
1932
IEICE TRANS. FUNDAMENTALS, VOL.E93–A, NO.11 NOVEMBER 2010

PAPER Special Section on Information Theory and Its Applications

Multi-Stage Threshold Decoding for Self-Orthogonal Convolutional
Codes

Muhammad AHSAN ULLAH†a), Kazuma OKADA†, Nonmembers, and Haruo OGIWARA†b), Member

SUMMARY This paper describes a least complex, high speed decoding
method named multi-stage threshold decoding (MTD-DR). Each stage of
MTD-DR is formed by the traditional threshold decoder with a special shift
register, called difference register (DR). After flipping each information bit,
DR helps to shorten the Hamming and the Euclidian distance between a re-
ceived word and the decoded codeword for hard and soft decoding, respec-
tively. However, the MTD-DR with self-orthogonal convolutional codes
(SOCCs), type 1 in this paper, makes an unavoidable error group, which
depends on the tap connection patterns in the encoder, and limits the error
performance. This paper introduces a class of SOCCs type 2 which can
breakdown that error group, as a result, MTD-DR gives better error perfor-
mance. For a shorter code (code length = 4200), hard and soft decoding
MTD-DR achieves 4.7 dB and 6.5 dB coding gain over the additive white
Gaussian noise (AWGN) channel at the bit error rate (BER) 10−5, respec-
tively. In addition, hard and soft decoding MTD-DR for a longer code (code
length = 80000) give 5.3 dB and 7.1 dB coding gain under the same con-
dition, respectively. The hard and the soft decoding MTD-DR experiences
error flooring at high Eb/N0 region. For improving overall error perfor-
mance of MTD-DR, this paper proposes parity check codes concatenation
with soft decoding MTD-DR as well.
key words: threshold decoding, multi-stage threshold decoding, difference
register, error group

1. Introduction

Threshold decoding (TD) is considered as a least complex
decoding technique in the field of coding theory [1]. The
TD experiences catastrophic errors with some channel error
patterns for convolutional codes [2]. The self-orthogonal
convolutional codes (SOCCs) give limited error propaga-
tion with TD and prevent the catastrophic error flow [3].
However, the bit error performance of TD is not attrac-
tive. Russian scientists have proposed [4]–[7] an improved
version of iterative TD, called multi-stage threshold decod-
ing. They introduce an extra shift register called difference
register (DR), which conveys the flipping messages of de-
coded information bits. So, the multi-stage threshold de-
coding with DR is named as MTD-DR. They have shown
that, after flipping each information bit by hard decision,
the Hamming distance between a received word and the de-
coded codeword, which is generated from decoded informa-
tion bits, becomes shorter, in where DR plays an important
role. The working principle of DR in the fundamental theo-

Manuscript received February 10, 2010.
Manuscript revised May 24, 2010.
†The authors are with the Department of Electrical Engineer-

ing, Nagaoka University of Technology, Nagaoka-shi, 940-2188
Japan.

a) E-mail: ahsan@comm.nagaokaut.ac.jp
b) E-mail: ogiwara@vos.nagaokaut.ac.jp

DOI: 10.1587/transfun.E93.A.1932

rem of MTD-DR [4]–[7] is hardly understandable. So, this
paper gives an intuitive proof of MTD-DR’s theorem. They
have claimed more than 6 dB coding gain over the additive
white Gaussian noise channel (AWGN) at the bit error rate
(BER) 10−5. Unfortunately, codes and decoding algorithms
are absent in their publications. Therefore, this paper recon-
structs MTD-DR with various aspects and investigates the
bit error performance over the AWGN channel.

This paper shows that, the MTD-DR, with SOCCs
given in [8], generates a strong error group that depends on
the tap connection pattern of the encoder. To improve the er-
ror performance of MTD-DR, a new class of SOCCs, type 2,
is given in this paper. The hard decoding MTD-DR achieves
4.7 dB and 5.3 dB coding gain for a shorter code with code
length 4200 and a longer code with code length 80000 at the
BER 10−5, respectively.

Iterative soft threshold decoding algorithm for SOCCs
is shown in [9]. In the paper, they used min-sum decoding
algorithm, which is widely used for decoding LDPC codes.
It approximates symbol by symbol maximum a posteriori
probability decoding. Moreover, they have considered self-
doubly orthogonal convolutional codes, to avoid cycles with
length 4 and 6 in the Tanner graph of the parity check ma-
trix. Unlike min-sum decoding, this paper proposes several
soft decoding algorithms, to reduce the Euclidian distance
between a received word and the decoded codeword after
flipping each information bit. This paper considers self-
orthogonal codes, i.e. without cycles of length 4, rather than
self-doubly orthogonal codes. This paper investigated the
error performance of codes in [9] for MTD-DR, unfortu-
nately, no improvement have been observed compared to a
self-orthogonal code.

The soft decoding MTD-DR reduces the Euclidian dis-
tance between a received word and the decoded codeword
after flipping each information bit. Weighted bit flipping
algorithm for MTD-DR is also investigated in this paper.
Combination of the weighted bit flipping algorithm and the
soft decoding algorithm makes a new soft decoding algo-
rithm for MTD-DR which is called a combined soft de-
coding MTD-DR (CMTD). A CMTD achieves 6.5 dB and
7.1 dB coding gain for the shorter code and the longer code,
respectively, at the BER 10−5 over the AWGN channel. For
further improving the overall error performance, this paper
proposes a decoding scheme where parity check codes are
connected serially with CMTD. Since MTD-DR is a low
complex decoding scheme, it may be useful for high speed
communication as well as for low power communication

Copyright c© 2010 The Institute of Electronics, Information and Communication Engineers

AHSAN ULLAH et al.: MULTI-STAGE THRESHOLD DECODING FOR SELF-ORTHOGONAL CONVOLUTIONAL CODES
1933

equipment.
Rest of the paper is arranged as follows. Section 2 gives

the concept of TD and MTD-DR and their hard decoding
algorithms. Section 3 discusses the error grouping in the
decoded information bit stream and how the SOCC type 2
breaks down that error group. Section 4 dedicates for the
bit error performance of TD and MTD-DR. Section 5 gives
soft decoding algorithms and illustrates their bit error per-
formance with MTD-DR. Section 6 gives two constructions
of combined soft decoding MTD-DR and provides the bit
error performance of them. Section 7 discusses about the
parity check codes concatenation with CMTDs and their bit
error performance are given. Section 8 concludes this paper.

2. Threshold Decoding Concept

2.1 Threshold Decoding

A systematic SOCCs with code rate R = 1/2, tap weight
J and memory length K are considered. An encoder of
SOCC generates a codeword by using N information bits
and makes a codeword of length 2N. Two types of SOCCs
are given.

• Type 1: When one generator polynomial generates a
codeword from an information bit stream (with N bits)
then the code is called SOCC type 1.
• Type 2: When multiple generator polynomials generate

n parity bit streams by using n information bit streams
(each bit stream has N/n bits, for parity and informa-
tion bit streams) then the code is called SOCC type 2.

The dotted part in Fig. 1 shows an encoder structure of
SOCC type 1 with J = 4, K = 6 and generator polyno-
mial G(D) = 1 + D + D4 + D6. The encoder generates a
parity bit sequence V(D) which is calculated by

V(D) = G(D)X(D) (1)

where X(D) is an input information bit sequence to the en-
coder. The information and parity bit sequences make a sys-
tematic codeword C(D) � {X(D),V(D)}. The binary code-
word is modulated as a binary phase shift keying (BPSK)

Fig. 1 Threshold decoder for SOCC type 1 with J = 4, K = 6, G(D) =
1 + D + D4 + D6. Here P(D) = G(D)X̂(D).

signal to transmit through the AWGN channel. At the re-
ceiving end, channel output is converted into a binary re-
ceived word by hard decision.

Figure 1 shows a TD for SOCCs type 1 (TD.Tp1).
The hard decision channel output makes a received word
Ĉ(D) � {X̂(D), V̂(D)}, where X̂(D) is the received informa-
tion bit stream stored in the information shift register and
V̂(D) is the received parity bit stream. The TD generates a
syndrome bit stream S (D), which is stored in the syndrome
shift register, by

S (D) = G(D)X̂(D) ⊕ V̂(D) (2)

where ⊕ represents the modulo two sum operator in this
paper. One information bit affects J syndrome bits which
make a checking syndrome set and each element of this set
is called checking syndrome. For decoding j-th information
bit, (the right most bit at the information register in Fig. 1),
let {S j} be the checking syndrome set and s j,k be the k-th
checking syndrome in it. For hard decoding TD, the check-
sum value Lj, that is summation of checking syndromes, is
calculated by

Lj =
∑

s j,k∈{S j}
s j,k (3)

The flipping decision is done by comparing threshold
value T with the checksum value Lj. The threshold value of
a given code is calculated by [1]

T =

⌊
J + 1

2

⌋
(4)

where �x� represents the largest integer not greater than x.
When Lj exceeds the threshold value (Lj > T), the decoding
decision flips the j-th information bit. At the same time,
checking syndromes are updated and then all the contents
of the registers are shifted one position right. Otherwise the
shifting is done without flipping. The tail-biting termination
is used in this paper.

2.2 Multi-Stage Threshold Decoding

Multi-stage threshold decoding is an iterative TD. This pa-
per discusses two configurations: (1) iterative TD with dif-
ference register (MTD-DR) and (2) iterative TD without dif-
ference register (MTD). Figure 2 shows an MTD-DR with
J = 4 and K = 6. MTD is constructed by removing DR
from Fig. 2. The DR holds all zero bits at the first stage and
updates each bit by the flipping decision. The j-th checksum
value Lj of MTD-DR is calculated by

Lj =
∑

s j,k∈{S j}
s j,k + dj (5)

where dj ∈ {1, 0} is the j-th bit (right most bit) in the DR.
The MTD, on the other hand, calculates the checksum value
by Eq. (3). When the checksum value exceeds the thresh-
old value, MTD-DR and MTD flip the target information bit

1934
IEICE TRANS. FUNDAMENTALS, VOL.E93–A, NO.11 NOVEMBER 2010

Fig. 2 MTD-DR for SOCC type 1 with J = 4, K = 6 and G(D) = 1 + D + D4 + D6. Here P(D) =
G(D)X̂(D).

and their checking syndromes. At the same times, MTD-
DR updates the related DR bit and then all the contents of
the registers are shifted one position right. Otherwise, the
shifting is done without flipping.

The difference register gives an unique feature of
MTD-DR. We give an intuitive proof of the function of the
difference register in the fundamental theorem of MTD-DR.
We know that, the Hamming distance between a received
word and the decoded codeword is the summation of the
Hamming distance of the information part and that of the
parity parts for systematic codes. Each bit of DR updates
(flips the right most bit of DR in Fig. 2) by the flipping de-
cision. It shows the difference between a received and a de-
coded information bit. That means, the Hamming weight of
DR contents gives the Hamming distance of the information
part between a received word and the decoded codeword. At
the beginning of decoding, the DR holds all zero bits, this
is because, the decoded information bit stream and the hard
decision information bits of the received word are the same.
The Hamming weight of syndrome bits is equal to the Ham-
ming distance of parity parts between a received word and
the decoded codeword, which is generated from the decoded
information bits. At j-th bit decoding by the MTD-DR, one
bit in DR and J bits in syndrome register are concerned. The
flipping decision inverts more than (J + 1)/2 bits to zero
among them, which confirms to reduce the Hamming dis-
tance, between the decoded codeword and a received word.

2.2.1 MTDs for SOCCs Type 1

This paper considers two constructions of MTDs for SOCCs
type 1.

1. Multi-stage threshold decoding with difference register
for SOCCs type 1 or MTD-DR.Tp1

2. Multi-stage threshold decoding without difference reg-
ister for SOCCs type 1 or MTD.Tp1

The MTD.Tp1 is constructed by removing difference regis-
ter from Fig. 2. MTD-DR.Tp1 and MTD.Tp1 calculate their
checksum values by Eq. (5) and Eq. (3), respectively, and

Fig. 3 An encoder of a SOCC type 2 with J11 = J12 = J21 = J22 = 2,
K = 6, G11(D) = 1 + D6, G12(D) = D3 + D4, G21(D) = D2 + D5, and
G22(D) = 1 + D6.

the decoding decision is done accordingly. The SOCCs type
1 make a strong error group which limits the error perfor-
mance of MTD-DR (see Sect. 3).

2.2.2 MTDs for SOCCs Type 2

In general, a SOCC type 2 uses n information bit streams
and generates equal number of parity bit streams. This pa-
per gives SOCCs type 2 for n = 2. Figure 3 shows an en-
coder of SOCC type 2 with Jxy = 3, x = y = {1, 2} and
K = 6. The encoder generates two parity sequences by
using four generating polynomials and gives the code rate
R = 2/4. Two information bit sequences (X1(D) and X2(D))
produce two parity sequences by four generating polynomi-
als G11(D), G12(D), G21(D) and G22(D). Parity sequences
of SOCC type 2 are defined by

V1(D) = G11(D)X1(D) ⊕G21(D)X2(D) (6)

V2(D) = G12(D)X1(D) ⊕G22(D)X2(D) (7)

The information and parity bit sequences make a code-
word C(D) � {X1(D),V1(D), X2(D),V2(D)}. MTD-DR
for SOCCs type 2 (MTD-DR.Tp2) as well as MTD for
SOCCs type 2 (MTD.Tp2) generate two syndrome se-
quences, which are defined by

S 1(D) = G11(D)X̂1(D) ⊕G21(D)X̂2(D) ⊕ V̂1(D) (8)

AHSAN ULLAH et al.: MULTI-STAGE THRESHOLD DECODING FOR SELF-ORTHOGONAL CONVOLUTIONAL CODES
1935

S 2(D) = G12(D)X̂1(D) ⊕G22(D)X̂2(D) ⊕ V̂2(D) (9)

where X̂(D) represents the corresponding received informa-
tion bit sequence. For hard decoding, MTD-DR.Tp2 calcu-
lates a checksum value L(x)

j for decoding j-th information bit
of the x-th information bit stream by

L(x)
j =

∑
s(xy)

j,k ∈{S
(y)
j }

s(xy)
j,k +

∑
s(xy)

j,k ∈{S
(y)
j }

s(xy)
j,k + d(x)

j (10)

where {S(y)
j } is a checking syndrome set selected from the

syndrome sequence S y(D) according to the generator poly-
nomial Gxy(D). The checking syndrome s(xy)

j,k is the k-th

element in {S(y)
j }. The MTD.Tp2 calculates the checksum

value by Eq. (10) in where d(x)
j = 0 for every decoding stage.

When the checksum value (for each bit in each information
bit stream) exceeds the corresponding threshold value, the
decoding decision is done accordingly. The threshold value
for x-th information bit stream Tx is given by

Tx =

⌊∑
y Jxy + 1

2

⌋
(11)

where Jxy is the number of terms in the generator polyno-
mial Gxy(D).

3. Error Grouping by MTD-DR

The MTD-DR, for SOCCs type 1, makes a strong error
group in the decoded information bit stream. After many it-
erations, when errors in the decoded information bit stream
make an error pattern equal to the tap connection pattern of
an encoder, the MTD-DR cannot correct them.

Figure 4(a) shows the histogram of error intervals given
by the errors in the decoded information bit stream after first
iteration for SOCC type 1. The “error interval u” means that
there exists u−1 error free bits between two error bits. Sim-
ilarly, a tap connection interval τi is the distance between
(i + 1)-th and i-th tap connection position in the informa-
tion register. The encircled error intervals, in this figure,
are matched with the tap connection intervals of the en-
coder. Figure 4(b) shows that, after many iterations, the
errors which are matched with the tap connection pattern
cannot be corrected. That means, the MTD-DR.Tp1 makes
a strong error group which depends on the tap connection
patterns of the encoder of SOCCs type 1.

For improving error performance, a new type of code,
called SOCC type 2, given in Sect. 2.2.2, is proposed. MTD-
DR.Tp2 decodes each information bit by using two syn-
drome sequences. In this case, MTD-DR.Tp2 corrects some
of the errors, which are matched with the tap connection
pattern of the encoder, from each information bit stream due
to two generator polynomials make different tap connection
patterns for each information bit stream in the encoder. As
a result, MTD-DR.Tp2 breaks down the error pattern which
is matched with the tap connection pattern of the encoder of
SOCCs type 2. Figures 5(a) and (b) show the histograms of

Fig. 4 Remaining error pattern for SOCCs type 1. The generator poly-
nomial G(D) = 1 + D103 + D129 + D214 + D238 + D353 + D477 + D499 and
tap connection positions in the information register are {0, 103, 129, 214,
238, 353, 477, 499}.

error intervals which are matched with the tap connection in-
tervals of encoder regarding to the decoded information bit
stream 1 and 2, respectively. These figures illustrate that, af-
ter second iteration, almost all the errors which are matched
with the tap connection pattern of the encoder are corrected.
After iteration 3, all the errors in the group were corrected
in this experiment. As a result, MTD-DR.Tp2 improves the
error performance.

4. Performance of Hard Decoding MTDs

This section gives the comparative error performance of TD,
MTD and MTD-DR for SOCCs type 1 and 2. In Table 1,
G(D) represents a generator polynomial of a SOCC type 1
with J = 10 and K = 1000. The generator polynomial
Gxy(D) represents a SOCC type 2 with Jxy = 5 and K ≈ 500
(for shorter code) and K ≈ 10000 (for longer code). These
codes are used in this paper to get the error performance for
each decoding scheme. Since the memory length of SOCC
type 2 is about 500 and it uses two information bit streams,
the SOCC type 1 will be a fair comparison with the memory
length 1000.

There thousands of SOCCs type 1 and 2 are found
by computer search. For example, The code searching pa-
rameters are K = 1000 and J = 10 for SOCCs type 1
and that are K = 500 (K = 10000 for longer codes) and
J = {J11, J12, J21, J22} for SOCCs type 2, where Jxy = 5.

1936
IEICE TRANS. FUNDAMENTALS, VOL.E93–A, NO.11 NOVEMBER 2010

Table 1 Generating polynomials for SOCCs: Type 1 and Type 2.

G(D)
1 + D117 + D151 + D205 + D218 + D225 Type 1

+D298 + D388 + D789 + D999 K=1000

G11(D) 1 + D51 + D198 + D251 + D465

Type 2
G12(D) D23 + D187 + D247 + D370 + D371

G21(D) D40 + D76 + D176 + D200 + D259

K ≈ 500
G22(D) D161 + D230 + D281 + D328 + D483

G11(D) 1 + D408 + D850 + D8286 + D9850

Type 2
G12(D) D2341 + D3008 + D4167 + D4584 + D5339

G21(D) D780 + D2563 + D4716 + D9116 + D9718

K ≈ 10000
G22(D) D4994 + D6152 + D6187 + D6390 + D6659

Fig. 5 Remaining error pattern for SOCCs type 2. Generator polynomi-
als are G11(D) = 1 +D90 +D268 +D370, G12(D) = 1 +D67 +D240 +D468,
G21(D) = 1+D60 +D212 +D285 and G22(D) = D29 +D177 +D278 +D461.
Tap connection positions in the information register 1 and 2 are {0, 67, 90,
240, 268, 370, 468} and {0, 29, 60, 177, 212, 278, 285, 461}, respectively.

For finding SOCCs type 1, terms D0 and DK−1 of the gen-
erator polynomial G(D) are set as default terms. Remaining
(J − 2) non-decreasing terms are generated randomly which
are situated in D0 to DK−1. The generated code is checked
whether it is a SOCC or not and the SOCC is selected.

For finding SOCCs type 2, four generator polynomials
(G11(D),G12(D),G21(D),G22(D)) are generated randomly
by using the parameters given above. In this case, all terms
in each polynomial are generated randomly. Among them,
at least one polynomial holds D0 term and no terms in each
polynomial exceeds the degree K − 1. The generated poly-
nomials make a code and the code is checked whether it is a
SOCC or not and the SOCC is selected.

Fig. 6 Performance of MTDs with N = 2100, J = 10, K = 1000 for
SOCC Type 1 and Jxy = 5, K ≈ 500 for SOCC type 2.

For finding the best codes, generated SOCCs are driven
to simulation with a fixed Eb/N0 and bit error performance
of them are observed and the best code is selected. Since
J and K are the parameters of codes, this paper optimizes
J (among Jxy = 4 to 6) for SOCCs type 2 and J (among
J = 8 to 12) for SOCCs type 1 with certain K value. The
tap weight Jxy = 5 (J = 10 for SOCCs type 1) gives the
best BER among other codes with different Jxy values. Ta-
ble 1 shows the best SOCC type 1 and 2 which are selected
from 1000 codes. The best SOCC type 1 is found by setting
Eb/N0 = 5.5 dB. The best SOCCs type 2 with Jxy = 5 and
K ≈ 500 (shorter code) and K ≈ 10000 (longer code) are
found by setting Eb/N0 = 5.0 dB and Eb/N0 = 4.0 dB, re-
spectively. This paper searches the best SOCCs around the
bit error rate 10−5.

The simulation is done by setting total information
length N = 2100 bits for shorter codes and N = 40000
bits for longer codes in this paper. Figure 6 shows the hard
decoding bit error performance of TD, MTD and MTD-DR
with SOCCs type 1 and 2 for shorter codes. MTD gives
better bit error performance than that of TD, for both types
of codes. MTD-DR achieves 1.4 dB and 2.6 dB more cod-
ing gain than that of TD at the BER 10−5 for SOCC type
1 and 2, respectively. Since, DR can help to calculate the
Hamming distance, between the decoded codeword and a re-
ceived word, MTD-DR gives better error performance than
MTD. The MTD-DR.Tp2 achieves 4.7 dB coding gain at the
BER 10−5. Furthermore, the DR improves error flooring ef-
fect significantly and elevates overall error performance.

Figure 7 illustrates the average number of iterations for
decoding both type of codes by MTD and MTD-DR. When
no information bit is flipped, MTDs terminate their decod-
ing, regardless the DR and their decoding algorithms. If

AHSAN ULLAH et al.: MULTI-STAGE THRESHOLD DECODING FOR SELF-ORTHOGONAL CONVOLUTIONAL CODES
1937

Fig. 7 Average number of iterations for hard decoding MTD-DR.Tp1,
MTD.Tp2 and MTD-DR.Tp2 with the codes in Table 1.

the termination condition does not fulfil, MTDs terminate
their decoding by the maximum number of iterations. It is
necessary to set sufficiently large maximum iterations for
extracting maximum benefit. In this case 30 iterations is
sufficiently large. It is seen that, at a particular Eb/N0 re-
gion, the average number of iterations increase unexpect-
edly. Authors have not yet known the reasons why it occurs.
To achieve the BER 10−5, MTD-DR.Tp1 expends Eb/N0 =

6.2 dB and 2.6 average number of iterations whereas MTD-
DR.Tp2 and MTD.Tp2 expend 5.1 dB and 5.3 dB Eb/N0

with the average number of iterations 3.2 and 3.3, respec-
tively.

In terms of bit error performance, MTDs for SOCCs
type 2 are better than TD (for both types of codes) as well
as MTDs for SOCCs type 1. Therefore, this paper compares
the error performance of MTD-DR for SOCCs type 2 among
hard and soft decoding algorithms hereafter.

5. Soft Decoding MTDs

5.1 Soft MTD-DR

For decoding j-th information bit by the soft decoding
MTD-DR (SMTD), the j-th checksum value Lj is calculated
by

Lj =
∑

s j,k∈{Sj}
w j,k(1 − 2s j,k) + wd j(1 − 2dj) (12)

where s j,k is the k-th bit of a syndrome set {S j} and dj is the
j-th bit in DR. The w j,k is an absolute value of received par-
ity signal related to the syndrome bit s j,k. The value wd j is
an absolute value of j-th received information signal. When
Lj < 0, flipping decision is done. After flipping each in-
formation bit, the Euclidian distance between the decoded

codeword and a received word becomes closer. (proof is
given below).

In Eq. (12), s j,k and dj are binary valued. It defines
r j,k�0 � (1 − 2s j,k) and r j,k=0 � (1 − 2dj), ∀r ∈ ±1 and then,
Eq. (12) is simplified to

Lj =

J∑
k=0

γ j,kr j,k (13)

where γ j,k�0 = w j,k and γ j,k=0 = wd j. The squared Euclid-
ian distance between a received word and the decoded code-
word is the summation of the squared Euclidian distance be-
tween the parity parts and the information parts of them. Let
y be a received signal and r is the antipodal representation
of that decoded information bit. Then the squared Euclidian
distance between them can be defined by

E2
d = (y − ρr)2 = y2 + ρ2r2 − 2ρyr (14)

where ρ is the channel gain. When the term yr in Eq. (14)
increases, the squared Euclidian distance decreases. If
sign(y) = sign(r), the DR’s value (1 − 2d) or the syndrome
register’s value (1 − 2s) will be ‘1,’ otherwise they will be
‘−1.’ Then the term yr can be represented by

yr = |y|(1 − 2d) or yr = |y|(1 − 2s) (15)

For decoding j-th information bit, the partial squared Eu-
clidian distance E2

dj
can be calculated by

E2
dj
=

J∑
k=0

{y2
j,k + ρ

2(r j,k)2} − 2ρ
J∑

k=0

|y j,k |r j,k

=

J∑
k=0

γ2
j,k + ρ

2(J + 1) − 2ρ
J∑

k=0

γ j,kr j,k

=

J∑
k=0

γ2
j,k + ρ

2(J + 1) − 2ρLj (16)

where y j,k=0 is the value of j-th received information signal
and y j,k�0 is the value of a received parity signal regarding to
the syndrome bit s j,k. In this case, γ j,k and |y j,k | are identical.
When Lj < 0 (in Eq. (16)), the flipping decision turns Lj

from negative value to positive and the Euclidian distance
reduces.

5.2 Weighted Bit Flipping MTD-DR

The weighted bit flipping (WBF) algorithm is proposed for
decoding LDPC codes [10]. This paper formulates a WBF
algorithm for MTD-DR called weighted bit flipping MTD-
DR (WBF.MTD). It is known that each syndrome bit is de-
rived from (J + 1) received signals. The weighting value
w j,k of WBF.MTD is the minimum absolute value among
the received signals regarding to the syndrome bit s j,k. The
weighting value w j,k is put into Eq. (12) and the decoding
decision is done accordingly.

1938
IEICE TRANS. FUNDAMENTALS, VOL.E93–A, NO.11 NOVEMBER 2010

Fig. 8 Performance of hard and soft decoding MTDs for SOCC Type 2
with Jxy = 5, K ≈ 500, N = 2100.

5.3 Performance of Soft Decoding MTDs

Figure 8 illustrates the bit error performance of hard and
soft decoding MTDs for a SOCC type 2 with K ≈ 500 and
Jxy = 5. The bit error performance of SMTD and MTD-
DR.Tp2 are superior than that of WBF.MTD at the BER
less than 10−5. The error flooring effect of SMTD is better
than that of MTD-DR.Tp2 and WBF.MTD. The WBF.MTD
gives better BER at the lower Eb/N0 region. By observing
the error performance of SMTD and WBF.MTD, this paper
proposes two new kinds of soft decoding algorithms called
combined soft decoding algorithms for MTD-DR which are
discussed in the next section.

6. Combined Soft Decoding MTDs

Combined soft decoding MTD with DR (CMTD) is a se-
rial concatenation of WBF.MTD and SMTD. Two types of
combined soft decoding MTDs are given:

1. Combined soft decoding MTD-DR without feedback
(CMTD.NFB)

2. Combined soft decoding MTD-DR with feedback
(CMTD.Feed)

6.1 CMTD without Feedback

Figure 9(a) shows a schematic diagram of CMTD.NFB.
In this case WBF.MTD works first. After some iterations
(maximum Γw iterations), WBF.MTD terminates its decod-
ing. Then SMTD starts its decoding. After some iterations
(maximum Γs iterations), SMTD terminates it decoding and
final output is done. Since, WBF.MTD and SMTD give bet-
ter error performance at lower and higher Eb/N0, respec-

Fig. 9 Schematic diagrams of (a) CMTD without Feedback and (b)
CMTD with feedback systems.

tively, the CMTD.NFB may improves overall decoding per-
formance. For CMTD.NFB case, it sets sufficiently large
number of iterations such as Γw = Γs = 30.

6.2 CMTD with Feedback

Figure 9(b) shows a schematic diagram of CMTD.Feed. In
this structure, CMTD.Feed first decodes the information bit
streams just like as CMTD.NFB by a few number of max-
imum iterations, due to reduce decoding complexity, and
then feedback to decode again. The feedback decoding may
correct again some bits and gives better error performance.
When both component decoders satisfy their termination
condition simultaneously, feedback does not continue and
then the CMTD.Feed gives final output. In this case, outer
iteration, Γ f , and inner iterations, Γw and Γs, highly influ-
ence the complexity of decoding. When it sets the inner
iterations more than 2 and outer iterations more than 10,
CMTD.Feed does not save Eb/N0 more than 0.05 dB at wa-
ter fall region and at error floor region the improvement is
zero. So, the outer maximum iteration Γ f = 10 and inner
maximum iterations Γw = Γs = 2 may be considered as the
sufficient setting of iterations.

6.3 Performance of Combined Soft Decoding MTDs

Figure 10 shows the BER performance of soft decoding
and combined soft decoding MTDs. CMTDs success-
fully use the advantages of WBF.MTD and SMTD together
and give better BER performance. CMTD.NFB achieves
2.6 dB and 3.1 dB more coding gain than that of SMTD
and WBF.MTD, respectively at the BER 10−5. In addition,
CMTD.Feed gives the best BER performance among other
MTDs. At the BER 10−5, CMTD.Feed achieves 0.4 dB
more coding gain than that of CMTD.NFB and achieves
coding gain of 6.5 dB over the AWGN channel. Though,
the error flooring of CMTD.Feed starts at the earlier BER
than that of CMTD.NFB, their error performance converge
at the higher Eb/N0 region. The dotted line shows the slope
of estimated error performance of maximum likelihood de-
coding [11] considering the minimum Hamming distance
term only. The minimum Hamming distance for systematic
SOCCs type 1 is (J + 1) [8] and it is minx (

∑
y Jx,y + 1) for

AHSAN ULLAH et al.: MULTI-STAGE THRESHOLD DECODING FOR SELF-ORTHOGONAL CONVOLUTIONAL CODES
1939

SOCCs type 2. The error flooring slopes of all MTDs follow
the theoretical error performance curve at higher Eb/N0 re-
gion. This error flooring occurs due to minimum Hamming
distance of codes.

Figure 11 shows the average number of iterations for
soft decoding MTDs. For CMTDs, the average numbers of
iterations are the summation of the average numbers of iter-
ations of each component decoder. The CMTD.NFB gives
better BER than that of SMTD as well as WBF.MTD by
a little more average number of iterations of them. For
achieving the BER 10−5, CMTD.NFB demands Eb/N0 =

Fig. 10 Performance of CMTDs for SOCC Type 2 with Jxy = 5, K ≈
500, N = 2100, ML =Maximum Likelihood Decoding.

Fig. 11 Average number of iterations for CMTD.Feed and CMTD.NFB
for SOCC Type 2 with Jxy = 5, K ≈ 500, N = 2100.

3.5 dB with the average number of iterations 7.5 whereas
CMTD.Feed demands 3.1 dB with 35.0 average number of
iterations. Therefore, the CMTD.NFB may be useful for
faster decoding and the CMTD.Feed may be suitable for the
lower Eb/N0 transmission.

7. CMTDs with Parity Check Codes

7.1 Serial Concatenation with Parity Check Codes

For further improving overall error performance, par-
ity check codes are concatenated with CMTD.Feed
(or with CMTD.NFB), in short CMTD.Feed.Parity (or
CMTD.NFB.Parity). Before encoding for SOCCs, informa-
tion bit streams are segmented by the predefine size. Each
segment of the information bit stream is defined as an in-
formation sub-block. A parity check encoder generates the
parity check codes against each information sub-block and
then the encoder of SOCC (in Fig. 3) generates a codeword.
The received signals are decoded by the CMTD first and
then the parity check decoder decodes for the final output.
When a decoded information sub-block does not satisfy the
parity check, the parity check decoder finds the minimum
checksum value Li in the information sub-block and then
the i-th information bit of that sub-block is flipped and the
final output is done.

7.2 Performance of CMTDs with Parity Check Codes

Figure 12 shows the BER performance of CMTD.Feed,
CMTD.NFB, CMTD.Feed.Parity and CMTD.NFB.Parity.
For finding these error performance, information sub-block
length is set to 50 bits. Therefore, CMTD.Feed.Parity as
well as CMTD.NFB.Parity give the coding rate 0.4901 <

Fig. 12 Performance of CMTDs with parity check codes for SOCC type
2, Jxy = 5, K ≈ 500, N = 2100.

1940
IEICE TRANS. FUNDAMENTALS, VOL.E93–A, NO.11 NOVEMBER 2010

Fig. 13 Performance of hard decoding MTD-DR for the longer code as
well as CMTD.Feed and CMTD.Feed.Parity for the shorter and longer
codes (in Table 1).

0.5. Since the parity check decoding is not iterative,
the average number of iterations for CMTD.Feed (or
CMTD.NFB) and CMTD.Feed.Parity (or CMTD.NFB.-
Parity) are the same. The bit error performance of
CMTD.Feed and CMTD.Feed.Parity are similar at the
lower Eb/N0 region. The CMTD.Feed.Parity prevents er-
ror flooring effect and gives better BER performance at
the high Eb/N0 region. Similar incident is occurred be-
tween CMTD.NFB and CMTD.NFB.Parity also. So, the
parity check code with CMTDs improves overall error per-
formance without increasing the average number of itera-
tions.

7.3 Performance of Longer Memory Length Code

Figure 13 gives the BER performance of SOCCs type 2 with
memory length K ≈ 500 and K ≈ 10000 for CMTD.Feed
and CMTD.Feed.Parity decoding schemes. Hard decoding
performance of the longer code is also given. The hard
decoding MTD-DR for longer code achieves 5.3 dB cod-
ing gain at the BER 10−5 over the AWGN channel. The
CMTD.Feed with K ≈ 10000 achieves 0.6 dB more coding
gain than that of the CMTD.Feed with K ≈ 500 at the BER
10−5. The CMTD.Feed.Parity (for the longer code) achieves
7.1 dB coding gain over the AWGN channel at the BER 10−5

with 40 average number of iterations.

8. Conclusion

This paper has successfully reconstructed MTDs with cod-
ing gain 7.1 dB over the AWGN channel at the BER 10−5

for a longer code. MTDs may be considered as a low com-
plex decoding method with excellent coding gain. MTDs

give limited error performance with the SOCC type 1 due
to make an irreducible error group at decoding. For SOCCs
type 2, MTDs prevent to form that error group at decod-
ing and give better error performance. The DR in MTD-
DR improves overall error performance. So, the MTD-DR
for SOCCs type 2 may consider as an important decoding
method in the field of threshold decoding.

The hard decoding MTD-DR gives 4.7 dB coding gain
over the AWGN channel at the BER 10−5 with 3.8 average
number of iterations for shorter codes. The MTD-DR for
longer codes gives 5.3 dB coding gain at the same BER.
In addition, the CMTD.Feed achieves 1.8 dB more coding
gain than that of the hard decoding MTD-DR at the BER
10−5. The CMTD.NFB gives coding gain 6.1 dB for shorter
codes at the BER 10−5 with the average number of itera-
tions 7.5 whereas the CMTD.Feed achieves 6.5 dB coding
gain with 35.0 average number of iterations. Therefore, the
CMTD.Feed may be considered as an Eb/N0 conscious de-
coding method and the CMTD.NFB can decode with the
lower average number of iterations. However, CMTDs ex-
perience error flooring effect from the earlier BER. The se-
rial concatenation of parity check codes with CMTDs im-
proves overall error performance and gives reliable decod-
ing for the high speed communication.

References

[1] J. Massey, Threshold Decoding, MIT Press, 1963.
[2] J. Massey, “Catastrophic error-propagation in convolutional codes,”

Circuit Theory — 11th Midwest Symposium, University of Notre
Dame, pp.583–587, 1968.

[3] J.P. Robinson, “Error propagation and definite decoding of convolu-
tional codes,” IEEE Trans. Inf. Theory, vol.IT-14, no.1, pp.121–128,
Jan. 1968.

[4] V.V. Zolotarev and G.V. Ovechkin, “An effective algorithm of noise-
proof coding for digital communication systems,” Electrosvaz, no.9,
pp.34–36, 2003.

[5] V.V. Zolotarev, “The multithreshold decoder performance in Gaus-
sian channels,” 7th Int. Symp. on Commn. Theory and Applications
(ISCTA’03), pp.18–22, UK, July 2003.

[6] V.V. Zolotarev, Theory and Algorithms of Multithreshold Decod-
ing, Under Scientific Edition of the Member Correspondent of the
Russian Academy of Science, U.B. Zubarev, Moscow, Radio and
Communications, Hot Line Telecom, 2006 (in Russian).

[7] http://www.mtdbest.iki.rssi.ru
[8] S. Lin and D.J. Costello, Jr., “Majority-logic decoding of convolu-

tional codes,” in Error Control Coding: Fundamentals and Applica-
tions, chap.13, Prentice-Hall, Englewood Cliffs, N.J., 1983.

[9] C. Cardinal, D. Haccoun, and F. Gagnon, “Iterative threshold decod-
ing without interleaving for convolutional self-doubly orthogonal
codes,” IEEE Trans. Commun., vol.51, no.8, pp.1274–1282, Aug.
2003.

[10] Y. Kou, S. Lin, and M.P.C. Fossorier, “Low-density parity-check
codes based on finite geometries: A rediscovery and new results,”
IEEE Trans. Inf. Theory, vol.47, no.7, pp.2711–2736, Nov. 2001.

[11] A.J. Viterbi and J.K. Omura, Principles of Digital Communication
and Coding, McGraw-Hill Book Co., 1985.

AHSAN ULLAH et al.: MULTI-STAGE THRESHOLD DECODING FOR SELF-ORTHOGONAL CONVOLUTIONAL CODES
1941

Muhammad Ahsan Ullah was born in Ja-
malpur, Bangladesh on March 1, 1979. He re-
ceived B.E. degree in Electrical and Electronic
Engineering from Chittagong University of En-
gineering and Technology, Bangladesh in 2002
and M.E. degree in Electronic and Information
Engineering from Kyung Hee University, Re-
public of Korea in 2007. Now, he is pursuing
doctoral degree in Electrical Engineering at Na-
gaoka University of Technology from Septem-
ber, 2008. He is interested in convolutional

codes and multi-stage threshold decoding.

Kazuma Okada was born in Okayama Pre-
fecture, Japan on March 14, 1986. He received
B.E. degree in Electrical Engineering from Na-
gaoka University of Technology in 2008, and
received M.E. degree in Electrical Engineer-
ing from Nagaoka University of Technology in
2010. In his master course, he had interested
in convolutional codes and multi-stage threshold
decoding.

Haruo Ogiwara was born in Tochigi Pre-
fecture, Japan on February 4, 1947. He received
B.E. and M.E. in Control Engineering from To-
kyo Institute of Technology in 1969 and 1971,
respectively, and Dr.Eng. in Electronics from
Osaka University in 1984. Since 1971 to 1986,
he was a research engineer at Electrical Commu-
nication Laboratories of Nippon Telegraph and
Telephone corporation, where he worked on re-
searches and developments of Hologram mem-
ories, optical switching system, a digital sub-

scriber loop, and communication theory. In 1986 he joined the Nagaoka
University of Technology and he is now Professor in Department of Elec-
trical Engineering. His current research interest includes turbo code, coded
modulation especially for a non-Gaussian channel and a fading channel and
adaptive equalization in digital mobile communication. He is a member of
IEEE and SITA.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

