Figure 3-22. Here, the material at the front AS seems to be involved into tool 

probe while that at the back RS is nearly escaped from tool probe. This might lead to the 

mixture of material at the AS1 was more severe than that at the RS1, as reported in 

literature [1,9,11,20]. In addition, the KBs at the RS1 must be achieved by horizontal 

material flow that moved from the RS1 to the AS1, as indicated in previous chapter. In 

other words, a mere single-pass FSW is not good enough to minimize the KBs in the T-

lap joints. A double-pass FSW accompanying with the reversed tool rotation and tool 

offset can compensate the above disadvantage, especially at the RS1, as postulated by 

Figure 3-23. It is clear that the KBs are often formed after the first-pass FSW, as 

observed in Figures 3-23(a1-a2,b1-b2). After the second-pass FSW, the KBs were 

minimized due to the difference in probe location when the appropriate tool offset was 

undertaken. The KBs were minimized at the RS1/AS2 by the tool offset of 0.8 mm 

(Figures 3-23(b3,b4)), whereas the large KBs remained at the AS1/RS2 by the 

inappropriate tool offset of -0.8 mm (Figures 3-23(a3,a4)). 

Figure 3-24 at the same time suggests an importance of gap distance,  when the 

tool probe was offsetted toward the AS and is geometrically expressed by 

 = ܦ) −  (1-3)                                                ܦ ݔ with  ߙ݊݅ݏ(ݔ

where D (mm) is a distance between the body probe and the edge of die, and ݔ (mm) is 

the distance of tool offset and  is the chamfer angle of die. Figure 3-25 expresses the 
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relationship between the representative KBs distance, d and the gap distance,  in this 

work, suggesting the usefulness of set up of moderate  to minimize the KBs. 

 

Figure 3-22 Schematic illustration of material flow in single-pass FSW process. 

 

Figure 3-23 Schematic illustration of KB formation in the double-pass FSW by the tool 

offsets of (a) -0.8 and (b) 0.8 mm. 
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Figure 3-24 Schematic illustration of probe penetration into corner fillets at the various 

distances of tool offset. 

 

 

Figure 3-25 Relationship between the representative KBs distance and the gap distance. 
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3.5 Chapter Summary 

The dissimilar FSWed T-lap joints between AA7075 and AA5083 were 

fabricated by the application of double-pass FSW. The effects of the tool offset and the 

reversed metal flow on the interface morphology and mechanical properties of the T-lap 

joints were examined. The following conclusions were reached: 

(3-1) Applying the double-pass FSW induced by a reversed material flow could 

significantly improve the quality of the welding interface; decrease in the KBs 

size and increase in the effective bonded width, without insignificant change in 

welding temperature and hardness profile. 

(3-2) The tool position and asymmetric material flow had a significant influence on 

the KBs formation. By combining the reversed material flow and the tool offset 

toward the AS, the KBs size could be significantly minimized at both the AS and 

the RS. Especially, the joint efficiency might be reached approximately 90% in 

comparison with the AA5083 base metal for both the skin and stringer tensile 

tests due to applying offsetting tool toward the AS with the distance of 0.8 mm. 

(3-3) The above behavior was reasonably interpreted by the metal flow during the 

double-pass FSW process. The gap distance played an important role in the 

formation of the welding interface. 

(3-4) The parameters of quantification of defects were significantly improved due to 

the application both reserved metal flow and tool offset. The reduction in kissing 

bond defects can be reason for these results. The influence of these parameters 

on the strength of the T-lap joints will be discussed in Chapter 5. 
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Fatigue Failure Behavior of Friction Stir Welded Dissimilar Metal 

T-lap Joints between AA7075 and AA5083 

 

In this chapter, the fatigue failure behavior of the FSWed dissimilar metal T-lap 

joints between AA7075 and AA5083 under skin and stringer loading tests was 

investigated. The fatigue life and crack initiation of the joints were indicated. The 

fracture morphology of the specimens under the skin and stringer tests was observed by 

means of scanning electron microscopy (SEM). The effect of the kissing bonds in terms 

of the orientation and bonding strength on the fatigue life and crack initiation were 

addressed.  
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4.1 Introduction 

As presented in Chapter 3, the application of double-pass welding induced by the 

reversed metal flow and tool offset has significantly improved the FSWed interface. 

According to that, the bonding interface without oxide layer was significantly improved. 

The size of the kissing bond defects (KBs) was impressively minimized with about 300 

m-500 m of length curves. It means that the KBs seem to be too difficult to eliminate 

completely in this work. It is true that the KBs were considered as a common 

phenomenon in solid-state welding that is difficult to eliminate absolutely them [1,2]. In 

other words, the existence of the KBs in the FSW process apparent phenomenon and it 

almost appears in the but-joint [3-10], lap-joint [11-15], and T-joints [16-25]. This type 

of defects might significantly affect the strength of the joints, especially under cyclic 

loading. 

Despite the fatigue behavior of the FSWed joints has been largely attended on 

butt-joint and lap-joint [3-6,13,15], not many publications have investigated the T-lap 

joints [20,24], especially in applying load along the stringer part. In these researches, 

the influence of the KBs on the fatigue failure behavior of the joints was elucidated. 

According to that, the fatigue life of the joints contained the KBs was 21-43 times 

smaller than that of the joints without the KBs [3]. However, Kadlec et al. [4] found that 

a KBs size of 315 m was the insignificant effect on the fatigue behavior. Le Jolu et al. 

[5] showed that the KBs orientation significantly affected the fatigue lifetime of the 

joints. These results indicated that the argument about the effect of the KBs on the 

failure behavior of the joints has not been still ended and need to be clarified. 

Furthermore, the fatigue life of the FSWed T-joints produced by single- [20] and multi-

pass welding [24] have been evaluated. In spite of these, the effect of the KB 

characteristics on the failure behavior of the FSWed T-lap joints has been still 

knowledge gaps in the literature, especially in the stringer fatigue test.  

In this chapter, the aim is to investigate the failure behavior of the dissimilar T-lap 

joints, that was minimized the KBs, in both skin and stringer tests under cyclic loading. 

The role of the KBs in terms of the orientation and bonding strength of interface in the 

fatigue life and fatigue crack initiation were addressed.  
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4.2 Experimental Procedure 

4.2.1 Fabrication of T-lap joints by applying double-pass FSW 

Based on success in the improvement of the bonding interface of the FSWed T-

lap joints in Chapter 3, the joints were fabricated by applying double-pass welding that 

was combined between the tool offset and reversed metal flow. Here, two parallel 

welding lines were the same welding direction but reversed rotational tool, as 

schematically displayed in Figure 4-1(a). The tool offset of 0.8 mm toward the 

advancing side (AS) was applied for both pass welding, as illustrated in Figure 4-1(b). 

The skin and stringer plates were welded at a welding speed of 100 mm/min and the 

rotational speed of 400 rpm. Welding tool was a non-thread cylinder probe with the 

detail dimension is illustrated in Figure 4-1(c). The tool axis alignment was set at a 

constant with the tilt angle of 2.0o. The shoulder penetration into the surface of the skin 

plate was the depth of 0.2 mm during the FSW process. All of samples were no post-

weld and analyzed after welding process about one month. 

 

Figure 4-1 (a) Schematic diagrams of tool offset, (b) location of welding tool in 

reversed metal flow and (c) welding tool geometry (AS1, RS1 and AS2, RS2: 

advancing side and retreating side of first-pass and second-pass in double-pass welding, 

respectively). 
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4.2.2 Process analysis 

In order to observe the microstructure, the specimens were prepared by cutting 

perpendicular to welding direction. The hardness profile was measured on the cross-

section of the specimens by means of a micro Vickers indenter with 0.2 kgf loading in 

10 s hold time. A hydraulic load testing machine was used to perform the tensile and 

fatigue tests. This performance was carried out with two types of tests to evaluate the 

failure behavior of the T-lap joints; One is skin-directional loading test (Figure 4-2(a), 

denoted by “skin fatigue test”), and the other is stringer-directional loading test (Figure 

4-2(b), denoted by “stringer fatigue test”) with the support of a jig made of steel 

material. The geometries of skin specimens for fatigue tests were prepared via ASTM 

E466 standards [26], respectively. A sinusoidal waveform load was applied at the stress 

ratio of 0.1 and the frequency of 20 Hz. Testing process will stop if the specimen is 

ruptured or reached 4106 cycles. 

 

Figure 4-2 Specimen geometry and evaluation of T-lap joints under (a) skin and 

(b) stringer fatigue tests. 

4.3 Results and Discussion 

4.3.1 Microstructure of a double pass FSWed T-lap joints 

Figure 4-3(a) displays the representative macrostructure on the cross-section of 

the joints. It is clear that the KBs at two corner fillets were significantly minimized by 

employing double-pass welding (Figures 4-3(b,d)). Here, they were observed as 

continuous dark line that was considered as oxide layer, as reported in former Chapter. 
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Dissimilar to the KBs, the bonding interface without oxide layer was only produced in 

the stirred zone (Figure 4-3(c)). The formation mechanism of the KBs and bonding 

interface by applying double-pass welding was detailed in Chapter 3. A quantitative 

evaluation about the KBs is also shown in Figure 4-4. Here, the curve length of the KBs 

was significantly minimized at both the RS1/AS2 and AS1/RS2 (Figure 4-4(a)), 

whereas the initial KBs angles were insignificantly different (Figure 4-4(b)). In addition, 

the KBs geometry at two corner fillets was absolutely different (as compared between 

Figures 4-3(b) and 4-3(d)). As presented in literature [1,2], the KBs were a typical type 

of the defect of solid-state welding with little or no metallic bonding. These 

characteristics might influence the fatigue behavior of the T-lap joints that will be 

considered in the next section.  

 

Figure 4-3 Representative image of microstructure at cross-section.  
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Figure 4-4 (a) Curve length and (b) angle of KBs at the RS1/AS2 and AS1/RS2. 

4.3.2 Hardness distribution and tensile strength 

Microhardness map measured on the cross-section of the skin is presented in 

Figure 4-5. There was slightly low in the hardness value at the RS1/AS2 in comparison 

with that at the AS1/RS2. This result might be related to different welding temperature 

between the RS1/AS2 and AS1/RS2 [24,25]. The hardness distribution along interface 

had significant fluctuation (Line 3). While the hardness value measured in the shoulder 

contact area of skin was attained about 70-90 HV, that in mixed region was reached 

from 95 to 120 HV. The highest hardness value was obtained about 150 HV in AA7075 

region.  
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The tensile properties of the FSWed T-lap joints are shown in Table 4-1. Here, the 

strengths of the joints are defined as the ratio of applied load to the cross-section area of 

the skin/stringer. In comparison with single-pass welding that was investigated in 

Chapter 2, applying double-pass FSW significantly improved the strength of the T-lap 

joints, especially in the stringer tensile test. 

 

Figure 4-5 Hardness profile along cross-section of skin plate. 

Table 4-1 Tensile strength of T-lap joints. 

Type of tests Yield strength 
(MPa) 

Ultimate tensile strength 
(MPa) 

Strain 
(%) 

Skin tensile test 128.5 279.6 11.8 
Stringer tensile test --- 118.8 --- 

 

4.3.3 Fatigue failure behavior of FSWed T-lap joints 

4.3.3.1 Fatigue S-N curves 

The fatigue experimental data and the S-N curves of the dissimilar FSWed T-lap 

joints are indicated in Table 4-2 and Figure 4-6, respectively. Here, the normal stress 

range was used to assess the fatigue endurance of both the skin and stringer tests. In 

both cases, the S-N curves of the joints were lower than that of the base alloys, 
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especially in the stringer fatigue test. The fatigue strength of the skin and stringer tests 

those were not failed at 4106 cycles reached at about 80 MPa and 16 MPa, respectively. 

Noting that, the data point of the stringer fatigue test was dispersed and unstable 

compared to that of the skin fatigue test. These results might be contributed by the 

various geometries of the KBs formed during the FSW process. 

To evaluate the effect of the KBs on the fatigue strength of the T-lap joints, 

relationship between the ultimate tensile strength (b) and fatigue strength (f) is shown 

in Figure 4-7 that was expressed by Equation 4-1, as mentioned in literatures [27,28].  

ߪ =                                                                       (4-1)ߪ݉

where m is coefficient and is shown in Figure 4-7(b). Here, the coefficient m of the 

joints in both types of tests was much smaller than that of the base alloys, especially in 

the stringer fatigue test. This result might indicate that the low performance in the 

fatigue strength had significant contribution by the KBs and will be discussed in the 

next section. 

Table 4-2 Fatigue experiment data of skin and stringer fatigue tests. 

Skin fatigue test Stringer fatigue test 

Samples Stress  
(MPa) 

Load P 
(kN) Cycles Fracture 

location Samples Stress  
(MPa) 

Load P 
(kN) Cycles Fracture 

location 

S1 160 2.9 17,620 KB-RS2 S12 32.9 1.62 18,330 KB-RS2 

S2 150 2.7 21,520 KB-RS2 S13 29.3 1.44 35,460 KB-RS2 

S3 140 2.5 32,910 WT-AS2 S14 25.6 1.26 28,880 KB-RS2 

S4 130 2.3 38,950 WT-AS2 S15 25.6 1.26 18,560 KB-RS2 

S5 125 2.3 89,670 WT-AS2 S16 22.0 1.08 121,200 KB-RS2 

S6 120 2.2 109,230 WT-AS2 S17 18.3 0.90 198,670 KB-RS2 

S7 110 2.0 350,650 WT-AS2 S18 16.8 0.83 136,460 KB-AS2 

S8 105 1.9 1,221,230 WT-AS2 S19 16.1 0.79 156,190 KB-RS2 

S9 100 1.8 1,874,500 WT-AS2 S20 16.1 0.79 4,000,000 No failure 

S10 95 1.7 1,444,620 WT-AS2 S21 14.6 0.72 2,386,780 WT-AS2 

S11 80 1.4 4,000,000 No failure S22 14.6 0.72 560,450 KB-RS2 
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Figure 4-6 S-N curves of the T-lap joints under skin and stringer fatigue tests.    

 

Figure 4-7 (a) Maximum tensile strength and fatigue strength under skin and stringer 

tests. 
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Figure 4-7 (b) Relationship between tensile and fatigue strength presented by value of 

coefficient m. 

4.3.3.2 Fatigue crack initiation under skin fatigue test 

As shown in Table 4-2, the main crack initiation was nucleation at the weld toe. 

Under high stress range, however, the crack initiated at the interface of the KBs at the 

AS1/RS2 (denoted as KB-RS2). The weld toe at the RS1/AS2 (denoted as WT-AS2) 

was found as main failure under lower stress range. Figure 4-8(a) shows the fatigue 

failure of the specimen at the KB-RS2 under the stress range of 150 MPa. It is worthy to 

note from Figure 4-8(a-1), the KB-AS2 seems to be closed during testing process. This 

means that the KB-opening at the AS1/RS2 was easier than that at the RS1/AS2. As 

mentioned in literature [16,23-25,29], the stirring efficiency at the AS was more severe 

than that at the RS, resulting in the higher bonding strength at the KB-AS2. When the 

KBs were opened, the higher stress concentration was at the crack tip instead of the 

WT-RS2. As shown in Figure 4-8(a-2), the absence of crack at the WT-RS2 might 

illustrate this postulation. By contrast, a small crack at the WT-AS2 was caused by the 

KB-closing at the RS1/AS2 (Figure 4-8(a-1)). 

Figure 4-8(b) shows the representative image of the specimens cracked at the WT-

AS2 under the stress range of 100 MPa. It is noted from Figures 4-8(b-1) and (b-2), the 

KBs at the RS1/AS2 and AS1/RS2 seems to be not opened during testing process. 

Consequently, the high stress concentration was at two weld toes without at the KBs. 

The fracture of the specimens at the WT-AS2 and a small crack at the WT-RS2 (Figure 
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4-8(b-2)) was an evidence for this result. As observed in Figure 4-8, the location of the 

KBs was under the skin plate where was outside main stress field in the skin fatigue test. 

So, the low stress range might be not enough to delaminate the interface of the KBs that 

the bonding strength was formed by the severe thermal deformation during the FSW 

process [25]. 

 
Figure 4-8 Representative images of specimens cracked at (a) KB-RS2 and (b) WT-AS2. 

The effective skin thickness (denoted as EST) along the cross-section of 

specimens, which is defined as minimum distance from interface of defects to the top 

face of skin part, is displayed in Figure 4-9. According to that, the EST at the RS1/AS2 

was lower than that at the AS1/RS2 (Figure 4-9(b)). As mentioned in previous Chapter, 

using the double-pass FSW and offsetting welding tool to the AS as well as the tilt of 

welding tool might be these reasons for this result. In this case, the theoretical (kt) and 

fatigue stress concentration factors (kf) at two weld toes might be determined by using 

Equation (4-2) [30] and Equation (4-3) [31], respectively. 

݇௧ = 1.03 + .ଶଶߠ0.27 × ቀఘ
௧
ቁ

ି.ସ
× ቀ௦

௧
ቁ

.ଵ଼
    (4-2) 

݇ = 1 + ିଵ

ଵା√ೌ
ඥഐ

          (4-3) 

where θ, ρ, and s are defined in Figure 4-9(a). √ܽ = 0.61 mm.ହ  is Neuber material 

constant for aluminium alloys [32] at the maximum tensile strength of the joints. t is the 

EST was measured at the WT-AS2 (denoted as tWT-AS2) and the WT-RS2 (denoted as 
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tWT-RS2). The calculated results were obtained the higher value of stress concentration 

factors at the WT-AS2 (kt = 3.25 and kf = 1.60) in comparison with that at the WT-RS2 

(kt = 3.21 and kf = 1.58). In other words, the low value of hardness and the EST at the 

WT-AS2 might lead to increase in the stress concentration, resulting in cracking at the 

WT-AS2. 

    

 

Figure 4-9 (a) Schematic diagrams for determining EST and (b) the value of EST at 

various locations. 

4.3.3.3 Fatigue crack initiation under stringer fatigue test 

In the stringer tests, the crack mainly initiated from the interface of the KBs which 

was found at the KB-RS2 (Table 4-2). The representative images of failed specimens 

are presented in Figure 4-10. In all cases, the specimens seem to be failed under mixed 

mode with the plane of crack was about 40o-60o to loading direction. Here, the thinner 
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thickness of the skin might increase the occurrence of mode II during the testing process, 

as concluded in literature [33,34]. 

Figure 4-10(a) shows the specimen was failed under the stress range of 18.3 MPa. 

It seems that the KBs at two corner fillets were easily opened due to combining between 

tensile and bending loading, as presented in Figures 4-10(a-1,2). It is worthy to note 

from Figures 4-10(b-1,2) that the KB-AS2 was not opened under the stress range of 

16.1 MPa. Under the lower stress range of 14.6 MPa, the interfaces of the KBs were not 

delaminated at both RS1/AS2 and AS1/RS2, as observed in Figures 4-10(c-1,2). This 

means that the stress concentration and crack took place at the weld toe (Figure 4-10(c)). 

The KB-opening in during testing process is presented in Figure 4-11. The stress caused 

the KB-opening at the AS1/RS2 was lower than that at the RS1/AS2. As presented in 

previous section, the different bonding strength of the KBs at the RS1/AS2 and the 

AS1/RS2 might be main reason for this result.  

 

 

Figure 4-10 Images of specimens failed under stringer fatigue loading at (a)  = 18.3 

MPa, (b)  = 16.1 MPa, and (c)  = 14.6 MPa.  
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Figure 4-11 Effect of stress on KB-opening. 

4.3.3.4 Fracture morphology 

In order to more understand the failure of the T-lap joints under cyclic loading, 

the fracture surface of the specimens was analyzed by the SEM, and the results are 

shown in Figures 4-12,13 for the skin fatigue test and Figure 4-14 for the stringer 

fatigue test. Here, the KBs and weld toe sites were found in the bottom surface of the 

skin where originated a crack initiation, as shown in Figures 4-12(a), 4-13(a), and 4-

14(a), respectively. The direction of crack propagation was marked by arrows (Figures 

4-12(a), 4-13(a), and 4-14(a)). While the fracture surface of the KBs was observed as 

smooth facet that presented a weak adherence (Figures 4-12(b) and 4-14(d)), the rough 

fracture was found in the region of slow crack propagation (Figures 4-12(c), 4-13(b) and 

14-14(c)). The region of fast crack propagation was characterized by a large number of 

dimples that indicated a ductile failure behavior (Figure 4-12(e) and 14-13(d)). The 

striation waves were also found on fracture surface (Figures 4-13(c) and 4-14(e)).  
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Figure 4-12 Fracture morphology of specimen cracked at KB-RS2 under skin fatigue 

test. 

 

Figure 4-13 Fracture morphology of specimen cracked at weld toe under skin fatigue 

test. 
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Figure 4-14 Fracture morphology of specimen S16 cracked at KB-RS2 under stringer 

fatigue test. 
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4.4 Chapter Summary 

In this work, the failure behavior of the dissimilar T-lap joints between AA7075 

and AA5083 under the skin and stringer fatigue tests was investigated. The following 

conclusions were derived: 

(4-1) The fatigue life of the joints under the skin and stringer loading tests was lower 

than that of two base alloys. The kissing bond defects that were improved by 

double-pass FSW significantly influenced the failure behavior of the joints. 

(4-2) In the skin fatigue test, the crack initiation was predominantly nucleated at the 

weld toe at the RS1/AS2 where the value of the hardness and effective skin 

thickness was lightly low in comparison with that at the AS1/RS2. This would 

lead to the higher stress concentration at the weld toe at the RS1/AS2. 

(4-3) Regarding the stringer fatigue test, the fatigue crack was predominantly initiated 

from the interface of the KBs at the AS1/RS2, and then propagated obliquely to 

the skin AA5083 under mixed mode failure. The interfaces of the KBs were 

comfortably delaminated under combining between tensile and bending loading, 

especially in the AS1/RS2. In these cases, the roles of the KB orientation in 

terms of crack tip angle significantly affected the fatigue crack initiation and the 

life of the T-lap joints. 

(4-4) The fracture surface of the KBs was detected as smooth facet with weak 

adherence. In contrast, the rough fracture was found in the region of slow crack 

propagation. The region of fast crack propagation was characterized by a large 

number of dimples that indicated a ductile failure behavior. 
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Chapter 5 

Numerical Model on Effect of Interface Morphology on Fracture 

Behavior of Friction Stir Welded T-lap Joints 

In this chapter, the influence of interface geometry on the fracture behavior of 

FSWed T-lap joints under the skin and stringer loading tests is explored. At first, the 

roles of the interface characteristics in terms of the size and orientation of the defects on 

the stress intensity factor (SIF) are addressed based on the fracture mechanics. Here, in 

order to more understand the present experimental results, a simplified fracture 

mechanics model is proposed via introducing a new parameter; “geometrical resistance 

factor of defects (GRFD)”. The Maximum Tangential Stress (MTS) criterion is 

employed to estimate crack direction, since the fracture of the specimens is associated 

with mixed mode. The Finite Element Analysis (FEA) is also applied to elucidate the 

failure behavior of the T-lap joints for more quantitative discussion. 
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5.1 Introduction 

As shown in the previous chapter, the fracture strength of the T-lap joints was 

significantly influenced by the defects which had been introduced during the FSW 

process. It is true that the fracture location of the specimens was almost taken place at 

the hook, kissing bond, and bonding line defects. It is worthy to note that these defects 

were formed along the interface between the skin and stringer parts. In the other words, 

the interface morphology of the FSWed T-lap joints seems to play the intrinsic role in 

the mechanical properties of the joints. 

The aim of this chapter is to clarify the effect of interface morphology on the 

fracture behavior of the FSWed T-lap joints. As the fracture behavior in general have 

been successful analyzed based on the fracture mechanics, such a new concept that the 

interface in the FSWed T-lap joints is modeled by the corresponding crack is introduced 

in this work. A simplified fracture mechanics model is proposed via introducing a new 

parameter; “geometrical resistance factor of defects (GRFD)”. Finite Element Analysis 

(FEA) is also applied to understand more quantitatively the failure behavior of the T-lap 

joints. 

5.2 Fracture Mechanic Concepts 

5.2.1 Stress intensity factor (SIF) 

It is well known that in linear elastic fracture mechanics (LEFM) principles, the 

stress intensity factor (SIF, K) keeps the most important role in the valuation of the 

reliability of a structural component that contains a crack [1]. The calculation of the 

SIFs depends on the type of mode failure of structures. 

Figure 5-1 illustrates three types of failure modes which a crack can experience in 

the fracture mechanics. For mode I loading, where the principal load is employed 

normal to the crack plane, tends to open the crack. Mode II corresponds to in-plane 

shear loading and tends to slide one crack face with respect to the other. Mode III refers 

to out-of-plane shear. The SIFs for each mode can be defined as following [1,2]: 

ூܭ = lim→ ,ݎ)௬௬ߪݎߨ2√ 0)      (5-1) 

ூூܭ = lim→ ,ݎ)௬௫ߪݎߨ2√ 0)      (5-2) 
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ூூூܭ = lim→ ,ݎ)௬௭ߪݎߨ2√ 0)      (5-3) 

A cracked body can be loaded in any one of these modes, or a combination 

between two or three modes that is called as mixed mode failure [3]. The equivalent SIF, 

Keq in two dimensional mixed mode failures might be determined by Equation (5-4) [4].  

ܭ = ඥܭூ
ଶ + ூூܭ

ଶ        (5-4) 

 

Figure 5-1 Three types of failure modes in fracture mechanics [3]. 

5.2.2 A simplified model to describe the interface, or defect morphology 

5.2.2.1 Kinked edge crack in a semi-infinity plane 

Taking account of the defect geometry presented in Chapter 2 to Chapter 4, the 

skin test can be modeled by Figure 5-2 simply, but not explicitly. Here, the SIFs at the 

crack tip of kinked edge crack in a semi-infinity plane for mode I and mode II can be 

determined and approximated as Equation (5-5) and (5-6), respectively following [5]: 

ூܭ = ܨ × ଶ(ଶߠ݊݅ݏ)] × [ߪ × (1.12)ଶ × ඥగమ

ඥ௦ఏమ
    (5-5) 

ூூܭ = ܨ × ଶߠݏଶܿߠ݊݅ݏ) × (ߪ × ଵ
ଵ.ଵଶమ × ඥగమ

ඥ௦ଶఏమ
ర    (5-6) 

where factor F are determined as Equation (5-7) following [5]: 

ܨ  = ଵ
√గ

(1.99 − ߣ0.41 + ଶߣ18.7 − ଷߣ38.5 +  ସ)   (5-7)ߣ54

with  = b2/w. 
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It is important to note that the KI and KII are sensitively changed by the crack length “b2” 

and little by “b1”, when the length c2 is longer than ≳ 1.2c1, following the reference [5]. 

 

Figure 5-2 Kinked edge crack in a semi-infinity plane under uniform tension, a 

simplified model of the skin test. 

5.2.2.2 Single inclined edge crack plate loaded in tension 

The SIFs at the crack tip of single oblique crack (Figure 5-3) for mode I and mode 

II can be determined as Equation (5-8) and (5-9), respectively [5]. It might be 

considered as reasonable model for the stringer test. 

ூܭ = ܨ × ଶ(ߠ݊݅ݏ)] × [ߪ × (1.12)ଶ × √గ
√௦ఏ

    (5-8) 

ூூܭ = ܨ × ߠݏܿߠ݊݅ݏ) × (ߪ × ଵ
ଵ.ଵଶమ × √గ

√௦ଶఏర     (5-9) 

where factor F are determined as Equation (5-7) following [5]: 

ܨ  = ଵ
√గ

(1.99 − ߣ0.41 + ଶߣ18.7 − ଷߣ38.5 +  ସ)   (5-10)ߣ54

with  = a/w. 

 
Figure 5-3 Single inclined edge crack plate loaded in tension, a simplified model of the 

stringer test. 
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5.2.2.3 Double inclined edge crack plate loaded in tension 

As shown in Chapter 3, the application of double-pass FSW made the defect 

geometry from a single type to a doubly distributed type. This type of change can be 

modeled by Figure 5-3 and 5-4. The SIFs at crack tip of double crack (Figure 5-4) for 

mode I and mode II can be determined as Equation (5-8) and (5-9), respectively [5]. 

Factor F are determined as Equation (5-11) following [6,7]: 

ܨ  = 1 + 0.122 ቀܿݏ గక
ଶ

ቁ
ସ

൨ × ට ଶ
గక

݊ܽݐ గక
ଶ

    (5-11) 

with  = 2a/w. 

 

Figure 5-4 Double inclined edge cracks plate loaded in tension, a simplified model of 

the stringer test. 

5.2.3 Stress components around a crack tip 

The stress components at a crack tip in Cartesian co-ordinates (Figure 5-5(a)) are 

defined as followings [3]: 

௫ߪ = ଵ
√ଶగ

ቄቂܭூܿݏ ఏ
ଶ

ቀ1 − ݊݅ݏ ఏ
ଶ

݊݅ݏ ଷఏ
ଶ

ቁቃ − ቂܭூூ݊݅ݏ ఏ
ଶ

ቀ2 + ݏܿ ఏ
ଶ

ݏܿ ଷఏ
ଶ

ቁቃቅ (5-12) 

௬ߪ = ଵ
√ଶగ

ቄቂܭூܿݏ ఏ
ଶ

ቀ1 + ݊݅ݏ ఏ
ଶ

݊݅ݏ ଷఏ
ଶ

ቁቃ + ቂܭூூ݊݅ݏ ఏ
ଶ

ݏܿ ఏ
ଶ

ݏܿ ଷఏ
ଶ

ቃቅ  (5-13) 

߬௫௬ = ଵ
√ଶగ

ቄቂܭூܿݏ ఏ
ଶ

݊݅ݏ ఏ
ଶ

ݏܿ ଷఏ
ଶ

ቃ + ቂܭூூܿݏ ఏ
ଶ

ቀ1 − ݊݅ݏ ఏ
ଶ

݊݅ݏ ଷఏ
ଶ

ቁቃቅ  (5-14) 

z = (x + y) for plane strain, where is Poisson’s ratio. 

z = 0 for plane stress. 
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The stress components at the crack tip in polar co-ordinates (Figure 5-5(b)) are 

defined as following [8,9]: 

ఏߪ = ଵ
√ଶగ

ቄቂ
ଶ

ݏܿ ఏ
ଶ

(1 + ቃ(ߠݏܿ − ቂଷ
ଶ

݊݅ݏ ఏ
ଶ

(1 +  ቃቅ  (5-15)(ߠݏܿ

ߪ = ଵ
√ଶగ

ቄቂ
ଶ

ݏܿ ఏ
ଶ

(3 − ቃ(ߠݏܿ − ቂ
ଶ

݊݅ݏ ఏ
ଶ

(1 −  ቃቅ  (5-16)(ߠݏ3ܿ

߬ఏ = ଵ
√ଶగ

ቄቂ
ଶ

݊݅ݏ ఏ
ଶ

(1 + ቃ(ߠݏܿ − ቂ
ଶ

ݏܿ ఏ
ଶ

(1 −  ቃቅ  (5-17)(ߠݏ3ܿ

 

Figure 5-5 Stress components in (a) Cartesian co-ordinate and (b) polar co-ordinate 

systems. 

5.2.4 Crack propagation direction criteria in mixed mode failure 

Crack propagation criteria are applied to predict a crack direction under external 

load. It is well known that the crack will be moved in the crack plane in mode I failure. 

However, the crack propagation direction is difficult to predict exactly in mixed mode 

loading [10]. Two crack propagation direction criteria are introduced as following: 

5.2.4.1 Maximum tangential stress (MTS) criterion 

This method is hypothesised that a crack tip will move in the direction of the point 

where the highest value of the tangential stress component is found [11]. It can be 

expressed mathematically as follows: 

డఙഇ
డఏ

= 0,      డమఙഇ
డఏమ < 0.       (5-18) 

Applying the condition of Equation (5-18) into Equation (5-15) we have [8]: 

ଶ݊ܽݐ ఏ
ଶ

− ఓ
ଶ

݊ܽݐ ఏ
ଶ

− ଵ
ଶ

= 0,      (5-19) 

− ଷ
ଶ

ቂቀଵ
ଶ

ଷݏܿ ఏ
ଶ

− ݏܿ ఏ
ଶ

ଶ݊݅ݏ ఏ
ଶ

ቁ + ଵ
ఓ

ቀ݊݅ݏଷ ఏ
ଶ

− 
ଶ

݊݅ݏ ఏ
ଶ

ଷݏܿ ఏ
ଶ

ቁቃ < 0 (5-20) 

where  is defined as:  ߤ = 
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5.2.4.2 Strain energy density (SED) criterion 

The SED criterion is suggested and issued by Sih in 1973 [12]. It is hypothesised 

that the crack tip will move to position where is minimum strain energy density S. In 

mathematical form, SED criterion can be expressed as: 

డௌ
డఏ

= 0,      డమௌ
డఏమ < 0        (5-21) 

where S is defined as:  ܵ = ݎ
ௗௐ
ௗ

       

where dW = dV is the strain energy density function per unit volume, and r0 is finite 

distance from the point of failure initiation [9]. The strain energy density function can 

be written as following [12]: 

ܵ = ܽଵଵܭூ
ଶ + 2ܽଵଶܭூܭூூ + ܽଶଶܭூூ

ଶ     (5-22) 

where the factors aij are functions of the angle , and are defined as following: 

ܽଵଵ = ଵ
ଵீగ

[(1 + ߢ)(ߠݏܿ −  (5-23)     [(ߠݏܿ

ܽଵଶ = ଵ
ଵீగ

(ߠݏ2ܿ)]ߠ݊݅ݏ − ߢ) − 1)]     (5-24) 

ܽଶଶ = ଵ
ଵீగ

ߢ)] + 1)(1 − (ߠݏܿ + (1 + ߠݏ3ܿ)(ߠݏܿ − 1)]  (5-25) 

where G is the modulus, and  is a constant depended on stress state, and is defined as 

following: 

ߢ = ଷିఔ
ଵାఔ

        (5-26) 

ߢ = 3 −  (5-27)        ߥ4

From Equation (5-21), (5-22), (5-23), (5-24), and (5-25) we have [9]: 

ସ݊ܽݐߤ2 ఏ
ଶ

(1 + (ߢ + ଷ݊ܽݐ ఏ
ଶ

1)ߢ2] − (ଶߤ − ଶߤ2 + 10] − ଶ݊ܽݐߤ24 ఏ
ଶ

+ ݊ܽݐ ఏ
ଶ

1)ߢ2] −

(ଶߤ + ଶߤ6 − 14] + 3)ߤ2 − (ߢ = 0     (5-28) 

ߢ)ߠ݊݅ݏߤ2 − 1) − ߠ2݊݅ݏߤ8 + ߢ)ߠݏܿ − 1)(1 − (ଶߤ + ଶߤ)ߠ2ݏ2ܿ − 3) > 0    (5-29) 

It is worthy to remind that the MTS and SED criteria can predict the fracture 

behavior almost comparable, as least for a two-dimensional crack [12].  
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5.3 Semi-Quantitative Discussion on Effect of Interface Morphology 

on Fracture Behavior of FSWed T-lap Joints 

5.3.1 Effect of interface morphology in single-pass FSW 

Figure 5-6 shows the crack size and geometry of defects at the AS and RS 

affected by the welding parameters in single-pass FSW. It is clear that the change in the 

welding speed or probe length would lead to the various formation of defect size. 

Noting that in all cases, the defect size at the RS seems to be bigger than that at the AS, 

especially in low welding speed or long probe. In addition, the higher value of h at the 

RS reduced the effective skin thickness that was discussed in previous chapter. This 

means that the failure of the joints is mainly affected by the defect size at the RS where 

the fracture location of the joints was found. So, the fracture mechanic parameter at the 

RS is considered and calculated to control the strength of the joints. 

 

 

Figure 5-6 Comparison crack size between RS and AS affected by (a) welding speed 

and (b) probe length. 
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The SIFs at the crack tip at the RS can be calculated by Equation (5-30) and (5-

31), as following: 

ூܭ = ܨ × ூܻ × ܽߨ√ ×  (5-30)       ߪ

ூூܭ = ܨ × ூܻூ × ܽߨ√ ×  (5-31)      ߪ

where factor F is calculated by Equation (5-7), a is crack size, as presented in Figure 5-

6. Geometry factor Y is expressed by Equation (5-32,33,34): 

ூܻ = 1.12ଶ(sin ଶ/√sin(ߠ  (5-32)      ߠ

ூܻூ = ଵ
ଵ.ଵଶమ sin ߠ cos ߠ /√sin2 రߠ       (5-33) 

ܻ = ඥ( ூܻ)ଶ + ( ூܻூ)ଶ       (5-34) 

where  is crack angle, as shown in Figure 2-38 and 2-39 in Chapter 2. Hereinafter, the 

parameters, 1/(FYIa) and 1/(FYIIa) are called by “Geometrical resistance factor of 

defects (GRFD)”. The effects of welding speed and probe length on the GRFD under 

skin test are shown in Figure 5-7(a) and Figure 5-7(b), respectively. Note that the 

GRFD was reached the best value at the welding speed of 100 mm/min. Meanwhile, 

this value decreases with increasing the probe length. Figure 5-8 displays the influence 

of the welding speed on the GRFD under the stringer test. Similar to the skin test, the 

GRFD is small value at low welding speed. These results seem to have closed relation 

to defect size that was controlled by the welding parameters. 
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Figure 5-7 Effect of (a) welding speed and (b) probe length on GRFD under skin test. 

 

Figure 5-8 Effect of welding speed on GRFD under stringer test. 
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5.3.2 Effect of interface morphology in double-pass FSW 

Figure 5-9 shows the crack size and geometry of defects at the RS1/AS2 and 

AS1/RS2 affected by tool offset in double-pass FSW. It is clear that the increase in the 

distance of tool offset toward the AS would lead to reduction in defect size. It is 

dissimilar to the single-pass, the double-pass FSW produced two cracks with the size is 

nearly same. This means that the strength of the joints can be affected by both cracks.  

In order to more easily understand the influence of the various welding conditions 

on the interface geometry and the fracture of the T-lap joints, a simple mechanical 

model under the stringer test is shown in Figure 5-10. The application of various 

welding conditions might be obtained the different interface geometries, as shown in 

Figure 5-10(a). Here, the defect size was significantly decreased by employing double-

pass and tool offset. Note that using single-pass FSW can produce two cracks those 

were significantly different size, as seen Figure 5-10(b). In contrast, the application of 

double-pass FSW was obtained the same crack size at the AS and RS. In the other 

words, the application of double FSW with offset makes change in crack geometry from 

a single crack to a double crack and reduction in crack length with tool offset. 

From above overviews, three mechanical models were considered as 

correspondence with the interface geometry of each joint, as shown in Figure 5-10(c). In 

this case, the effect of crack length ratio on normalized SIFs in three mechanical modes 

shows Figure 5-11. It is clear that the normalized SIFs F at single crack is higher than 

that at double crack. This means that with same crack size, a single crack is easier 

failure than double crack.  

The SIFs at the crack tip can be calculated by Equations (5-30) and (5-31). Here, 

factor F was calculated by Equation (5-11). Geometry factor Y is expressed by Equation 

(5-32,33,34). The effect of tool offset on the GRFD under the skin test is shown in 

Figure 5-12. Here, the GRFD increased with increasing the distance of tool offset that 

tended to decrease defect size (Figure 5-9). In the other words, this value significantly 

depended on the crack angle and size of defects. Note that the GRFD at mode I was 

higher than that at mode II. This result might be contributed by low crack angle that 

obtained from 16-22o, as shown in Chapter 3 (Figure 3-16). 

Figure 5-13 displays the effect of tool offset on the GRFD under the stringer test. 

Similar to the skin test, increase in the distance of tool offset raised the GRFD in both 
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mode I and II. Note that the GRFD at mode I is significantly lower than that at mode II. 

In the other words, the influence of the geometry of defect on failure at mode I is more 

significant than that at mode II. As a result, the kissing bond, or interface is easy to be 

delaminated under the stringer test. 

 

Figure 5-9 Comparison crack size between AS1/RS2 and RS1/AS2 affected by tool 

offset. 

 

Figure 5-10 Effect of various welding conditions on (a) cross-section, (b) crack length, 

and (c) simple mechanical model in fracture of FSWed T-lap joints. 
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Figure 5-11 Normalized SIFs, F in three mechanical modes. 

 

Figure 5-12 Effect of tool offset on GRFD under skin test. 
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Figure 5-13 Effect of tool offset on GRFD under stringer test. 

5.4 Finite Element Analysis (FEA)  

5.4.1 Model and material description 

In order to more quantitatively understand the influence of the geometry and size 

of defects on the failure of the FSWed T-lap joints and to rationalize the discussions in 

the Section 5.3, a Finite Element Analysis (FEA) is applied. Figure 5-14, as an example, 

illustrates a FEA model of specimen S12 produced by double-pass FSW, as presented in 

Chapter 4. The model had about 4306 elements that mainly located close to two cracks 

and long interface (Figure 5-15). The gap between the weld toe and the gripping part is 

set up by 1.0 mm. The curve length of two cracks inside the joints are introduced base 

on the real specimen so that the crack tip makes an angle, () as illustrated in Figure 5-

14. The value of crack size at two sides is nearly same. The value of  is changed as 

calculation variable in this work. The uniform nominal stress (nom) was applied along 

the stringer part. 

For purpose of brevity, it is assumed that two materials have equal elastic 

properties with 71 GPa in Young’s modulus, and 0.33 in Poisson’s ratio, respectively. 

The interface of the joints was modeled by bonding between two materials. The FEA 

was carried out by means of the ANSYS v.15 software using bilinear isotropic 

hardening models with the mechanical properties of two alloys are given in Table 5-1. 
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To evaluate the failure behavior of the T-lap joints, the fracture mechanics parameters in 

terms of the SIFs, K is calculated for the various cases. Here, the equivalent SIF, Keq 

was determined by Equation (5-4) [4].  

 

Figure 5-14 Model of specimen for FEA. 

 
Figure 5-15 Image of meshing model of specimen S12. 

Table 5-1 Mechanical properties of AA5083 and AA7075 for FEA model. 

Mechanical 
properties 

Yield strength 
(MPa) 

Tangent 
modulus (GPa) 

Young modulus 
(GPa) 

Poisson’s 
ratio 

Density 
(g/cm3)  

AA5083 260 1.6 71 0.33 2.66 
AA7075 520 2.3 71 0.33 2.81 
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5.4.2 FEA results 

The FEA results are presented in Figures 5-16 and 5-17. Here, equivalent (Von-

Mises) stress and normal stress around two cracks at the RS1/AS2 and AS1/RS2 are 

shown in Figures 5-16(a,b) and 5-16(c,d), respectively. Note that the stress distribution 

was more highly concentrated in the AS1/RS2 than the RS1/AS2 side. An important 

fracture mechanic parameter in terms of the SIFs, K is presented in Table 5-2. 

According to that, although the size of crack was same, the value of the SIF at the 

RS1/AS2 was much lower than that at the AS1/RS2. These results mean that the role of 

the orientation of the crack tip might be key factor in this case. This postulation is more 

clearly shown in Figure 5-17 that indicated the effect of the crack tip angle at the 

AS1/RS2 on the SIFs. Here, the equivalent SIF, Keq was obtained at a high value 

corresponded to crack tip angle of 45o-60o. Especially, the highest value of the SIFs of 

KI and Keq at the crack tip angle of 50o was found.  

As results indicated in Chapter 4, two main factors might be reason for the 

predominant crack at the AS1/RS2 compared to the RS1/AS2. Firstly, the bonding 

strength of the interface of the KBs at the AS1/RS2 is lower than that at the RS1/AS2, 

resulting in the easier delamination of interface at the AS1/RS2. Secondly, the geometry 

of the crack at the AS1/RS2 was more convenient for crack propagation than that at the 

RS1/AS2. The higher values of stress and SIFs at crack tip at the AS1/RS2 were 

considered as the evidences for this conclusion. In other words, the role of the 

orientation of the KBs plays key factor in the mechanical properties of the joints, as 

presented in literature for other junctions [13-15]. 

From above the obtained results, it seems that the fatigue life of the FSWed T-lap 

joints may be enhanced by changing the bonding angle of the interface at two corner 

fillets, which is believed to play vital role in the fatigue failure and the life of the T-lap 

joints in the present work. An evidence for this postulation is shown in Figure 5-18 that 

described the influence of crack tip angle on the fatigue life of the joints. Here, two 

main groups of crack tip angle were found inside of the joints; one is 45o-60o (denoted 

as low crack tip angle), other is 80o-110o (denoted as high crack tip angle) (Figure 5-

18(a)). The change in the crack tip angle of the joint might be affected by the instability 

of the FSW process, especially in T-lap joint. It is worthy to note from Figure 5-18(b), 

the specimens with low crack tip angle had the shorter fatigue life compared to that with 
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high crack tip angle. This result had good correlation with the SIFs as seen in Figure 5-

17. Thus, it can be concluded that the application of double pass FSW and the tool 

offset may change the bonding angle which made big contribution to advance the 

strength of the T-lap joints. 

Table 5-2 Stress intensity factor at two crack tips. 

Stress intensity factor, SIFs at RS1/AS2,  
(MPam) 

Stress intensity factor, SIFs at AS1/RS2,  
(MPam) 

KI KII Keq KI/KII KI KII Keq KI/KII 

0.245 -0.282 0.374 -0.869 0.896 -0.642 1.102 -1.396 

 

 

Figure 5-16 (a,b) Von-Mises equivalent stress distribution and (c,d) normal stress (X 

axis) around two crack tips at RS1/AS2 and AS1/RS2. 
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Figure 5-17 Effect of crack tip angle at AS1/RS2 on the SIFs. 

 

 

Figure 5-18 (a) Crack tip angle at AS1/RS2 measured on specimens and (b) effect of 

crack tip angle on the fatigue life of T-lap joints. 
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5.4.3 Prediction of crack growth angle under stringer test 

In order to estimate the crack initiation angle under mixed mode loading, some 

available criteria such as Maximum Tangential Stress (MTS) [16-19], Strain Energy 

Density (SED) [20], maximum energy release rate [21], and Maximum Shear Stress 

(MSS) criterions [22] are applied in the literature. In this work, the crack direction was 

predicted by Maximum Tangential Stress (MTS) criterion. From Equation (5-19) and 

(5-20) with replacing () by crack extension direction (c) we have: 

ߠ = ଵି݊ܽݐ2 ቈଵ
ସ




− ଵ
ସ

ටቀ 


ቁ
ଶ

+ 8   for    KII > 0    (5-35) 

ߠ = ଵି݊ܽݐ2 ቈଵ
ସ




− ଵ
ସ

ටቀ 


ቁ
ଶ

+ 8   for    KII < 0    (5-36) 

Table 5-3 shows the calculated results for the SIFs and crack initiation angles at 

the AS1/RS2, where c and c are the crack initiation angle defined as Figure 5-14. 

Note that the value of KII calculated in specimen S15 was nearly zero at the crack tip 

angle of  = 51o. Moreover, the crack initiation angle was predicted about 51.49o. This 

means that the crack direction propagates is the same crack tip angle. It is worthy to 

note from Figure 5-19 that a good agreement in the crack growth angles between 

estimation and experiment. This result indicates that the fracture angle of the T-lap 

joints under the stringer test can be predicted well via the MTS criterion that was widely 

applied by many researchers for aluminium alloys under mixed mode failure [17,23-25]. 

Table 5-3 Stress intensity factor and crack initiation angle at AS1/RS2. 

Spec. Max. stress 
(MPa)  (o) 

Stress intensity factor, SIF 
(MPa.m) KI/KII c (o) c (o) 

KI KII Ke 
S12 36.6 90 0.9866 -0.6599 1.187 -1.4951 46.18 43.82 

S13 32.5 80 1.0055 -0.4415 1.098 -2.2775 37.42 42.58 

S14 28.5 61 1.0220 -0.1390 1.031 -7.3525 14.97 46.03 
S15 28.5 51 1.0457 0.0045 1.046 232.378 -0.49 51.49 

S16 24.5 110 0.4152 -0.4757 0.631 -0.8728 55.14 54.86 

S17 20.3 84 0.6262 -0.2935 0.692 -2.1336 38.84 45.16 
S19 17.9 62 0.6612 -0.0979 0.668 -6.7538 16.18 45.82 

S22 16.3 46 0.5647 0.0520 0.567 10.8596 -10.36 56.36 
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Figure 5-19 Comparison in crack initiation angle between prediction and experiment. 

5.5 Brief Summary 

As shown from Section 5.2 to Sec. 5.4, a simplified model which deals with the 

interface morphology in the FSW by approximating by the equivalent crack provided 

reasonable explanation to the strength of the dissimilar FSWed T-lap joints. Note that 

the magnitude of K is given by Equation (5-37): 

ܭ = ܽߨ√ܻ ×  (5-37)        ߪ

Thus allowable stress is dominated by Equation (5-38): 

௪ߪ ≃ 
√గ

        (5-38) 

where KC is interface strength which depends on bonding conditions. In the other words, 

when the KC is given, the optimization of the FSW can be reached by; 

1) Controlling the defect size, a 

2) Decrease in the geometrical factor, Y 

3) Increase in KC 

The FSW conditions can change all these factors. 
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5.6 Chapter Summary 

The influence of the interface geometry on the fracture behavior of the FSWed T-

lap joints was clarified in both single- and double-pass. Here, a new concept that the 

interface is modeled by an equivalent complicated crack has been proposed to make the 

analysis of the dissimilar FSWed T-lap joints, via introducing the “GRFD” parameter. 

This simplification could provide reasonable explanations to the experimental works in 

Chapter 2 to Chapter 4. The details are as follow: 

(5-1) The SIFs significantly depended on the interface geometry that was controlled 

by the welding parameters. Increasing defect size at low welding speed would 

lead to decreasing the GRFD that reduced applied load. 

(5-2) The application of the double-pass FSW that made the change in crack geometry 

from a single crack to a double crack and reduction in crack length with tool 

offset increased the GRFD in both the skin and stringer tests. The effect of 

defect geometry on the stringer test is more significant than that on the skin test. 

(5-3) In double-pass FSW, the FEA suggested that the geometry of the crack at the 

AS1/RS2 was more convenient for the crack propagation than that at the 

RS1/AS2. It is true that the values of stress and the SIFs at the crack tip of the 

AS1/RS2 were higher than that of the RS1/AS2. The fatigue life of the T-lap 

joints under the stringer fatigue test was low at the crack tip angle from 45o-60o 

those caused the high values of the equivalent SIFs. 

(5-4) The application of the MTS criterion might predict well the crack initiation 

angle that predominantly propagated at the KBs of the AS1/RS2 under the 

stringer fatigue test. 

(5-5) The analyzed results show that the optimization of the FSW can be reached by 

minimizing the defect size, by decreasing the geometrical factor, and by 

increasing the interface strength those can be attained by the change in the 

welding conditions via the control of the metal flow in the FSW process. 
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6.1 Conclusions 

The Friction Stir Welding (FSW) technology is known as one of excellent 

methods for welding metal joints. However, its applicability to fabricate the T-lap joints 

has not been still satisfied in literature. The aim of this study was to improve the 

interface morphology and the mechanical properties of the FSWed dissimilar metal T-

lap joints between AA7075 and AA5083. The fracture behavior of the joints was 

explored to make platform for the advance of the strength of the T-lap joints. The main 

results were derived as follows: 

In Chapter 2: The fundamental formation of welding interface between skin and 

stringer parts was clearly observed in the FSWed dissimilar T-lap joints. Some 

undesirable defects, e.g. hook, kissing bond, and bonding line defects under various 

welding conditions were found along the interface. Here, increasing the welding rate or 

decreasing probe length might eliminate the hook defects that significantly degraded the 

strength of the joints, however, the bonding line defects were found in these cases. The 

low stirring efficiency along interface might be reason for forming this type of defect 

that reduced the bonding strength of interface. Among defects, the kissing bonds at the 

two corner fillets were formed under all the welding conditions. This means that they 

were independent on the welding parameters. These experimental findings indicated 

that the welding interface, where the fracture was found, played a vital role in the 

mechanical properties of the T-lap joints. As a result, the welding interface with smaller 

defect size might upgrade the mechanical properties of the joints that were obtained at 

the welding speed of 100 mm/min or the probe length of 3.4 mm. In spite of these, the 

interface morphology seems to be too difficult to be improved by employing only the 

traditional single-pass FSW, resulting in low joint efficiency. 

In Chapter 3: The application of a double-pass FSW induced by tool offset and 

reversed metal flow successfully improved the interface morphology of the T-lap joints. 

Here, the KBs size was significantly reduced at both the advancing side (AS) and the 

retreating side (RS) by offsetting the tool probe toward the AS with the distance of 0.8 

mm. As a result, the joint efficiency was reached approximately 90% in comparison 

with the strength of AA5083 base metal for both the skin and stringer tensile tests. 

Digital image correlation (DIC) analyses showed that the strain of the joints 

concentrated at the heat affected zone (HAZ) instead of the kissing bonds, where the 
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fracture location was found under skin tensile test. The above results were suitably 

interpreted by the tool position and asymmetric material flow during the double-pass 

FSW process. It was also found that the gap distance between probe and die kept a key 

role in the welding interface formation. These findings derived such as a postulation 

that the control of interface morphology is a key point in order to upgrade the strength 

of the FSWed T-lap joints. 

In Chapter 4: The failure behaviour of the optimized dissimilar T-lap joints was 

largely investigated under cyclic loading. Here, the fatigue crack dominantly initiated at 

the weld toe under the skin loading tests. The optical observation showed that most of 

the interface of the KBs was not delaminated during testing process. This would be 

attributed the high stress concentration at weld toe, resulting in the acceleration of crack 

initiation. Regarding the stringer fatigue tests, however, the crack initiations were 

nucleated in the interface of the KBs. Then, the crack obliquely propagated to the skin 

AA5083 under mix-mode failure. It was found that the KBs interfaces were comfortably 

delaminated to form two cracks at corner fillets. In these cases, the crack initiation was 

strongly influenced by the crack geometry.  

In Chapter 5: In order to consider the unified treatment for the present 

experimental results, a simplified fracture mechanics model was proposed via 

introducing the “Geometrical resistance factor of defects (GRFD)”. Here, the 

AA7075/AA5083 interface is presented by an equivalent defect or crack which is 

subjected to the corresponding equivalent stress intensity factor (SIF). It has been 

shown by the numerical model that the equivalent SIF significantly depended on the 

interface geometry that was controlled by the defects. Here, increasing defect size at 

low welding speed would lead to decreasing the GRFD. With the improvement of 

interface geometry by applying the double-pass FSW and tool offset, the GRFD 

increased in both the skin and stringer tests. In addition, the effect of defect geometry in 

the stringer test is more significant than that in the skin test. The Finite Element 

Analysis suggested that in the double-pass FSW, the crack shape produced at the 

retreating side of second-pass (AS1/RS2) caused a higher equivalent SIF, compared to 

that at the advancing side of second-pass (RS1/AS2). The crack propagation direction 

was predicted well by the application of the maximum tangential stress (MTS) criterion. 

These analysis show that the optimization of the FSW can be reached by minimizing the 

defect size, by decreasing in the geometrical factor, and by increasing the interface 
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strength those can be attained by the change in the welding conditions via the metal 

flow in the FSW process. 

6.2 Future Work 

The findings in this study demonstrated that the mechanical properties of the T-

lap joints were significantly affected by the welding interface in which some 

undesirable defects are often unavoidable. So far, the absolute elimination of the KBs 

from the T-lap joints seems to be impossible in the FSW process. However, it is sure 

that the mechanical properties of the joints might be improved well due to controlling 

the interface morphology related to the KBs geometry. Nonetheless, it is prudent to 

advance the fatigue life of the T-lap joints to upgrade the quality of the joints that is able 

to apply widely in automotive, shipbuilding, railway, and aviation industries. In order to 

approach this goal, some issues are recommended as follows: 

 The application of double-pass induced by tool offset may allow us to fabricate 

the FSWed T-lap joints with tool probe has smaller diameter than the thickness 

of the stringer part. This is useful for structure that has the big thickness of the 

stringer. The selection of the suitable diameter of tool probe may advance the 

weldability of the FSWed T-lap joints. 

 It is well known that the microstructure of the joints is one of the key factors in 

crack propagation. So, the fatigue crack propagation of the T-lap joints needs 

to be investigated to clarify this effect, especially in the stringer fatigue test. 

 In the dissimilar T-lap joints, the interface of the bonded mismatch of materials 

that is significant differences in Young’s modulus and Poisson ratio may take 

stress singularity. Some possibilities to reduce it are also a future work. 

 Some of candidate methods were tried to control the interface morphologies by 

changing the process parameters in the FSW in this work, however, more 

sophisticated methods should be requested to control the defect geometry and 

the size in future. 


