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Abstract 

In design of  building, the pile foundations and the rigid footings have routinely been designed to carry 

the vertical load of  the superstructure, resist the horizontal load from wind and wave loads, and the moment 

load coming from the eccentric vertical or horizontal loads. This study mainly focuses on the following 

objectives by using the rigid plastic finite element method (RPFEM); 1) The assessment for group effect 

on ultimate lateral resistance of  piles against uniform ground movement; 2) Ultimate bearing capacity of  

rigid footing under eccentric vertical load; 3) Limit load space of  rigid footing under eccentrically inclined 

load; and 4) Ultimate bearing capacity of  rigid footing resting on sand layer over clay: 

(1) Firstly, in earthquake engineering, pile foundations have typically been designed to withstand the 

lateral loading that results from large displacements due to ground movement caused by strong earthquakes 

during which the distress and failure of  superstructures may take place when the lateral load exceeds the 

ultimate lateral resistance of  the piles. The aim of  this study is to estimate the ultimate lateral resistance of  

piles especially in terms of  the group effect induced by the pile arrangement. Several experimental and 

numerical analyses have been conducted on pile groups to investigate the group effect when the groups are 

subjected to uniform large horizontal ground movement. However, these previous studies usually calculated 

the ultimate lateral resistance of  the pile groups by applying the load to the piles. The present study directly 

assesses the ultimate lateral resistance of  pile groups against ground movement by systematically varying 

the direction of  the ground movement. Although the load bearing ratio of  each pile in a pile group, defined 

as the ratio of  the ultimate lateral resistance of  each pile in a pile group to that of  a single pile, is an 

important design criterion, it was difficult to assess in past works. This study focuses on the load bearing 

ratio of  each pile against ground movement in various directions. The use of  the finite element method 

(FEM) provides options for simulating the pile-soil system with complex pile arrangements by taking the 

complicated geometry of  the problem into account. The ultimate lateral resistance is examined here for 

pile groups consisting of  a 2x2 arrangement of  four piles, as well as two piles, three piles, four piles, and 

an infinite number of  piles arranged in a row through case studies in which the pile spacing is changed by 

applying the two-dimensional rigid plastic finite element method (RPFEM). The RPFEM was extended in 

this work to calculate not only the total ultimate lateral resistance of  pile groups, but also the load bearing 
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ratio of  the piles in the group. The obtained results indicate that the load bearing ratio generally increases 

with an increase in pile spacing and converges to almost unity at a pile spacing ratio of  3.0 with respect to 

the pile diameter. Moreover, the group effect was further investigated by considering the failure mode of  

the ground around the piles. 

(2) Secondly, in geotechnical engineering, the stability of  rigid footings under eccentric vertical loads is 

an important issue. This is because the number of  superstructure buildings has increased and the situation 

of  structures being subjected to eccentric vertical loading is occurring more and more frequently. In this 

study, focus is placed on the ultimate bearing capacity of  a footing against the eccentric load placed on two 

types of  soil, namely, sandy soil and clayey soil, using a finite element analysis. For the sandy soil, the study 

newly introduces an interface element into the footing-soil system in order to properly evaluate the 

interaction between the footing and the soil, which greatly affects the failure mechanism of  the footing-soil 

system. For the clayey soil, the study improves the analysis procedure by introducing a zero-tension analysis 

into the footing-soil system. Two friction conditions between the footing and the soils are considered; one 

models a perfectly rough condition and the other models a perfectly smooth condition. For a two-

dimensional analysis of  the footing-soil system, the rigid plastic finite element method (RPFEM) is applied 

to calculate the ultimate bearing capacity of  the eccentrically loaded footing. The RPFEM is extended in 

this work to calculate not only the ultimate bearing capacity, but also the distribution of  contact stress along 

the footing base. The study thoroughly investigates the effect of  the eccentric vertical load on the ultimate 

bearing capacity in the normalized form of  V/Vult and e/B where e is the length of  the eccentricity and B 

is the width of  the footing. Vult indicates the ultimate bearing capacity for the centric vertical load. The 

failure envelope in the plane of  V/Vult and M/BVult is further investigated under various conditions for 

the sandy and clayey soils. M is the moment load induced by the eccentric vertical load. This study examines 

the applicability of  the failure envelope obtained for the eccentric vertical load to the cases where two 

variables, V and M, are independently prescribed. The obtained results are coincident and indicate the wide 

applicability of  the failure envelope in the normalized V-M plane in practice. Finally, in a comparison with 

previous researches, the numerical data in the present study lead to the derivation of  new equations for the 

failure envelopes of  both sandy and clayey soils. 

(3) Thirdly, the objective of  this study was to evaluate the bearing capacity of  a rigid footing on the free 
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surface of  uniform sandy and clayey soils under the action of  eccentric and inclined loading using a finite 

element analysis by assuming that the soils follow the Drucker-Prager yield function. In the two-

dimensional analysis of  the footing-soil system, the rigid plastic finite element method (RPFEM) was 

applied to calculate the ultimate bearing capacity of  the eccentric-inclined loaded footing. In the numerical 

analysis, an interface element was introduced to simulate the footing-soil system with the rigid plastic 

constitutive equation developed by the authors. The footing was considered to be rigid and rough, as it 

most often is in reality. This study thoroughly considered the effect of  the soil properties on load inclination 

factors iγ and ic in order to investigate the validity of  the current design methods. In particular, the effects 

of  the horizontal load in two directions on the ultimate bearing capacity of  the footing and the failure 

envelopes in the V-H-M space were clarified, namely, positive and negative horizontal loads. The results 

showed that the positive horizontal load had a negative effect on the bearing capacity, while the negative 

horizontal load had the opposite effect in the presence of  eccentrically inclined loading. The failure mode 

of  the footing-soil system was clearly seen in the difference between the two directions of  horizontal load. 

Through a series of  numerical analyses, new equations were proposed for load inclination factors iγ and ic, 

and for the failure envelopes in the V-H-M space, taking into account the direction of  the horizontal load. 

The obtained limit load space was proved to be rational in comparison to those given in the literature. 

Furthermore, the applicability of  the limit load space to different computation conditions and 

independently prescribed moments was examined. Consequently, the failure envelope for each type of  soil 

in the V-H-M space was clearly seen to be unique. 

(4) Finally, this study investigates the ultimate bearing capacity of  a rigid footing on the free surface of  

sand overlying clay using the rigid plastic finite element method (RPFEM). An interface element is newly 

introduced to properly evaluate the interaction between the footing and the soil, which greatly effects the 

failure mechanism of  the footing-soil system. Two friction conditions are employed for the footing surface, 

namely, perfectly rough and perfectly smooth. The RPFEM is extended to calculate the distribution of  

contact normal stress along the footing base corresponding to changes in the thickness of  the sand layer. 

The improvement in the bearing capacity is intensified by increasing the internal friction angle and the 

thickness of  the sand layer. Two cases are considered for the clay layer below the sand layer, namely, a weak 

layer and a stiff  layer. The failure mode of  two-layered soils is found to change from the general shear 
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mode to the punching shear mode by a reduction in the shear strength of  the clay layer. In the general shear 

mode, the sheared area of  the ground is limited to the sand layer, while in the punching shear mode, the 

sheared area is distributed throughout the two layers. Therefore, the ultimate bearing capacity obtained here 

is lower than that of  a single layer of  sandy soil in the case of  the punching shear mode. In this study, a 

bearing capacity formula for the punching shear mode is newly proposed based on the computed results. 

 

Keywords: (1) Ultimate lateral resistance, Pile group, Load bearing ratio, Horizontal ground movement, 

Two-dimensional analysis. 

(2) Ultimate bearing capacity, Rigid footing, Eccentric load, Moment load. 

(3) Ultimate bearing capacity, Rigid footing, Eccentric loading, Inclined loading. 

(4) Ultimate bearing capacity; Rigid footing, Layered soils, Sandy soil, Clayey soil. 
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Chapter 1 

INTRODUCTION 

1.1 BACKGROUND AND PURPOSES 

In earthquake engineering, the stability of  pile foundations under the horizontal ground movement is 

an important issue, because that the earthquake is occurring more and more frequently. Ultimate lateral 

resistance of  piles is an important design value which expresses the load applied to the pile which is pu. 

Although there are several methods available for predicting ultimate lateral resistance of  piles. For example, 

Broms (1964) studied the slip line method to calculate the ultimate lateral resistance of  singe pile driven 

into cohesive soil. He reported the values of  pu in the range of  8.28 cu – 12.56 cu for various piles with 

circular and rectangular shapes and with smooth and rough surfaces, in which cu was the undrained shear 

strength of  the ground. Randolph and Houlsby (1984) used two-dimensional lower-bound and upper-

bound limit analyses to provide the collapse load for circular piles in cohesion soil. The ultimate lateral 

resistance of  the single pile was in the range of  9.14 cu for perfectly smooth piles to 11.94 cu for perfectly 

rough piles. However, more complex problem arises for pile groups because the ultimate lateral resistance 

of  each pile is different among all the piles in a pile group due to the pile-soil-pile interaction effect. The 

support of  each pile in a group leads to the total of  the ultimate lateral resistance that is greatly varied by 

the pile spacing. It required that the group effect problem in a group have to be investigated. The group 

effect on ultimate lateral resistance has been investigated by several researcher using numerical analysis and 

model test. Stewart (1992), Chen (1994), Chen and Poulos (1997), and Goh et al. (1997) used numerical 

analyses to calculate the ultimate lateral resistance of  pile groups against horizontal ground movement. The 

analyses showed that the ultimate lateral resistance of  a pile in a pile group was generally lower than that 

of  a single pile due to the pile-soil interaction. The same results were also obtained in model tests conducted 

by Cox et al. (1984), Chen and Poulos et al. (1997), Pan (1998), Pan et al. (2002), Llyas et al. (2004), Miao 

(2005), Miao et al. (2008), and Bauer et al. (2016). In this study, the pile-soil system is simulated by employing 

a rigid plastic finite element analysis (RPFEM) based on the upper bound theorem. The effect of  the 

direction of  the ground movement and the pile arrangement on the ultimate lateral resistance of  pile groups 



 
Chapter 1: Introduction 

2 

 

and the load bearing ratio of  each pile is investigated. Pile groups consisting of  a 2x2 arrangement of  four 

piles, as well as two piles, three piles, four piles, and an infinite number of  piles arranged in a row are 

intensively investigated by changing the pile spacing. 

In geotechnical engineering, rigid footings have routinely been designed to withstand the complex loads 

that result from the combination of  vertical and horizontal as well as moment loads. Typically, the vertical 

load stems from the weight of  the superstructure, the horizontal load comes from wind and wave loads 

and the moment load comes from the eccentric vertical or horizontal loads. In practice, rigid footings often 

suffer under the eccentric vertical or the eccentrically inclined loads. Therefore, the stability of  a rigid 

footing on the free surface of  soils under complex loading is of  practical interest. Estimation of  the ultimate 

bearing capacity of  the rigid footing is one of  the complicated problems in practice. Many formulas were 

proposed to calculate the ultimate bearing capacity, such as, Terzaghi (1943), Meryerhof  (1951, 1953, 1963), 

Hansen (1961, 1970) and Vesic (1973, 1975) by producing a series of  model test on sandy and clayey soils. 

Although many works have been performed to investigate the ultimate bearing capacity against the eccentric 

vertical and the eccentrically inclined loadings, a comprehensive understanding of  both the failure 

mechanism of  the footing-soil system and the failure envelopes in the vertical load - horizontal load - 

moment (V-H-M) space has not yet been established. In footing-soil systems, the ultimate bearing capacity 

of  the footing depends on the friction condition between the footing and the soil, which has been modeled 

under one of  two extreme conditions, namely, perfectly rough and perfectly smooth. However, only a few 

researches have been conducted to evaluate the ultimate bearing capacity under two friction conditions of  

the footing-soil surface. In addition, most of  the previous studies on clayey soil, such as those by Bransby 

(2001), Gourvenec (2008) and Khitas et al. (2017), considered a fully bonded interface between the footing 

and the soil which is capable of  transmitting full tension. However, the occurrence of  tensile stress in the 

soil was not real. Some literature is available on rigid footings under eccentric vertical loads with a zero-

tension interface. Their finding raises the question of  the effect of  the footing-soil tensile stress on the 

ultimate bearing capacity and the failure mechanism in the presence of  eccentric loading. In this study, a 

zero-tension analysis is introduced to widely consider the interaction between the footing and the soil in 

clayey soil. 

Under eccentrically inclined loading, most of  the previous studies, such as those by Loukidis et al. 
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(2008), Krabbenhoft et al. (2013), and Shen et al. (2016), investigated the bearing capacity of  eccentrically 

inclined loaded footings without considering the effect of  the direction of  the horizontal loads on the 

failure envelopes in the V-H-M space or the failure mechanism of  the footing-soil system. Their findings 

raise a question as to whether the direction of  the horizontal loads has an effect on the ultimate bearing 

capacity and the failure mechanism in the presence of  eccentrically inclined loading. Focus is placed here 

on the ultimate bearing capacity of  a footing against the action of  eccentric and inclined loads taking into 

account the direction of  the horizontal loads. 

In geotechnical practice, the top layer of  soft clay in native soils is often replaced by cohesionless soil 

in order to improve the bearing capacity of  the substrate. The failure mechanisms of  the two-layered soils 

are complex because the failure may break through the upper sand layer to the lower clay layer, or may only 

be within the sand layer. The question is raised as to whether the soil properties and geometric conditions 

of  the top sand layer or the below clay layer has an effect the ultimate bearing capacity and the failure 

mechanism in the presence of  vertical loading. 

Recently, the numerical analyses are used as an efficient technique to solve the complex problem related 

to geotechnical engineering. The RPFEM has been applied in geotechnical engineering by Tamura et al. 

(1984, 1990) and Asaoka and Ohtsuka (1986, 1987, and 1990), and was further developed by Tamura et al. 

(1987) for friction material. In this method, the limit load is computed without the assumption of  the 

potential failure mechanism. The RPFEM was originally developed based on the upper bound theorem in 

the limit analysis, but was shown to have been derived directly from the rigid plastic constitutive equation 

by Tamura et al. (1984). The advantage of  the rigid plastic constitutive equation is that it can be extended 

and then applied to soils with more complicated material properties for the non-associated flow rule. In 

this study, the rigid plastic constitutive equation for the Drucker-Prager yield function is employed by the 

application of  the penalty method. Hoshina et al. (2011) introduced a new constitutive equation for solid 

elements, to simulate the footing and the soil, and for interface elements, to simulate the interface plane 

between the footing and the soil. This method is based on the upper bound theorem in the limit analysis. 

RPFEM was clearly shown to be effective to investigate the ultimate lateral resistance of  the pile group 

and the ultimate bearing capacity of  the footing under the complex loadings by being clarified the failure 

mechanism of  them. 
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1.2 OBJECTIVES OF THE STUDY 

For the pile group, the aim of  this study is to estimate the ultimate lateral resistance of  piles especially 

in terms of  the group effect induced by the pile arrangement. The ultimate lateral resistance of  pile groups 

was assessed by systematically varying the direction of  the ground movement. Moreover, focuses is placed 

on the load bearing ratio of  each pile against ground movement in various directions, in which the load 

bearing ratio is defined as the ratio of  the ultimate lateral resistance of  each pile in a pile group to that of  

a single pile, is an important design criterion, it was difficult to assess in past works. The ultimate lateral 

resistance is examined here for pile groups consisting of  a 2x2 arrangement of  four piles, as well as two 

piles, three piles, four piles, and an infinite number of  piles arranged in a row through case studies in which 

the pile spacing is changed by applying the two-dimensional rigid plastic finite element method (RPFEM). 

For the rigid footing under eccentric vertical load, the objective of  this study is to estimate the ultimate 

bearing capacity of  a footing against the eccentric load placed on two types of  soil, namely, sandy soil and 

clayey soil, using a finite element analysis. The RPFEM is extended in this work to calculate not only the 

ultimate bearing capacity, but also the distribution of  contact stress along the footing base. The study 

thoroughly investigates the effect of  the eccentric vertical load on the ultimate bearing capacity in the 

normalized form of  V/Vult and e/B. The failure envelope in V-M plane is further investigated under 

various conditions for the sandy and clayey soils. This study examines the applicability of  the failure 

envelope obtained for the eccentric vertical load to the cases where two variables, V and M, are 

independently prescribed. 

For the rigid footing under eccentrically inclined load, the objective of  this paper was to evaluate the 

bearing capacity of  a rigid footing on the free surface of  uniform sandy and clayey soils under the action 

of  eccentric and inclined loadings. The footing was considered to be rigid and rough, as it most often is in 

reality. This study thoroughly considered the effect of  the soil properties on load inclination factors iγ and 

ic in order to investigate the validity of  the current design methods. In particular, the effects of  the 

horizontal load in two directions on the ultimate bearing capacity of  the footing and the failure envelopes 

in the V-H-M space were clarified, namely, positive and negative horizontal loads. Furthermore, the 

applicability of  the limit load space to different computation conditions and independently prescribed 

moments was examined. Consequently, the failure envelope for each type of  soil in the V-H-M space was 



 
Chapter 1: Introduction 

5 

 

clearly seen to be unique. 

For the rigid footing on sand overlying clay, the focus here is placed on an investigation of  the bearing 

capacity and the failure mechanism of  a rigid footing located on sand overlying clay by increasing thickness 

D and the internal friction angle  of  the sand layer for two extreme friction conditions, for which two 

cases are considered for the shear strength of  the clay layer, namely, a weak layer and a stiff  layer. Moreover, 

the study introduces a new equation based on the limit equilibrium condition of  a rigid sand block during 

punching shear failure to determine the ultimate bearing capacity. The proposed equation provides results 

in close agreement with those given in the literature, while remaining simple and efficient enough to be 

used in practice. 

 

1.3 THESIS OUTLINE 

The present study focuses on the following main objective: 1) The assessment for Group effect on 

ultimate lateral resistance of  piles against uniform ground movement; 2) Ultimate bearing capacity of  rigid 

footing under eccentric vertical load; 3) Limit load space of  rigid footing under eccentrically inclined load, 

and 4) Ultimate bearing capacity of  rigid footing resting on sand layer over clay, with six chapters described 

as the follows: 

Chapter 1 gives the general background of the ultimate lateral resistance of  the pile group, the ultimate 

bearing capacity of  the rigid footing, and objective of  research work. 

Chapter 2 gives the rigid plastic finite element method (RPFEM) 

Chapter 3 is a chapter for group effect on ultimate lateral resistance of  piles against uniform ground 

movement. 

Chapter 4 is a chapter for ultimate bearing capacity of  rigid footing under eccentric vertical load. 

Chapter 5 is a chapter for limit load space of  rigid footing under eccentrically inclined load. 

Chapter 6 gives some areas requiring further work (ultimate bearing capacity of  rigid footing resting 

on sand layer over clay) 
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Chapter 2 

RIGID PLASTIC FINITE ELEMENT METHOD 

2.1 INTRODUCTION 

Numerical analysis is powerful mathematical tool which is possible to solve any engineering problems. 

The finite element method (FEM) is widely employed as one of  the well-established technique to solve 

complex problems in various fields of  civil engineering applications, for both the research and the design 

of  real engineering problems. In geotechnical engineering, FEM has been applied to estimate the ultimate 

lateral resistance of  pile group such as Stewart (1992), Chen (1994), Chen and Poulos (1997) and Goh et al. 

(1997), estimate the ultimate bearing capacity such as Sloan and Randolph (1982), Georgiadis and 

Butterfield (1988) and Gottardi and Buterfield (1993), ect. Rigid plastic finite element method has been 

employed in geotechnical engineering by Tamura et al. (1984, 1987, 1980), Asaoka and Ohtsuka (1986, 

1987) and Asaoka et al. (1990). The method is originally developed based on the upper bound theorem in 

the limit analysis, but was shown to have been derived directly from the rigid plastic constitutive equation 

by Tamura et al. (1984). The advantage of  the rigid plastic constitutive equation is that it can be extend and 

then applied to soils with more complicated material properties for the non-associated flow rule. In this 

study, the rigid plastic constitutive equation for Drucker-Prager yield function is employed by the 

application of  the penalty method. Hoshina et al. (2011), Komura et al. (2016) developed the rigid plastic 

constitutive equation by introducing the dilatancy condition that is explicity modeled through the use of  

the penalty method. The limit load is obtained by introducing the constraint condition for external work 

into the equilibrium equation using the penalty method in the same way. Since the penalty method 

incorporates the constraint condition directly into the governing equation, high computation efficiency can 

be achieved. 

2.2 RIGID PLASTIC CONSTITUTIVE EQUATION FOR FINITE ELEMENT METHOD 

2.2.1 Rigid plastic constitutive equation for solid elements 

Tamura et al. (1987) developed the rigid plastic constitutive equation for frictional material. This study 
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employs the rigid plastic constitutive equation based on his derivation. The Drucker-Prager yield function 

is expressed as follows: 

  1 2
f = aI + J -b=0σ                            (1) 

where, I1 is the first invariant of  stress ij, and I1=tr(ij) for which the extension stress is defined as positive. 

J2 is the second invariant of  deviator stress sij, defined as
1

2
2 ij ij

J = s s , and coefficients 
2

tan

9 12 tan
a








and 
2

3

9 12 tan

c
b





are the material constants corresponding to the shear resistance angle and cohesion, 

respectively, under the plane strain condition. Strain rate  , which is a purely plastic component, should 

satisfy the volumetric constraint condition on the dilation property of  the soil, as follows: 

3

1
3

2

v v

2

a
h( )= ε - e= ε - ηe= 0

a +

ε                    (2) 

where,
v and e indicate the volumetric strain rate and the norm of  the strain rate, respectively. 

Parameter is defined in Eq. (2). The stress vector is shown by two component stresses of  which the first 

stress of, 1( ) , uniquely determines the yield function, and the second stress, 2( ) , expresses indeterminate 

stress parameter  , which remains unknown until the boundary value problem given by Eq. (2) is solved. 

1
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 
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 
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                         (4) 

The rigid plastic constitutive equation is expressed by the Lagragian method after Tamura (1991), as follows: 

1 2

2 2

3

1 1
3 3

2 2

b a

e e
a a



 
 
     
 

  
 

( ) ( ) ε ε
σ σ σ I                 (5) 

Hoshina et al. derived the constitutive equation by introducing the constraint condition on the strain rate 
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directly into the constitutive equation with the use of  the penalty method (Hoshina et al. (2011); Nguyen 

et al. (2016); and Pham et al. (2019a, 2019b, 2020). The stress-strain rate relation for the Drucker-Prager 

yield function is expressed as follows: 

 
2

3

1 1
3 3

2 2

v

2

b a
= +κ ε - ηe -

e e
a + a

 
 
 
 

 
 

ε ε
σ I                    (6) 

where  is a penalty constant. The FEM, together with this constitutive equation, provides an equivalent 

equation for the upper bound theorem in plasticity; the method is called the RPFEM in this study. It is a 

noted property of  this constitutive equation that the relationship between stress and the strain rate is 

specified. The norm of  the strain rate is substantially indeterminate since focus is placed on the limit state 

of  the structure. Stress is determined for the normalized strain rate using its norm in order to determine 

the limit load coefficient for the prescribed load. Hoshina et al. (2011) introduced the constraint condition 

on external work into the equilibrium equation by using the penalty method. They reported that more 

rational results were obtained by the developed method than by methods in previous works. The use of  the 

penalty method is advantageous in that it can shorten the computation time and lead to stable 

computational results. Since this study focuses on cohesive soils, as mentioned above, the constitutive 

equation is limited to the von Mises yield function where the soil composing the ground exhibits plastically 

incompressible deformations. The rigid plastic constitutive equation is simple and effective for assessing 

the limit state of  the ground due to the advantage of  not using an uncertain elastic modulus for the ground. 

 

2.2.2 Rigid plastic constitutive equation for contact plane 

At the contact plane where the displacement velocity is discontinuous, the stress at the limit state is 

expressed by the following Coulomb yield function: 

( ) = tant  
s s n s

f t c t                               (7) 

where, ts and tn are the shear and normal components of  the stress vector at the contact plane. ϕs and cs 

are the material parameters corresponding to the internal friction angle and the cohesion at the contact 

plane 
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In the present analysis, an interface element of  zero thickness is introduced into the contact plane 

between two bodies, as seen in Fig. 1.1(a). u is the vector of  the relative displacement velocity at the 

discontinuous line of  displacement velocity, and u = u u
    is shown in Fig. 1.1(b). 

 

 

 

 

(a) Stress conditions on interface surface      (b) Line of  motion on interface surface 

Figure 1.1 Stress vector and vector of  relative displacement velocity. 

 

The volumetric constraint condition for the Coulomb yield function is expressed as follows: 

  tan tan 1 0
s

s

s s n s

s n

uu
h u u

u u
 

  
           

     

u a u              (8) 

where,
n

u is a component of  the relative displacement velocity normal to the discontinuous line and 
s

u

is a tangential component. The stress vector is divided into the stress of  t(1), determined for the yield 

function, and the indeterminate stress of  t(2) in the same way as that for the volumetric constraint condition 

of  the solid element. The following equation is derived for the interface element: 

 
1

2cos 1 tan

( ) u
t

t u

 
 

 

s

s

s s

cf
γ

 
                         (9) 

2( )
t a

u


 


 

s s

h
                                     (10) 

where, s is the indeterminate stress parameter; it is determined by solving the boundary value problem 

with Eq. (8) by directly considering the volumetric constraint condition with a penalty constant, ξ. The 

stress and relative displacement velocity relation for the interface element is expressed as follows: 

 
 1 2

2cos 1 tan

( ) ( ) u
t t t a u a

u


    



s

s s

c


 
                  (11) 

 

2.3 CONCLUSIONS. 

RPFEM was clearly shown to be effective to investigate the ultimate lateral resistance of  the pile group 
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and the ultimate bearing capacity of  the footing under the complex loadings by being clarified the failure 

mechanism of  them. 

Moreover, the applicability of  the rigid plastic constitutive equation to the assessment of  the ultimate 

bearing capacity is examined from the viewpoints of  the interaction between the footing and the soil and 

the failure mechanism of  the footing-soil system. 
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Chapter 3 

GROUP EFFECT ON ULTIMATE LATERAL RESISTANCE OF 

PILES AGAINST UNIFORM GROUND MOVEMENT 

3.1 INTRODUCTION 

When an earthquake occurs, piles installed in the ground are laterally loaded due to the ground 

displacement caused by the earthquake’s vibrations. Thus, it is important to design piles in such a way that 

they will remain safe during earthquakes. For this purpose, it is necessary to assess the magnitude of the 

load that will be applied to the piles during an earthquake. This load is usually assessed by a spring model 

using the lateral ground displacement recorded during past earthquakes. Recently, however, due to the 

development of highly sensitive sensors and systems to measure an earthquake’s vibrations, the measured 

maximum acceleration is becoming larger every year and earthquake records must be updated to reflect 

these changes. This situation causes an increase in the cost of constructing pile foundations; and thus, more 

economical and suitable design methods are being intensively sought. When the ground displacement is 

large, rather than occurring together with the piles, the deformation of the ground leads the ground 

movement to pass around the piles. Therefore, it is natural that a bi-linear spring model is introduced to 

assess the load applied to the piles. The ultimate load applied to the piles is computed for the limit state 

where the ground displacement passes through the piles. In this study, the ultimate load is described as the 

ultimate lateral resistance of the piles. For most pile problems, the lateral resistance of the piles is usually 

assessed along the longitudinal direction of the piles. This study, however, concentrates on the cross section 

of the piles so that a two-dimensional analysis can be conducted. Since earthquakes take place in short 

periods of time, the ground deforms under an undrained condition. Thus, the ground is usually modeled 

by cohesive material. In this study, focus is placed on clayey soils, since the displacement of clayey soils is 

generally observed to be greater during an earthquake. However, focus is sometimes placed on sandy soils 

when the ground has been liquefied by an earthquake. It is widely known that liquefied sandy soil causes 

great lateral deformation. The physical properties of liquefied sandy soil are not clear; and therefore, the 
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material is often assumed cohesive in the design.  

In pile-soil systems, the ultimate lateral resistance of the piles depends exclusively on the pile-soil 

adhesion. Although the pile-soil adhesion depends on the pile material (concrete, steel or wood), it has been 

modeled under two extreme conditions, namely, either perfectly smooth or perfectly rough. This study 

models the adhesion under the perfectly rough condition from the conservative viewpoint. To investigate 

the resistance of laterally loaded single piles, several empirical and theoretical investigations have been 

performed to analyze the ultimate lateral resistance of single piles, such as those by Broms (1964) and 

Randolph and Houlsby (1984). In these works, the ultimate lateral resistance of the piles was compared to 

the prescribed load applied to the piles. Broms (1964) studied the slip line method to calculate the ultimate 

lateral resistance of single piles driven into cohesive soil. They reported lateral resistance in the range of 

8.28 cu-12.56 cu for various piles with circular and rectangular shapes and with smooth and rough surfaces, 

in which cu was the undrained shear strength of the ground. A solution was provided for all pile surface 

conditions, and the shapes of the slip lines around the piles were predicted. Randolph and Houlsby (1984) 

used two-dimensional lower-bound and upper-bound limit analyses to provide the collapse load for circular 

piles in cohesive soil. The ultimate lateral resistance of the piles was in the range of 9.14 cu for perfectly 

smooth piles to 11.94 cu for perfectly rough piles. However, more complex problems arise for pile groups 

because the ultimate lateral resistance of each pile is different among all the piles in a pile group due to the 

pile-soil interaction effect. The group effect on the ultimate lateral resistance has been investigated by 

several researchers using numerical analyses and model tests. Stewart (1992), Chen (1994), Chen and Poulos 

(1997), and Goh et al. (1997) used numerical analyses to calculate the ultimate lateral resistance of pile 

groups against horizontal ground movement. The analyses showed that the ultimate lateral resistance of a 

pile in a pile group was generally lower than that of a single pile due to the pile-soil interaction. The same 

results were also obtained in model tests conducted by Cox et al. (1984), Chen and Poulos et al. (1997), Pan 

(1998), Pan et al. (2002), Llyas et al. (2004), Miao (2005), Miao et al. (2008), and Bauer et al. (2016). In recent 

years, several researchers have reported the group effect on the ultimate lateral resistance using numerical 

analyses, such as Georgiadis et al. (2013a, 2013b. 2013c) and Zhao et al. (2017a, 2017b). However, most of 

the previous studies involved the analysis of the limit load for the prescribed load applied to the piles. That 

is, since the load being applied to each pile in a pile group was not known prior to analysis, the past works 
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were focused on the ultimate lateral resistance of single piles. The ultimate lateral resistance of a pile group 

is affected by many factors, such as the pile spacing, the number of piles, and the direction of the ground 

movement against the pile arrangement.  

In this study, the pile-soil system is simulated by employing a rigid plastic finite element analysis based 

on the upper bound theorem. The rigid plastic finite element method (RPFEM) has been applied in 

geotechnical engineering by Tamura et al. (1984, 1990) and was further developed by Tamura et al. (1987) 

for frictional material. In this method, the limit load is computed without the assumption of the potential 

failure mechanism. The method is effective for computing the ultimate lateral resistance of pile groups 

against horizontal ground movement in clayey soils. The RPFEM was originally developed based on the 

upper bound theorem in the limit analysis, but was shown to have been derived directly from the rigid 

plastic constitutive equation by Tamura et al. (1984). The advantage of the rigid plastic constitutive equation 

is that it can be extended and then applied to soils with more complicated material properties for the non-

associated flow rule. In this study, the rigid plastic constitutive equation for the Drucker-Prager yield 

function is employed by the application of the penalty method. Hoshina et al. (2011), Komura et al. (2016), 

and Nguyen et al. (2016) developed the rigid plastic constitutive equation by introducing the dilatancy 

condition that is explicitly modeled through the use of the penalty method. The limit load is obtained by 

introducing the constraint condition for external work into the equilibrium equation using the penalty 

method in the same way. Since the penalty method incorporates the constraint condition directly into the 

governing equation, high computational efficiency can be achieved.  

Only a few studies have considered the effect of the loading direction on the ultimate lateral resistance 

of pile groups, such as the numerical analyses of Georgiadis et al. (2013), Zhao et al. (2017) and the model 

tests of Kashiwa et al. (2007) and Su et al. (2015). However, Georgiadis et al. (2013), Zhao et al. (2017) 

provided the total ultimate resistance of the pile group, rather than the ultimate reaction of each pile in the 

group subjected to horizontal ground movement. In this study, the effect of the direction of the ground 

movement and the pile arrangement on the ultimate lateral resistance of pile groups and the load bearing 

ratio of each pile is investigated. Pile groups consisting of a 2x2 arrangement of four piles, as well as two 

piles, three piles, four piles, and an infinite number of piles arranged in a row are intensively investigated 

by changing the pile spacing. 
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3.2 ANALYSIS OF BOUNDARY CONDITIONS OF MODEL UNDER PLANE STRAIN 

CONDITION 

As was mentioned as the object of this study in the Introduction, although the lateral resistance of the 

pile is exerted along the longitudinal direction of the pile which increases with depth from a minimum value 

at the ground surface to a maximum value at a certain critical depth and remains constant up to the bottom 

part of the pile. This study introduces a two-dimensional model to analyze the behavior of the ground 

surrounding the pile. It treats the pile-soil interaction below the critical depth which indicates the threshold 

value where the failure mode of the ground changes from three-dimensional to two-dimensional behavior. 

The study newly defines the boundary conditions for the assessment of the ultimate lateral resistance of 

pile groups. Figures 3.1(a) and (b) show two ways to simulate the pile-soil system with different boundary 

conditions. One way is to assess the reaction force at the limit state by applying a uniform velocity field to 

the pile, while the other way is to assess the ultimate lateral resistance by applying a load to the pile. To 

survey the ultimate lateral resistance of a pile group, the model in Figure 3.1(a) is necessary for the 

computation in consideration of the piles-soil interaction which is unknown prior to the analysis. Figure 

3.1(a) shows the typical finite element mesh and the first boundary condition of the single piles used in the 

analysis. A mesh with approximately 4000 four-node iso-parametric rectangular elements was used to model 

the piles and the soil surrounding the piles. A finer density mesh was employed around the piles. Each pile 

was modeled as a solid element and the strength of the pile was set to be higher than that of the soil in 

order to simulate a rigid pile. The soil and the piles were modeled as rigid perfectly plastic material with the 

following properties: the undrained shear strength of the soil was cu=100 kPa and the internal friction angle 

of the soil was ϕ=0o, while the shear strength of the pile material was cp=50000 kPa and the internal friction 

angle of the piles was ϕ=0o. Analyses were performed for a pile diameter of D=0.6 m. In particular, higher 

strength elements were employed for the outer boundary elements in order to simulate the homogeneous 

ground movement at the boundary elements. A uniform distributed load was applied at all nodes of the 

rigid outer boundary elements to define the prescribed load and the load coefficient. The ultimate lateral 

resistance was assessed by computing the limit value for this load coefficient. The center of each pile was 

set as the fixed velocity boundary condition and the reaction of the piles was computed to analyze the load 

bearing ratio. The two boundary surfaces, parallel to the direction of the ground movement, were set as the 
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slider condition. The distance from the center of a pile to all four boundary surfaces was basically set to be 

far away in order to avoid the effect of the boundary conditions on the failure mode of the ground around 

the pile; it was set at more than 10.0 D in all analyses. Figure 3.1(b) shows the second boundary condition 

for directly applying the load on the pile, as was seen in past works. While the center of each pile was set 

to be under the free condition, the four boundary surfaces were set to be under the fixed condition. The 

analysis was performed by applying a uniformly distributed load on all nodes of the pile diameter.  

 

                 (a)                                      (b) 

  Figure 3.1. Typical finite element mesh and two boundary conditions of  single pile for RPFEM 

 

The ultimate lateral resistance of the pile was generally obtained as a value close to 12.27 cu for model 

(a) and 12.30 cu for model (b), in which the total resistance is normalized by the length of the pile diameter. 

As a result, since the setting of the shear strength and the pile diameter does not affect the ultimate lateral 

resistance, the ultimate lateral resistance is shown irrespective of them. The results obtained for the strain 

rate distribution for a single pile are shown in Fig. 3.2. The norm of the strain rate presented contour lines 

in the range of )0(~ minmax ee  . The distribution of e  shows the failure mode of the ground and reflects 

the pile-soil interaction effect. Figure 3.2 shows the failure modes of a single pile under both boundary 

conditions. The failure zone of the ground around the pile is observed in the range of 1.5 D-2.0 D from 

the center of the pile and is the same as the slip line described in Broms (1964), Georgiadis et al. (2013a, 

Uniform distributed load 

Uniform distributed 
load 

D
ir

ec
ti

o
n

 o
f 

gr
o

u
n

d
 m

o
v
em

en
t 



 

Chapter 3: Group effect on ultimate lateral resistance of piles against uniform ground movement        

20 

 

2013b, 2013c), and Zhao et al. (2017a, 2017b). The obtained ultimate lateral resistance of a single pile against 

the horizontal ground movement was as 12.27 cu for the perfectly rough pile condition, which is similar to 

the value of 11.95 cu reported by Georgiadis et al. (2013a, 2013b, 2013c). The difference may be caused by 

the fact that they employed different models, namely, the soil and the pile were modeled as linear elastic-

perfectly plastic and linear elastic materials in their work. The ultimate lateral resistance of a single pile was 

also computed by the RPFEM in the same way as in past works in which the pull-out force was directly 

applied to the pile, as shown in Fig. 3.2(b). The obtained value was found to coincide with that of the 

problem defined in Fig. 3.1(a). This indicates that the method proposed for assessing the ultimate lateral 

resistance of piles is rational and accurate. In addition, the method provides a load bearing ratio for each 

pile in the pile group against the homogenous ground movement. The upper bound method tends to 

overestimate the limit value even though an optimization is conducted. Basically, it is difficult to judge the 

magnitude of an exact solution; however, the results obtained here have apparently proven it to be almost 

the same as that in past works. 

 

      
                          pu=12.27 cu                                  pu=12.30 cu 

                    (a)                                  (b) 

Figure 3.2. Failure modes of  single pile in two models 

 

3.3 ULTIMATE LATERAL RESISTANCE OF 2x2 PILE GROUP 

3.3.1 Group effect on ultimate lateral resistance 

In practice, piles are often employed in a group and the performance of the piles is influenced by the 

pile-soil interaction. Therefore, to survey the group effect, the ultimate lateral resistance of a 2x2 pile group 
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in clayey soil was investigated in this study. The ultimate lateral resistance was systematically computed for 

changes in the pile spacing where the spacing, s, is the distance between the centers of two piles. When the 

four piles and the intermediate ground between the piles form a rigid body, the ultimate lateral resistance 

of the 2x2 pile group can be compared with that of a square pile. A numerical simulation was conducted 

for horizontal ground movement by fixing the pile spacing from 1.5 D to 6.0 D, in which D is the outside 

diameter of a single pile. The size of the square pile L was adjusted to have the same outer perimeter as a 

pile group and L=s+D. 

 

 

Figure 3.3. Average ultimate lateral resistance of  pile in 2x2 pile group. 

 

Figure 3.3 shows the variation of the average ultimate lateral resistance of pile in 2x2 pile group with 

the normalized pile spacing s/D, in which the average ultimate lateral resistance (q/cu) of piles is expressed 

as q/cu to indicate the normalized value by the undrained shear strength of clay cu. The average ultimate 

lateral resistance q (kN/m2) is subsequently calculated by dividing the total ultimate lateral reaction force Q 

(kN/m) by the pile diameter and the number of piles. The average ultimate lateral resistance of pile tends 

to increase with an increasing pile spacing and coincides with the ultimate lateral resistance of 12.27 cu the 

isolated single pile at a sufficiently large pile spacing. This trend was found to have been caused by the 

difference in the failure modes of the ground peripheral of the piles, as seen in Fig. 3.4. The failure mode 
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of the ground around the piles apparently changed as the pile spacing increased from 1.5 D to 6.0 D.  

 

  
                  (a)                                        (b) 

   
                  (c)                                          (d) 

Figure 3.4. Deformation diagrams of 2x2 pile group: (a) s/D=1.5, (b) s/D=3.0, (c) s/D=4.5, and (d) 

s/D=6.0 in direction of 90 degrees. 

 

The results obtained for the strain rate distribution of the two models with a normalized pile spacing 

s/D=1.5 and a normalized pile width L/D=2.5 are shown in Fig. 3.5. The figure expresses the failure 

modes of both the pile group in case of s/D=1.5 and the square pile corresponding to pile group. The total 

ultimate lateral reaction force of two models was obtained to almost coincide each other, namely, 2126 

(kN/m) and 2167 (kN/m), respectively. This is because in the case of a normalized pile spacing s/D=1.5, 

the ground between the piles did not undergo any plastic deformation due to the support of the piles, as 

shown in Fig. 3.5(a). Four different failure modes of the ground around the 2x2 pile group are indicated 

in Figs. 3.4(a), 3.4(b), 3.4(c), and 3.4(d) for normalized pile spacing s/D=1.5, 3.0, 4.5, and 6.0, respectively. 
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It is noted that all figures only present the ground around the piles in order to focus the failure mode of 

the ground, despite the wider ground area was analyzed to avoid the effect of the boundary condition. They 

express the deformation of the ground by multiplying the arbitrary time by the obtained nodal velocity in 

order to clearly indicate each failure mode. The illustrated deformation expresses the failure mode at the 

limit state. With an increase in pile spacing, the failure mode of the ground is found to change. At a smaller 

pile spacing, two pile lines form a rigid block and the intermediate ground between the two pile lines passes 

through the piles along the two pile lines. The detailed failure mode of the intermediate ground reflects the 

pile spacing even though the failure modes seem similar. Finally, when the pile spacing reaches 6.0 D, no 

group effect can be observed, as shown in Fig. 3.4(d). 

 

 

               Q=2126 kN/m                              Q=2167 kN/m 

                    (a)                                        (b) 

Figure 3.5. a) Deformation diagrams of  2x2 pile group with normalized pile spacing s/D=1.5 in case of  

90deg 

b) Deformation diagram of  square pile with normalized pile width L/D=2.5  

(In computation D=0.6m was employed) 

 

3.3.2 Effect of  direction of  ground movement on ultimate lateral resistance 

Georgiadis et al. (2013) and Zhao et al. (2017) investigated the effect of the loading direction on the 

ultimate lateral resistance of two-pile groups, with a tetrapod jacket foundation and a tripod foundation, 

for the prescribed load applied to piles. They demonstrated the change in the ultimate lateral resistance of 

pile group and the failure mode of the ground around the piles. The present study investigates the effect of 
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the direction of the ground movement on the ultimate lateral resistance of a 2x2 pile group for various 

horizontal directions. The horizontal direction angle is defined as being the angle between the direction of 

the ground movement and the pile to pile axis, and the angle varies from 0 to 90 degrees. The load applied 

to the piles is basically unknown and must be determined through computation. 

 

 

Figure 3.6. Effect of the direction of ground movement on average ultimate lateral resistance of 2x2 pile 

group 

 

The effect of the direction of the ground movement on the average ultimate lateral resistance (q/cu) is 

presented in Fig. 3.6. It indicates that the average ultimate lateral resistance increased with the increase in 

pile spacing for all cases of direction angles. It was the lowest at 90 degrees; however, the greatest difference 

in ultimate lateral resistance among the various direction angles did not exceed 7% at any pile spacing and 

little effect of the direction was observed. These results are preferable from the design viewpoint because 

the resistance performance of a pile group can be expected to be sufficient for any direction of ground 

movement. In all cases of ground movement direction, the difference was maximum at a small pile spacing. 

However, it is noticeable that the effect of the direction of the ground movement on the failure mode of 

the ground around the piles was different, as shown in Figs. 3.4 and 3.7. At the small pile spacing of 1.5 

D, although the average ultimate lateral resistance of pile was similar for any direction of ground movement, 
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the change in the failure mode of the ground peripheral of the piles was clearly observed in Figs. 3.4(a), 

3.7(a), and 3.7(c). It is noted that the intermediate ground surrounding the four piles deformed in the cases 

of 30 and 45 degrees, whereas no plastic deformation was observed in the case of 90 degrees, as seen in 

Fig. 3.4(a). For the pile spacing of 6.0 D, the failure mode of the ground was obtained as being almost the 

same as that in Figs. 3.4(d), 3.7(b), and 3.7(d) regardless of the direction of the ground movement. 

 

  
                       (a)                                        (b)            

 
                      (c)                                         (d) 

Figure 3.7. Deformation diagrams of 2x2 pile group: (a) s/D=1.5 and (b) s/D=6.0 in case of 45 degrees;  

(c) s/D=1.5 and (d) s/D=6.0 in case of 30 degrees  

 

Moreover, to compare the performance of each pile in a group with that of a single pile, the lateral 

resistance of each pile in a group is calculated. The ratio of the lateral resistance of each pile to that of a 

single pile is defined as the load bearing ratio in this study. The ultimate lateral resistance of each pile was 

assessed by computing the reaction force at the center of each pile, where the fixed velocity boundary 

maxe

0
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condition is imposed. The results given in Table 3.1 show that the load bearing ratio of each pile possessed 

two components of reaction, in which x and y components express the perpendicular and the parallel 

components to the direction of ground movement, respectively. The table indicates that the x component 

of reaction was generally very small in comparison to the y component of reaction, and that the total load 

bearing ratio of the pile almost coincided with that of the y component of reaction. The load bearing ratio 

of each pile tends to increase with the increase in pile spacing. In the case of 90 degrees, the load bearing 

ratio of the front pile was greater than that of the back pile in all cases of pile spacing. While the load bearing 

ratio of the front pile was slightly less than 1.0, a significant reduction in the load bearing ratio of the back 

pile was observed to be nearly 37% at a small pile spacing (s=1.5 D). When the pile spacing was about 6.0 

D, the load bearing ratio of each pile was 1.0, which is identical to that of an isolated single pile. The failure 

mode was obtained as the single-pile mode, and the failure area of the ground around the pile reached 1.5 

D~2.0 D from the pile center. In the case of 45 degrees, the load bearing ratios of the two side piles were 

significantly greater than those of the two middle piles at a small pile spacing. However, there was not much 

difference between the load bearing ratios of each pile for a pile spacing in the range of 4.0~6.0 D. In the 

two middle piles, the back pile may have been supported by the front pile and the two side piles so that the 

load bearing ratio of the back pile had the smallest value among them. The results showed that the effect 

of the direction of the ground movement on the load bearing ratio is considerable. 

 

Table 3.1. Summary of load bearing ratios in 2x2 pile groups in case of 90 and 45 degrees 

Group size  s/D 

Load bearing ratio 

1st pile 2nd pile 3rd pile 4th pile 

x y x y x y x y 

       

       90deg. 

1.5 0.04 0.80 0.07 0.63 0.04 0.80 0.07 0.63 

2.0 0.02 0.86 0.05 0.73 0.02 0.86 0.05 0.73 

3.0 0.01 0.93 0.04 0.83 0.01 0.93 0.04 0.83 

4.0 0.01 0.98 0.03 0.91 0.01 0.98 0.03 0.91 

5.0 0 0.99 0.01 0.98 0 0.99 0.01 0.98 

6.0 0 1.00 0 1.00 0 1.00 0 1.00 
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45deg. 

1.5 0 0.72 0.12 0.91 0.12 0.91 0 0.42 

2.0 0 0.79 0.07 0.95 0.07 0.95 0 0.54 

3.0 0 0.92 0.04 0.96 0.04 0.96 0 0.71 

4.0 0 0.96 0.01 0.97 0.01 0.97 0 0.90 

5.0 0 0.98 0 1.00 0 1.00 0 0.97 

6.0 0 1.00 0 1.00 0 1.00 0 1.00 

 

3.4 ULTIMATE LATERAL RESISTANCE OF LINE ALIGNMENT PILE GROUPS 

3.4.1 Effect of  direction of  ground movement in case of  pile group with few piles 

This study considered groups of two, three, and four piles arranged in a row. The effect of the direction 

of the ground movement on the ultimate lateral resistance of the pile groups was widely investigated. 

Georgiadis et al. (2013b) reported a calculation for the ultimate lateral resistance of two piles in clay for 

various loading directions. Their results show that the ultimate lateral resistance of the pile group was 

changed significantly by the loading direction. However, the effect of the number of piles arranged in a row 

was not considered. In this study, the effect of the direction of the ground movement on the ultimate lateral 

resistance by an increase in the number of piles is addressed. The ultimate lateral resistance and the ground 

failure mechanism were found to depend on both the pile spacing and the pile number. An examination 

was conducted on two to four piles for the direction angle of the ground movement in the range of 0 to 90 

degrees, in which the direction angle was defined as the angle between the direction of ground movement 

and the pile to pile axis. To discuss the effect of the direction of the ground movement for various numbers 

of piles, the average ultimate lateral resistance of pile in the pile group was computed by considering the 

pile number. 
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Figure 3.8. Average ultimate lateral resistance of pile in case (a) two-pile, (b) three-pile, and (c) four-pile 

groups 

 

 

(a) Two-pile group 

                                                                                       

 

(b) Three-pile group 

0o 45o 90o 

0o 45o 

90o 

D
ir

ec
ti

o
n

 o
f 

g
ro

u
n
d

 m
o

v
em

en
t maxe

0



 

Chapter 3: Group effect on ultimate lateral resistance of piles against uniform ground movement        

30 

 

  

 

c) Four-pile group 

Figure 3.9. Failure modes of pile groups with normalized pile spacing s/D=1.25 in cases of 0, 45, and 90 

degrees, respectively 

 

Figure 3.8 shows the relationship between the average ultimate lateral resistance and the normalized 

pile spacing for an increase in pile number. Despite the number of piles, a similar trend was found in the 

computed relationship in the figure. In the case of two piles, the average ultimate lateral resistance decreased 

almost proportionally to the decrease in the direction angle of the ground movement in the range of 1.0 D-

3.0 D spacing, and it coincided with that of a single pile with a range in pile spacing of 4.0 D-6.0 D, while 

the average ultimate lateral resistance increased non-linearly with an increase in pile spacing for all directions. 

In the case of 90 degrees, the average ultimate lateral resistance was slightly higher than that of a single pile 

in the range of nearly 1.0 D-1.75 D. This is because the two piles and the intermediate soil behaved as a 

rigid block, as shown in Fig. 3.9(a) of 90 degrees. Similar results can be found in the computational results 

in Georgiadis et al. (2013). However, the authors cannot find experimental data to verify them. It seems 

0o 45o 

90o 
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appropriate that the average ultimate lateral resistance was the greatest in the case of 90 degrees, since the 

substantial distance of the pile spacing projected to the perpendicular plane against the ground movement 

was the largest even if the pile spacing was the same. However, as the failure mode of the pile-soil system 

varied depending on the pile spacing, the peak value for the average ultimate lateral resistance was obtained 

at a pile spacing of around 1.25 D. The trend to locally form the peak value was observed for other 

inclination angles at a pile spacing of around 1.25 D. In the cases of three-pile and four-pile groups, the 

obtained results also show a similar trend to that of the two-pile group in Figs. 3.8(b) and (c). However, 

the difference in the average ultimate lateral resistance between the case of 90 degrees and that of 0 degrees 

increased with an increase in the number of piles. In the case of 90 degrees, the average ultimate lateral 

resistance of the pile group was the same for the pile spacing despite the number of piles. However, in the 

case of 0 degrees, the average ultimate lateral resistance was shown to vary with the number of piles and to 

decrease with an increase in the number of piles. The effect of the pile number on the trend in the ultimate 

lateral resistance against the pile spacing changed with the number of piles, where the range in pile spacing 

to vary the ultimate lateral resistance became wider. The other cases, varying from 0 to 90 degrees, were 

found to be in between those of 0 and 90 degrees. 

As the preliminary analysis, discussed above, the effect of the direction of the ground movement was 

caused by changes in the failure mechanism of the ground around the piles. The typical failure modes of 

the two-pile, three-pile, and four-pile groups were influenced by the direction of the ground movement 

with a normalized pile spacing of s/D=1.25, as shown in Fig. 3.9. In the cases of 0 and 90 degrees, the 

intermediate ground of the piles did not yield any plastic deformation, whereas it clearly yielded plastic 

deformation in the case of 45 degrees. This indicates that shearing of the intermediate ground took place 

despite the same pile spacing in the cases of 0 and 90 degrees. It is interesting that the failure mode changed 

due to the direction of the ground movement in spite of the smaller pile spacing, and that the average 

ultimate lateral resistance continuously varied between the values of 0 and 90 degrees. It can be observed 

from Fig. 3.9(a) to Fig. 3.9(c) that the area of the failed ground became wider as the number of piles 

became greater due to the group effect. The failure zone of the ground around the piles was about 3.0 D-
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3.5 D from the centers of the piles for the two-pile group, 4.5 D-5.0 D for the three-pile group, and 5.5 D-

6.0 D for the four-pile group.  

 

3.4.2 Effect of direction of ground movement in case of infinitely long row of piles 

In practice, an infinite number of piles in a long row is sometimes employed to support structures. 

Chen (1994) and Bransby and Springman (1999) used a finite element analysis to evaluate the group effect 

of rows of closely spaced piles under lateral loading from ground movement. Geogiadis et al. (2013c) 

employed analytical upper bound plasticity methods to investigate the undrained limiting lateral resistance 

of piles in a row. However, no reports on the effect of the direction of the ground movement on an infinitely 

long row of piles can be found in the literature. Therefore, it is necessary to search for solutions that will 

give insight into this problem and to predict the effect in practice. In this study, an analysis was conducted 

for a unit cell by considering the symmetric property of the problem. It is noted that the width of the unit 

cell is dependent on the pile spacing and that the average ultimate lateral resistance of the piles is determined 

by the pile number per length. The ultimate lateral resistance of piles was computed against the horizontal 

movement in the same way as before. The typical finite mesh element and boundary condition of a unit 

cell on an infinitely long row of piles are shown in Fig. 3.10(a). As seen in this figure, the unit cell is defined 

due to the symmetry of the geometry to consider the behavior of the infinitely long row of piles. The figure 

expresses the model of the half piles and the intermediate ground for the direction angle of 45 and 90 

degrees between the direction of ground movement and the pile to pile axis. The setting of the boundary 

condition of the unit cell is similar to that of pile groups. The results of the failure modes for the 

intermediate ground between the piles varied significantly depending on the range in normalized pile 

spacing of 1.5-6.0, as shown in Fig. 3.10(b). The calculated results for the ultimate lateral resistance of the 

unit cell are shown in Fig. 3.11(a). The ultimate lateral resistance was the same as that of Geogiadis et al. 

(2013c). It is interesting to survey the failure mode of the ground when the ultimate lateral resistance of 

each pile is identical with that of a single pile at the pile spacing around 1.5 D. However, it is difficult to 

directly discuss since this numerical method cannot assess the ultimate lateral resistance in succession for 
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the change in pile spacing. The relationship between the ultimate lateral resistance and the failure mode has 

not been made clear, but it is apparent that the failure mode changed from the combined mode of two 

failure modes for piles to the isolated two single failure mode. 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a)                                      (b) 

Figure 3.10 a) Typical finite element mesh and boundary conditions of unit cell in case of 90 degrees 

b) Failure modes of unit cell for one row of infinite number of piles in case of 90 degrees and 45 degrees 

 

Here, the ultimate lateral resistance of two and three rows of an infinite number of piles was also 

analyzed. However, the pile arrangement was limited to the lattice arrangement where the unit cell can be 

defined. It can be seen in Fig. 3.11 that both the group effect and the effect of the direction of the ground 

movement on the average ultimate lateral resistance of the piles were the same as those of the one row of 

an infinite number of piles. In the case of 90 degrees, the average ultimate lateral resistance of the row of 
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piles was found to decrease with an increase in the number of rows. The same trend can be seen in the case 

of 45 degrees. On the other hand, the difference in average ultimate lateral resistance between the cases of 

90 and 45 degrees decreased with an increase in the number of rows. It was found that the difference 

became almost zero in the case of the three rows of piles. 
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Figure 3.11 Average ultimate lateral resistance of pile in unit cell in case (a) one row; (b) two rows, and (c) 

three rows of piles 

 

It is noted that the ultimate lateral resistance of multiple rows of piles was almost the same for various 

directions of ground movement. Since the staggered arrangement of piles is often employed in practice, it 

needs to be surveyed in the same way. However, it is difficult to set the unit cell to represent the resistance 

mechanism of a staggered arrangement of piles. Therefore, this problem will be addressed in a future study. 

The ultimate lateral resistance of piles in a staggered arrangement is thought to be higher than that in a 

lattice arrangement. However, the effect of the direction of the ground movement can be predicted as being 

the same for the staggered arrangement of piles as for the lattice arrangement of piles. 

 

3.5. LOAD BEARING RATIO OF PILES IN PILE GROUPS 

Significant differences in the piles were seen in the results for two piles, three piles, and an infinite 

number of piles in a row due to the group effect. Tables 3.2 and 3.3 present summaries of the obtained 

results for the load bearing ratios of piles for a variety of spacing. The difference in load bearing ratios can 

be seen clearly for directions in ground movement. However, the load bearing ratios were generally less 

than 1.0 at a small pile spacing and increased with an increase in pile spacing to finally converge to 1.0. 

In the case of a direction angle of 0 degrees, the two-pile and three-pile cases were compared. The load 

bearing ratio was greater for the front pile and less for the back pile. The difference in the load bearing 
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ratios of the piles were comparatively large. However, this trend was greatly seen at a small pile spacing and 

was seen less with an increase in the pile spacing. It is noted that the load bearing ratio of the middle pile 

was the smallest for the three-pile case as the pile spacing was small. 

Table 3.2. Summary of load bearing ratios in case of 0 and 90 degrees 

Group size s/D 
Load bearing ratio 

1st pile 2nd pile 3rd pile 

        

     0deg. 

1.5 0.76 0.67  

2.0 0.81 0.73  

3.0 0.93 0.86  

4.0 0.99 0.96  

5.0 1.00 0.99  

 

90deg. 

1.5 1.03 1.03  

2.0 0.97 0.97  

3.0 0.95 0.95  

4.0 0.98 0.98  

5.0 1.00 1.00  

 

0deg. 

1.5 0.72 0.52 0.57 

2.0 0.86 0.54 0.61 

3.0 0.94 0.75 0.76 

4.0 0.97 0.91 0.85 

5.0 1.00 0.98 0.92 

 

 

90deg. 

1.5 1.04 1.02 1.04 

2.0 0.98 0.90 0.98 

3.0 0.98 0.85 0.98 

4.0 1.00 0.94 1.00 

5.0 1.00 1.00 1.00 

One row of infinite 

number of piles 

 

90deg. 

1.15 1.60   

1.5 1.05   

2.0 0.93   

3.0 0.91   

4.0 0.97   

5.0 1.00   
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Table 3.3 Summary of load bearing ratios in case of 45 degrees 

Group size s/D 

Load bearing ratio 

1st pile 2nd pile 3rd pile 

x y x y x y 

      

1.5 0.04 0.93 0.05 0.87  

2.0 0.03 0.94 0.04 0.90  

3.0 0.03 0.97 0.03 0.95  

4.0 0.02 1.00 0.03 0.99  

5.0 0 1.00 0 1.00  

    

1.5 0.02 0.92 0.07 0.79 0.03 0.89 

2.0 0.02 0.93 0.06 0.80 0.03 0.91 

3.0 0.01 0.96 0.04 0.87 0.01 0.93 

4.0 0 1.00 0.03 0.98 0 0.99 

5.0 0 1.00 0 1.00 0 1.00 

One row of infinite 

number of piles 

1.15 0.07 1.23     

1.5 0.05 0.87     

2.0 0.03 0.82     

3.0 0.02 0.88     

4.0 0 0.96     

5.0 0 1.00     

 

In the case of a direction angle of 90 degrees, the cases of two piles, three piles, and an infinite number 

of piles were analyzed. The variance in the load bearing ratios was comparatively small among the piles 

despite the pile spacing. The general property of the load bearing ratios can be seen typically for the case 

of an infinite number of piles. It was greater than unity at a smaller pile spacing, but it decreased with an 

increase in pile spacing and became less than 1.0 around 2.0 D and 3.0 D. Beyond the pile spacing of 3.0 

D, the load bearing ratio of the piles increased with the pile spacing and approached 1.0.  

In the case of a direction angle of 45 degrees, the cases of two piles, three piles, and an infinite number 

of piles were analyzed. The same trend in load bearing ratios was obtained as in the case of 90 degrees, but 

the uniqueness of this case was that two orthogonal components existed in the reaction force. The 

component of the reaction force in the same direction as the ground movement was large, while that of the 

orthogonal direction was found to be comparatively small. Hence, the load applied to the piles almost 
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coincided with the reaction component for the same direction of ground movement. 

 

3.6 CONCLUSIONS 

This study has investigated the ultimate lateral resistance of pile groups against the horizontal ground 

movement of clayey soils using the rigid plastic finite element method. The group effect of the piles and 

the effect of the direction of the ground movement on the ultimate lateral resistance were analyzed for 

changes in pile spacing.  

The conclusions of this study are as follows: 

1. The ultimate lateral resistance of piles was analyzed against the horizontal ground movement by defining 

the displacement boundary value problem. The ultimate lateral resistance was obtained by computing the 

resultant reaction force of the piles. The advantage of this method is that it can assess the load bearing ratio 

of piles in a pile group at the limit state. The RPFEM provided the ultimate lateral resistance of an isolated 

single pile as 12.27 cu for a perfectly rough pile in clayey soils where cu is the undrained shear strength of 

clayey soil. The failure zone of the ground around the pile was found to be in the range of 1.5 D-2.0 D 

from the center of the pile. It was similar to the results reported by Broms (1964). 

2. The group effect in the ultimate lateral resistance of piles was clarified by varying the pile spacing. 

Regarding the 2x2 arrangement of four piles, as well as the two, three, four, and infinite number of piles 

arranged in a row, the group effect was assessed by changing the direction of the ground movement. For 

each case, the load bearing ratio of the pile was examined. 

3. The effect of the pile spacing on the ultimate lateral resistance was found to reflect the failure mode of 

the pile-soil system. When the pile spacing was large, the failure mode of the ground around each pile 

coincided with that of a single pile, but as the pile spacing decreased, the failure modes of the ground for 

the piles interfered with each other. The group effect on the ultimate lateral resistance appeared at this stage. 

The intermediate ground between the piles formed a rigid block in the failure mode of piles and a ground 

system when the pile spacing was even smaller. 

4. In the case of the 2x2 piles, the ultimate lateral resistance of each pile was shown to be equal to that of a 

single pile when the pile spacing was large, and to decrease monotonically as the pile spacing decreased. 

Almost no difference was found in the average ultimate lateral resistance of pile for changes in the direction 
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of the ground movement. However, the load bearing ratio of the piles varied among the piles, and it was 

seen to be larger in the front pile with respect to the ground movement and smaller in the back pile. It 

varied with the direction of the ground movement. 

5. In the case of the piles in a row, the ultimate lateral resistance was equal to that of a single pile when the 

pile spacing was large. It was obtained to vary greatly depending on the pile spacing and the direction of 

the ground movement. With the decrease in pile spacing, the ultimate lateral resistance of the piles decreased 

due to the group effect. However, when the pile spacing was less than about 2.0 D, the ultimate lateral 

resistance was found to increase greatly regardless of the direction of the ground movement. For the piles 

in a row orthogonal to the ground movement, the ultimate lateral resistance of each pile was larger than 

that of a single pile when the pile spacing was small. On the contrary, for the piles in a row in the same 

direction as the ground movement, the ultimate lateral resistance of each pile decreased monotonously as 

the pile spacing decreased. As for the group effect, the load bearing ratio of each pile was computed in 

detail with respect to the changes in the direction of the ground movement. 

 

 Publication: Chapter 3 is published as article: Pham, N. Quang, Ohtsuka, S., Isobe, K. and Fukumoto, 

Y.: Group effect on ultimate lateral resistance of  piles against uniform ground movement, Soils and 

Foundations, 59(1), 27-40, 2019. DOI: https://doi.org/10.1016/j.sandf.2018.08.013 
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Chapter 4 

ULTIMATE BEARING CAPACITY OF RIGID FOOTING UNDER 

ECCENTRIC VERTICAL LOAD 

4.1 INTRODUCTION 

Calculating the ultimate bearing capacity is an important part of designing foundations in terms of 

examining the stability of the footing-soil system. The superposition formula proposed by Terzaghi (1943) 

has been widely employed to calculate the ultimate bearing capacity of the footing under a vertical load. It 

takes into account the effects of soil cohesion, surcharge and soil weight. The formula is typically expressed 

as follows: 

                                                     
1

2
c γ f q

q = cN + γBN +γD N                                                                 (1) 

where Nc, Nq and Nγ are the bearing capacity factors, which show the effects of soil cohesion c (kN/m2), 

deep surcharge Df (m) and soil unit weight γ (kN/m3). These factors are the functions of the internal friction 

angle of the soil, , under the footing. B is the width of the footing (m). 

In geotechnical engineering, rigid footings have routinely been designed to withstand the complex loads 

that result from the combination of vertical and horizontal as well as moment loads. Typically, the vertical 

load stems from the weight of the superstructure, the horizontal load comes from wind and wave loads and 

the moment load comes from the eccentric vertical or horizontal loads. In practice, rigid footings often 

suffer under the eccentric vertical load. Based on the results of models test on sandy and clayey soils, 

Meyerhof (1953) reported the effect of the eccentric vertical load on the ultimate bearing capacity of 

footings. He introduced the concept of the effective footing width, 2B' = B - e , where e is the eccentricity 

length which is the length from the loading point to the center of the footing. The effective width formula 

using B'  is often applied when designing foundations. The effect of the eccentric vertical load on the 

ultimate bearing capacity has been investigated by several researchers using numerical analyses and model 

tests. Georgiadis et al. (1988), Gottardi et al. (1993), Loukidis et al. (2008, 2009), Tang et al. (2014) and 

Yahia-Cherif et al. (2017) used numerical analyses to calculate the ultimate bearing capacity against the 
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eccentric vertical load on sandy soil. In recent years, Rao et al. (2015), Shen et al. (2016) and Khitas et al. 

(2017) reported the effect of the eccentric vertical load on the ultimate bearing capacity on clayey soil. The 

numerical results show that the ultimate bearing capacity was significantly changed by the increase in 

eccentricity length e. The same results were also obtained in model tests conducted by Meyerhof (1953), 

Prakash et al. (1971), Zadroga (1994) and Okamura et al. (2002). Although many works have been 

performed to investigate the ultimate bearing capacity against the eccentric vertical load, they were 

conducted independently under limited conditions for the soil material and the friction of the footing base. 

Therefore, a comprehensive understanding of both the ultimate bearing capacity formula and the failure 

envelope in vertical load and moment load planes has not yet been established. 

In footing-soil systems, the ultimate bearing capacity of the footing depends on the friction condition 

between the footing and the soil. Although it depends on the footing material, such as wood, steel or 

concrete, it has been modeled under one of two extreme conditions, namely, perfectly rough or perfectly 

smooth. Tang et al. (2014) and Rao et al. (2015) studied the ultimate bearing capacity of footings subjected 

to an eccentric load by using an interface element. They found that the application of an interface element 

is effective for determining the ultimate bearing capacity of a rigid footing and the failure mechanism of 

the footing. In the present study, the rigid plastic finite element method (RPFEM) is employed with a two-

dimensional analysis to determine the ultimate bearing capacity of a rigid footing placed on uniform layers 

of sandy and clayey soils subjected to an eccentric vertical load. The RPFEM has been employed in 

geotechnical engineering by Tamura et al. (1984, 1987, 1990) and Asaoka et al. (1986, 1987, 1990). Hoshina 

et al. (2011) introduced a new constitutive equation for the solid element, to simulate the footing and the 

soil, and the interface element, to simulate the interface plane between the footing and the soil, based on 

the upper bound theorem in the limit analysis. In this study, the applicability of the rigid plastic constitutive 

equation to the assessment of the ultimate bearing capacity of a footing under an eccentric vertical load is 

examined from the viewpoint of the interaction between the footing and the soil and the failure mode of 

the footing-soil system. 

In addition, most of the previous studies on clayey soil, such as those by Bransby (2001), Gourvenec 

(2008) and Khitas et al. (2017), considered a fully bonded interface between the footing and the soil which 

is capable of transmitting full tension. However, the occurrence of tensile stress in the soil was not real. 
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Some literature is available on rigid footings under eccentric vertical loads with a zero-tension interface. 

Salencon et al. (1995) reported the ultimate bearing capacity of a shallow foundation under an eccentric 

load with a zero-tension interface on uniform soil based on a limit analysis of soil plasticity. Recently, Rao 

et al. (2015) and Shen et al. (2016) investigated the undrained ultimate bearing capacity of an eccentrically 

loaded footing with a zero-tension interface by the finite element method. Their findings raise the question 

of the effect of the footing-soil tensile stress on the ultimate bearing capacity and the failure mechanism in 

the presence of eccentric loading. In this study, a zero-tension analysis is introduced to widely consider the 

interaction between the footing and the soil in clayey soil. The study investigates the effect of the eccentric 

vertical load on the ultimate bearing capacity in the case of sandy and clayey soils under two extreme friction 

conditions of the footing base in the normalized form of V/Vult and e/B, where Vult indicates the ultimate 

bearing capacity under the centric vertical load. The failure envelope in the plane of V/Vult and M/BVult 

is further investigated where M is the independently prescribed moment. 

 

4.2. APPLICABILITY TO CENTRAL VERTICAL LOAD UNDER TWO CONTACT 

CONDITIONS 

As was mentioned in the Introduction, the objective of this study is to introduce a two-dimensional 

model to analyze the behavior of the ground below the footing. Figure 4.1 (a) shows a typical finite element 

mesh and boundary condition for the rough condition to simulate the footing-soil system using an interface 

element at the footing-soil contact plane. The dimensions of the model were set to be large enough to 

ensure that the boundary would have no effect on either the failure mode of the ground around the footing 

or the calculated results. The load was applied at a central point of the footing with a width B = 5.0 m; it 

was simulated by concentrated loading. The footing was modeled as a solid element and the strength of the 

footing was set to be higher than that of the soil in order to simulate a rigid footing. The footing and the 

soil were modeled as rigid perfectly plastic material with the following properties: the unit weight of the 

footing and the soil was γf = γsoil = 18 kN/m3, the shear strength of the footing material was cf= 50000 kPa 

and the internal friction angle of the footing was ϕf=0 deg. For sandy soil, the internal friction angle was set 

at ϕsoil= 30 deg, but small cohesion was introduced to stabilize the computation process. c= 0.5 kPa was 

employed in the analysis, but the effect of cohesion on the ultimate bearing capacity was found to be small, 
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at less than 1%, through a numerical survey by changing the cohesion widely. The study was conducted 

under two friction conditions of the footing surface with the interface element properties shown in Table 

4.1. 

 

 

a) Typical finite element mesh and boundary condition (Rough condition, Vult=3836 kN/m) 

 

 

 

b) Smooth condition, Vult=1981 kN/m 

Figure 4.1 Typical finite element mesh, boundary conditions and failure modes of footing under centric 

vertical load with B=5.0 m in sandy soil of =30deg 

 

Table 4.1. Interface element properties of sandy soil. 

 Parameter Rough condition Smooth condition 

Internal friction angle ϕs (o)  30 0 

Shear strength cs (kPa)  0.5 0.5 

 

The ultimate bearing capacity of the footing was generally achieved as a value close to 3836 kN/m for 

the rough condition and close to 1981 kN/m for the smooth condition which is 52% of that of the case 

for the rough condition. These results agree well with the 4069 kN/m of the superposition formula 

proposed by Terzaghi (1943) for the rough condition. The results obtained for the strain rate distribution 

of the footing under a centric vertical load are shown in Fig. 4.1. The norm of the strain rate, presented by 

0 maxe

V 

V 
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contour lines, is in the range of 
max

e  to 
min

(= 0)e . The distribution of e shows the failure mode of the 

ground and reflects the footing-soil contact condition. Figure 2 shows the failure mode of the footing-soil 

system under two friction conditions. The failure zones of the ground around the footing are observed to 

be in the range of 2.0 B to 2.5 B from the edge of the footing for the rough condition (Fig. 4.1 (a)) and 1.0 

B to 1.5 B for the smooth condition (Fig. 4.1 (b)). The failure areas are different due to being affected by 

the friction condition of the footing surface. Furthermore, the rigid block that formed below the footing 

was apparently different between the two friction conditions. The obtained failure mode shows a good 

agreement with the slip line of the rough condition described by the FEM of Loukidis et al. (2008) and 

Nguyen et al. (2016) without the use of an interface element. The failure mechanism of the rough condition 

is divided into two parts in Fig. 4.1 (a). In one part, the triangular wedge under the footing moves 

downward as a rigid block with the same velocity as the footing. In the other part, a log-spiral shear zone 

is seen in the two edges of the footing. For the smooth condition in Fig. 4.1 (b), the failure mechanism is 

characterized by two rigid triangular wedges. The two rigid wedges tend to move towards the two edges of 

the footing. This is because the interface element between the footing and the soil allows for the horizontal 

movement of the wedges. The failure mechanism of the smooth footing also presents a log-spiral shear 

zone in the two edges of the footing in the same way as with the rough footing. The obtained results for 

the ultimate bearing capacity and the failure mechanism in this study were found to closely match those in 

past works. 

 

4.3 INTERACTION OF FOOTING AND GROUND UNDER ECCENTRIC VERTICAL 

LOAD 

4.3.1 Case studies for sandy soil under two contact conditions 

In practice, rigid footings are often subjected to eccentric vertical loads. Loukidis et al. (2008) and 

Guetari et al. (2018) evaluated the ultimate bearing capacity of  an eccentrically loaded footing on sandy soil 

at the interval 0.0 B to 0.4 B of  eccentricity for a rough footing. In the results of  their studies, a difference 

was found in the distribution of  normal stress n acting on the footing base corresponding to eccentricity 

length e. However, only a few researches have been conducted to evaluate the distribution of  contact stress 

under two friction conditions of  the footing-soil surface, namely, rough and smooth conditions. 
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Figure 4.2. Sign convention of eccentric vertical load on a rigid footing 
 

Figure 4.2 shows the sign convention of  eccentricity length e for the applying load which is defined as 

the length from the loading point to the center of  the footing. The distributions of  contact normal stress 

n and contact shear stress at the footing base, corresponding to normalized distance X/B for which X 

is the location in the footing from the center of  the footing, are plotted in Figs. 4.3 and 4.4, respectively. 

The contact stress is assessed by calculating the interaction force at the nodes of  the interface elements. It 

is seen that, when eccentricity length e increases, the normal stress distribution changes in size and shape 

for both rough and smooth conditions. It can be observed from Figs. 4.3 (a) and 4.3 (b) that the normal 

stress for the rough condition is presented as circular shapes, while that for the smooth condition is 

presented as triangular shapes. In the case of  the concentric load (e= 0.0 B), the distribution of  normal 

stress has a symmetric shape in respect to the center of  the footing. It is observed that the maximum value 

is located under the center of  the footing. For the eccentricity of  0 1.e B , part of  the footing base achieved 

zero normal stress; consequently, no force transmission takes place between the contacted surface of  the 

footing-soil. This area of  zero normal stress reflects the detachment of  the footing and the soil. However, 

even though the zero normal stress condition is satisfied, it is noted that the footing and the soil are 

kinematically connected; and therefore, the computed failure mode is slightly unsuitable in the area 

surrounding the detachment area. However, the shear strength in this area is very small due to the zero-

normal-stress condition, and the error in the obtained ultimate bearing capacity is thought to be small. It 

can be seen that the distribution of  normal stress along the footing completely depends on eccentricity 

length e and the friction condition of  the footing-soil surface. Moreover, the distribution of  contact shear 

stress , between the footing and the soil for the rough condition, is presented in Fig. 4.4. The distribution 

e 
V 
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of  contact shear stress for the smooth condition is observed to be equal to zero stress at the footing base 

regardless of  the change in eccentricity e. Figure 4.4 shows that eccentricity e varies from 0.0 B to 0.4 B, 

and that the shear stress also significantly changes in magnitude and shape. The negative and positive signs 

express the working direction of  the shear stress along the footing base. The distribution of  shear stress is 

obtained as zero in the detachment zone and at one point in the part connecting the footing and the soil. 

The numerical results of  the RPFEM show that the effect of  the eccentric vertical load on the distribution 

of  contact stress is considerable. 

Figure 4.5 shows the failure modes of  the ground in the case of  normalized eccentricity e/B = 0.3 for 

the rough and smooth conditions. They are nearly similar in shape, but the deformation area in the case of  

the rough condition is larger and deeper than that in the case of  the smooth condition. The failure 

mechanism was found to be composed of  two different zones and similar to the mechanism assumed by 

Loukidis et al. (2008) and Tang et al. (2014) for the rough condition. From the failure modes, with respect 

to the friction conditions of  the footing surface, the failure domain is concentrated on the edge of  the 

footing as eccentricity length e increases. However, another failure mode forms slightly on the opposite side. 

It is partly due to the assumption of  the small strain theory and no part exists where the normal stress is 

negative. The effects of  the eccentric vertical load and the friction condition on the interaction between 

the footing and the soil have been clarified. 
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b) Smooth condition 

Figure 4.3. Distributions of contact normal stress n acting at footing base on sandy soil of ϕ=30 deg 

for: (a) rough condition and (b) smooth condition 

 
Figure 4.4. Distribution of  contact shear stressacting at footing base for rough condition on sandy soil 

of  ϕ=30deg. 

 

 

a) Rough condition, e/B=0.3, (V=764 kN/m) 
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b) Smooth condition, e/B=0.3 (V=415 kN/m) 

Figure 4.5. Failure modes of footing against eccentric load for rough and smooth conditions on sandy 

soil in case of e/B=0.3 

 

4.3.2 Case studies for clayey soil under “rough” contact condition 

In the literature on clayey soil, Bransby (2001), Gourvenec (2008) and Khitas et al. (2017) analyzed the 

ultimate bearing capacity of a footing subjected to an eccentric vertical load for the full tension interface 

using the finite element method. Their studies showed that the admissible condition is the tension stress 

occurring in the normal stress component within the limit of shear strength. However, Gourvenec (2007), 

Rao et al. (2015) and Shen et al. (2016) investigated the ultimate bearing capacity of an eccentrically loaded 

footing with the condition of zero tension by the finite element method. They reported zero tension stress 

in the normal stress component of the interaction between the footing and the soil. In this section, the 

applicability of the interface element to the assessment of the ultimate bearing capacity against the eccentric 

vertical load is examined in the case of clayey soil. Two friction conditions for the footing base are addressed 

in this study. One is the rough condition where the cohesive shear strength of the soil is employed as the 

shear stress of the interface element and the other is the smooth condition where the cohesive shear 

strength of the interface element is zero. However, another problem arises as to whether the tensile stress 

in the normal component is allowed in the interface element, as was discussed for sandy soil in the previous 

section. Thus, a simple case study is firstly conducted in which the rough condition is employed for the 

interface element. The undrained shear strengths of the soil and the interface element are set as cu= 50 kPa, 

ϕu= 0 deg and cs= 50 kPa, ϕs= 0 deg, respectively. To discuss the effect of the eccentric load, the distribution 

of normalized normal stress along the footing base, which is defined for the shear strength, was computed 

by considering the change in eccentricity length e. 
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Figure 4.6. Distributions of normalized contact normal stress against eccentricity of load in clayey soils 

under rough condition of footing surface 

 

 

 

Figure 4.7. Deformation diagram of footing-soil for rough condition (e/B=0.3, clayey soils) 

 

Figure 4.6 shows the distributions of  normalized normal stress n/cu at the footing base for the 

eccentrcicty e in the range of  0.0 B to 0.4 B. As eccentricity e varies from 0.1 B to 0.4 B, the normal stress 

of  the interface element becomes partly negative around the left edge of  the footing. The zone of  the 

interface element where the tension stress exists is seen to increase as eccentricity length e increases. Figure 

4.7 shows the failure mode obtained for e/B=0.3. It expresses the failure mode of  a single circular arc slip 

in spite of  the large eccentricity. It is likely to have formed by tension stress at the footing base. In the case 

of  clayey soil, it is apparent that the employment of  the interface element with cohesive strength is not 

effective in the zero-tension analysis for the interaction between the footing and the soil in comparison 

with the performance in the case of  sandy soil. 
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4.3.3 Zero-tension analysis for clayey soil 

The study introduces the zero-tension analysis to investigate the effect of the eccentric vertical load on 

the interaction between the footing and the soil in clay. The procedure for the zero-tension analysis of the 

footing-soil interface is shown in Fig. 4.8. Here, the detachment of the footing and the soil is introduced 

into the ultimate bearing capacity analysis. The concept of the detachment is illustrated in Fig. 4.8 (a). In 

the part where the detachment occurs, the contact normal stress between the footing and the soil is zero, 

and tension stress is not sustained. In the figure, contact breaking point C expresses the separation point 

where the footing detaches from the soil surface. In the computation, double nodal points are introduced 

to the footing-soil interface to model the detached part to which the nodal forces are not transmitted. The 

analysis is performed according to the flowchart given in Fig. 4.8 (b) where the location of the contact 

breaking point is determined by an iterative process. A series of finite element analyses were conducted 

under the two friction conditions given in Table 4.2. 

 

 

 

 

 

 

 

 

 

 

a) Breaking point for detachment of footing and soil    b) Flowchart for determining contact breaking 

point C 

Figure 4.8. Procedure for zero tension analysis 

 

Table 4.2. Interface element properties of clayey soil 

Parameter Rough condition  Smooth condition  

Internal friction angle ϕs (o)  0 0 

Shear strength cs (kPa)  50 0.5 

Contact breaking 

point 

B A C 

V 
e 

Detaching length 

Footing 

No  

Assumption for initial breaking point C 

Check normal stress in interaction

 

End 

Yes 

Adjust breaking point C 

Ultimate bearing capacity analysis 



 
Chapter 4: Ultimate bearing capacity of rigid footing under eccentric vertical load  

 

54 
 

 

Figure 4.9. Distribution of  normalized normal stress n/cu at footing base for rough and smooth 

condition in case of  e/B=0.3 

 

 

a) e/B=0.3, V=2.39Bcu for rough condition 

 

 

b) e/B=0.3, V=2.31Bcu for smooth condition 

Figure 4.10. Failure modes of footing for rough and smooth condition in case of e/B=0.3 

 

The ultimate bearing capacity of the centric vertical load was computed using the RPFEM, with 5.39 

Bcu for the rough condition and 5.22 Bcu for the smooth condition, in which the ultimate bearing capacity 
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close to the exact results of 5.14 Bcu by Prandtl (1920), namely, the difference did not exceed 5% and 2% 

for the rough and smooth conditions, respectively. To obtain a closer solution, the treatment of the 

singularity in stress at the edge of the footing would be necessary. Figure 4.9 shows the computation results 

for the distribution of normalized normal stress in the case of e/B=0.3. The figure expresses the 

distributions of the two friction conditions of the footing-soil interface. In the figure, the normal stress 

decreased to zero in the vicinity of the left edge of the footing, due to the detachment at the footing-soil 

interface. It can be seen that the detaching length in the case of the rough condition is shorter than that of 

the smooth condition. Moreover, the normal stress reaches the maximum value at the right edge of the 

footing, and the maximum normal stress for the rough condition is little more than that for the smooth 

condition. This is because the friction condition of the footing surface affects the maximum normal stress. 

The strain rate distributions of the footing-soil system in the case of e/B=0.3 are shown in Fig. 4.10. The 

figure indicates both the distribution of norm in the strain rate and the displacement pattern which is 

computed from the displacement velocity with arbitrary time increments. The figure expresses the 

detachment between the footing and the soil that occurred around the left-hand side of the footing. While 

the failure mode for the rough condition shows a single-sliding mode, that for the smooth condition shows 

a double-sliding mode reflecting the different footing base friction conditions. Moreover, the ultimate 

bearing capacity of the rigid footing was obtained as a value close to 2.39 Bcu for the rough footing and 

2.31 Bcu for the smooth footing. The difference in ultimate bearing capacity due to the footing base friction 

is not so large. The distributions of normal stress n and shear stress  at the footing-soil interface for 

various eccentricity e are presented in Figs. 4.11 and 4.12, respectively. The distribution of contact normal 

stress for the rough friction condition is somewhat different from that for the smooth friction condition 

although the magnitude of the stress is almost the same. For eccentricity e varying from 0.1 B to 0.4 B, the 

detaching length is seen to increase with eccentricity e regardless of the friction condition of the footing 

surface. While the shear stress for the smooth friction condition is zero, the shear stress for the rough 

friction condition is symmetric to the center point for the connected part of the footing and the soil, in 

which the working direction of the shear stress is opposite. As shown by the above-obtained results, the 

analysis procedure for employing the interface element and the zero-tension analysis is found to be rational 
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and accurate for assessing both the ultimate bearing capacity and the failure mode of a footing-soil system 

under an eccentric vertical load. 

 
a) Rough condition with zero-tension analysis 

 

b) Smooth condition with zero-tension analysis 

Figure 4.11. Distributions of  normalized normal stress n/cu at footing base with zero-tension analysis 

for: a)rough condition and b) smooth condition 
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Figure 4.12. Distributions of normalized shear stress /cu at footing base with zero-tension analysis for 

rough condition 

 

4.4 ULTIMATE BEARING CAPACITY OF FOOTING UNDER ECCENTRIC VERTICAL 

LOAD 

4.4.1 Normalized limit load space for sandy soil 

Loukidis et al. (2008), Krabbenhoft et al. (2012) and Tang et al. (2014) analyzed the failure envelope in 

the V-M plane of a footing subjected to an eccentric vertical load using the finite element method. They 

reported the normalized limit load space in the V-M plane for the rough condition. The present study 

investigates this failure envelope in the V-M plane under two friction conditions on the footing base for 

various internal friction angles of the soil. As was mentioned in the previous chapter, the cohesion (c=0.5 

kN/m2) is introduced into the shear strength parameter of the soil to stabilize the computation process, 

since it was determined not to greatly affect the ultimate bearing capacity. 

Meyerhof (1953) proposed the effective width method to use the ultimate bearing capacity formula for 

assessing the ultimate bearing capacity of a footing under an eccentric vertical load based on his 

experimental study. 
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expressed as follows: 

 tan 2tan 1 tan 1.4
4 2

N e 



 


  
    

  
                                        (3) 

where, B' is the effective width proposed by Meyerhof. It is widely used in practice, but its applicability has 

not been clarified. This is because the effective width method assumes similar interaction to that which is 

used for the centric vertical load, while the interaction for the eccentric vertical load is originally different 

due to the eccentricity shown in Figs. 4.11 and 4.12 in spite of the fact that the focus is placed on the 

contact part. Although many studies have been conducted on this issue, a comprehensive understanding of 

the applicability of the effective width method has not been established yet based on a reliable analysis 

method. This study examines the applicability of the effective width method to the assessment of the 

ultimate bearing capacity of a footing under an eccentric vertical load and additionally examines the 

applicability of the failure envelope in the V-M plane to the assessment of the ultimate bearing capacity for 

complex loads in which V and M are independently varied. 

 

Figure 4.13. Effect of internal friction angle on relationship between normalized vertical load V/Vult and 

normalized eccentricity e/B in case of rough condition and smooth condition 
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Figure 4.14. Effect of  internal friction angle on failure envelope in V-M plane in case of  rough condition 

and smooth condition 

 

Figure 4.13 presents the effect of eccentricity e on normalized vertical load V/Vult, where Vult is the 

ultimate bearing capacity computed for the centric vertical load. In the figure, the friction angle of the soil 

is varied widely. The normalized vertical load is seen to decrease proportionally as normalized eccentricity 

e/B increases. It is interesting that the trend in the decrease in normalized ultimate bearing capacity V/Vult 

against normalized eccentricity e/B is unique for any internal friction angle regardless of the rough or 

smooth condition. Loukidis et al. (2008) reported that the normalized ultimate bearing capacity in sandy 

soil subjected to an eccentric vertical load was almost the same as that of the effective width method up to 

normalized eccentricity of e/B= 0.3. However, the results obtained with the RPFEM are seen to closely 

match those obtained with the effective width method for any eccentricity length e. Thus, the normalized 

ultimate bearing capacity for the eccentric vertical load can be expressed by the following equation with any 

internal friction angle: 

2
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1 1 85.
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V e

V B
                                                 (4) 

Figure 4.14 shows the failure envelope in the V-M plane for an increase in eccentricity e. It is interesting 

that the failure envelope in the V-M plane is also obtained uniquely for the internal friction angle of  soil. 

For the rough condition, the Mmax reached approximately 0.0807 BVult at a normalized eccentricity of  
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around e/B = 0.165. Similarly, Loukidis et al. (2008) reported that the Mmax reached 0.078 BVult, while Tang 

et al. (2014) reported that it reached 0.076 BVult at e/B of  around 1/6. Moreover, Georgiadis et al. (1988), 

Gottardi et al. (1993) and Okamura et al. (2002) conducted model tests and concluded that the value of  

Mmax was in the range of  0.075 BVult to 0.1 BVult. From a comparison with past works, it can be concluded 

that the RPFEM generates good estimations under the rough condition of  the footing base. For the smooth 

condition, the failure envelope in the V-M plane is obtained in a similar manner to that for the rough 

condition. It is also found to be unique for the internal friction angle, for which the Mmax was approximately 

equal to 0.0811 BVult at the normalized eccentricity of  around e/B = 0.165. 

After the past works by Meyerhof  (1953), Loukidis et al. (2008) and Tang et al. (2014), the failure 

envelope in the V-M plane is derived based on the results computed with the RPFEM, as seen in Fig. 15. 

0.49

ult ult ult

= 0.55 1
  
       

M V V

BV V V
                                                           (5) 

 

4.4.2 Normalized limit load space for clayey soil using zero-tension analysis 

Taiebat et al. (2002), Gourvenec (2007), Rao et al. (2015) and Shen et al. (2016) used the zero-tension 

interface to analyze the ultimate bearing capacity of a rigid footing subjected to eccentric loading for the 

rough condition. However, there are few works which have analyzed for the smooth condition. This study 

applied a zero-tension analysis to calculate the normalized limit load plane for two friction conditions of 

the footing base. The obtained results are also compared with those of the effective width method. The 

equation used with the effective width method for assessing the ultimate bearing capacity in clayey soil was 

expressed by Meyerhof as follows: 

u c
V c N B'            with  2B' = B e                                        (6) 

where, cu is the undrained shear strength of the clayey soil. Figure 4.15 shows the normalized vertical 

load V/Vult and the normalized eccentricity e/B relationship for the rough and smooth conditions. The 

figure indicates that the friction conditions of the footing surface did not influence the V/Vult and e/B 

relationship. Moreover, normalized vertical load V/Vult shows a good agreement with the effective width 

method in the range of eccentricity e from 0.0 B to 0.2 B. However, when eccentricity e is more than 0.2 B, 
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the difference becomes greater. Michalowski and You (1998) examined the effective width method in 

cohesive soil using the kinematic approach of the limit analysis. They found that it overestimated by about 

35% in comparison to the ultimate bearing capacity determined by Meyerhof’s method at e/B = 0.25. This 

study proposes the following new equation to determine the normalized vertical load in clay: 

ult

1 1.85
V e

V B
                                                                        (7) 

 

Figure 4.15. Relationship between normalized vertical load V/Vult and normalized eccentricity e/B for 

rough and smooth conditions 

 

 

Figure 4.16. Failure envelope in V-M plane against eccentric vertical load on clayey soil 
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In addition, Taiebat et al. (2002), Rao et al. (2015), Shen et al. (2016) and Khitas et al. (2017) reported 

a calculation for the failure envelope in the V-M plane under the eccentric vertical load for the rough 

condition. Figure 4.16 presents the failure envelope in the normalized form by M/BVult and V/Vult for 

both rough and smooth conditions. At the limit of a zero vertical load, the moment load was not sustained. 

It can be seen that the failure envelope in the V-M plane in clay was independent of the friction condition 

of the footing surface in the same way as that for sandy soil. The maximum moment capacity reached nearly 

0.132 BVult at V/Vult = 0.5. The failure envelope by the RPFEM is in excellence accordance with that by 

Taiebet et al. (2002). This study proposes the following new equation for the normalized V-M failure 

envelope of the RPFEM for both rough and smooth conditions: 

0.8

ult ult ult

= 0.63 1
  
       

M V V

BV V V
                                                       (8) 

 

4.5 APPLICABILITY OF NORMALIZED LIMIT LOAD PLANE OF VERTICAL AND 

MOMENT LOADS 

It is questionable whether the failure envelope in the V-M plane for the eccentric vertical load is 

applicable to combined loads of V and M which are independent variables. This is because once the failure 

envelope in the V-M plane is proposed, it is possible to apply it to the assessment of the ultimate bearing 

capacity for combined loads of V and M. However, the applicability of this failure envelope is not clear 

since it was originally developed for the eccentric vertical load which is connected to the moment load. In 

this study, the moment load is replaced by a triangular distributed load the summation of which is zero in 

vertical load, as shown in Fig. 4.17, in order to handle the vertical load and the moment load independently. 

Moment capacity Mult is basically unknown and it was determined through a computation process under 

prescribed vertical load V. The failure envelope in the V-M plane for the combined load is systematically 

investigated under two friction conditions for the footing surface, namely, rough and smooth. In the study, 

a series of analyses was conducted for case of sandy soil of ϕ = 30 deg and clayey soil of cu=50 kPa with a 

zero-tension analysis. The properties of the interface element corresponding to the sandy and clayey soils 

are given in Tables 4.1 and 4.2, respectively. 
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Figure 4.17. Initial load conditions for rigid plastic FEM 

 

Figure 4.18 shows the ultimate bearing capacity of  a footing in the normalized V-M plane on the sandy 

and clayey soils for rough and smooth conditions. The figure demonstrates that the failure envelope for the 

combined load is almost similar in shape and magnitude to the two friction conditions regardless of  the 

different types of  soil. For the sandy soil, maximum moment capacity Mmax, reflecting the rough and 

smooth conditions, generally achieved a value of  0.081 BVult at a vertical load of  around 0.46 Vult. For the 

clayey soil, on the other hand, the failure envelope was observed symmetrically in respect to the vertical 

load of  around 0.5 Vult and the maximum moment capacity Mmax achieved a value of  nearly 0.133 BVult, 

which is equally 1.64 times the value for sandy soil. It is interesting that the envelope in the normalized V-

M plane in the case of  a combination of  the centric vertical load and the moment load almost coincides 

with the equation for the V-M plane under the eccentric vertical load, as shown in Fig. 4.18. 

 

 

Figure 4.18. Failure envelope in V-M plane against combination of  centric vertical and moment loads 

for sandy and clay soils under two friction conditions 
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4.5. CONCLUSION 

This study has investigated the ultimate bearing capacity of an eccentrically loaded footing on sandy 

and clayey soils using the rigid plastic finite element method (RPFEM). The effect of the eccentric vertical 

load on the ultimate bearing capacity and the failure mechanism was analyzed for changes in the eccentricity 

length. 

The conclusions of this study are as follows: 

1. The ultimate bearing capacity of the rigid footing was analyzed against the eccentric vertical load using 

an interface element. A zero-tension analysis was employed to simulate the behavior of the contact footing-

soil plane in clay validating that the method was effective for analyzing the interaction between the footing 

and the soil. The effect of the friction condition of the footing surface was found to reflect the failure mode 

of the footing-soil system. The failure mechanism of the footing generally changed depending on the 

different friction conditions. This failure mechanism has been verified with that discussed in past works. 

2. The effect of the eccentricity length on the shape and size of the contact stress distribution between the 

footing and the soils was clarified. Regarding the sandy soil, as well as the clayey soil, the contact stress 

distribution was assessed by considering the friction condition of the footing surface. For each case, the 

detachment of the footing from the soil surface in the case of large eccentric loading was effectively 

captured. 

3. The study examined the decrease in the normalized vertical load of the eccentrically loaded footing. The 

numerical results of the RPFEM showed a good agreement with the results obtained by the effective width 

method experimentally proposed by Meyerhof (1953) especially in the case of sandy soil. Some difference 

was observed at large eccentricity in the case of clayey soil. New equations were proposed to determine 

normalized vertical load V/Vult. 

4. Normalized vertical load V/Vult and the failure envelope in the V-M plane of the eccentrically loaded 

footing were uniquely obtained in the case of sandy soil independent of the value of the internal friction 

angle. They were also observed to be unique in the case of clayey soil independent of the value of the 

cohesive strength. It is noted that they were coincident between two friction conditions of footing 

roughness in both sandy and clayey soils. 
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5. The study considered the impact of the combination of the centric vertical and moment loads on the 

failure envelope in the V-M plane. The results show that the shape and size of the failure envelope in the 

V-M plane in the case of a combined load was completely similar to the eccentric vertical load. In the 

numerical analysis, it was possible to simulate the eccentric vertical load by the combination of the centric 

vertical and moment loads. 

 

 Publication: Chapter 4 is published as article: Pham, N. Quang, Ohtsuka, S., Isobe, K. and Fukumoto, 

Y., Hoshina, T.: Ultimate bearing capacity of  rigid footing under eccentric vertical load, Soils and 

Foundations, 2019. 59 (6), 1980-1991. DOI: https://doi.org/10.1016/j.sandf.2019.09.004. 
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Chapter 5 

LIMIT LOAD SPACE OF RIGID FOOTING UNDER 

ECCENTRICALLY INCLINED LOAD 

5. 1 INTRODUCTION 

The bearing capacity q of a rigid footing subjected to an inclined load is commonly calculated through 

the use of multiplicative modification factors. Meyerhof (1951, 1963) introduced some factors for a rigid 

footing under an inclined load, namely, semi-empirical inclination factors ic, iγ, and iq. The ultimate bearing 

capacity formula is described as follows: 

1

2
c c q f q

q i cN i BN i D N
 
                                                              (1) 

where Nc, Nq, and N  are the bearing capacity factors which show the effects of soil cohesion c (kN/m2), 

deep surcharge Df (m), and soil unit weight γ (kN/m3), respectively. These factors are the functions of the 

internal friction angle of the soil, , under the footing. B is the width of the footing (m). Load inclination 

factors ic, iγ, and iq are also the functions of internal friction angle  and inclination angle , where  is the 

inclination angle of the load with respect to the vertical plane. Moreover, a division of both sides of Eq. (1) 

by soil cohesion c, the non-dimensionalized ultimate bearing capacity of the footing (q/c) depends on soil 

weight parameter G=B/2c. Chen (1975) mentioned that if G is small, the soil behaves essentially as a 

cohesive weightless medium. On the other hand, if G is large, the soil weight, rather than cohesion, is the 

principal source of the bearing strength. Numerical results are presented for G lying within the range of 

0 10G  . 

In practice, rigid footings are subjected to eccentric-inclined coupled loads. Therefore, the stability of a 

rigid footing on the free surface of soils under complex loading is of practical interest. Meyerhof (1951, 

1963), Hansen (1961, 1970), and Vesic (1973, 1975) produced series of model tests to propose empirical 

and semi-empirical inclination factors. However, the applicability of these inclination factors has not been 

clarified due to the lack of a systematic analysis based on a reliable stability method. Therefore, the validity 

of the current design methods needs to be verified by applying load inclination factor formulas for ic and 
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iγ. In recent years, the effect of eccentrically inclined loads on the ultimate bearing capacity has been 

investigated by several researchers using numerical analyses and model tests. Loukidis et al. (2008), 

Krabbenhoft et al. (2013), Tang et al. (2014), and Yahia-Cherif et al. (2017) used numerical analyses to 

calculate the ultimate bearing capacity under eccentrically inclined loads on sandy soil. Georgiadis (2010), 

Rao et al. (2015), and Shen et al. (2016) reported the effect of eccentrically inclined loads on clayey soil on 

the ultimate bearing capacity by the finite element method. From the numerical results, it was concluded 

that the ultimate bearing capacity was significantly changed by the increase in load inclination angle . The 

same results were also obtained from model tests conducted by Patra et al. (2012a, 2012b), Ornek (2014), 

and Cocjin et al. (2013). Although many works have been performed to investigate the ultimate bearing 

capacity under eccentrically inclined loads, a comprehensive understanding of both the failure mechanism 

of the footing-soil system and the failure envelopes in the vertical load - horizontal load – moment (V-H-

M) space has not yet been established. 

In the footing-soil system, the ultimate bearing capacity of the footing depends exclusively on the 

friction condition of the footing base. This study models the footing base under rigid and rough conditions, 

as it most often exists in reality, especially in the case of horizontal loads. Pham et al. (2019) studied the 

effect of eccentric vertical loads on the ultimate bearing capacity of rigid footings on uniform sandy and 

clayey soils using the finite element method. For sandy soil, they introduced an interface element into the 

footing-soil system in order to properly evaluate the interaction between the footing and the soil. For clayey 

soil, in particular, they introduced a no tensile strength analysis into the footing-soil system to assess the 

ultimate bearing capacity of the eccentrically loaded footing. They found that the application of an interface 

element and a no tensile strength analysis were effective for determining the ultimate bearing capacity of a 

rigid footing and the failure mechanism of the footing. In the present study, the interface element and a no 

tensile strength analysis are employed to widely investigate the bearing capacity of an eccentrically inclined 

loaded footing. The footing-soil system with a two-dimensional analysis is simulated using the rigid plastic 

finite element method (RPFEM). The RPFEM has been applied in geotechnical engineering by Tamura et 

al. (1984, 1990) and Asaoka et al. (1986, 1987, and 1990), and was further developed by Tamura et al. (1987) 

for friction material. Hoshina et al. (2011) introduced a new constitutive equation for solid elements to 

simulate the footing and the soil, and for interface elements to simulate the interface plane between the 
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footing and the soil. This method is based on the upper bound theorem in the limit analysis. 

 

 

 

 

 

a) Positive horizontal load (+H)                                  b) Negative horizontal load H (-H) 

Figure 5.1. Sign convention for positive and negative combinations of  H and M 

 

In addition, most of the previous studies, such as those by Loukidis et al. (2008), Krabbenhoft et al. 

(2013), and Shen et al. (2016), investigated the bearing capacity of eccentrically inclined loaded footings 

without considering the effect of the direction of the horizontal loads on the failure envelopes in the V-H-

M space or the failure mechanism of the footing-soil system. Their findings raise a question as to whether 

the direction of the horizontal loads has an effect on the ultimate bearing capacity and the failure mechanism 

in the presence of eccentrically inclined loading. The focus is placed here on the ultimate bearing capacity 

of a footing against the action of eccentric and inclined loading taking into account the direction of the 

horizontal loads. The sign convention for the eccentrically inclined loading in this study, based on the one 

suggested by Butterfield et al. (1997), is shown in Fig. 5.1. The combined loading on the rigid footing can 

be represented by a resultant load Q at eccentricity e and inclination angle α which is divided into three 

statically equivalent loads, namely, V, H, and M. Moment load M is positive when acting clockwise and 

horizontal load H is positive in the positive direction of the x-axis. Inclination angle α is positive when 

acting counterclockwise. The objective of this study is to determine the failure envelopes in the V-H-M 

space. As shown in Fig. 5.1, the failure envelope of (V, H, M) is similar to that of (V, -H, -M), and the 

failure envelope of (V, -H, M) is similar to that of (V, H, -M), due to the symmetry of the problem. Thus, 

this study only considers positive eccentricity e (corresponding to M>0), while the direction of the 

horizontal loads should be considered for both positive and negative loads. For these purposes, load 

inclination factor i is reported in the results as a function of the friction angle of the soil, while the failure 

envelopes in the V-H-M space are reported as equations of an ellipse depending on the positive and negative 

directions of the horizontal loads. The failure envelopes in the V-H-M space are further investigated for 

+M 
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two problems in which the loading paths are different, and the moment component is the independently 

prescribed moment with vertical and horizontal loads. 

 

5.2 ULTIMATE BEARING CAPACITY FOR INCLINED CENTRAL LOAD 

5.2.1 Case studies for sandy soil 

As was mentioned in the Introduction, this study introduces a two-dimensional model to investigate 

the behavior of a footing under an inclined load. Figure 5.2 shows a typical finite element mesh and the 

boundary conditions of a footing under an inclined load at the center of the footing. Regarding the type of 

finite element, while a four-node 1st-order element is employed for the displacement velocity, a one-node 

0-order element is employed for the stress component described by the penalty method. For the number 

of nodes and elements, a mesh with approximately 4000 four-node iso-parametric rectangular elements was 

used to model the footing and the soil. A finer density mesh was employed around the footing base. The 

dimensions of the domains were set to be large enough so as to ensure that the boundaries would have no 

effect on the calculated results. The footing was assumed to be perfectly rough such that the friction angle 

of the interface elements between the footing and the soil would be taken as equal to the friction angle of 

the soil (ϕs= ϕsoil). The footing was modeled as a solid element, the strength of which was set to be extremely 

high in order to simulate a rigid footing. Nguyen et al. (2016) reported that the size effect of the footing 

width has been observed in the ultimate bearing capacity. In this study, a series of analyses was conducted 

for the inclined loaded footing with the footing width in the range of B=1.0 m to 10.0 m. However, it was 

found that the footing width had a negligible effect on the shapes and sizes of the failure envelopes in the 

V-H-M space. The greatest difference in the shapes and sizes of the failure envelopes among the various 

footing widths did not exceed 3%. These results agree well with the study of Tang et al. (2015). Thus, the 

footing width of B=5.0 m was used for all the analyses. The footing and the soil were modeled as rigid 

perfectly plastic materials with the following properties: the unit weight of both the footing and the soil was 

γf=γsoil=18 kN/m3, the shear strength of the footing material was cf=50000 kPa, and the internal friction 

angle of the footing was ϕf=0o. Small cohesion of the soil of c=0.5 kPa was introduced to stabilize the 

computation process, and the effect of the cohesion on the bearing capacity was systematically surveyed by 

changing the value of c and estimating it to be within 1% of the exact value. 
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Figure 5.2. Typical finite element mesh and boundary conditions of rigid footing under inclined central 

load  

 

Some expressions were adopted by different design codes for the load inclination factors providing a 

relatively wide range of results. The best known expressions have been suggested by Meyerhof (1963), 

Hansen (1970), Vesic (1975), and Loukidis et al. (2008)), as shown in Table 5.1. Although many studies 

have been conducted on this issue, no formula is totally accurate. This study examines the effect of the 

internal friction angle of the soil on load inclination factor iγ and the failure envelope in the V-H plane in 

the case of a concentric load. The internal friction angle varies among the values of 30o, 35o, and 40o. In the 

computation process, horizontal capacity Hult is basically unknown and it was determined under the 

prescribed vertical load V. The loading point is set on the bottom of the footing surface so as not to be 

affected by the moment component caused by the horizontal load. 

 

Table 5.1. Summary of load inclination factor i for bearing capacity of footing 

Meyerhof (1963) Hansen (1970) Vesic (1975) Loukidis (2008) 

2

1i






 
  
 

 
 

5
1 0.7tani


    

3
1 tani


    

2
1.5tan 0.4

tan
1 0.94

tan
γ

i







 

  
 

 

Regarding the inclined central load on sandy soil, the inclination factor is commonly considered through 

a modification by the conventions of Terzaghi et al. (1943)’s bearing capacity equation. For a rigid footing 

placed on sandy soil with no embedment, the conventional bearing capacity equation is reduced to the 

following: 

Q 
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21

2
γ γ

V i γB N                                                                        (2) 

 

Figure 5.3. Effect of  internal friction angle of  soil on load inclination factor iγ in sandy soil 

 

Figure 5.3 shows load inclination factor iγ for various internal friction angles of the soil in the case of 

an inclined central load. The figure demonstrates that load inclination factor iγ depends greatly on the value 

of the internal friction angle, although Hansen (1961) and Vesic (1975) proposed inclination factors that 

do not depend on the value of the internal friction angle. Moreover, according to the Meyerhof (1963) 

solution, the curvature of the iγ versus tan () line increases with an increasing , as shown in Fig. 5.3. 

While, Loukidis et al. (2008) and Zheng et al. (2019) analyzed load inclination factor iγ subjected to the 

effect of the internal friction angle of soil using the finite element method. They reported that iγ is a function 

of internal friction angle ϕ and inclination angle α, where iγ decreases with an increasing ϕ. It is feasible to 

express the results seen in Fig. 5.3 independent of the internal friction angle in the same way as that 

proposed by Hansen (1970) and Vesic (1975). Since differences are found among the obtained results, this 

study positively proposes inclination factor iγ as a function of the internal friction angle, as seen in Loukidis 

et al. (2008) and Zheng et al. (2019).  

 
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Figure 5.4. Effect of  internal friction angle on failure envelopes in V-H plane in sandy soil 

 

Figure 5.4 shows the results of the failure envelopes in the V-H plane obtained for case studies of 

=30o, 35o, and 40o. It shows that the sizes and shapes of the failure envelopes in the V-H plane seem to 

be dependent on the value of ϕ. The maximum horizontal loads, Hmax, are approximately equal to 0.114 

Vult for =30o, 0.109 Vult for =35o, and 0.104 Vult for =40o at a value of vertical load V around 0.44 to 

0.48 Vult, in which, Vult indicates the ultimate bearing capacity of the centric vertical load. Loukidis et al. 

(2008) suggested that the maximum Hmax values fall in the range of 0.09 Vult to 0.11 Vult and occur at V in 

the range of 0.42 to 0.46 Vult (=11o to 15o). Moreover, Georgiadis et al. (1988) and Gottardi et al. (1993) 

conducted model tests and concluded that the values of Hmax were in the order of 0.12 Vult. From a 

comparison with past work, it can be concluded that the results of the RPFEM generate good estimations 

under the rough footing. From Eq. (3), the failure envelope in the V-H plane is derived based on the results 

computed with the RPFEM, as seen in Fig. 5.4. 
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a) e/B=0.0 and =10o (Q=2232 kN/m) 

 

 

b) e/B=0.0 and =20o (Q=1077 kN/m) 

Figure 5.5. Deformation diagrams of footing-soil against inclined central load in case of sandy soil ϕ=30 

deg 

 

The obtained results for the strain rate distributions of the footing under an inclined central load on 

sandy soil of =30 deg at load inclination angles of =100 and 200 are shown in Fig. 5.5. The norm of the 

strain rate, presented by contour lines, is in the range of maxe to  min 0e  . The distribution of e  shows the 

failure mode of the ground and reflects the footing-soil interaction effect. Figure 5.5(a) indicates that the 

failure mode of the footing has an asymmetric shape and becomes largely one-sided as load inclination 

angle  increases, as seen in Fig. 5.5(b). The observations of the failure mechanisms agree well with those 

in the results of Loukidis et al. (2008) using the finite element method. Moreover, the ultimate bearing 

capacity of the rigid footing was obtained at about Q=2232 kN/m for an inclination angle of =100, and 

was Q=1077 kN/m for an inclination angle of =200. The difference in ultimate bearing capacities due to 

the increase in load inclination angle α is seen to be very large. This is because the vertical and horizontal 

extents of the failure mechanism decrease with increasing load inclination , which corresponds to a smaller 

0 maxe

Q α=10o 

Q α=20o 
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bearing capacity. It indicates that the RPFEM can provide reasonable predictions of the bearing capacity 

and the failure mode of a rigid footing on sandy soil under an inclined central load. 

 

5.2.2 Case studies for clayey soil 

The effect of  inclined central loading on the undrained bearing capacity of  a rigid footing is commonly 

taken into account through the application of  load inclination factor ic into the bearing capacity equation. 

For undrained conditions, the ultimate bearing capacity of  a rigid surface footing can be expressed by 

u cc
V i c N B                                                                     (5) 

where cu is the undrained shear strength and ic is the load inclination factor. There are various expressions 

for calculating the undrained inclination factor ic proposed by Hansen (1961), Meyerhof  (1963), and Vesic 

(1973), as shown in Table 5.2. 

 

Table 5.2. Summary of  load inclination factor ic for bearing capacity of  footing 

Hansen (1961) Meyerhof (1963) Vesic (1973) 

u
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o
1

90
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 
  
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u c
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c

H
i

Bc N
   

where H is the horizontal load, sliding failure along the footing base takes place when uH Bc , and α is 

the load inclination angle. Meyerhof  (1963) reported that with values of α greater than 16.1o, the footing 

fails by sliding along its base. In Vesic’s formula, Nc is the bearing capacity factor on clayey soil and the 

exact plasticity solution of  Nc is 5.14. 

In this section, an interface element is applied to assess the ultimate bearing capacity under an inclined 

load on clayey soil. The undrained shear strength of  the soil and the interface element are set at cu=100 

kPa, ϕu=0 degrees and cs=100 kPa, ϕs=0 degrees, respectively. To discuss the effect of  the inclined load on 

load inclination factor ic and the failure envelopes in the V-H plane, horizontal capacity Hult was computed 

by considering the change in vertical load V varying in the range of  0.0 Vult to 1.0 Vult. Figure 5.6 shows 

load inclination factor ic with an increasing inclination angle tan (). It can be seen that load inclination 

factor ic significantly decreases as inclination angle  increases. The results obtained with the RPFEM are 

observed as being slightly higher than those of  Hansen (1961) and Meyerhof  (1963) at small inclination 
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angles for α. However, they show a good agreement with the above studies at large inclination angles for α. 

This is because horizontal capacity Hult reached the constant value of  Hult=B.cu. After the past work by 

Hansen (1961), Meyerhof  (1963), and Vesic (1973), load inclination factor ic is derived based on the results 

computed with the RPFEM, as seen in Fig. 5.6. 

1 7.4

u

1
c

H
i

Bc

 
   
 

/

                                                                  (6) 

 

Figure 5.6. Relationship between inclination angle tan () and load inclination factor ic 

 

Figure 5.7 represents the failure envelope in the V-H plane obtained from the RPFEM for different 

load inclination angles α. It is noted that for vertical loads V with less than half  the value of  bearing capacity 

Vult, the footing fails when the shear strength between the footing and the soil is fully mobilized, generating 

sliding failure at the value of  constant horizontal capacity of  Hult=B.cu. From the results of  the RPFEM, it 

is concluded that the footing fails by sliding along its base at values of α greater than 16.4o. This is in 

excellent agreement with Meyerhof ’s solution, and smaller than the solutions of  Hansen (1961) and Vesic 

(1973), and Kobayashi (2005) of  21.3o. From Eq. (06), the failure envelope in the V-H plane is derived 

based on the results computed with the RPFEM for clay, as seen in Fig. 5.7. 
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Figure 5.7. Comparison of  failure envelopes in V-H plane on clayey soil 

 

 

 
a) e/B=0.0 and =10o (Q=4.33 Bcu) 

 

 

 

b) e/B=0.0 and =20o (Q=2.93 Bcu) 

Figure 5.8. Deformation diagrams of footing-soil against inclined central load on clayey soil of cu=100 

kPa 

Figure 5.8 shows the failure mode of  a rigid footing obtained for various values of  inclination angle 

α=10o and 20o. They are completely different in shape; the failure mechanism of  inclination angle α=10o is 

presented as the scoop-wedge shear zone on the right-hand side of  the footing, while the failure mechanism 
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of  inclination angle α=20o is presented as the sliding mode and the deformation area becomes smaller and 

shallower than that of  α=10o. Moreover, the ultimate bearing capacity of  a rigid footing achieved about 

Q=4.33 Bcu for the case of  α=10o, and Q=2.93 Bcu for the case of  α=20o. As expected, in the same way 

as that for sandy soil, combinations of  vertical and horizontal loadings led to a decrease in the bearing 

capacity with an increasing inclination angle  . From the results obtained by the RPFEM, the effect of  the 

inclined central load on the failure envelopes in the V-H plane and the failure modes of  the footing on 

clayey soil have been clarified. 

 

5.3 ULTIMATE BEARING CAPACITY FOR ECCENTRICALLY INCLINED LOAD 

5.3.1 Case study for sandy soil 

In practice, rigid footings are often subjected to eccentric-inclined coupled loads. Loukidis et al. (2008) 

evaluated the ultimate bearing capacity of  a footing against an eccentrically inclined load on sandy soil. 

However, they ignored the effect of  the horizontal load direction on the bearing capacity of  the footing 

and the failure envelopes in the V-H-M space. Only a few researches have been conducted to evaluate the 

bearing capacity of  a rigid footing for two directions of  horizontal load, namely, positive and negative loads. 

In this study, a series of  analyses was conducted for the case of  sandy soil of  =30 deg taking into account 

the direction of  the horizontal load. In particular, the study investigates three different loading paths, in 

which the values for the vertical load V, the load inclination angle tan (), and eccentricity length e are 

controlled as constant, respectively. In each path, horizontal capacity Hult is basically unknown, and it was 

determined under the designated condition of  vertical load V and eccentricity length e, which are varied to 

widely survey the limit load space in theV-H-M space. 

Figure 5.9 shows the failure envelopes in the V-H plane for several values of  eccentricity length e. At 

the limit of  a zero vertical load, the horizontal load was not sustained. It is seen that, when eccentricity 

length e increases, the size of  the failure envelopes in the V-H plane decrease for both positive and negative 

horizontal loads. This is because the bearing capacity of  the rigid footing decreases with an increase in 

eccentricity e regardless of  the direction of  the horizontal loads. It can be observed from Fig. 5.9 that the 

shapes of  the failure envelopes for the positive horizontal load are presented as nearly symmetric shapes, 

while those for the negative horizontal load are presented as asymmetric shapes. The maximum value of  
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normalized horizontal load H/Vult for the positive horizontal load is seen to be smaller than that of  the 

negative horizontal load corresponding to each value of  e. The difference is caused by the fact that the 

direction of  the horizontal load affected the failure envelopes in the V-H plane. Figure 5.10 shows the 

failure modes obtained for e/B=0.3 and =10o in two cases of  positive and negative horizontal loads. The 

figure shows that the detachment between the footing and the soil occurred around the left-hand side of  

the footing for the positive horizontal load, while the detachment did not occur for the negative horizontal 

load at large eccentricity e. The failure domain is concentrated most largely on the right edge of  the footing 

where the eccentric vertical load is placed. However, the failure mode forms more deeply and is larger along 

one side of  the footing in the same direction as the horizontal load. The ultimate bearing capacity of  the 

footing was computed using the RPFEM, as Q=545 kN/m for the positive horizontal load and Q=709 

kN/m for the negative horizontal load. This can be easily understood with the failure mode presented in 

Fig. 5.10(b) which represents an extended failure mechanism in both horizontal and vertical directions 

compared with the failure mode presented in Fig. 5.10(a). The numerical results of  the RPFEM showed 

that the effects of  the horizontal load direction on the failure envelopes in the V-H plane and the failure 

mode of  the footing-soil system are considerable.  

 

Figure 5.9. Failure envelopes in V-H plane taking into account direction of horizontal load H in case of 

sandy soil of  = 30 deg 
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a) e/B=0.3 and =10o (Q=545 kN/m) – Positive horizontal load (+H) 

 

 

 

b) e/B=0.3 and =-10o (Q=709 kN/m) - Negative horizontal load (-H) 

Figure 5.10. Deformation diagrams of footing-soil against eccentric inclined load taking into account 

direction of horizontal load (e/B=0.3, sandy soil of =30 deg) 

 

 

Figure 5.11. Failure envelopes in V-M plane for various values of inclination angle tan () taking into 

account direction of horizontal load in sandy soil ( = 30 deg) 
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The failure envelopes in the V-M plane for both positive and negative horizontal loads are plotted in 

Fig. 5.11. It is interesting that the failure envelopes in the V-M plane are seen to be totally affected by the 

direction of  the horizontal load. At the limit of  a zero vertical load, the moment load was not sustained. 

For the positive horizontal load, the Mmax reached approximately 0.065 BVult and 0.049 BVult for eccentricity 

lengths of  e=0.1 B and e=0.2 B, respectively, while for the negative horizontal load, the Mmax was 

approximately 0.076 BVult and 0.064 BVult at e =0.1 B and e=0.2 B, respectively, which are equally 1.17 to 

1.30 times the value of  the positive horizontal load. It can be seen that giving consideration to the direction 

of  the horizontal load leads to an increase in moment capacity Mult in the case of  the negative horizontal 

load. The rigid footing can support a higher applied load at the negative horizontal load. The effects of  the 

eccentrically inclined load and the direction of  the horizontal load on the failure envelopes in the V-H and 

V-M planes and on the failure mode of  the rigid footing have been clarified. 

 

5.3.2 Case study for clayey soil using no tensile strength analysis 

Pham et al. (2019) introduced a no tensile strength analysis into the footing-soil system to assess the 

ultimate bearing capacity of  the eccentrically loaded footing. They reported that the application of  a no 

tensile strength analysis was effective for analyzing the interaction between the footing and the clay. The 

study employed a no tensile strength analysis to calculate the undrained bearing capacity against the 

eccentrically inclined loading on clayey soil. The focus was placed on the ultimate bearing capacity of  a 

footing subjected to the effect of  the direction of  the horizontal load. This section investigates two different 

loading paths, namely, normalized eccentricity e/B and inclination angle tan (), which vary stepwise from 

0.0 to 0.3. A series of  analyses was conducted for the case study of  clayey soil of  cu=100 kPa. 

Figure 5.12 shows the failure envelopes in the V-H plane for various values of  eccentricity length e. It 

can be seen that the shapes of  the failure envelopes are similar for all values of  eccentricity length e. 

However, the sizes of  the failure envelopes decrease with increasing eccentricity length e regardless of  the 

direction of  the horizontal load. For each value of  eccentricity length e, the sizes of  the failure envelopes 

in the V-H plane for the negative horizontal load were observed to be slightly greater than those for the 

positive horizontal load. It was found that the direction of  the horizontal load had a negligible effect on 

the failure envelopes in the V-H plane. The strain rate distributions of  the footing in the case of e/B=0.3 
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and =10o for the positive and negative horizontal loads are shown in Figs. 5.13(a) and (b), respectively. 

It is noted that the failure mechanism of  the footing is typically one-sided. This is because the detachment 

between the footing and the soil occurred around the left-hand side of  the footing regardless of  the 

direction of  the horizontal load. The failure mode for the positive horizontal load shows a slipping mode, 

while the failure mode for the negative horizontal load shows a single circular arc slip.  Moreover, the 

ultimate bearing capacity of  the rigid footing was obtained as a value close to 2.12 Bcu for the positive 

horizontal load and 2.15Bcu for the negative horizontal load. The difference in ultimate bearing capacities 

due to the direction of  the horizontal load is not so large. However, it can be seen that the circular arc slip 

mode is more dominant with a slightly larger bearing capacity than that of  the slipping mode. Figure 5.14 

shows the failure envelopes in the V-M plane for the positive and negative horizontal loads with various 

values for the load inclination angle tan (). At the limit of  a zero vertical load, the moment load is observed 

as being equal to zero. The figure indicates that the direction of  the horizontal load has almost no influence 

on the failure envelopes in the V-M plane. Moreover, the sizes of  the failure envelopes become smaller 

than those in the case of  a decreasing load inclination angle tan (). This is due to the decreasing vertical 

capacity corresponding to an increasing load inclination angle . Finally, it can be observed from Figs. 5.12 

and 5.14 that the failure envelopes in the V-H and V-M planes are slightly affected by the direction of  the 

horizontal load. The results for clayey soil are observed as being completely opposite those for sandy soil. 
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Figure 5.12. Failure envelopes in V-H plane for various values of eccentricity length e taking into 

account direction of horizontal load on clayey soil 

 

 

 

a) e/B=0.3 and =10o (Q=2.12Bcu) – Positive horizontal load 

 

 

b) e/B=0.3 and =-10o (Q=2.15Bcu) – Negative horizontal load 

Figure 5.13. Deformation diagrams of  footing-soil against eccentric inclined load taking into account 

direction of  horizontal load (e/B=0.3, clayey soil) 

 

Figure 5.14. Failure envelopes in V-M plane for various values of tan () taking into account direction of 

horizontal load in clayey soil 

0.00

0.03

0.06

0.09

0.12

0.15

0.0 0.2 0.4 0.6 0.8 1.0

N
o

rm
al

iz
ed

 m
o

m
en

t 
lo

ad
 M

/
B

V
u
lt

Normalized vertical load V/Vult

tan (α)=0.0

tan (α)=0.1 (+H)

tan (α)=0.2 (+H)

tan (α)=0.3 (+H)

tan (α)=-0.1 (-H)

tan (α)=-0.2 (-H)

tan (α)=-0.3 (-H)

0 maxe

Q α=10o 

Q α=-10o 



 
Chapter 5. Limit load space of rigid footing under eccentrically inclined load 

86 

 

5.4 FAILURE ENVELOPES FOR ULTIMATE BEARING CAPACITY IN V-H-M SPACE 

5.4.1 Limit load space for sandy soil 

The failure envelopes in the V-H-M space for the effect of  eccentric-inclined coupled loads have 

relatively complex geometries. In most of  the previous studies on sandy soil, such as those by Loukidis et 

al. (2008), Krabbenhoft et al. (2013) and Tang et al. (2014), only the effect of  the eccentric-inclined coupled 

load on each failure envelope in the V-H, V-M, and H-M planes was reported; the overall failure envelopes 

in the V-H-M space were not considered. The present study investigates the failure envelopes in the V-H-

M space for various loading paths of  eccentricity length e, inclination angle of  tan (), and normalized 

vertical load V/Vult. Pham et al. (2019) studied the bearing capacity of  an eccentrically loaded footing on 

sandy soil, for which the moment load reached maximum moment Mmax at a normalized vertical load of  

around V/Vult=0.46 regardless of  the internal friction angle. A series of  analyses was conducted in the 

case of  sandy soil of  =30 deg with various values for V/Vult. 

Figure 5.15 shows the failure envelopes in the H-M plane under eccentric-inclined coupled loads at 

V/Vult=0.25, 0.46, and 0.75. It can be seen that the sizes and shapes of  the failure envelopes are dependent 

on the level of  normalized vertical load V/Vult. Moreover, these diagrams clearly show that the rigid footing 

can support a higher applied load with the combination of  negative horizontal and positive moment loads. 

This is because the direction of  the horizontal load affects the failure envelopes in the H-M plane. Similar 

findings were also observed by Loukidis et al. (2008), Krabbenhoft et al. (2013), and Tang et al. (2014). 

Most of  the past works modeled the failure envelopes in the H-M plane by considering the equation for an 

ellipse by Buttterfield et al. (1994). This study proposes fitting parameter C=0.195 for the failure envelopes 

in the H-M plane of  the RPFEM on sandy soil, as follows:  

2 2

2. 1
o o o o

H M H M
C

H M H M

      
        

      
                                         (8) 

where Ho is equal to the H values yielded by Eq. (4) and Mo is equal to the M values yielded by Eq. (9), 

which were proposed by Pham et al. (2019) and correspond to the specific value of  Vo. According to the 

work of  Loukidis et al. (2008), parameter C is equal to 0.267, and Ho and Mo are given by Loukidis’s 

equations. The failure envelope by the RPFEM is in excellent accordance with that by Loukidis et al. (2008) 

at Vo=0.46 Vult, as seen in Fig. 5.15. 
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                                                        (9) 

 
Figure 5.15. Failure envelopes in H-M plane for different values of  normalized vertical load V/Vult for 

case of  sandy soil of   = 30 deg 

 

In addition, once the failure envelope in the V-H-M space of  a rigid footing under an eccentrically 

inclined load is proposed, the question is raised as to whether it can be applied for different loading paths. 

Almost none of  the previous studies considered the uniqueness of  the limit load space. The present study 

widely investigates the intersecting points in the three-dimensional failure envelopes in the V-H-M space 

with three different loading paths, namely, eccentricity length e, the inclination angle tan (), and normalized 

vertical load V/Vult. A three-dimensional image of  the limit load space under an eccentrically inclined load 

is presented in Fig. 5.16. The representations of  the failure envelopes in the V-H-M space are shown as 

contour plots. The bold red plots denote the intersecting points calculated from the RPFEM. The figure 

shows some intersecting points among the contour plots of  e/B=0.1, 0.2, and 0.3, of  tan ()=0.1, 0.2, and 

0.3, and of  V/Vult=0.25, 0.46, and 0.75. It can be seen that the failure envelopes in the V-H-M space for 

the different loading paths are almost coincidental for the same limit surface. From the numerical results 

of  the RPFEM, it can be concluded that the failure envelope in the V-H-M space is unique for each value 

of  internal friction angle on sandy soil. The three-dimensional representation of  the limit load space 
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provides a convenient way to explore the safety of  any specific loading paths, or the consequences of  any 

changes in the loading. 

 
a) Case study for positive horizontal load (+H) 

 
b) Case study for negative horizontal load (-H) 

Figure 5.16. Limit load space of V-H-M for various values of eccentricity length e, inclination angle tan 

() and normalized vertical load V/Vult for sandy soil (=30 deg) 
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5.4.2 Limit load space for clayey soil using no tensile strength analysis 

Rao et al. (2015) and Shen et al. (2016) used the zero-tension interface to analyze the ultimate bearing 

capacity of  a rigid footing subjected to eccentrically inclined loading. However, there are few works which 

have analyzed the failure envelopes in the V-H-M space for clayey soil. This study applied a no tensile 

strength analysis to calculate the three-dimensional failure envelopes in the V-H-M space. A series of  

analyses was also conducted for the case of  clayey soil of cu=100 kPa, and the obtained results were 

compared with those of  past works. 

Figure 5.17 shows the failure envelopes in the H-M plane at intervals of  normalized vertical load of  

V/Vult=0.25, 0.50, and 0.75. It can be seen that the sizes and shapes of  the failure envelopes in the H-M 

plane also completely depend on the level of  V/Vult. The size of  the failure envelope in the H-M plane is 

the maximum size at normalized vertical V/Vult =0.50. Moreover, these diagrams clearly show that the 

direction of  the horizontal load has a negligible effect on the failure envelopes. These results are completely 

in contrast to those for sandy soil. The obtained failure envelope in the H-M plane shows a good agreement 

with the failure envelope described by the FEM of  Shen et al. (2016) at V/Vult=0.50. The failure envelopes 

in the H-M plane for the rigid footing can be described by the circular ellipse expression proposed by 

Gourvenec (2007) to approximate the shapes of  the failure envelopes in the H-M plane. Thus, this study 

proposes the following new equation to determine the failure envelopes in the H-M plane at various values 

for V/Vult in clay. 

2 2

0 0

1
H M

H M

   
    

   
                                                             (10) 

where Ho and Mo are the maximum horizontal load and moment, respectively, corresponding to the 

specific value of  Vo. Ho is equal to the H value given by Eq. (7) and Mo is equal to the M value given by 

Eq. (11) of  Pham et al. (2019). The symmetrical elliptical failure envelope defined by Eq. 10 does not 

capture the asymmetry observed in the results obtained with the RPFEM. Nonetheless, it properly reflects 

that the effect of  the direction of  the horizontal load is not very large. 

0.80

ult ult ult

0.63 1
M V V

BV V V

  
   
   

                                                      (11) 

For clayey soil, a question arises as to whether the failure envelopes in the V-H-M space are unique for 
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any value of  undrained shear strength cu. This study widely investigates the relationship of  the three-

dimensional failure envelopes in the V-H-M space at various values under different loading paths, which 

are eccentricity length e, inclination angle , and normalized vertical load V/Vult. Figure 5.18 shows the 

failure envelopes in the V-H-M space for various values of  e, tan (), and V/Vult. When the moment load 

is converted to the vertical stress distribution in positive and negative triangular shapes applied to the 

footing, the total vertical load obviously equals to zero. However, the limit load space in the V-H-M space 

of  the rigid footing is made by considering the no tensile strength analysis for the footing-soil interface. 

The vertical stress in the tensile zone is arranged to zero stress, and the vertical load working on the footing 

becomes positive. The magnitude of  the moment component M is correlated the vertical load, V obtained 

by the computation. In addition, when the eccentricity length is zero, moment M becomes zero. In this case, 

the failure envelope in the V-H is drawn for the inclination angle tan (α) of  the applying load. Although it 

is predicted to be non-linear, horizontal load Hult is obtained as constant in the range of  a large inclination 

angle tan(α) since the shear stress at the interface between the footing and the ground attains the shear 

strength of  the cohesive soils. Thus, the shape of  the limit load space with the no tensile strength analysis 

is observed as being completely opposite that of  sandy soil. The bold red plots denote the intersecting 

points calculated from the RPFEM. The figure clearly shows some intersecting points among the contour 

plots for eccentricity length e, the inclination angle tan (), and normalized vertical load V/Vult. From Fig. 

5.18, it is seen that the failure envelopes in the V-H-M space almost coincide for all the different loading 

paths, and that these contour plots coexist on the same limit load surface. It can be concluded that the 

failure envelopes in the V-H-M space are unique with any value of  undrained shear strength cu. 
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Figure 5.17. Failure envelopes in H-M plane for different values of  normalized vertical load V/Vult for 

clayey soil case. 

 

a) Case study for positive horizontal load (+H)  
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b) Case study for negative horizontal load (-H) 

Figure 5.18. Limit load space of V-H-M for various values of eccentricity length e, inclination angle tan 

(), and normalized vertical load V/Vult for clayey soil case 
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simulate the vertical load, the horizontal load, and the moment load independently. In this computation 

process, moment capacity Mult is basically unknown and it was determined through the prescribed 

horizontal load H and the specific vertical load Vo. The failure envelopes in the V-H-M space for the 

combined loads are symmetrically investigated for sandy and clayey soils under the rough condition of  the 

footing surface. A series of  analyses was performed for sandy soil of  =30 deg at the specific value of  V 

=0.46Vult and clayey soil of  cu=100 kPa at the specific value of  V =0.50Vult. The properties of  the interface 

elements employed in the analyses are similar to the soil properties of  sand and clay, respectively. 

 

 

 

 

Figure 5.19. Initial load conditions for rigid plastic FEM 

 

Figure 5.20. Failure envelopes in H-M plane against combinations of  centric vertical, horizontal, and 

moment loads for sandy and clayey soils 

 

Figure 5.20 shows the failure envelopes in the H-M plane for sandy and clayey soils subjected to 

combined loads. The figure demonstrates that the shape of the failure envelopes in the H-M plane is 

presented as an ellipse for both sandy and clayey soils. However, the size of the failure envelope for the 

-0.16

-0.12

-0.08

-0.04

0.00

0.04

0.08

0.12

0.16

-0.20 -0.16 -0.12 -0.08 -0.04 0.00 0.04 0.08 0.12 0.16 0.20

N
o

rm
al

iz
ed

 m
o

m
en

t 
lo

ad
  

M
/
B

V
u
lt

Normalized horizontal load H/Vult

V=0.46Vult (Sand)

V=0.50Vult (Clay)

Equation (08) for V=0.46Vult (Sand)

Equation (10) for V=0.50Vult (Clay)

V 
 

 

Footing 

H H 

V 

M 

Footing 



 
Chapter 5. Limit load space of rigid footing under eccentrically inclined load 

94 

 

combined loads on the clayey soil is observed as being larger than that on the sandy soil. For the sandy soil 

of =30 deg, the failure envelope shows an asymmetric ellipse and maximum moment capacity Mmax 

generally achieved a value of 0.081BVult at a horizontal load of H=0.0Vult. For the clayey soil, the failure 

envelope shows a nearly symmetric ellipse and maximum moment capacity Mmax achieved a value of nearly 

0.133BVult. It is interesting that the failure envelope in the H-M plane in the case of a combination of the 

centric vertical load, the horizontal load, and the moment load almost coincides with the envelopes in Eqs. 

8 and 10 for the H-M plane under eccentrically inclined loads on sandy and clayey soils, respectively. It is 

shown in Fig. 5.20. These results are preferable from the simulation viewpoint because the behavior of the 

eccentrically inclined loads can be simulated by the combined vertical-horizontal-moment loads. 

 

5.6 CONCLUSION. 

This study has investigated the ultimate bearing capacity of  a rigid footing subjected to eccentric-

inclined coupled loads on sandy and clayey soils using the RPFEM. The effect of  the eccentrically inclined 

loads on the ultimate bearing capacity and the failure mechanism of  the rigid footing were analyzed by 

taking into account the direction of  the horizontal load. 

The conclusions of  this study are as follows: 

1. Under inclined central loading, this study examined the effect of the soil properties on load inclination 

factors i and ic. The numerical results of the RPFEM showed that load inclination factor i needs to account 

for the observed dependence on the value of internal friction angle  in the case of sandy soil, while load 

inclination factor ic was observed to be unique in the case of clayey soil independent of the value of the 

cohesive strength. New equations for the RPFEM were proposed to determine load inclination factors i 

and ic for applications to the current design methods. 

2. Under eccentrically inclined loading, the failure mechanism of a rigid footing was observed to depend on 

both the eccentric-inclined coupled loads and the direction of the horizontal load. For sandy soil, the failure 

domain was concentrated on the edge of the footing as the eccentricity length increased, but the failure 

zone became larger and deeper on the opposite side in the same direction as the direction of the horizontal 

load. On the contrary, for clayey soil, the failure mechanism was only largely one-sided due to the 

detachment of the footing from the soil surface on the opposite side regardless of the direction of the 
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horizontal load. 

3. The effect of the direction of the horizontal load on the failure envelopes in the V-H, V-M, and H-M 

planes were clarified in a series of different loading paths. For sandy soil, the sizes and shapes of the failure 

envelopes in the V-H, V-M, and H-M planes were significantly affected by the direction of the horizontal 

load. The rigid footing was able to support a higher applied load at the negative horizontal load. However, 

it was almost negligible for clayey soil. New equations were proposed to determine the failure envelopes in 

the V-H-M space taking into account the direction of the horizontal load. 

4. This study widely investigated the failure envelopes in the V-H-M space under eccentrically inclined 

loading on sandy and clayey soils with different loading paths. The diagrams indicated visual intersecting 

points between the contour plots of the V-H, V-M, and H-M planes in the three-dimensional failure 

envelopes in the V-H-M space. From the numerical results of the RPFEM, it was concluded that the failure 

envelope in the V-H-M space is unique for each value of internal friction angle in sand, and that it is also 

unique for any value of undrained shear strength in clay. Moreover, a negligible effect of the footing width 

on the failure envelopes in the V-H-M space was observed. 

5. The study considered the impact of the combination of the centric vertical, horizontal, and moment 

loads on the envelopes in the H-M plane. The results showed that the sizes and shapes of the failure 

envelopes in the H-M plane in the case of combined loads were completely similar to those of eccentrically 

inclined loads. In the numerical analysis, it was possible to simulate the eccentrically inclined loads by 

combinations of the centric vertical load, the horizontal load, and the moment load. 

 

Publication: Chapter 5 is published as article: Pham, N. Quang, Ohtsuka, S., Isobe, K. and Fukumoto, 

Y.: Limit load space of  rigid footing under eccentric inclined load, Soils and Foundations, 2020, 60(4), 

1-14. DOI: https://doi.org/10.1016/j.sandf.2020.05.004. 
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Chapter 6 

FURTHER RESEARCH: 

ULTIMATE BEARING CAPACITY OF RIGID FOOTING RESTING ON 

SAND LAYER OVER CLAY 

6.1. INTRODUCTION 

In engineering practice, the bearing capacity of a rigid footing on a sand layer over clay soil is commonly 

calculated through the use of bearing capacity models. The best known expressions have been suggested 

by the projected area model of Terzaghi et al. (1948) and the punching shear model of Meyerhof (1974) 

and Okamura et al. (1998). The model of Terzaghi et al. (1948) was based on the assumption that the 

pressure is distributed uniformly on the sand layer surface, having an equivalent footing with an effective 

footing width 'B  resting on the clay layer, but the shear resistance of the sand layer was ignored. On the 

contrary, the models of Meyerhof (1974) and Hanna and Meyerhof (1980) assumed that punching shear 

failure occurred in the sand layer as a rigid sand block and general shear failure occurred in the clay layer. 

The shear resistance was considered via the punching shear coefficient (Ks), which was determined by a 

design chart. However, this method ignored the effect of the shear strength of two-layered soils on the 

shape of the rigid sand block. Okamura et al. (1998) also assumed the formation of a rigid sand block during 

punching shear failure to calculate the bearing capacity of the footing on two layers consisting of sand and 

clay. They proposed a new equation to calculate the shear angle of the rigid sand block based on the soil 

properties of the two layers. Recently, Eshkevari et al. (2019) introduced a new bearing capacity model 

based on the limit equilibrium condition of a rigid sand block during punching shear failure in the sand 

layer to directly estimate the ultimate bearing capacity. They reported that the shear angle of the rigid sand 

block may be positive or negative depending on the relative strength of the two-layered soil. However, the 

applicability of these bearing capacity models has not been clarified due to the lack of a systematic analysis 

based on a reliable stability method. Therefore, the validity of the current design methods needs to be 

verified by applying bearing capacity models. In recent years, the ultimate bearing capacity of rigid footings 

on sand overlying clay has been investigated by several researchers using numerical analyses and model 
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tests. Shiau et al. (2003), Yamamoto et al. (2005), Rajaei et al. (2017), Zheng et al. (2019), and Eshkevari et 

al. (2019) used numerical analyses to calculate the bearing capacity under vertical loading on a sand layer 

over clay soil. From the numerical results, it was concluded that the ultimate bearing capacity was 

significantly affected by the soil properties of the two-layered soil and the geometric conditions of the sand 

layer. The same results were also obtained from model tests conducted by Okamura et al. (1997), Teh et al. 

(2010), and Hossain et al. (2014). Although many works have been performed to investigate the bearing 

capacity of vertically loaded footings on sand overlying clay, a comprehensive understanding of the failure 

mechanism of the footing-soil system and the bearing capacity model has not yet been established. 

In footing-soil systems, the ultimate bearing capacity of the footing depends exclusively on the friction 

condition between the footing and the soil. The footing surface has been modeled under two extreme 

conditions, namely, either perfectly smooth or perfectly rough. Most of the previous studies, such as 

Yamamoto et al. (2005), Rajaei et al. (2017), Zheng et al. (2019), and Eshkevari et al. (2019), only considered 

the rough condition of the footing surface and did not consider the smooth condition. Pham et al. (2019b) 

studied the ultimate bearing capacity subjected to central and eccentric vertical loading on uniform layers 

of sand and clay using an interface element. They found that the application of an interface element was 

effective for determining the ultimate bearing capacity and the failure mechanism of a rigid footing. In the 

present study, the interface element is employed to widely investigate the distribution of contact stress along 

the footing base and the failure mechanism reflecting the two different friction conditions. The footing-

soil system with a two-dimensional analysis is simulated with the rigid plastic finite element method 

(RPFEM). The RPFEM has been applied in geotechnical engineering by Tamura et al. (1984, 1990), Asaoka 

and Ohtsuka (1986, 1987), and Asaoka et al. (1990), and was further developed by Tamura et al. (1987) for 

friction material. The method was originally developed based on the upper bound theorem in the limit 

analysis, but was shown to have been derived directly from the rigid plastic constitutive equation by Tamura 

et al. (1984). The study introduced a new constitutive equation for solid elements to simulate the footing 

and the soil, and for interface elements to simulate the interface plane between the footing and the soil. 

The applicability of the rigid plastic constitutive equation to the assessment of the ultimate bearing capacity 

of a vertically loaded footing on sand overlying clay is examined from the viewpoints of the interaction 

between the footing and the soil and the failure mechanism of the footing-soil system. 
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In addition, the failure mechanisms of two-layered soils are complex because the failure mode may 

break through the upper sand layer into the lower clay layer or the failure may only be within the sand layer. 

The focus here is placed on an investigation of the bearing capacity and the failure mechanism of a rigid 

footing located on sand overlying clay by increasing thickness D and the internal friction angle  of the 

sand layer for two extreme friction conditions, for which two cases are considered for the shear strength 

of the clay layer, namely, a weak layer and a stiff layer. Moreover, the study introduces a new equation based 

on the limit equilibrium condition of a rigid sand block during punching shear failure to determine the 

ultimate bearing capacity. The proposed equation provides results in close agreement with those given in 

the literature, while remaining simple and efficient enough to be used in practice. 

 

6.2. APPLICABILITY TO VERTICAL LOAD ON UNIFORM SANDY SOIL UNDER TWO 

CONTACT CONDITONS. 

Figure 6.1(a) shows a typical finite element mesh and boundary condition of a footing-soil system on 

uniform sandy soil using an interface element at the footing base. A uniform distributed load q was 

employed at all node surfaces of the footing element to define the prescribed load and the load coefficient, 

for which the ultimate bearing capacity was assessed by computing the limit value for this load coefficient. 

Analyses were performed for a footing width of B=5.0 m. The footing and the soil were modeled as a solid 

element and rigid perfectly plastic materials with the following properties: the unit weight of both the 

footing and the soil was f=soil=18 kN/m3, the shear strength of the footing material was cf=50000 kPa, 

and the internal friction angle of the footing material was f=0o. In computation process, small cohesion of 

the soil, c=0.5 kPa, was applied to stabilize the computation process, but the effect of cohesion on the 

ultimate bearing capacity was found to be small. Two friction conditions were considered for the footing 

surface by using the interface element properties in the case of soil=30 deg, as shown in Table 6.1. 

Table 6.1. Interface element properties of the footing-sand layer. 

 Parameter Rough condition Smooth condition 

Internal friction angle ϕs (o)  s=soil=30 0 

Shear strength cs (kPa)  0.5 0.5 

The ultimate bearing capacity q of the footing was generally achieved as a value close to 8.47 B for 
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the rough condition and a value close to 4.42 B for the smooth condition. These values are generally 52% 

of those for the rough condition, in which the bearing capacity is normalized by the soil unit weight and 

the footing width. As a result, since the setting of the soil unit weight and the footing width does not affect 

the ultimate bearing capacity, the ultimate bearing capacity is shown irrespective of them. A comparison 

with past work for the rough condition revealed that the limiting value was close to q=8.87 B given by 

Shiau et al. (2003) using FEM, and q=7.83 B predicted by Meyerhof (1951) using a model test. Moreover, 

the results obtained for the strain rate distribution of the footing-soil system for the two friction conditions 

are shown in Fig. 2. The norm of the strain rate, presented by contour lines, is in the range of 
max

e  to 

min
(= 0)e . The distribution of e  shows the failure mode of the ground and reflects the footing-soil 

contact condition. The failure depth of the ground from the footing base is observed to be nearly equal to 

1.0 B for the rough footing (Fig. 6.1(a)) and 0.5 B for the smooth footing (Fig. 6.1(b)). This is because, 

when the ultimate load is applied to a footing, the failure area will develop up to a certain depth depending 

on the value of  and the friction conditions of the footing surface. Furthermore, the rigid block forming 

below the footing was apparently different between the two friction conditions. The failure mechanism of 

the rough condition is characterized by a triangular wedge under the footing moving downward as a rigid 

block with the same velocity as the footing. While the failure mechanism of the smooth condition is 

characterized by two rigid triangular wedges, the two rigid wedges tend to move towards the two edges of 

the footing. The obtained failure mode shows a good agreement with the slip line of the rough footing 

reported by the FEM of Nguyen et al. (2016) and Pham et al. (2019b). The results obtained of RPFEM for 

the ultimate bearing capacity and the failure mechanism were found to closely match those in past works.  

 

a) Typical finite element mesh and boundary condition of model (Rough condition, q=8.47 B) 

q 
0

maxe
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b) Deformation diagrams of footing-soil (Smooth condition, q=4.42 B) 

Figure 6.1. Typical finite element meshes, boundary conditions, and deformation diagrams of footing-

soil on single layer of sandy soil of =30 deg 

 

6.3 ULTIMATE BEARING CAPACITY OF RIGID FOOTING ON SAND OVERLYING CLAY 

6.3.1 Interaction of footing and soil under two contact conditions. 

In practice, the base of a rigid footing often rests on the soil-layer system of more than one layer. This 

study examined the ultimate bearing capacity of a rigid footing on a two-layered horizontal soil substrate, 

for which the rigid footing was situated on a sand layer with an internal friction angle ϕ overlaying infinite 

deep clay with undrained shear strength cu. D is the thickness of the sand layer and γ is the unit weight of 

the sand layer, as shown in Fig. 6.2. Yamamoto et al. (2005) evaluated the ultimate bearing capacity of a 

vertically loaded footing on sand-over-clay for the rough condition. In their results, a difference was found 

in the distribution of normal stress n/B acting on the footing base corresponding to changes in sand layer 

thickness D. However, only a few researches have been performed to evaluate the distribution of contact 

normal stress under two extreme friction conditions. The present study investigated the distribution of 

contact normal stress n/B under two friction conditions in a typical case of a sand layer of ϕ=30 deg 

overlying a weak clay layer of cu=0.5 γB. The values for the sand layer thickness were varied in the range of 

0.25 B to 2.0 B. 

 

Figure 6.2. Schematic of the RPFEM model of rigid footing on sand-over-clay 

ϕsoil, γ - sand 

cu, clay 

D 
B 

q 
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a) Rough condition 

 

b) Smooth condition 

Figure 6.3. Distributions of contact normal stress n/B acting at footing base on sand of ϕ=30 deg 

overlying clay cu=0.5 B for rough and smooth conditions 

 

Figure 6.3 shows the distributions of contact normal stress n/B at the footing base corresponding 

to normalized distance X/B, in which, X is the location in the footing from the center of the footing. The 

normal stress n/B is assessed by computing the interaction force at the nodes of the interface elements. 

It is seen that, when sand layer thickness D is increased, the size of the normal stress distribution (n/γB) 
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increases for both rough and smooth conditions, and that the contact normal stress is observed as being 

smaller than that of a single layer of sandy soil. The size of n/γB for the rough condition is larger than that 

for the smooth condition. For a single layer of sandy soil, the normal stress distribution is seen to have a 

convex shape, with a curved shape for the rough condition and a triangular shape for the smooth condition. 

On the contrary, Pham et al. (2019b) reported that, for a single layer of clayey soil, the normal stress 

distribution is seen to have a concave shape with respect to the center of the footing for both rough and 

smooth conditions. From the results obtained by the RPFEM for sand overlying clay at the small thickness 

of D=0.25 B, the shape of the distribution (n/γB) is presented as the combined distribution of the sand 

and clay layers which are characterized by a concave shape in the center of the footing and by a convex 

shape on the two edges of the footing. However, when the sand layer thickness is then increased to D=1.0 

B for the rough condition and D=0.75 B for the smooth condition, the shape of the distribution (n/γB) is 

presented as a large-convex shape at the center of the footing. This proves that the influence of the clay 

layer on the distribution of contact normal stress is lowered, while the influence of the sand layer is raised 

by an increase in thickness. When the sand layer thickness reaches D=2.0 B for the rough condition and 

D=1.0 B for the smooth condition, the distribution of contact normal stress is observed to coincide with 

that of a single layer of sandy soil. As expected, increasing the sand layer thickness led to the behavior of 

the two-layered soil becoming similar to that of a single layer of sandy soil. 

Figure 6.4 shows the failure modes of a rigid footing obtained for two values of thickness, namely, 

D=0.25 B and 1.0 B, in typical cases of the rough condition. It is seen that the failure mechanism of the 

footing-soil system reflects the collapse mode of two-layered systems. The failure mode is seen to have 

broken through the sand layer into the clay layer, where the punching failure mode is formed in the sand 

layer as a rigid sand block. The failure zone of a rigid footing becomes wider and deeper in the sand layer, 

while the general failure zone in the clay layer is greatly reduced as the sand layer thickness increases. 

Moreover, the ultimate bearing capacity was computed using the RPFEM, as q=1.39 γB for D=0.25 B and 

q=4.51 γB for D=1.0 B. As expected, the vertical and horizontal extents of the failure mode increased in 

the sand layer, which contributed to the increase in the size of the normal stress distribution and the ultimate 

bearing capacity of the two-layered soils. The numerical results of the RPFEM showed that the effects of 

sand layer thickness D on the distribution of the contact normal stress (n/γB) and the failure mechanism 
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for the two friction conditions are considerable. 

 
a) Rough condition, D=0.25 B (q=1.39 γB) 

 
b) Rough condition, D=1.0 B (q=4.51 γB) 

Figure 6.4. Deformation diagrams of footing-soil on sand layer of ϕ=30 deg overlying clay of cu=0.5 B 

for two typical rough conditions 

 

6.3.2 Case study for increasing internal friction angle and thickness of sand layer 

In geotechnical practice, the top layer of soft clay in native soils is often replaced by cohesionless soil 

in order to improve the bearing capacity of the substrate. Thus, this study widely investigates the 

improvement of the ultimate bearing capacity by increasing sand layer thickness D and internal friction 

angle  in a case study of a weak clay layer. Moreover, focus is placed on evaluating the critical depth of the 

sand layer for two friction conditions. Critical depth Dcr, is defined as the minimum depth at which the 

failure mode develops completely within the sand layer. The values for the sand layer thickness were varied 

in the range of D=0.0 B to -5.0 B, while the undrained shear strength of cu was set as a small cohesion in 

the range of 0.125 to 3.0 γB in order to simulate the weak clay layer. 

Figure 6.5 presents dimensionless bearing capacity q/B by increasing normalized thickness D/B for 

various values of =30, 35, and 40 deg for the rough and smooth conditions. In the figure, q/B is seen to 

increase proportionally as thickness D and the value of  are increased. These plots clearly demonstrate an 

improvement in the bearing capacity resulting from increases in sand layer thickness D and internal friction 

angle . However, it can be seen that the increase in  is more dominant with a larger bearing capacity than 

0 maxe
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the increase in thickness D. This is because that the ultimate bearing capacities of the rough and smooth 

footings in the case of =40 deg are determined as close to 44.88 B and 23.84 B, respectively, which are 

much larger values than those in the case of =30 deg. When the sand layer thickness reaches the critical 

depth, Dcr, q/B becomes the constant value of a single layer of sandy soil. The magnitude of critical depth 

Dcr seems to be dependent on the value of  and the level of cu. Moreover, the critical depth for the rough 

condition is observed to be greater than that for the smooth condition. Thus, increasing the sandy layer 

thickness will not affect the ultimate bearing capacity regardless of the friction condition. From Fig. 6.5, 

for one typical case of =30 deg and cu=0.50 B, it is easy to determine that critical depth Dcr is nearly equal 

to 2.0 B for the rough condition, while the value is observed at around 1.0 B for the smooth condition. 

These results agree well with those using a value slightly lower than the thickness Dcr=2.0 B reported by 

Shiau et al. (2003) for the rough condition. They indicate that the RPFEM can provide reasonable 

predictions of the ultimate bearing capacity and the critical depth of the sand layer by increasing thickness 

D and  for both friction conditions. However, it should be noted that, despite the need for a greater 

thickness of the sandy layer, the maximum improvement is considerably intensified by increasing . 

The results obtained for the strain rate distribution of the footing on a sand layer of =30 deg and 

D=0.5 B overlying weak clay of cu=0.5 γB for the rough and smooth conditions are shown in Fig. 6.6. It 

is interesting that the failure modes for the two friction conditions are observed to be almost similar in 

shape. These results are completely opposite to those for a single layer of sandy soil. It can be understood 

that two rigid wedges form below the smooth footing base, but that its depth exceeds the sand layer 

thickness. This leads to the failure mechanism of the smooth footing being characterized as the punching 

shear failure in same way as that of the rough footing. The size of the rigid sand block below the footing 

base for the rough condition seems to slightly larger than that for the smooth condition. These results agree 

well with the results obtained in Shiau et al. (2003). Moreover, ultimate bearing capacity q was obtained as 

a value close to 2.92 γB for the rough condition and 2.76 γB for the smooth condition. The difference in 

ultimate bearing capacities due to the footing roughness is not so large in the case study of the weak clay 

layer. 
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a) =30 deg 

 
b) =35 deg 

 
c) =40 deg 

Figure 6.5. Design charts of dimensionless bearing capacity q/B by increasing sand layer friction angle 

and thickness for rough and smooth conditions 
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b) Smooth condition, q=2.76 γB 

Figure 6.6. Deformation diagrams of footing-soil on sand layer of ϕ=30 deg and D=0.5 B overlying clay 

of cu=0.5 γB 

 

6.3.3 Case study for increasing undrained shear strength of clay layer 

The study widely evaluates the ultimate bearing capacity by assuming larger shear strength cu for the 

clay layer for the two friction conditions. A question arises with the failure mechanism of two-layered soils 

as to whether or not the mechanism is affected by the footing roughness when the shear strength of the 

clay is large. Values for sand layer thickness D were varied in the range of 0.25 B to 2.0 B, while the 

undrained shear strength of cu was set to increase from small cohesion to large cohesion in order to simulate 

the stiff clay layer.  

The effects of the shear strength of the clay layer, cu/γB, on the dimensionless bearing capacity, q/γB, 

for the various values for ϕ are illustrated in Figs. 6.7(a) to (c) for the rough and smooth conditions. These 

figures show that the bearing capacity increases with an increase in cu/γB, and that its growth is nearly non-

linear in proportion to this quantity. It is interesting to note that if thickness D is smaller than a critical 

depth Dcr, the limit value of q/γB is observed to be larger than that of a single layer of sandy soil. This is 

because the thin sand layer is supported by the stiff clay layer which is able to support a higher applied load. 

When D is larger than a critical depth Dcr, the limit value of q/γB reaches the ultimate bearing capacity of 

a single layer of sandy soil. This is because the failure mode of the footing-soil system develops completely 

within the sand layer at a certain depth which is similar to that of a single layer of sandy soil. The existence 

of a certain depth is shown clearly in Fig. 6.7; critical depth Dcr are approximately equal to 1.0 B for =30 

and 35o and 1.5 B for =40o of the rough condition, while they are nearly equal to 0.5 B for =30 and 35o 

and 1.0 B for =40o for the smooth condition. Similar results can be found in the computational results of 

Michalowski et al. (1995) with the value of the critical depth of Dcr=1.0 B for =30 and 35o in the case of 
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the rough condition. 

 

a) =30 deg 

 

b) =35 deg 

 

c) =40 deg 

Figure 6.7. Design charts of dimensionless bearing capacity q/B by increasing clay layer shear strength 

cu for rough and smooth conditions 
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respectively. It can be seen that the general failure mode is observed to be completely contained within the 

sand layer regardless of the friction condition, and that the size of the failure mode seems to smaller than 

that of a single layer of sandy soil. For the rough condition, the failure mechanism of the rigid footing is 

presented as a rigid triangular wedge in the sand layer, and the deformation of the ground that is almost 

less occurs in the clay layer. For the smooth condition, the failure mechanism is characterized by two rigid 

wedges within the sand layer. It proves that the footing roughness has a significant effect on the failure 

mechanism of a footing when the clay shear strength becomes larger. Moreover, the ultimate bearing 

capacity was obtained as a value close to 10.68 γB for the rough condition which is greater than that of 4.42 

γB for the smooth condition. The difference in ultimate bearing capacities due to the footing roughness is 

very large in the case of the stiff clay layer. It can be seen that giving consideration to the large shear strength 

of the clay layer leads to improvement in ultimate bearing capacity of the rigid footing, and the difference 

between the two friction conditions is clarified.  

 
a) Rough condition, q=10.68 γB 

 
b) Smooth condition, q=4.42 γB 

Figure 6.8. Deformation diagrams of footing-soil on sand layer of ϕ=30 deg and D=0.5 B overlying stiff 

clay layer cu=3.0 γB 

 

6.4 BEARING CAPACITY MODEL OF FOOTING ON SAND LAYER OVERLYING CLAY 

6.4.1 Propose for bearing capacity model 

It can be concluded from the results of the RPFEM analysis that the bearing capacity of a rigid footing 
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on two-layered soils can be presented as follows: 

u, , , friction - condition
cq D

f
B B B




 
  

  
                         (1) 

According to the shape of the failure mode obtained from the RPFEM analysis, the failure mode of 

two-layered soils was found to change from the punching shear failure to the general shear failure by an 

increase in the shear strength of the clay layer. This study widely investigates the limit equilibrium condition 

of a rigid sand block during punching shear failure. Figure 6.9 shows the sidelines of the rigid sand block 

creating shear angle  in the shear plane. One problem arises, namely, that the magnitude of shear angle  

may be a positive angle or a negative angle, as shown in Figs. 6.9(a) and (b), respectively. In the bearing 

capacity model, if shear angle  is known, the ultimate bearing capacity of the rigid footing on sand overlying 

clay can be calculated. Figure 6.10 shows the failure mechanism assumed for the shear angle  of the rigid 

sand block during punching shear failure. It can be seen that vertical force Pv along the shear plane is shown 

to be completely dependent on the geometry of the sand block, the normal stress acting on the sand block 

which is considred by the coefficient of the passive earth pressure Kp, and mobilised friction angle  as 

follows: 

 2

v sin( ) cos sin( ) tan cos tan( ) tann n n pP P P P P D K                        (2) 

Meyerhof (1974) and Hana (1981) reported that, in practice, it is convenient to use a coefficient (Ks) of 

punching shear resistance to quantify the vertical component of the total force acting on shear plane. In 

this study, vertical force Pv is estimated to express the influence of the above via the coefficient (Ks) as 

follows: 

2

v s tanP D K       with        stan( ) tan tanpK K          (3) 

The limit equilibrium condition of the rigid sand block has been applied in order to estimate the ultimate 

bearing capacity of a rigid footing, as seen in the following equation: 

     2

s c u
tan 2 tan tanq.B D K N c D B D B D D                               (4) 

For a simpler equation, 

   
2 2

s

c
tan 1 2 tan tanu

s

c qq D D D
K N

B B B B B B
  



     
                

               (5) 

where Nc is the bearing capacity factor for clayey soil, and exact plasticity solution Nc is 5.14. The inequality 
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in Eq. (5) suggests that the ultimate bearing capacity cannot exceed the value of qs, which is the bearing 

capacity of the rigid footing resting on a single layer of sandy soil corresponding to different friction 

conditions. The unknown parameters of Eq. (5) are shear angle  and punching shear coefficient Ks, which 

can be estimated by an RPFEM analysis. Shear angle  is determined graphically from effective footing 

width 'B by the contour lines of the strain rate distribution, as shown in Fig. 6.9. A series of analyses was 

conducted in the cases of a sand layer of =30, 35, and 40 deg with D=0.25 to 2.0 B, and a clay layer of 

cu/D=0-8.0. Figure 6.11 shows the relationship between shear angle  against normalized clay shear 

strength cu/D for rough and smooth conditions. It can be seen that shear angle  seems to greatly depend 

on the values of  and cu/D, but not on the value of D/B. Moreover, the value of shear angle  only 

occurs with a positive angle if internal friction angle  is large and cu/D is small. The results illustrated in 

Fig. 6.11 suggest that shear angle  is a function of the relative strength of the two layers,  and cu/D. 

This study proposes a new equation to quantify shear angle  based on the form of the formula by Eshkevari 

et al. (2019). 

   rad A.ln B
u

c D   /                            (6) 

where    
 

 

A 0.02ln tan 0.16

B 0.49ln tan 0.05





  



 

     for the rough condition                          (7) 

 

 

A 0.03ln tan 0.18

B 0.55ln tan 0.115





  



 

    for the smooth condition                          (8) 

Figure 6.12 shows punching shear coefficient Ks for various values of  which were calculated from 

the results of the RPFEM through Eq. (5). The value of Ks increases as normalized shear strength cu/D 

increases. The figure demonstrates that Ks greatly depends on the values of  and cu/D, but not on the 

value of D/B. From Fig. 6.12, this study proposes a new equation to quantify Ks based on the form of the 

formula by Eshkevari et al. (2019). 

 u
. 2C

s
K c D  /                              (9) 

where   C -3.51 tan 8.7   for the rough condition                                    (10) 
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 C -3.2 tan 9.1  for the smooth condition                                   (11) 

 

 

a) Positive angle  

 

b) Negative angle  

Figure 6.9. Distributions of strain rates for determination of effective footing width 'B in two cases of 

positive and negative angles  

 

 

 

 

 

 

 

 

 

a) Positive angle                                b) Negative angle  

Figure 6.10. Failure mechanism assumed by Eshkevari et al. (2019) for rough condition 
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Figure 6.11. Variation in shear angle  with dimensionless clay strength cu/γD for various values of ϕ 
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Figure 6.12. Variation in coefficient Ks with dimensionless clay strength cu/γD for various values of  

 

6.4.2 Validation of the developed approach 

To validate the proposed equation, this study performs a comparison between the dimensional bearing 

capacity (q/γB) of Eq. (5) and (q/γB) of the RPFEM with a total of nearly 250 data values, where =30, 35, 

and 40 deg, cu/B=0.25-12.0, and D/B=0.25-2.0 for both rough and smooth conditions. All of the 

estimated values need to be within 20% of the 1:1 line, as shown in Fig. 6.13. The horizontal-axis of the 

figure shows the measured bearing capacity (qm/γB) of the RPFEM analysis, while the vertical-axis of the 

figure shows the calculated bearing capacity (qc/γB) of Eq. (5). The figure indicates that the proposed 

equation has a high predictive ability for the bearing capacity of sand overlying clay. In design practice, the 

factor of safety is widely introduced in the assessment of bearing capacity. The value in factor of safety is 

generally taken as Fs=3.0 due to the poor information on ground condition, especially on the soil constants. 

The applicability of the proposed equation is thought to be admissible from the precision ratio in Figures 

6.11 to 13. 

Yamamoto et al. (2005) used the finite element analysis to find the exact limit load of a rough rigid 

footing on a sand layer overlying clay. In this study, the bearing capacity values predicted with the proposed 

equation, Eq. (5), are compared against the superposition formulas of Meyerhof (1974) and Eshkevari et al. 

(2019) and the FEM of Yamamoto et al. (2005) for the rough and smooth conditions, as shown in Fig. 

6.14. The results obtained with the RPFEM are observed as being slightly higher than those of Eshkevari 
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et al. (2019) at large shear strength cu, and smaller than those of Meyerhof (1974). However, they show a 

good agreement with those of the FEM of Yamamoto et al. (2005) for all values of cu under the rough 

condition. In addition, the figure shows that dimensional bearing capacity q/γB for the rough condition is 

observed to be almost the same as that for the smooth condition at a small shear strength cu regardless of 

the values of  and D/B. However, the difference becomes greater as shear strength cu increases, due to 

the effect of the upper sand layer, and the footing roughness dominates more than the clay layer. The results 

indicate that the new equation for the RPFEM can provide reasonable predictions of the bearing capacity 

of a rigid footing on sand-over-clay during punching shear failure, which is simple and efficient enough to 

be used in engineering practice. 

 
Figure 6.13. Performance of Eq. (5) with respect to results of RPFEM 
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Figure 6.14. Dimensionless bearing capacity q/γB for various values of cu/γB from RPFEM compared 

with results found in literature for cases of ϕ=30, 35, and 40 deg with D =0.5B, 1.0B, and 2.0B 
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mechanism has been verified with that discussed in past work. 

2. The effect of the sand layer thickness on the shape and size of the contact normal stress distribution for 

two friction conditions was clarified. The distribution of the normal stress was found to reflect the 

combined shape of two-layered soils according to each magnitude of the sand layer thickness. When the 

sandy layer thickness was increased, the influence of the top sand layer on the contact normal stress was 

raised and the influence of the lower clay layer was lowered. The sand layer thickness reached the sufficiently 

large depth, and the normal stress distribution was observed to coincide with that of a single layer of sandy 

soil corresponding to each friction condition. 

3. For sand over a weak clay layer, the results obtained from the RPFEM suggested that a greater internal 

friction angle and a greater thickness of the sand layer are the improvements seen for the ultimate bearing 

capacity. However, it is noted that the increase in the internal friction angle was more dominant with a 

higher bearing capacity than that of the sand layer thickness. The maximum improvement in the bearing 

capacity was obtained at the critical depth of sand layer which depended on the value of , the level of cu, 

and the friction condition of the footing surface. Moreover, punching shear failure formed in the sand layer 

as a rigid sand block, while general shear failure formed in the clay layer as a rigid triangular wedge regardless 

of the friction condition. 

4. For sand over a stiff clay layer, the improvement in the ultimate bearing capacity was intensified by 

increasing the undrained shear strength. The ultimate bearing capacity was observed to surpass that of a 

single layer of sandy soil in the case study with a thin thickness of the sand layer. However, when the sand 

layer thickness was large, the ultimate bearing capacity coincided with that of a single layer of sandy soil. 

General shear failure formed within the sand layer as a rigid triangular wedge for the rough condition and 

as two rigid triangular wedges for the smooth condition. 

5. From the numerical results of the RPFEM, during punching shear failure, it is concluded that the ultimate 

bearing capacity of sand-over-clay is a function of the sand layer friction angle, its thickness, the clay layer 

shear strength, and the friction condition. Shear angle  and punching shear coefficient Ks are functions of 

 and cu/D, the relative strength of the two layers, and do not depend on footing width B. A new equation 

was proposed to predict the bearing capacity of a rigid footing with a wide range of problem parameters 

for both friction conditions. 
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 Publication: Chapter 6 will be submitted as article: Pham, N. Quang, Ohtsuka, S.: Ultimate bearing 

capacity of rigid footing resting on sand layer overlying clay, Journal of Geotechnical and 

Geoenvironmental Engineering (ASCE), 2020: 
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